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This is the first of a series of papers in which we use analyticity properties of quantum fields
propagating on a spacetime to uncover a new multiverse geometry when the classical geometry has
horizons and/or singularities. The nature and origin of the “multiverse” idea presented in this paper, that
is shared by the fields in the standard model coupled to gravity, are different from other notions of a
multiverse. Via analyticity we are able to establish definite relations among the universes. In this paper
we illustrate these properties for the extended Rindler space, while black hole spacetime and the
cosmological geometry of mini-superspace (see Appendix B) will appear in later papers. In classical
general relativity, extended Rindler space is equivalent to flat Minkowski space; it consists of the union
of the four wedges in ðu; vÞ light-cone coordinates as in Fig. 1. In quantum mechanics, the wavefunction
is an analytic function of ðu; vÞ that is sensitive to branch points at the horizons u ¼ 0 or v ¼ 0, with
branch cuts attached to them. The wave function is uniquely defined by analyticity on an infinite number
of sheets in the cut analytic ðu; vÞ spacetime. This structure is naturally interpreted as an infinite stack of
identical Minkowski geometries, or “universes”, connected to each other by analyticity across branch
cuts, such that each sheet represents a different Minkowski universe when ðu; vÞ are analytically
continued to the real axis on any sheet. We show in this paper that, in the absence of interactions,
information does not flow from one Rindler sheet to another. By contrast, for an eternal black hole
spacetime, which may be viewed as a modification of Rindler that includes gravitational interactions,
analyticity shows how information is “lost” due to a flow to other universes, enabled by an additional
branch point and cut due to the black hole singularity.
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I. EXTENDED RINDLER SPACETIME

A massive particle moving in a background spacetime
with metric gμνðxÞ is described by a worldline action

S ¼
Z

dτ

�
1

2eðτÞ gμνðxðτÞÞ∂τxμðτÞ∂τxνðτÞ −
eðτÞ
2

μ2
�
: ð1Þ

The einbein eðτÞ is the gauge field for τ-reparametrization
symmetry. Its equation of motion is a constraint that may be
written in terms of the canonical conjugate momentum
pμðτÞ as, gμνðxÞpμpν þ μ2 ¼ 0. When the system is quan-
tized, the wavefunction in position space φðxμÞmust satisfy
the quantum-ordered constraint that takes the form of the
Klein-Gordon equation in a curved background

ð−∇2 þ μ2ÞφðxÞ ¼ 0; with

∇2φ≡ 1ffiffiffiffiffiffi−gp ∂μð
ffiffiffiffiffiffi
−g

p
gμνðxÞ∂νφðxÞÞ: ð2Þ

The case of gμνðxÞ for Rindler spacetime commonly
refers to the coordinate frame of an observer undergoing
constant proper acceleration in an otherwise flat spacetime
[1]. Using lightcone coordinates ðu; vÞ in flat spacetime,

FIG. 1. Four regions of the map (u, v) to (t, y).
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Rindler spacetime corresponds to just region-I in Fig. 1,
namely u > 0; v < 0, bounded by horizons at u ¼ 0 or
v ¼ 0. This wedge of flat spacetime can be reparametrized
in terms of Rindler coordinates, y > 0;−∞ < t < ∞, as
in Eq. (5).
By extended Rindler spacetime we mean the union of

the four regions I-IV shown in Fig. 1, which seems to be
equivalent to the full Minkowski space. We will motivate
the study of the union of the four regions and will find
new features beyond just Minkowski space that are not
apparent at the classical level (such as geodesics). The new
aspects emerge only at the quantum level as properties of
the first quantized wave function φ, or equivalently a
property of fields φ that satisfy the Klein-Gordon equation
ð−∇2 þ μ2Þφ ¼ 0 in extended Rindler spacetime.
We were motivated to study extended Rindler spacetime

because we found that the wavefunctions for the cases of
cosmology as well as black hole physics have the same
features. These applications are consequences of the
standard model (SM) coupled to general relativity (GR)
that includes a modest modification that lifts the conven-
tional theory to a locally scale invariant (Weyl symmetric)
version of GRþ SM [2]. The conventional GRþ SM at
low energies is recovered by fixing a Weyl gauge that
introduces the dimensionful parameters, the Newton con-
stant GN , dark energy Λ and electroweak scale vEW, all
coming from the same source [2]. This explains that all
dimensionful constants are the same everywhere in the
observed spacetime because they come from the same field
that, when frozen to a constant by a gauge fixing, fills the
entire universe of the conventional GRþ SM. The Weyl
symmetry geodesically completes the universe of the
conventional theory at high energies, beyond cosmological
or black hole singularities, by including previously missing
patches of spacetime in a way analogous to enlarging the
Rindler patch in Fig. 1 to the extended Rindler spacetime.
In cosmological studies, using the Friedman equation at the
classical level or the Wheeler deWitt equation at the
quantum level, it is found that the effective geometry of
minisuperspace—as a geometry in field space that includes
the scale factor, curvature, anisotropy, and matter in the
form of radiation and the Higgs field—is closely related to
the geometry of the extended Rindler spacetime discussed
in this paper, including some interactions that are not part of
the discussion here. In certain limits of the interactions the
minisuperspace geometry reduces mathematically exactly
to the extended Rindler space. Then a wedge in minisuper-
space (region II) is related to the expanding spacetime after
the big bang, while the other regions I,III, and IV play a role
in determining a geodesically complete history of the
universe. These comments are amplified in Appendix B
to which the interested reader may turn anytime without
having to read the rest of the paper. Full details will appear
in separate papers [3,4]. Until then, we will discuss the
mathematical properties of the familiar Rindler space and

its extensions without any reference to minisuperspace,
cosmology or black holes. The applications outlined in this
paragraph are motivating factors, otherwise we emphasize
that, this paper stands on its own to discuss mainly the new
quantum aspects of extended Rindler spacetime.
As seen by a traditional Rindler observer in region I,

during the entire time span of the Rindler universe,
−∞ < t < ∞, geodesics of moving particles remain only
within the Rindler wedge (see Sec. II). However, region I is
a geodesically incomplete spacetime from the perspective
of other observers, such as a Minkowski observer that uses
x0 rather than t as “time,” or more generally a proper
observer that uses proper time τ. So even though physical
particles may escape/enter through the horizons, and
physical phenomena may exist in all the four regions in
Fig. 1, a Rindler observer is incapable of detecting such
phenomena from his/her own perspective. Explorers that
wish to understand the deeper nature of space-time beyond
their own limited observational capabilities must therefore
consider all possible observers, not only those observers
limited by information available in some chosen coordinate
system. Examples of observers with limited capabilities of
observation due to geodesically incomplete coordinate
systems include an observer outside of a black hole that
is similar to a Rindler observer. With this thought in mind,
in this paper we are interested in the “extended Rindler
space” that consists of the geodesically complete union of
the four regions in Fig. 1. This means that, in the absence of
interactions, extended Rindler space is essentially flat
Minkowski space. Indeed this is true in classical physics.
However, in quantum physics, we will show that the wave
functions of particles are sensitive to aspects of extended
Rindler space that classical physics cannot capture even
with geodesically complete spacetime. Wave functions for
particles in first quantization amount to fields. Therefore, as
a first exercise, we study here scalar fields in the back-
ground of extended Rindler space.
Rindler geometry has a long history of applications

including the Unruh effect [5–15], therefore, it is inescap-
able that some of our discussion below overlaps old
analyses. But for completeness, as well as for establishing
notation and conceptual background, we include in this
paper some familiar material along with our newer ideas
to help the reader follow our views on the multiverse
aspects of extended Rindler spacetime that becomes
apparent only at the quantum level. The same approach
will be used in future papers to make similar cases for
black holes and cosmology for which the discussion and
results in this paper are a prelude toward the more
complicated multiverse nature of geodesically complete
cosmological spacetimes [3] and eternal black hole space-
times [4]. Therefore, in the present paper we wish to
provide sufficient details to build up the ideas through the
simpler case of the extended Rindler spacetime without
interactions.
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Minkowski spacetime in 1þ 1 dimensions,1 ðx0; x1Þ, may be rewritten in terms of light cone coordinates ðu; vÞ,

u≡ x0 þ x1; v≡ x0 − x1; or x0 ¼ uþ v
2

; x1 ¼ u − v
2

:

Rindler coordinates ðt; yÞ, that are convenient to describe each region separately, are given by a coordinate transformation

2y ¼ −uv and e2tsignðyÞ ¼ −
u
v
; ð3Þ

with −∞ < t < ∞ and −∞ < y < ∞. In the ðt; yÞ coordinates, the flat Minkowski metric takes the appearance of a curved
metric, ds2 ¼ gμνdxμdxν, with its corresponding Laplacian as in Eq. (2),

ds2 ¼ −dudv ¼ −ð2yÞdt2 þ ð2yÞ−1dy2 ¼ �e2ξð−dt2 þ dξ2Þ;

∇2φ ¼ −4∂u∂vφ ¼ −
1

2y
∂2
tφþ ∂yð2y∂yφÞ ¼ �e−2ξð−∂2

tφþ ∂2
ξφÞ; ð4Þ

where e2ξ ≡ j2yj, and the ð�Þ ¼ signðyÞ refer to regions I&III versus II&IV. For the transformation of Eq. (3) it is useful to
distinguish four regions, I,II,III,IV, as indicated in Fig. 1. In various regions ðt; yÞ is related to ðu; vÞ as follows

Iðu>0;v<0;y>0Þ∶ u ¼ þ
ffiffiffiffiffi
2y

p
et ¼ etþξ; v ¼ −

ffiffiffiffiffi
2y

p
e−t ¼ −e−tþξ; 2y ¼ −uv; e2t ¼ −

u
v
;

IIðu>0;v>0;y<0Þ∶ u ¼ þ
ffiffiffiffiffiffiffiffiffi
−2y

p
et ¼ etþξ; v ¼ þ

ffiffiffiffiffiffiffiffiffi
−2y

p
e−t ¼ þe−tþξ; 2y ¼ −uv; e2t ¼ þ u

v
;

IIIðu<0;v>0;y>0Þ∶ u ¼ −
ffiffiffiffiffi
2y

p
et ¼ −etþξ; v ¼ þ

ffiffiffiffiffi
2y

p
e−t ¼ þe−tþξ; 2y ¼ −uv; e2t ¼ −

u
v
;

IVðu<0;v<0;y<0Þ∶ u ¼ −
ffiffiffiffiffiffiffiffiffi
−2y

p
et ¼ −etþξ; v ¼ −

ffiffiffiffiffiffiffiffiffi
−2y

p
e−t ¼ −e−tþξ; 2y ¼ −uv; e2t ¼ þ u

v
: ð5Þ

The sign of the square root,�0 ffiffiffiffiffiffiffiffij2yjp
(which agree with the

signs of u and v), distinguishes region I from III and II from
IV. The square roots �0 ffiffiffiffiffiffiffiffij2yjp

appear in both the classical
and quantum solutions of the extended Rindler system. In
particular, continuity of the solutions in the ðt; yÞ coor-
dinates across the horizons in Fig. 1, require the inclusion
of all four Rindler regions.
An intuitive description of the extended Rindler geom-

etry in classical physics is partially conveyed by the
following comments. The horizons, that form the bounda-
ries of the four regions, occur at either u ¼ 0 or v ¼ 0. The
u ¼ 0 horizons are indicated as the orange line in Fig. 1,
where −∞ < v < ∞ and t ¼ −∞, y ¼ 0; the v ¼ 0
horizons are indicated as the blue line in Fig. 1, where
−∞ < u < ∞ and t ¼ ∞, y ¼ 0. A foliation of the ðu; vÞ
plane is provided by either fixed values of y or fixed values
of t within each Rindler region separately. The case of
y ¼ − 1

2
uv ¼ fixed corresponds to hyperbolas in each

ðu; vÞ region; red curves labeled by y1;2 in Fig. 1, with
0 < y1 < y2 < ∞, are examples shown only in region I.
The case of t ¼ 1

2
ln ju=vj ¼ fixed correspond to straight

rays that extend from the origin to infinity within each
ðu; vÞ region; black rays in Fig. 1, labeled by
−∞ < t1 < t2 < þ∞, are examples shown only in region
I. In all regions jyj increases uniformly from the center or
horizons (jyj ¼ 0) to the outer boundaries of the region at
infinity (jyj ¼ ∞). On the other hand, going around in the
counterclockwise direction in Fig. 1, the Rindler t that
labels the rays increases from −∞ to þ∞ in region I,
followed by a decrease from þ∞ to −∞ in region II,
followed by an increase from −∞ to þ∞ in region III, and
followed by a decrease from þ∞ to −∞ in region IV.
It is important to emphasize that in region I, the

Minkowski time, x0 ¼ ðuþ vÞ=2, increases, while the
Rindler time (the t that labels the rays) also increases
counterclockwise from −∞ to þ∞; however in region III
the Minkowski time x0 decreases while the Rindler time t
increases counterclockwise from −∞ to þ∞. This differ-
ence between regions I and III is important in the
interpretation of particle versus antiparticle quantum
waves, and it leads to an interchange of creation/annihi-
lation symbols, a ↔ b†, in the construction of the field in
region I versus region III, as exhibited later in Eq. (22)
versus Eq. (24).
The rest of this paper is organized as follows. In Sec. II

we discuss the geodesics in the classical extended Rindler
1We focus on 1þ 1 dimensions for simplicity; this is easily

generalized to any number of dimensions.
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space. In Sec. III we discuss the complete and ortho-
normal set of modes of the Klein-Gordon equation in the
extended Rindler background, construct the general first
quantized wavepackets and the second quantized quan-
tum field, insuring that these are continuous across
horizons of the four Rindler quadrants in Fig. 1. In
Sec. IV we determine the analyticity properties of the
first quantized wavepackets and quantum field and show
how, by analytic continuation, these naturally take values
in an infinite stack of Minkowski sheets labeled by two
integers, ðn;mÞ, that constitute the multiverse. In Sec. V
we impose boundary conditions at the horizons of the
four quadrants in the (0,0) universe to require that on this
sheet the extended Rindler space is equivalent to
Minkowski space. By analyticity, this determines the
boundary conditions on all ðn;mÞ sheets of the multi-
verse, and we show that the quantum oscillators at
various sheets are related to each other by a specific
canonical transformation determined by analyticity. In
Sec. VI we display the multiverse directly in the
Minkowski basis and derive a very nontrivial canonical
transformation that relates the general level ðn;mÞ
Minkowski field to the level-(0,0) Minkowski field.
This canonical transformation represents in the
Minkowski basis the analytic continuation of the field
in the Rindler basis, and it could not be obtained without
going through the Rindler basis. In Sec. VII we study
charge (or information) conservation and unitarity and
show that, even though there is a flux of information (or
charge) across the horizons of neighboring quadrants,
charge is conserved within each Rindler quadrant sepa-
rately at each ðn;mÞ universe. From this we conclude that
there is no leakage of information among levels of the
Rindler multiverse. In Sec. VIII we summarize the
essential message of this paper and then suggest that
the multiverse structure discussed here in the simple
context of extended Rindler space is more general and
also emerges in any spacetime that has horizons, such as
black holes, including the Schwarzchild black hole and
others. Furthermore, we argue that in the presence of
interactions, such as gravitational interactions represented
by a black hole, big bang and others, the levels of the
multiverse are no longer isolated from each other, and
charge/information/probability do leak from one level of
the modified multiverse to any other level, as discussed in
other papers including the case of the Rindler-like
geometry of mini-superspace with interactions [3] and
the case of an eternal black hole [4]. Appendix A gives
details of computations of information conservation and
information fluxes across the horizons and at asymptotic
regions in each Rindler wedge. Appendix B is included
to clarify and amplify the physically motivating factors
outlined at the beginning of this section, in particular in
the case of cosmology where the new multiverse idea
should be relevant to the cyclic universe scenario.

II. GEODESICS

Before discussing the first quantized wave function or
equivalently the field, in this section we study the geo-
desics in extended Rindler space. The purpose is to first
understand the motion of particles in the classical geom-
etry. This will provide a background to better understand
the flux of charge or information from the perspective of
wave packets. We will see in Sec. (IV) that the wave
function reveals a far richer geometry involving an infinite
stack of ðu; vÞ sheets with each sheet related to the
classical geometry.
The geodesics in a curved spacetime with metric

gμνðxÞ can be computed by solving the equations of motion
of a massive or massless particle on a worldline xμðτÞ
moving in the curved background. The action on the
worldline in the first order formalism is given by,

SðxÞ ¼ R dτf_xμðτÞpμðτÞ − eðτÞ
2
½gμνðxðτÞÞpμðτÞpνðτÞþμ2�g.

The equation of motion for varying the einbein δeðτÞ gives
the on-shell constraint, and the equation of motion for
varying δpμ gives the relation between the velocity and
momentum. After the variations, choosing the gauge
eðτÞ ¼ 1 (due to τ-reparametrization), these equations take
the form

gμνðxÞpμpν þ μ2 ¼ 0; _xμ ¼ gμνðxÞpν: ð6Þ
The equation of motion for varying δxμ gives an expression
for _pμ which amounts to a second order differential
equation for xμðτÞ. This is the geodesic equation. A first
integral of the geodesic equation is already contained in the
constraint equation, therefore it can be ignored and con-
centrate on solving just the equations above in order to find
the geodesic solution for xμðτÞ as a function of τ. Note that
τ is invariant under target spacetime reparametrizations so,
unlike observer-dependent choices of “time” in target
space-time, τ is an unambiguous choice of “time” as the
evolution parameter for the motion of the particle from
the perspective of a proper observer in the frame of the
particle itself.
In the case of the flat 2D Minkowski metric,

ds2 ¼ −dudv, or gμν ¼ ημν ¼ ð 0
−1=2

−1=2
0
Þ, the inverse met-

ric is gμν ¼ ημν ¼ ð 0
−2

−2
0
Þ, and the equations to be solved

(6) are, _u ¼ −2pv ¼ pu, _v ¼ −2pu ¼ pv, where puðτÞ ¼
kþ and pvðτÞ ¼ k− are constants of motion (due to trans-
lation invariance of the action, or the _p equations of
motion), while the constraint is, −4pupv þ μ2 ¼ 0 ¼
−kþk− þ μ2. So, the geodesic solution is

uðτÞ ¼ kþτ þ u0; vðτÞ ¼
μ2

kþ
τ þ v0;

and −∞ < kþ < ∞; ð7Þ

where ðu0; v0Þ is the initial position in the ðu; vÞ plane. By
eliminating τ between the first two equations this solution is
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rewritten as a straight line in the flat ðu; vÞ spacetime,
uðτÞ ¼ ðkþ=μÞ2vðτÞ þ constant. Equivalently, the solution
is plotted as a parametric plot that amounts to a timelike
straight line whose direction in ðu; vÞ space is set by the
timelike on-shell momentum, kμ ¼ ðkþ; k−Þ, as shown in
the upper left corners of Figs. 2, 3. Note that kþ > 0
corresponds to a particle (both kþ and k− positive, so
upward arrow) while kþ < 0 corresponds to an antiparticle
(both kþ and k− negative, so downward arrow).
In the case of the extended Rindler metric, ds2 ¼

−ð2yÞdt2 þ ð2yÞ−1dy2, the inverse metric is gμν ¼
ð−1=2y

0
0
2yÞ, and the equations to be solved (6) are,

_tðτÞ ¼ − ptðτÞ
2yðτÞ, _yðτÞ ¼ 2yðτÞpyðτÞ, where ptðτÞ ¼ ω is a

constant of motion (due to translation invariance,
tðτÞ → tðτÞ þ c, of the action, or the _pt equations of

motion), while the constraint is, − p2
t

2y þ 2yp2
y þ μ2 ¼ 0.

We rewrite this constraint by substituting the expressions
for the momenta in terms of velocities,

−
ω2

2yðτÞ þ
_y2ðτÞ
2yðτÞ þ μ2 ¼ 0: ð8Þ

So, yðτÞ is given by the solution of a simple first
order differential equation while tðτÞ is an integral over
−ω
2yðτÞ ,

_yðτÞ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 − 2μ2yðτÞ

q
; tðτÞ ¼ t� þ

Z
τ

τ�
dτ0

−ω
2yðτ0Þ ;

ð9Þ

where the sign change � for the velocity _y occurs at a
specific time, τ ¼ τ�, when _yðτÞ vanishes, namely at
y� ¼ yðτ�Þ ¼ ω2

2μ2
. The solution is,

yðτÞ ¼ −
μ2

2
ðτ − τ�Þ2 þ

ω2

2μ2
;

tðτÞ ¼ 1

2
ln

���� τ − τ� − ω=μ2

τ − τ� þ ω=μ2

����þ t�: ð10Þ

where ðω; τ�; t�Þ are integration constants determined by
initial conditions.
Of course, the geodesics written in terms of ðtðτÞ; yðτÞÞ

in the extended Rindler space must be the same as those
written in terms of Minkowski space ðuðτÞ; vðτÞÞ given in
Eq. (7). Therefore, a more elegant solution is to compute
ðtðτÞ; yðτÞÞ by using the map between the Rindler and
Minkowski coordinates in Eqs. (3), (5) and inserting the
geodesics in Eq. (7), as follows

yðτÞ ¼ −
uðτÞvðτÞ

2
¼ −

1

2
ðμ2τ2 þ ðkþ þ μ2=k−Þτ þ u0v0Þ;

tðτÞ ¼ 1

2
ln

���� uðτÞvðτÞ
���� ¼ 1

2
ln

���� kþτ þ u0
μ2

kþ τ þ v0

����: ð11Þ

By comparing Eqs. (10), (11) one can establish the relation
between the integration parameters in the two versions
ðω; τ�; t�Þ versus ðk; u0; v0Þ that provide different physical
insights.
The parametric plots of the explicit Minkowski and

Rindler solutions are given in Figs. 2, 3. The Minkowski
plots appear in the upper left corner of these figures
while the Rindler plots appear in the main body of these
figures. These are each other’s images according to the
maps in Eq. (5). In both the Minkowski and Rindler
plots the Rindler regions I-IV traversed by the geodesics
are also shown. The bending point ðy�; t�Þ where the
Rindler plot turns around in region I (or III) occurs
at τ ¼ τ�.
In these figures the arrows show the direction of

motion as the proper time τ increases uniformly from
τ ¼ −∞ to τ ¼ þ∞. Proper time is the time used by an
observer that travels in the frame of the particle.

FIG. 2. Increasing tðτÞ in I or III.

FIG. 3. Decreasing tðτÞ in I or III.
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Minkowski observers use x0ðτÞ as “time” as measured
by clocks in a static laboratory, while Rindler observers
use tðτÞ for that purpose noting that this is the clock that
ticks in the frame of a laboratory experiencing constant
proper acceleration [1]. A series of events that occur
sequentially according to proper time τ, may have
different interpretations when they are rearranged
according to one choice of time versus another. To
see this in the present case, first focus on the Minkowski
plots in the upper left-hand corner of each Figs. 2, 3,
where the upward (downward) trajectory indicates that
the Minkowski time x0ðτÞ increases (decreases) as
proper time τ increases; hence the upward (downward)
trajectory is for a Minkowski particle (antiparticle) that
has positive (negative) energy E ¼ ðkþ þ k−Þ=2, since
both k� are positive (negative). In the Rindler images of
these same geodesics, note that in Fig. 2, tðτÞ increases
during passage of a Minkowski particle (antiparticle)
through region I (III), so these are interpreted as Rindler
particles by Rindler observers in regions I and III. By
contrast, in Fig. 3, tðτÞ decreases during passage of a
Minkowski particle (antiparticle) through region III (I),
so these are interpreted as antiparticles by Rindler
observers in regions I or III. So a Rindler observer’s
particle is a mixture of Minkowski particles and anti-
particles, and vice versa. As is well known, this is
expressed as a Bogoliubov transformation for the
corresponding particle creation/annihilation operators,
as rederived below in Eqs. (38), (47).
The plots clearly show that the geodesics passing

through regions I or III take an infinite amount of
Rindler time tðτÞ. Hence, only this portion of the
complete geodesic is measurable by the Rindler
observer in region I (or III). Meanwhile, the complete
geodesic, that includes regions beyond I (or III) is
measurable by the Minkowski observer as shown in the
upper left corner of each figure. Of course, the proper
time τ captures the full geodesics in all curved space-
times, so τ will be our preferred choice of evolution
parameter to discuss complete geodesics when analyzing
the geometry of more complicated cases, such as
black holes.
Using τ as the evolution parameter, there is another

way to intuitively determine the complete trajectory for
yðτÞ without solving it explicitly. The method is exhib-
ited here because this approach can be applied generally
to any spacetime with a timelike Killing vector when
an explicit solution is not available. Consider the
constraint in Eq. (8) that the trajectory yðτÞ must satisfy
and write it in the form of a vanishing non-relativistic
Hamiltonian

_y2

2μ2
þ VðyÞ ¼ 0; with VðyÞ ¼

�
y −

ω2

2μ2

�
: ð12Þ

In this form the constraint describes the dynamics
of a nonrelativistic particle in 1-dimension with some
potential energy VðyÞ, such that its total energy
(kineticþ potential) is constrained to be zero. This is
shown in Fig. 4 where the potential energy VðyÞ in the
current case is plotted as a straight blue line.
For a more general case, such as a black hole, the

potential VðyÞ is a more general curve. The 0 total energy
level, which is conserved throughout the motion for all τ
(because of the timelike Killing vector) is represented by
the horizontal axis, and the evolving kinetic energy at any
point y1 is constrained to be, _y21=2μ

2 ¼ −Vðy1Þ, corre-
sponds to the length of the vertical red segment that
connects the 0 energy level and the value of the potential
at y1. Without solving any equations, from this figure we
see intuitively that, as y1ðτÞ evolves dynamically, a
classical particle/antiparticle is confined to the region,
yðτÞ ≤ y� ¼ ω2=2μ2 ¼ − u�v�

2
, because its kinetic energy

is positive, _y2

2μ2
¼ −VðyÞ > 0. Its total-energy-conserving

motion proceeds in the direction of the velocity
[signð_yðτÞÞ] indicated by the red arrows on the real axis.
The particle (antiparticle) approaches from region yðτÞ <
0 which is region IV (region II); reaches the horizon at
y ¼ 0 and proceeds to yðτÞ > 0 which is region I (region
III); it reaches a maximum at y� within region I (region
III); bounces back at y� at time τ ¼ τ�, and then moves
toward the horizon, to proceed to yðτÞ < 0 which is
region II (region IV), in the future of region I (region III).
This physical description of the trajectory, obtained

only from the physical interpretation of Fig. 4, clearly
matches the behavior of the Rindler plots in Figs. 2, 3.
This intuitive guide for the complete geodesics can
of course be complemented by analytic methods or
approximations if necessary. This approach has been
applied to the case of the Schwarzchild black hole in
[16] and will feature also in our upcoming work on
black holes [4].

FIG. 4. VðyÞ and kinetic energy. The particle cannot move to
the region y > y�.
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Finally we comment on the geodesics of a massless particle. The zero mass limit of the constraint in Minkowski basis,
kþk− ¼ μ2 → 0, has solutions kμ ¼ ðkþ; ðk− ¼ 0ÞÞ or ððkþ ¼ 0Þ; k−Þ. Therefore the massless Minkowski geodesics are,
uðτÞ ¼ kþτ þ u0 and vðτÞ ¼ v0, or uðτÞ ¼ u0 and vðτÞ ¼ k−τ þ v0. These correspond to lines parallel to either the u or the
v axis that replace the slanted lines in the upper left hand corners of Figs. 2, 3. As for the massive case, for k�≷0 these are
particle/antiparticle trajectories. Their images in Rindler coordinates are,

yðτÞ ¼ −
uðτÞvðτÞ

2
¼
�
−
1

2
v0ðkþτ þ u0Þ or −

1

2
u0ðk−τ þ v0Þ

�
;

tðτÞ ¼ 1

2
ln

���� uðτÞvðτÞ
���� ¼

�
1

2
ln

���� kþτ þ u0
v0

���� or 1

2
ln

���� u0
k−τ þ v0

����
�
: ð13Þ

By eliminating τ between these two equations one finds the
geodesic relation, tðτÞ ¼ � 1

2
ln jyðτÞj þ c�, where the con-

stants c� are fixed with some initial conditions. The new
parametric plots of ðyðτÞ; tðτÞÞ produce a deformation of
the curves in Figs. 2, 3 to two possible branches such that
the remaining branch contains either the t → þ∞ or the
t → −∞ peak. The remaining branches are separate curves
disconnected from each other and correspond to the plot of
the functions, tðτÞ ¼ � 1

2
ln jyðτÞj þ c�.

III. MINKOWSKI FREE FIELD IN EXTENDED
RINDLER BASIS

Consider a complex scalar field in 1þ1 dimensional
Minkowski spacetime, −∞<x0<∞ and −∞<x1<∞, that
satisfies the massive or massless Klein Gordon equation

ð∇2 − μ2Þφðx0; x1Þ ¼ 0: ð14Þ

The well-known general solution [17] is a superposition of
relativistic plane waves, e−iEx

0þik1x1=
ffiffiffiffiffiffiffiffiffi
4πE

p
, and their com-

plex conjugates, that form a properly normalized complete
set of modes, where E ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k21 þ μ2

p
is the energy,

φðx0; x1Þ

¼
Z

∞

−∞
dk1
�
Aðk1Þ e

−iEx0þik1x1ffiffiffiffiffiffiffiffiffi
4πE

p þ B†ðk1Þ e
iEx0−ik1x1ffiffiffiffiffiffiffiffiffi
4πE

p
�
:

ð15Þ

For this paper, it will be convenient to split the integral into
two parts,

R∞
−∞ dk1 ¼ R∞0 dkþ R 0−∞ dk, where k1 has been

renamed as k. Changing k → −k in the second integral and
defining, A�ðkÞ≡ Að�kÞ with positive k, the field is re-
written as

φðx0; x1Þ ¼
Z

∞

0

dk

�
AþðkÞ

e−iEx
0þikx1ffiffiffiffiffiffiffiffiffi
4πE

p þ A−ðkÞ
e−iEx

0−ikx1ffiffiffiffiffiffiffiffiffi
4πE

p þ hcA†
�→B†

�

�
;

¼
Z

∞

0

dk

�
AþðkÞ

e−i
E−k
2
ue−i

Eþk
2
vffiffiffiffiffiffiffiffiffi

4πE
p þ A−ðkÞ

e−i
Eþk
2
ue−i

E−k
2
vffiffiffiffiffiffiffiffiffi

4πE
p þ hc:

�
ð16Þ

where “hcA†→B†” stands for Hermitian conjugates of the
first two terms but with A†

�ðkÞ replaced by B†
�ðkÞ for a

complex field. From now on we will sometimes abbreviate
this piece simply as “hc” unless some clarification is
needed. For a real field, we simply replace B†

�ðkÞ by
A†
�ðkÞ everywhere.
In classical field theory, (A�ðkÞ; B†

�ðkÞ) are complex
functions of the positive momentum k. These [A�ðkÞ;
B†
�ðkÞ] could be fixed by initial/final boundary conditions

that correspond to some wave packets. In quantum field

theory, the (A�ðkÞ; A†
�ðkÞ) and (B�ðkÞ; B†

�ðkÞ) are pairs of
annihilation/creation operators for particles (A) and anti-
particles (B) acting in the Fock space built on the
Minkowski vacuum [17].

½A�ðkÞ; A†
�0ðk0Þ� ¼ δ�;�0δðk − k0Þ ¼ ½B�ðkÞ; B†

�0ðkÞ�;
ðA�ðkÞ or B�ðkÞÞj0Mi ¼ 0: ð17Þ

Now we would like to setup the equivalent general
superposition of the same field in terms of Rindler modes
rather than theplanewaveMinkowskimodes.Rindlermodes
φ�ðt; yÞ are the complete set of solutions to the Rindler
Klein-Gordon equation given in (4). The positive frequency
modes, φ�ðt; yÞ ¼ e−iωtφ∓ωðyÞ, and their complex conju-
gate negative energy modes φ�

�ðt; yÞ ¼ eiωtφ�∓ωðyÞ, satisfy
the time independent differential equation

�
∂2
y þ

1

y
∂y þ

ω2

4y2
−
μ2

2y

�
φ∓ωðyÞ ¼ 0: ð18Þ
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The linearly independent solutions φ∓ωðyÞ are proportional to the Bessel functions I∓iωð
ffiffiffiffiffiffiffiffiffiffi
2yμ2

p
Þ. The normalized2 positive

frequency solutions in region I are conveniently written in the form

φ�ðt; yÞ ¼ e−iωtφ∓ωðyÞ ¼
e−iωtffiffiffiffiffiffiffiffiffi
4πω

p Γð1 ∓ iωÞ
�
μ

2

��iω
I∓iω

� ffiffiffiffiffiffiffiffiffiffi
2yμ2

q 	

¼ e−iωtð2yÞ∓iω
2ffiffiffiffiffiffiffiffiffi

4πω
p S∓ð2yμ2Þ ¼

8<
:

u−iωffiffiffiffiffiffi
4πω

p S−ð−μ2uvÞ
ð−vÞiωffiffiffiffiffiffi
4πω

p Sþð−μ2uvÞ
: ð20Þ

In the last step, the region I relations,2y ¼ −uv ande2t ¼ −u=v,wereused to re-writeφ�ðt; yÞ in termsof ðu; vÞ. The functions
S∓ðzÞ are defined such that limz→0S∓ðzÞ ¼ 1, when the argument z ¼ 2yμ2 ¼ −μ2uv vanishes. S∓ðzÞ are given by the
hypergeometric function 0F1

S∓ðzÞ ¼ 0F1

�
1 ∓ iω;

z
4

�
¼ Γð1 ∓ iωÞI∓iωð

ffiffiffi
z

p Þ
ð1
2

ffiffiffi
z

p Þ∓iω ¼
X∞
n¼0

ðz
4
ÞnΓð1 ∓ iωÞ

n!Γðnþ 1 ∓ iωÞ : ð21Þ

S∓ðzÞ are entire analytic functions of z in the finite complex z-plane and have an essential singularity at z ¼ ∞ [18]. For the
massless field S∓ðzÞ are both replaced by 1 since limμ→0S∓ð−μ2uvÞ → 1. The analytic properties of the modes (20) will play
an essential part in our discussion in Sec. IV where they will be discussed in detail.
We can now express the general solution φ1ðu; vÞ in region I as the general superposition of the normalized basis in an

analogous form to the Minkowski case in Eq. (16),

φ1ðu; vÞ ¼
Z

∞

0

dω

�
a1−ðωÞφ−ðt; yÞ þ b†1−ðωÞðφ−ðt; yÞÞ�

þa1þðωÞφþðt; yÞ þ b†1þðωÞðφþðt; yÞÞ�
�

¼
Z

∞

0

dω

�
a1−ðωÞ

u−iωS−ð−μ2uvÞffiffiffiffiffiffiffiffiffi
4πω

p þ a1þðωÞ
ð−vÞiωSþð−μ2uvÞffiffiffiffiffiffiffiffiffi

4πω
p þ hca†

1�→b†
1�

�
: ð22Þ

Note that both a1�-coefficients are associated with Rindler wave packets of positive frequency ω [see Eq. (20)], so these
represent Rindler particles, while the b†1�-coefficients are associated with the complex conjugate wave packets that have
negative frequency and represent Rindler antiparticles. In classical field theory (wave function in first quantization) the
coefficients ða1�; b†1�Þ in region I serve to specify some Rindler wave packets that satisfy some initial/final conditions. In
quantum field theory, the pairs ða1�; a†1�Þ and ðb1�; b†1�Þ are creation-annihilation operators for Rindler particles/
antiparticles respectively, acting on the Fock space built on the Rindler vacuum j0Ri

2The so called “Klein-Gordon” dot product between two relativistic wave functions φ1;φ2 in curved spacetime is given by an integral
over a spacelike Cauchy surface, hφ1jφ2i ¼ −i

R
dΣμ

ffiffiffiffiffiffi−gp
gμνðφ†

1∂νφ2 − ∂νφ
†
1φ2Þ. This relies on the Klein-Gordon current, Jμ1;2 ¼

−i ffiffiffiffiffiffi−gp
gμνðφ†

1∂νφ2 − ∂νφ
†
1φ2Þ which is conserved ∂μJ

μ
1;2ðxÞ ¼ 0. This dot product is independent of the choice of the Cauchy surface.

In the Minkowski case one chooses dΣx0 ¼ dx1 as a fixed-x0 surface, while in the Rindler case in regions I&III one chooses dΣt ¼ dy as
a fixed-t surface since i∂t is a Killing vector. Using

ffiffiffiffiffiffi−gp ¼ 1 and gtt ¼ −ð2yÞ−1, one finds

hφ1jφ2i ¼ i
Z

∞

0

dy
2y

ðφ†
1∂tφ2 − ∂tφ

†
1φ2Þ: ð19Þ

Hence, the basis functions φ∓0
∓ω ≡ e∓0iωtϕ∓0

∓ωðyÞ are orthonormalized as follows

hφ∓0
1∓1ω1

jφ∓0
2∓2ω2

i ¼ δ∓0
1
;∓0

2δ∓1;∓2
ð�0

12ω1Þ
Z

∞

0

dy
2y

ðϕ∓0
∓;ω1

ðyÞÞ�ϕ∓0
∓;ω2

ðyÞ ¼ �0
1δðω1 − ω2Þδ∓1;∓2

δ∓0
1
;∓0

2 :

As usual, in relativistic field theory, the Klein-Gordon “norm” of basis functions is proportional to the “charge” associated with the
conserved current, while the sign of the frequency term in the exponent of the plane wave, i.e., ∓0, is minus the sign of the charge that
distinguishes particle/antiparticle. In accordance with this, note the overall�0 signs in front of the delta functions in the final expression.
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½a1�ðωÞ; a†1�0ðω0Þ� ¼ δ�;�0δðω − ω0Þ ¼ ½b1�ðωÞ; b†1�0ðωÞ�;
ða1�ðωÞ or b1�ðωÞÞj0Ri ¼ 0: ð23Þ

This defines the quantum field φ1ðu; vÞ and its Hermitian
conjugate φ†

1ðu; vÞ in region I ðu > 0; v < 0Þ.
Similarly, the quantum field is constructed region by

region in every region of the extended Rindler space. For
region III ðu < 0; v > 0Þ the modes of the Laplace equa-
tion (4) look the same as those in region I (u > 0; v < 0Þ,
but one must introduce a new set of coefficients, ða3�; a†3�Þ
and ðb3�; b†3�Þ, to write down the general solution (and its
Hermitian conjugate φ†

3ðu; vÞ)

φ3ðu; vÞ ¼
Z

∞

0

dω

�
b†3−ðωÞ

ð−uÞ−iωS−ð−μ2uvÞffiffiffiffiffiffiffiffiffi
4πω

p

þ b†3þðωÞ
viωSþð−μ2uvÞffiffiffiffiffiffiffiffiffi

4πω
p þ hcb3�→a3�

�
: ð24Þ

Note that φ3ðu; vÞ is structurally very similar to φ1ðu; vÞ
except that the ðu; vÞ in region I is replaced by the ðu; vÞ in
region III, including a convenient change of signs
ðu;−vÞI → ð−u; vÞIII , where the sign change is absorbed
in the definition of the corresponding coefficients. The
extra signs do not affect the fact that the modes in Eq. (24)
are orthonormalized solutions of Eq. (4). In addition, in
comparing φ3 to φ1, note that the first two terms in φ3,
which are positive frequency solutions, are associated with
Rindler antiparticle b†3∓-coefficients by contrast to the
Rindler particle a1∓-coefficients in φ1, and vice versa.
The reasoning [5] for this switch of particle ↔ antiparticle
interpretations of the Rindler waves in region I versus
region III, is that the Minkowski time x0 increases as the
Rindler time t increases in region I, but x0 decreases as t
increases in region III; this was emphasized in the second
paragraph following Eq. (4), and is also evident in the

contrast of the directions of the arrows in the geodesics in
Figs. 2, 3. For the quantized field φ3ðu; vÞ, the coefficients
turn into pairs of creation-annihilation operators,
ða3�; a†3�Þ and ðb3�; b†3�Þ, for Rindler particles/antipar-
ticles respectively. These act on the Fock space built on the
same Rindler vacuum j0Ri as in Eq. (23),

½a3�ðωÞ; a†3�0ðω0Þ� ¼ δ�;�0δðω − ω0Þ ¼ ½b3�ðωÞ; b†3�0ðωÞ�;
ða3�ðωÞ or b3�ðωÞÞj0Ri ¼ 0: ð25Þ

Appropriate boundary conditions discussed in Sec. V will
provide certain relations between the four complex func-
tions in region I, ða1�; b†1�Þ and those in region III,
ða3�; b†3�Þ, consistently with the quantum commutation
relations above. Before boundary conditions are applied
ða1�; b†1�Þ; ða3�; b†3�Þ are treated as if they are unrelated to
each other.
Similarly, one obtains the general solutions in regions II

and IVof the extended ðu; vÞ Rindler space, and then must
insure that the wave function in the full ðu; vÞ space is
continuous across all horizons. It turns out that the fields
φ2ðu; vÞ and φ4ðu; vÞ in regions II and IV respectively are
fully determined by analytic continuation of the fields
φ1ðu; vÞ and φ3ðu; vÞ across the horizons. So, there are no
new a, b coefficients beyond those already introduced
above. The full continuous field throughout the extended
Rindler space ðu; vÞ is

φðu; vÞ ¼ φ0 þ θðIÞφ1ðu; vÞ þ θðIIÞφ2ðu; vÞ
þ θðIIIÞφ3ðu; vÞ þ θðIVÞφ4ðu; vÞ: ð26Þ

The theta functions, θðIÞ≡ θðuÞθð−vÞ, etc. enforce the
regions I-IVas defined in Fig. 1 and Eq. (5). φ0 is a constant
zero mode that is justified in Eq. (35). The expressions for
φ1ðu; vÞ and φ3ðu; vÞ given above, as well as φ2ðu; vÞ and
φ4ðu; vÞ obtained by analytic continuation are

φ1ðu; vÞ ¼
Z

∞

0

dω

�
a1−ðωÞ

u−iωS−ð−μ2uvÞffiffiffiffiffiffiffiffiffi
4πω

p þ a1þðωÞ
ð−vÞiωSþð−μ2uvÞffiffiffiffiffiffiffiffiffi

4πω
p þ hca†

1�→b†
1�

�
;

φ2ðu; vÞ ¼
Z

∞

0

dω

�
a1−ðωÞ

u−iωS−ð−μ2uvÞffiffiffiffiffiffiffiffiffi
4πω

p þ b†3þðωÞ
viωSþð−μ2uvÞffiffiffiffiffiffiffiffiffi

4πω
p þ hcb3þ→a3þ

a†
1−→b†

1−

�
;

φ3ðu; vÞ ¼
Z

∞

0

dω

�
b†3−ðωÞ

ð−uÞ−iωS−ð−μ2uvÞffiffiffiffiffiffiffiffiffi
4πω

p þ b†3þðωÞ
viωSþð−μ2uvÞffiffiffiffiffiffiffiffiffi

4πω
p þ hcb3�→a3�

�
;

φ4ðu; vÞ ¼
Z

∞

0

dω

�
b†3−ðωÞ

ð−uÞ−iωS−ð−μ2uvÞffiffiffiffiffiffiffiffiffi
4πω

p þ a1þðωÞ
ð−vÞiωSþð−μ2uvÞffiffiffiffiffiffiffiffiffi

4πω
p þ hc

a†
1þ→b†

1þ
b3−→a3−

�
: ð27Þ

The analytic continuation of the field across the horizons
needs some explanation. Compare φ1ðu; vÞ to φ2ðu; vÞ at
the horizon that separates regions I&II where v ¼ 0 and
0 < u < ∞. For continuity of the field we want to argue

that, φ1ðu; 0Þ ¼ φ2ðu; 0Þ for u > 0. In the first half of the
field it is clear that a1−ðωÞu−iωS−ð−μ2uvÞ is analytically
continued from one side of the horizon, v < 0, to the
other, v > 0, and noting that S�ðzÞ, that satisfy S�ð0Þ ¼ 1
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[see Eq. (21)], are analytic entire functions in the finite
complex plane. In the second half of the field, continuity is
not evident because different coefficients a1þðωÞ and
b†3þðωÞ appear in φ1ðu; vÞ versus φ2ðu; vÞ. However, in
these apparently problematic terms, the factors ð−vÞiω or
ðvÞiω vanish as distributions near v ∼ 0 on both sides of the
horizon. This is because jvjiω ¼ eiω ln jvj oscillates wildly as
jvj → 0, so the integral

R
∞
0 dω can be computed by the

steepest descent method. Noting that only the neighbor-
hood of ω ¼ 0 can contribute to the leading behavior of
such an integral, a typical smooth integrand FðωÞ can be
approximated by its value near ω ¼ 0 to give

lim
v→0

Z
∞

0

dωFðωÞeiω ln jvj ≃ Fð0Þlim
v→0

lim
ε→0þ

Z
∞

0

dωe−εωeiω ln jvj

¼ lim
v→0

Fð0Þ
i ln jvj ¼ 0: ð28Þ

The e−εω factor is introduced as a device to enforce the
integration region to remain close to ω ¼ 0, thus producing
a convergent integral in regions far from ω ¼ 0. This shows
that the terms involving ð−vÞiω or ðvÞiω in φ1;2ðu; vÞ vanish
at the v ¼ 0 horizon. Hence we have shown that, despite
the fact that a1þðωÞ and b†3þðωÞ are different, the field is
continuous at the horizon and is given by

φ1ðu;0Þ¼φ2ðu;0Þ

¼
Z

∞

0

dω

�
a1−ðωÞ

u−iωffiffiffiffiffiffiffiffiffi
4πω

p þb†1−ðωÞ
uiωffiffiffiffiffiffiffiffiffi
4πω

p
�
: ð29Þ

Even though the field is continuous, its derivative is
discontinuous at the v ¼ 0 horizon because a1þðωÞ and
b†3þðωÞ are different. However continuity of the derivative
is not required to have a solution of the Klein-Gordon
equation in the ðu; vÞ variables because the Laplacian
(proportional to ∂u∂v) is linear rather than quadratic in
∂u and similarly in ∂v. The same argument applies at every
horizon, thus determining all the terms in φ2;4ðu; vÞ by
analytic continuation from regions I and III. Therefore, we
can state that the full field φðu; vÞ as given in Eqs. (26), (27)
has just sufficient amount of continuity throughout the
extended Rindler space ðu; vÞ to be a solution of the Klein-
Gordon equation without any sources.

IV. ANALYTICITY IN THE EXTENDED
RINDLER SPACE

We have already required some analyticity properties in
ðu; vÞ space in order to establish the continuity of the field.
The field discussed in the previous section has branch
points and corresponding branch cuts in the complex ðu; vÞ
planes. This defines an infinite number of sheets in both the
complex u-plane and complex v-plane. On the real axes on
each sheet, the field φðu; vÞ of Eqs. (26), (27) takes on

different values that are related to each other continuously
by analytic continuation from sheet to sheet. This presents
itself as a geometry consisting of an infinite stack of
different real Minkowski spaces ðu; vÞ on which the first
quantized wave function (i.e., the classical field) as well as
the second quantized field take on values. The branch
points at u ¼ 0 or v ¼ 0 correspond to the horizons within
each Minkowski plane as shown in Fig. 1. So the
connection between the infinite stack of real Minkowski
spaces is precisely at the horizons. The field is analytically
continued from one Minkowski plane to another by going
slightly off the real axis at the horizons and winding around
a branch cut in either the u or v complex planes and then
back to the real axis on a different sheet. Hence, informa-
tion could potentially flow at the horizons from one
Minkowski plane to any other Minkowski plane. This
shows that there are previously missed aspects of extended
Rindler spacetime, namely the natural presence of a multi-
verse structure consisting of a spacetime with an infinite
stack of Minkowski planes connected to each other at the
horizons. This was not evident from the classical metric or
the geodesics discussed before; it emerged only at the
quantum level.
We now expand on these properties and clarify them.

The analyticity properties of the basis functions, φþðu; vÞ ∼
u−iωS−ð−μ2uvÞ and φ−ðu; vÞ ∼ ð−vÞiωSþð−μ2uvÞ, follow
from their properties in the complex u and complex v
planes. Since S∓ðzÞ are entire functions [see remarks after
Eq. (21)], the prefactors u−iω and ð−vÞiω determine the
analyticity properties for both the massless and massive
fields. Clearly, these have branch points at u ¼ 0 and
v ¼ 0, respectively. We choose the branch cuts to be on the
positive imaginary axes in both the complex u and v planes
as shown in Figs. 5, 6. This defines an infinite number
of sheets in the analytic u and v planes. The u-sheets
(v-sheets) are labeled by an integer n (mÞ, so the stack of
universes is labeled by these integers ðn;mÞ.
Some typical points ðuI; vIÞ; ðuII; vIIÞ; ðuIII; vIIIÞ;

ðuIV; vIVÞ in regions I-IV in universe (0,0), connected to
each other with some arbitrary analyticity path, are shown
in Fig. 7 (this ignores the small excursions into the complex
u or v plane near the horizons). The images of the points on
the real axes in the complex ðu; vÞ planes are shown in

FIG. 5. A path on 0th sheet in analytic u -plane.
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Figs. 5, 6. The analyticity path that connects them is also
shown, such that, for clarity, the path goes slightly under
the branch points in the complex planes to stay within the
(0,0) universe. Of course, the analyticity path within the
same (0,0) level can be any other curve in the complex
planes that connects the points as long as it does not cross
the branch cuts in Figs. 5, 6. This is the path of analyticity
on level (0,0) used to establish the continuity of the field
φðu; vÞ as given in Eqs. (26), (27).
Now we can analytically continue from level (0,0) to any

other level ðn;mÞ by crossing the branch points and coming
back again to the real axes of u and v. This provides the
value of the field in Eqs. (26), (27) at different levels ðn;mÞ
that again look like the Minkowski plane. The basis
φ�ðu; vÞ on the real axis of universe ðn;mÞ is related
by monodromy to the basis φ�ðu; vÞ in Eq. (20) for
universe (0,0). Recall that S∓ð−μ2uvÞ given in Eq. (21)
are entire functions of their arguments, so they have no

discontinuities under analytic continuation, so we only
need to analytically continue u−iω and v−iω.
The analytic continuation involves replacing, u → ue2πin

or v → ve2πim with integer n or m, to indicate how many
times we wind around the branch points at u ¼ 0 or v ¼ 0
in the respective u or v complex planes in Figs. 5, 6 when
the horizons are crossed in an analytic path on the real
ðu; vÞ plane shown in Fig. 7. The winding numbers, that
may be different at each horizon, will lead to some sheet in
the multiverse. An analytic continuation of the field φðu; vÞ
in Eqs. (26), (27) from level (0,0) to level ðn;mÞ, which is
consistent with the boundary conditions3 that are later
explained in Sec. V, can only have the following pattern4

φðn;mÞðu; vÞ ¼
�

φ0 þ θðIÞφ1ðue2πin; e−2πinvÞ þ θðIIÞφ2ðue2πin; ve2πimÞ
þθðIIIÞφ3ðue−2πim; ve2πimÞ þ θðIVÞφ4ðue−2πim; ve−2πinÞ

�

φ̄ðn;mÞðu; vÞ ¼
�

φ0 þ θðIÞφ†
1ðue2πin; e−2πinvÞ þ θðIIÞφ†

2ðue2πin; ve2πimÞ
þθðIIIÞφ†

3ðue−2πim; ve2πimÞ þ θðIVÞφ†
4ðue−2πim; ve−2πinÞ

�
: ð31Þ

where ðn;mÞ are integers, and the Hermitian conjugates φ†
1;2;3;4 are defined for real ðu; vÞ. Here φ̄ðn;mÞðu; vÞ is the canonical

conjugate to φðn;mÞðu; vÞ. The alert reader will note that in these expressions the regional fields φ1;2;3;4 and φ†
1;2;3;4 are

FIG. 7. Figure 7—A path on the real ðu; vÞ plane in the (0,0)
universe.

FIG. 6. A path on 0th sheet in analytic v -plane.

3A crucial consequence of boundary conditions is Eq. (43). This requires the oscillators of regions I and III to satisfy

ā1−a1− ¼ ā1þa1þ; b̄1−b1− ¼ b̄1þb1þ; ā3−a3− ¼ ā3þa3þ; b̄3−b3− ¼ b̄3þb3þ ð30Þ
A physical consequence of these relations is that the fields φ1;3ðu; vÞ vanish at the asymptotic regions juj → ∞ or jvj → ∞ in regions I
or III. Without these conditions probablity would become infinite in those asymptotic regions. This is explained in Sec. V. The same
physical conditions exist also for all layers of the multiverse. To respect these boundary conditions only certain patterns of winding
numbers are allowed in the definition of the layers of the multiverse as shown in Eq. (31). The consequence of these patterns leads to the
oscillators for level ðn;mÞ given Eq. (33). It can be observed that these rescaled oscillators also satisfy the physical boundary conditions
at all such levels, āðnÞ1−a

ðnÞ
1− ¼ āðnÞ1þa

ðnÞ
1þ , etc. because the relation is true at n ¼ 0 as given in Eq. (43). A different pattern of windings at the

horizons violates the physical boundary conditions discussed above, and this is the reason why they are not consistent.
4This pattern applies only to the extended Rindler space. For black hole spacetimes, S∓ðuvÞ have a branch cut that starts at the black

hole singularity uv ¼ 1, therefore the monodromy in Eq. (32) as well as the pattern of analytic continuation is different for black holes
(see [4]).
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analytically continued in a pattern that is different in each region. In each region ðu; vÞ are real in the respective ranges as
seen in Fig. 1. The phases e�2πin ¼ e�2πim ¼ 1 do not change the reality of the continued ðu; vÞ for each region, but because
of the monodromy properties of the factors, ðu∓iω; v�iωÞ that appear in the expressions for φðu; vÞ, such as

ðue2πinÞ∓iω ¼ u∓iωe�2πωn; ðve−2πinÞ�iω ¼ v�iωe�2πωn; S∓ð−μ2uve�2πωkÞ ¼ S∓ð−μ2uvÞ; ð32Þ

the result for φðn;mÞðu; vÞ in Eq. (31) is different than φðu; vÞ. The analytically continued fields φ1;2;3;4 in φðn;mÞðu; vÞ
have the same form as the φ1;2;3;4 in Eq. (27) except for the fact that the oscillators ða1∓; b†1∓; b†3�; a3�Þ in Eq. (27) are

now replaced by new ones in φðn;mÞðu; vÞ that we label as ðaðnÞ1∓; b̄
ðnÞ
1∓; b̄m3�; am3�Þ. The relation between ðaðnÞ1∓; b̄

ðnÞ
1∓; b̄m3�; am3�Þ

and ða1∓; b†1∓; b†3�; a3�Þ is obtained by inserting Eq. (32) into the φ1;2;3;4 in Eq. (27), and similarly for the Hermitian

conjugates φ†
1;2;3;4. The result of the analytic continuation in Eq. (31) then yields the desired relations between levels ðn;mÞ

and (0,0)

aðnÞ1∓ ¼ a1∓e2πωn; āðnÞ1∓ ¼ a†1∓e−2πωn; bðnÞ1∓ ¼ b1∓e2πωn; b̄ðnÞ1∓ ¼ b†1∓e−2πωn;

aðmÞ
3� ¼ a3�e2πωm; āðmÞ

3� ¼ a†3�e
−2πωm; bðmÞ

3� ¼ a3�e2πωm; b̄ðmÞ
3� ¼ b†3�e

−2πωm: ð33Þ

This analyticity-induced map is a canonical transformation
since

½aðnÞ1∓; ā
ðnÞ
1∓� ¼ ½a1∓; a†1∓�; etc: ð34Þ

We explain some notation. We used the overbar symbol

in ðāðnÞ1∓; b̄
ðnÞ
1∓; ā

ðmÞ
3� ; b̄ðmÞ

3� Þ to indicate the canonical conju-

gates of (aðnÞ1∓; b
ðnÞ
1∓; a

ðmÞ
3� ; bðmÞ

3� Þ, respectively. For n ¼ m ¼ 0

the overbar is defined to be actually the same the Hermitian

conjugate, ðāð0Þ1∓; b̄
ð0Þ
1∓; ā

ð0Þ
3�; b̄

ð0Þ
3�Þ≡ ða†1∓;b†1∓;a†3�;b†3�Þ, but

for general n, āðnÞ1∓ is not the Hermitian conjugate of aðnÞ1∓,
although it is its canonical conjugate, and similarly for the
other oscillators.
This shows that the analytic continuation to universe

ðn;mÞ defined by Eqs. (31)–(34) amounts to a canonical
transformation of the creation-annihilation operators. The
full field φ̄ðn;mÞðu; vÞ is not the naive Hermitian conjugate
of φðn;mÞðu; vÞ but it is its canonical conjugate. The equal
time quantum commutator, ½φðn;mÞðt; yÞ; φ̄ðn;mÞðt; y0Þ�, pro-
duces a delta function δðy − y0Þ at every universe ðn;mÞ
just as the (0,0) universe. It should be emphasized that
the fields on different levels ðφðn1;m1Þðt; yÞ; φ̄ðn2;m2Þðt; y0ÞÞ
with ðn1; m1Þ different from ðn2; m2Þ are not independent
of each other since the corresponding oscillators

ðaðn1Þ1∓ ; b̄ðn1Þ1∓ ; b̄ðm1Þ
3� ; aðm1Þ

3� Þ and ðaðn2Þ1∓ ; b̄ðn2Þ1∓ ; b̄ðm2Þ
3� ; aðm2Þ

3� Þ are

all related to the same set of basic oscillators ða1∓; b†1∓;
b†3�; a3�Þ and their Hermitian conjugates that define the
field in universe (0,0). So the quantum rules for the entire
multiverse, including nontrivial commutators among fields
at different levels, such as, ½φðn1;m1Þðt; yÞ; φ̄ðn2;m2Þðt; y0Þ�,
depend only on the quantum rules established at level (0,0).
Propagators, various correlators and probabilities of

processes computed with φðn;mÞðu; vÞ may be different

for different levels because of the shift of normalizations
of the Rindler coefficients as given in Eq. (33). Hence one
must also specify the universe on which boundary con-
ditions are imposed. We define level (0,0) as the reference
universe at which boundary conditions are applied as
shown in the next section. Then, using φðn;mÞðu; vÞ as
given above, probabilities for various physical processes at
universe ðn;mÞ, that may depend on the boundary con-
ditions in the (0,0) universe, can be determined. In
particular, we will try to answer the question: is there
probability (or information) flow from one universe labeled
by ðn;mÞ to other universes labeled by ðn0; m0Þ?

V. HORIZON BOUNDARY CONDITIONS

Boundary conditions imposed in universe (0,0) will
automatically fix all boundary conditions for all ðn;mÞ
as determined in the previous section. Accordingly, given
the relationship between Minkowski and Rindler coordi-
nates as given in Eq. (5), we require the (0,0) Rindler field
φð0;0Þðu; vÞ ¼ φðu; vÞ given in Eqs. (26), (27), to be
identical to the Minkowski field φðu; vÞ given in
Eqs. (15), (16). For this, it is sufficient to impose boundary
conditions at each horizon, φð0;0Þðu; 0Þ ¼ φðu; 0Þ and
φð0;0Þð0; vÞ ¼ φð0; vÞ. Other boundary conditions could
be considered for the extended Rindler case, however
we emphasize these horizon boundary conditions since
in the case of a black hole it is also appropriate to impose
the same boundary conditions as done in an upcoming
paper [4]. This is because, near the horizons, the black hole
metric and field behave locally just like the flat Minkowski
metric and field. So the horizon boundary conditions used
here for the Rindler case will be used also identically for
black hole case. Hence, for either Rindler or a black hole
metric, using S∓ð0Þ ¼ 1 at horizons in Eqs. (26), (27), we
have the desired boundary conditions
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φ0 ¼ φð0; 0Þ ¼
Z

∞

−∞

dkffiffiffiffiffiffiffiffiffi
4πE

p ðAðkÞ þ B†ðkÞÞ

φ1 or 2ðu; 0Þ ¼
Z

∞

0

dω

�
a1−ðωÞ

u−iωffiffiffiffiffiffiffiffiffi
4πω

p þ b†1−ðωÞ
uiωffiffiffiffiffiffiffiffiffi
4πω

p
�
¼ θðuÞðφðu; 0Þ − φ0Þ

φ3 or 4ðu; 0Þ ¼
Z

∞

0

dω

�
b†3−ðωÞ

ð−uÞ−iωffiffiffiffiffiffiffiffiffi
4πω

p þ a3−ðωÞ
ð−uÞiωffiffiffiffiffiffiffiffiffi
4πω

p
�
¼ θð−uÞðφðu; 0Þ − φ0Þ

φ2 or 3ð0; vÞ ¼
Z

∞

0

dω

�
b†3þðωÞ

viωffiffiffiffiffiffiffiffiffi
4πω

p þ a3þðωÞ
v−iωffiffiffiffiffiffiffiffiffi
4πω

p
�
¼ θðvÞðφð0; vÞ − φ0Þ

φ1 or 4ð0; vÞ ¼
Z

∞

0

dω

�
a1þðωÞ

ð−vÞiωffiffiffiffiffiffiffiffiffi
4πω

p þ b†1þðωÞ
ð−vÞ−iωffiffiffiffiffiffiffiffiffi

4πω
p

�
¼ θð−vÞðφð0; vÞ − φ0Þ ð35Þ

where the φðu; 0Þ or φð0; vÞ on the right-hand side of Eq. (35) is the Minkowski field (16) evaluated at the horizons

φðu; 0Þ ¼
Z

∞

0

dk

�
AþðkÞe−iE−k2 u þ B†

þðkÞeiE−k2 uffiffiffiffiffiffiffiffiffi
4πE

p þ A−ðkÞe−iEþk
2
u þ B†

−ðkÞeiEþk
2
uffiffiffiffiffiffiffiffiffi

4πE
p

�
;

φð0; vÞ ¼
Z

∞

0

dk

�
AþðkÞe−iEþk

2
v þ B†

þðkÞeiEþk
2
uffiffiffiffiffiffiffiffiffi

4πE
p þ A−ðkÞe−iE−k2 v þ B†

−ðkÞeiE−k2 vffiffiffiffiffiffiffiffiffi
4πE

p
�
: ð36Þ

We see in the first line of Eq. (35) that a nontrivial zero mode φ0 is necessary because φ1;2;3;4ð0; 0Þ all vanish according to
the arguments in Eq. (28). From the second expression in Eq. (35) at the horizon I&II, a1− can be extracted by using the
orthonormality and completeness of the basis u∓iω=

ffiffiffiffiffiffiffiffiffi
4πω

p
on the half-line u > 0; namely (see footnote 2) a1−ðωÞ ¼R∞

0 duð uiωffiffiffiffiffiffi
4πω

p i∂uφðu; 0Þ − φðu; 0Þi∂u
uiωffiffiffiffiffiffi
4πω

p Þ, and similarly for b†1− by replacing u−iω instead of uiω. After performing the

integrals we obtain

a1−ðωÞ ¼
Γð1þ iωÞ
i
ffiffiffiffiffiffiffiffiffi
2πω

p
Z

∞

−∞

dkffiffiffiffiffiffiffiffiffi
4πE

p
�
E − k
2

�
−iω

ðAðkÞeπω
2 þ B†ðkÞe−πω

2 Þ;

b†1−ðωÞ ¼
Γð1 − iωÞ
−i

ffiffiffiffiffiffiffiffiffi
2πω

p
Z

∞

−∞

dkffiffiffiffiffiffiffiffiffi
4πE

p
�
E − k
2

�
iω
ðB†ðkÞeπω

2 þ AðkÞe−πω
2 Þ: ð37Þ

Note that on the right-hand side the integral
R∞
−∞ dk contains AðkÞ; B†ðkÞ over the full momentum range. To make contact

with the notation A�ðkÞ; B†
�ðkÞ, with only k > 0, the integral can be split to the positive and negative intervals.

The Hermitian conjugate a†1− looks like b†1− above but with A ↔ B interchanged on the right-hand side of (37). As a
consistency check, it can then be verified that the commutation rules (23) of the Rindler modes, ½a1−ðωÞ; a†1−ðω0Þ� ¼
δðω − ω0Þ, etc., can be obtained by using only the commutation rules (17) of the Minkowski modes, ½AðkÞ; A†ðk0Þ� ¼
δðk − k0Þ ¼ ½BðkÞ; B†ðk0Þ�, by using the relations above. Similar expressions are obtained at the 4 horizons.
This fixes the 8 Rindler complex coefficients in the level (0,0) universe, a1∓; b†1∓; a3∓; b

†
3∓, in terms of the 4 Minkowski

complex coefficients, A�ðkÞ; B†
�ðkÞ (similarly, for the black hole [4]). It is revealing to rewrite the 8 relations in level (0,0) in

the form of Bogoliubov transformations as follows, where Γð1�iωÞffiffiffiffiffiffi
2πω

p ¼ e�iθðωÞe−πω=2ffiffiffiffiffiffiffiffiffiffiffiffi
1−e−2πω

p is used,

ie−iθðωÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e−2πω

p
�

1 −e−πω

−e−πω 1

�� a1−ðωÞ
b†3þðωÞ

�
¼
Z

∞

−∞
dk

ðE−k
2
Þ−iωffiffiffiffiffiffiffiffiffi
4πE

p
�

AðkÞ
B†ðkÞ

�

−ieiθðωÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e−2πω

p
�

1 −e−πω

−e−πω 1

��
a3þðωÞ
b†1−ðωÞ

�
¼
Z

∞

−∞
dk

ðE−k
2
Þiωffiffiffiffiffiffiffiffiffi

4πE
p

�
AðkÞ
B†ðkÞ

�

−ie−iθðωÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e−2πω

p
�

1 −e−πω

−e−πω 1

�� a3−ðωÞ
b†1þðωÞ

�
¼
Z

∞

−∞
dk

ðEþk
2
Þ−iωffiffiffiffiffiffiffiffiffi
4πE

p
�

AðkÞ
B†ðkÞ

�

ieiθðωÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e−2πω

p
�

1 −e−πω

−e−πω 1

��
a1þðωÞ
b†3−ðωÞ

�
¼
Z

∞

−∞
dk

ðEþk
2
Þiωffiffiffiffiffiffiffiffiffi

4πE
p

�
AðkÞ
B†ðkÞ

�
ð38Þ
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and their Hermitian conjugates. These equations can be easily inverted5 to obtain an explicit expression for the Minkowski

oscillators ðAðkÞ; B†ðkÞÞ in terms of the Rindler oscillators ða1∓; b†1∓; a3∓; b†3∓Þ.

AðkÞ ¼ φ0=cþ σ0
2
ffiffiffiffiffiffi
πE

p þ
Z

∞

0

dω

2
64

ðE∓k
2
Þ�iωffiffiffiffiffi
πE

p ie∓iθðωÞffiffiffiffiffiffiffiffiffiffiffiffi
1−e−2πω

p ða1∓ðωÞ − e−πωb†3�ðωÞÞ

þ ðE∓k
2
Þ∓iωffiffiffiffiffi
πE

p −ie�iθðωÞffiffiffiffiffiffiffiffiffiffiffiffi
1−e−2πω

p ða3�ðωÞ − e−πωb†1∓ðωÞÞ

3
75

B†ðkÞ ¼ φ0=c − σ0
2
ffiffiffiffiffiffi
πE

p þ
Z

∞

0

dω

2
64

ðE∓k
2
Þ∓iωffiffiffiffiffi
πE

p ie�iθðωÞffiffiffiffiffiffiffiffiffiffiffiffi
1−e−2πω

p ðb†1∓ðωÞ − e−πωa3�ðωÞÞ

þ ðE∓k
2
Þ�iωffiffiffiffiffi
πE

p −ie∓iθðωÞffiffiffiffiffiffiffiffiffiffiffiffi
1−e−2πω

p ðb†3�ðωÞ − e−πωa1∓ðωÞÞ

3
75 ð39Þ

where −∞ < k < ∞. Here φ0 is the zero mode that
satisfies Eq. (35) where5 c≡ R∞−∞ dk

2πEðkÞ ¼ δð0Þ, while σ0
is another Rindler zero mode. Note that the two inte-
grands with the upper/lower signs “�” in Eq. (39) are
equal to each other for the massive case on account of
the relations between a1�ðωÞ etc. explained below in
Eqs. (42), (43).
Based on analyticity properties of the wave function,

Unruh [5] gave a simple argument to derive the so called
Unruh modes. An Unruh mode is the following combina-
tion of the Rindler modes that annihilates the Minkowski
vacuum j0Mi, such as

a1−ðωÞ − e−πωb†3þðωÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e−2πω

p j0Mi ¼ 0: ð40Þ

This is in agreement with the first line of Eq. (38) where
the Unruh mode above is seen in more detail to be equal

to, −ieiθðωÞ
R
∞
−∞ dk AðkÞffiffiffiffiffiffi

4πE
p ðE−k

2
Þ−iω, which is clearly a com-

bination of the Minkowski annihilation operators as
defined in Eq. (17). Knowing the additional detail given
here, of how to write the Unruh mode in terms of the
Minkowski modes as in Eq. (38), is important because
this can be used to compute the action of the Unruh
modes, or more generally a1− or b†3þ on their own as in
Eq. (37), on any general Minkowski state, not only the
vacuum state j0Mi. Our explicit relations in Eq. (38)
should be useful for various applications involving
quantum effects in Rindler space. Furthermore, our
expressions (38) are more general because they apply
also to black holes [4].

The relations (38) reveal additional important properties.
For example, the expressions for the region I coefficients
a1�; b

†
1� extracted from Eq. (38) are

a1∓ðωÞ ¼
e�iθðωÞ

�i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e−2πω

p
Z

∞

−∞

dkffiffiffiffiffiffiffiffiffi
4πE

p
�
E ∓ k

2

�∓iω

× ðAðkÞ þ B†ðkÞe−πωÞ;

b†1∓ðωÞ ¼
e∓iθðωÞ

∓ i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e−2πω

p
Z

∞

−∞

dkffiffiffiffiffiffiffiffiffi
4πE

p
�
E ∓ k

2

��iω

× ðB†ðkÞ þ AðkÞe−πωÞ: ð41Þ

Now concentrate on the Rindler case because we will next
use the fact that E ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ μ2

p
(for a black hole E and k

have a different relation [4]). Then in Eq. (41) insert

E − k
2

¼ μ2

4

�
Eþ k
2

�
−1
; ð42Þ

and then see that ða1−; b†1−Þ and ða1þ; b†1þÞ are proportional
to each other with overall phases. Similar arguments hold
also for ða3−; b†3−Þ and ða3þ; b†3þÞ, so we find

a1þðωÞ ¼ −ðμ2=4Þiωe−2iθðωÞa1−ðωÞ;
a3þðωÞ ¼ −ðμ2=4Þiωe−2iθðωÞa3−ðωÞ;
b†1þðωÞ ¼ −ðμ2=4Þ−iωe2iθðωÞb†1−ðωÞ;
b†3þðωÞ ¼ −ðμ2=4Þ−iωe2iθðωÞb†3−ðωÞ: ð43Þ

A significant consequence of these relations is the vanish-
ing of the fields φ1;3ðu; vÞ in (27) in the asymptotic regions
I and III when either juj or jvj goes to infinity, namely

lim
u or ð−vÞ→∞

φ1ðu; vÞ ¼ 0 ¼ lim
ð−uÞ or v→∞

φ3ðu; vÞ: ð44Þ

This can be verified by using the asymptotic behavior of the
Bessel functions I∓iωð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2μ2uv

p
Þ as given in Eqs. (20),

(21) when uv < 0, and using the relations in Eq. (43).

5AðkÞ andB†ðkÞ are isolated from the right-hand side of Eq. (38)
by multiplying with ðE0 ∓ k0Þ�0iω as appropriate and adding two
terms so that one may use

R
∞
0 dωððE−kÞ−iωðE0 ∓ k0Þiω þ

ðE−kÞiωðE0 ∓ k0Þ−iωÞ¼ δðk∓ k0Þ2πE when EðkÞ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2þμ2

p
.

To check that Eq. (39) satisfies Eq. (38) use
R∞
−∞

dk
2πEðkÞ×

ðEðkÞ � kÞiλ ¼ δðλÞ. The contributions of the zero modes to the
integrals in Eq. (38) are proportional to δðωÞ, but these vanish
since ω > 0.
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Quite independently, the vanishing of the field in the
asymptotic regions of I&III is required on physical
grounds because without it the field (or the quantum
wave function) would blow up at infinity, implying
infinite probability. It is gratifying that this required
physical behavior emerged from the boundary conditions
at the horizons automatically without having to impose it
as an additional boundary condition, thus giving con-
fidence that the horizon boundary condition is a correct
physical approach.
Furthermore, note that the vanishing of the field

asymptotically in regions I&III is the expected behavior
for wave packets, on the basis of the classical geodesics
in Figs. 2, 3, as well as on the basis of the intuitive
physical approach using the effective classical mechanical
potential in Fig. 4, and the effective quantum potential
explained below in Eq. (45) and plotted in Fig. 8.
Turning next to regions II&IV, the asymptotic behavior

of the Rindler field is oscillatory as seen from analyzing the
asymptotic behavior of I∓iωð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2μ2uv

p
Þ when uv > 0.

Consistent with the geodesics in Figs. 2, 3, this is allowed
physical behavior for incoming or outgoing particles/
antiparticles, or oscillatory waves and wave packets built
from them. Further boundary conditions may be imposed in
regions II&IV to correspond to physical processes for
either incoming or outgoing wave packets for particles or
antiparticles.
There is another intuitive approach to understand the

same general behavior of the wave function, without
doing any calculations, which is in agreement with the

results of the horizon boundary conditions given in the
preceding paragraphs. Namely, by defining ψðyÞ≡ffiffiffiffiffi
2y

p
φðyÞ, Eq. (18) takes the standard form of the non-

relativistic Schrödinger equation

½−∂2
y þ VeffðyÞ�ψðyÞ ¼ 0; VeffðyÞ ¼

μ2

2y
−
ω2 þ 1

ð2yÞ2 ;

ð45Þ

where the effective quantum potential, VeffðyÞ, is plotted
in Fig. 8.
The “Schrödinger energy level” in Eq. (45) is zero,

which corresponds to the real axis in Fig. 8. The intuitive
physics extracted from this figure is that of scattering of
waves from the barrier presented by the “hill.” Thus,
oscillating waves approaching from y ∼ −∞ in region
IV (or II) pass the horizon at y ¼ 0 and move into region
I (or III), they get scattered from the barrier and move
within region I (or III) toward the horizon at y ¼ 0, then
they continue into region II (or IV) and go on to its
asymptotic regions, y ∼ −∞, as oscillating waves. This
behavior of the quantum wavefunction is fully consistent
with the geodesics in Figs. 2, 3 and the intuition gained
from the mechanical potential for geodesics in Fig. 4. The
effective potential approaches of Figs. 4, 8 are very
important especially when explicit solutions are not avail-
able (such as the case of general black holes, see, e.g., [16]).
A figure of the potential VeffðyÞ conveys much of the
physical behavior, including boundary conditions, such as
the vanishing of the wave function for y → þ∞ in Fig. 8,
consistent with Eq. (44).
Next, it is worth outlining the behavior of the massless

field (μ2 ¼ 0) in contrast to the massive field. In this case
Eq. (42) cannot be used naively because in the massless
limit either (E − k) or (Eþ k) vanishes. So the conse-
quences of Eq. (38) for the massless case need to be
analyzed separately for ðE − jkjÞ ¼ 0. For this purpose, in
these equations the integral

R∞
−∞ dk must be split to its

positive and negative regions and the limit ðE − jkjÞ → 0
taken. The integrals that contain the wildly oscillating
factors ðE − jkjÞ�iω vanish in the limit, leaving behind the
correct massless limit of Eq. (38) for region-I in the Rindler
case (not black hole case),

a1∓ðωÞ ¼
e�iθðωÞ

�i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e−2πω

p
Z

∞

0

dkffiffiffiffiffiffiffiffi
4πk

p k∓iωðA∓ðkÞ þ B†∓ðkÞe−πωÞ

b†1∓ðωÞ ¼
e∓iθðωÞ

∓ i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e−2πω

p
Z

∞

0

dkffiffiffiffiffiffiffiffi
4πk

p k�iωðB†∓ðkÞ þ A∓ðkÞe−πωÞ ð46Þ

noting that only half of the A∓ðkÞ; B†∓ðkÞ survive in each line. A similar set of equations hold for region III. Together, these
may be written as Bogoliubov transformations that correspond to the massless limit of Eq. (38)

FIG. 8. Incoming/reflected waves at y → −∞ (regions II&IV);
vanishing wavefunction at y → þ∞ in I & III.
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ie−iθðωÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e−2πω

p
�

1 −e−πω

−e−πω 1

�� a1−ðωÞ
b†3þðωÞ

�
¼
Z

∞

0

dk
k−iωffiffiffiffiffiffiffiffi
4πk

p
�
A−ðkÞ
B†
−ðkÞ

�

−ieiθðωÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e−2πω

p
�

1 −e−πω

−e−πω 1

��
a3þðωÞ
b†1−ðωÞ

�
¼
Z

∞

0

dk
kiωffiffiffiffiffiffiffiffi
4πk

p
�
A−ðkÞ
B†
−ðkÞ

�

−ie−iθðωÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e−2πω

p
�

1 −e−πω

−e−πω 1

�� a3−ðωÞ
b†1þðωÞ

�
¼
Z

∞

0

dk
k−iωffiffiffiffiffiffiffiffi
4πk

p
�
AþðkÞ
B†
þðkÞ

�

ieiθðωÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e−2πω

p
�

1 −e−πω

−e−πω 1

��a1þðωÞ
b†3−ðωÞ

�
¼
Z

∞

0

dk
kiωffiffiffiffiffiffiffiffi
4πk

p
�
AþðkÞ
B†
þðkÞ

�
ð47Þ

The contrast with the massive case in Eq. (38) is the right-
hand side of these equations, noting that only half of the
A∓ðkÞ; B†∓ðkÞ survive in each line for the massless case.
Furthermore, Eqs. (46), (47) show that, unlike Eq. (43), the
a1� are independent of each other for the massless case.
This implies that the massless field as written in Eq. (27),
but with Sð0Þ ¼ 1, does not vanish at the asymptotic
regions of I or III, but rather has an oscillating behavior.
This is consistent with the behavior of the massless limit
of the geodesics in Figs. 2, 3 as discussed in the last
paragraph of Sec. II, which indicate that massless particles/
antiparticles do indeed travel to such asymptotic regions.
This is also evident from the intuitive effective potential
approach in Figs. 4, 8 after the corresponding effective

potentials are replaced by their μ2 ¼ 0 counterparts. Thus,
the mechanical potential for geodesics becomes a constant
[see Eqs. (8), (12)] so the maximum position y� in the
modified Fig. 4 moves to infinity. Similarly the effective
quantum potential in the modified Fig. 8 no longer has a
barrier, so waves can move both ways from y ¼∓ ∞ to
y ¼ �∞.
As a check of our expressions we may compute the

expectation value of the Rindler number density operators
a†1−a1− etc. in the Minkowski vacuum, h0Mja†1−ðωÞ×
a1−ðω0Þj0Mi, by using directly the Bogoliubov relation
between a1−ðωÞ and AðkÞ& B†ðkÞ given in Eq. (37). Using
the properties of the Minkowski vacuum, h0MjA†ðkÞ ¼ 0 ¼
BðkÞj0Mi, we obtain,

h0Mja†1−ðωÞa1−ðω0Þj0Mi ¼
e−πðωþω0Þ R∞

−∞
dk

4πEðkÞ ð12EðkÞ − 1
2
kÞiðω−ω0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1 − e−2πωÞð1 − e−2πω
0 Þ

q ¼ 1

2

δðω − ω0Þ
e2πω − 1

: ð48Þ

The integral is given in footnote 5. The result for other number operators, a†1�a1�; b
†
1�b1�, a

†
3�a3�, b

†
3�b3�, is the same.

The factor ðe2πω − 1Þ−1 is the well-known thermal distribution which, as expected, is in agreement with previous results [5].

VI. MULTIVERSE LEVELS IN MINKOWSKI BASIS

In this section we display the multiverse directly in the Minkowski basis by obtaining the relation between the general
level ðn;mÞ field and the level-(0,0) field of Eq. (16), both expressed in terms of Minkowski plane waves. The level ðn;mÞ
field φðn;mÞðu; vÞ can be written in terms of level ðn;mÞ Minkowski oscillators Aðn;mÞðkÞ; B̄ðn;mÞðkÞ as follows, just
like Eq. (16),

φðn;mÞðu; vÞ ¼
Z

∞

−∞
dk

�
Aðn;mÞðkÞ e

−iE−k
2
ue−i

Eþk
2
vffiffiffiffiffiffiffiffiffi

4πE
p þ B̄ðn;mÞðkÞ e

iE−k
2
uei

Eþk
2
vffiffiffiffiffiffiffiffiffi

4πE
p

�
: ð49Þ

This is equivalent to the same field φðn;mÞðu; vÞ given in
Eq. (31) in terms of Rindler oscillators. We will derive a
very non-trivial canonical transformation between the
oscillators ðAðn;mÞðkÞ; B̄ðn;mÞðkÞÞ and the level (0,0) oscil-
lators ðAðkÞ; B†ðkÞÞ that appear in Eqs. (15), (16). This
relation represents, in the Minkowski basis, the consistent
analytic continuation of the field in the Rindler basis, as

given in Eq. (31), and it could not be obtained without
going through the Rindler basis.
In Sec. V we related the level (0,0) Rindler oscillators

ðða1∓; b†3�Þ; ða3�; b†1∓ÞÞ to the Minkowski oscillators
ðA; B̄Þ and vice versa via Bogoliubov transformations in
Eqs. (38), (39). The same arguments can be given for level
ðn;mÞ to claim the analogous forward and inverse
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Bogoliubov transformations that relate ðAðn;mÞðkÞ;
B̄ðn;mÞðkÞÞ ↔ ððaðnÞ1∓; b̄

ðmÞ
3� Þ; ðaðmÞ

3� ; b̄ðnÞ1∓ÞÞ. These have the
same formal appearance as Eqs. (38), (39) except for
inserting the level ðn;mÞ oscillators instead of the level
(0,0) ones. Now, consider the pair ðAðn;mÞðkÞ; B̄ðn;mÞðkÞÞ in
the Bogoliubov relation analogous to (39), and on the right
hand side insert the level ðn;mÞ doublets in the following
form [using Eq. (33)]

 
aðnÞ1∓ðωÞ
b̄ðmÞ
3� ðωÞ

!
¼
�
e2πωn 0

0 e−2πωm

��a1∓ðωÞ
b†3�ðωÞ

�
;

 
aðmÞ
3� ðωÞ
b̄ðnÞ1∓ðωÞ

!
¼
�
e2πωm 0

0 e−2πωn

�� a3�ðωÞ
b†1∓ðωÞ

�
: ð50Þ

Moreover, replace the (0,0) doublets ðða1∓; b†3�Þ;
ða3�; b†1∓ÞÞ that appear in (50) in terms of the (0,0) level
Minkowski doublets ðAðkÞ; B̄ðkÞÞ by using Eq. (38). This
gives the relation between ðAðn;mÞðkÞ; B̄ðn;mÞðkÞÞ and
ðAðkÞ; B̄ðkÞÞ. The result takes the following form

�
Aðn;mÞðkÞ
B̄ðn;mÞðkÞ

�
¼
Z

∞

−∞
dk0Mðn;mÞðk; k0Þ

�
Aðk0Þ
B†ðk0Þ

�
; ð51Þ

where the 2 × 2 matrix Mðn;mÞðk; k0Þ in infinite momentum
space, −∞ < k; k0 < ∞, is given by,

Mðn;mÞðk; k0Þ ¼ 1

2π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EðkÞEðk0Þp Z

∞

−∞
dω

�
EðkÞ þ k
Eðk0Þ þ k0

�
−iω

×Mðn;mÞðωÞ; ð52Þ

with EðkÞ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2þμ2

p
, while the 2 × 2 matrices Mðn;mÞðωÞ

in Rindler frequency space −∞ < ω < ∞ are given by

Mðn;mÞðωÞ≡ 1

1 − e−2πω

�
1 −e−ω

−e−ω 1

�

×

�
e2πωn 0

0 e−2πωm

��
1 e−ω

e−ω 1

�

¼
 

eπωð2nþ1Þ−e−πωð2mþ1Þ
eπω−e−πω

eπωð2nÞ−e−πωð2mÞ
eπω−e−πω

− eπωð2nÞ−e−πωð2mÞ
eπω−e−πω − eπωð2n−1Þ−e−πωð2m−1Þ

eπω−e−πω

!
:

ð53Þ

For example, for ðn;mÞ ¼ ð0; 1Þ or (1,0), they are

Mð0;1ÞðωÞ ¼
�
1þ e−2πω e−πω

−e−πω 0

�
;

Mð1;0ÞðωÞ ¼
�
1þ e2πω eπω

−eπω 0

�
: ð54Þ

Note the property of Mðn;mÞðωÞ, that when the integers are
interchanged ðn;mÞ → ðm; nÞ and ω → −ω, we obtain the
same matrix Mðn;mÞðωÞ

Mðm;nÞð−ωÞ ¼ Mðn;mÞðωÞ: ð55Þ

The diagonal matrices in Eq. (50) are interchanged under the
same transformation. This explains how we end up with an
integral

R
∞
−∞ dω over positive and negative Rindler fre-

quency in Eq. (52) even though the integrals in the
Bogoliubov transformation (38) are only over positive
Rindler frequency. Thus, when the integral

R
∞
−∞ dω is

split into its positive and negative pieces, and in the negative
piece we replaceω → −ω and interchange ðn;mÞ → ðm; nÞ,
we see that the positive (negative) piece comes from the
contribution of the first (second) doublet in Eq. (50).
The canonical conjugates that appear in the field

φ̄ðn;mÞðu; vÞ, written in a row matrix form, are

ð Āðn;mÞðkÞBðn;mÞðkÞÞ¼
Z

∞

−∞
dk0ðA†ðk0ÞBðk0ÞÞM̄ðn;mÞðk0;kÞ:

ð56Þ

This is obtained by taking the Hermitian conjugate of
Eq. (51) and replacing ðn;mÞ by ð−n;−mÞ on the right
side. This gives the matrix M̄ðn;mÞðk0; kÞ as follows

M̄ðn;mÞðk0; kÞ ¼ 1

2π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EðkÞEðk0Þp Z

∞

−∞
dω

�
EðkÞ þ k
Eðk0Þ þ k0

�
iω

× ðMðn;mÞðωÞÞ−1T; ð57Þ

where the exponent ð−1TÞ in ðMðn;mÞÞ−1T means inverse
and transpose of the 2 × 2 matrix Mðn;mÞ, noting that the
matrices in Eq. (53) satisfy, Mð−n;−mÞðωÞ ¼ ðMðn;mÞðωÞÞ−1
and M†ð−n;−mÞðωÞ ¼ ðMðn;mÞðωÞÞ−1T .
These matrices satisfy the following remarkable proper-

ties in Rindler frequency space,

Mðn;mÞðωÞ
�
1 0

0 −1
�
ðMðn;mÞðωÞÞ−1T ¼

�
1 0

0 −1
�
; ð58Þ

and in Minkowski momentum space6

Z
∞

−∞
dkMðn;mÞðk1; kÞ

�
1 0

0 −1
�
M̄ðn;mÞðk; k2Þ

¼
�
1 0

0 −1
�
δðk1 − k2Þ: ð59Þ

6To prove this property we use the following integrals,R∞
−∞

dk
2πEðkÞ ðEðkÞ þ kÞiðω1−ω2Þ ¼ δðω1 − ω2Þ, and

R∞
−∞ dω×

ðEðk1Þþk1
Eðk2Þþk2

Þ−iω ¼ 2π
ffiffiffiffiffiffiffiffiffiffiffi
E1E2

p
δðk1 − k2Þ.
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These matrix properties indicate that the transformations in
Eqs. (51), (56) are canonical transformations since it can be
verified that they satisfy the standard oscillator commuta-
tion rules in momentum space for all ðn;mÞ

��
Aðn;mÞðk1Þ
B̄ðn;mÞðk1Þ

�
; ð Āðn;mÞðk2ÞBðn;mÞðk2Þ Þ

�

¼
�
1 0

0 −1
�
δðk1 − k2Þ: ð60Þ

This includes the original Minkowski commutators given
in Eq. (17) that are reproduced in the case of n ¼ m ¼ 0.
Clearly, by the construction of Eq. (51), the level ðn;mÞ
commutator follows directly from the level (0,0) com-
mutator and the remarkable properties of the matrix
Mðn;mÞðk; k0Þ that relates the (0,0) and ðn;mÞ levels to each
other as a canonical transformation.
This establishes the quantum properties of the multiverse

in the Minkowski basis for all levels ðn;mÞ. It is evident
that the Minkowski-basis field φðn;mÞðu; vÞ at all levels
given in Eqs. (49), (51), (52), (53), including n ¼ m ¼ 0,
inherits its properties only from the analyticity properties of
the (0,0) level field φðu; vÞ in the extended Rindler basis.

VII. CHARGE CONSERVATION AND
INFORMATION FLOW

In this section we address the question on whether infor-
mation flows from one level of the Rindler multiverse to
other levels. To do this we consider the probability asso-
ciated with a wave packet. As expected, a wave packet will
on the average follow the path of a geodesic as it develops as
a function of time. Earlier in the paper we discussed the
geodesics at the classical level, and of course at the classical
level, since there is no multiverse, the geodesics cannot give
information on our question. However, a wave packet may
leak to other levels of the multiverse when it crosses the
horizons. The question is whether it does or not.
For the Klein-Gordon field in curved spacetime, that is

normalized according to the Klein-Gordon dot product in
footnote 2, probability is directly related to the conserved
charge current up to the sign of the charge. While the
probability density is always positive, the charge density is
positive/negative for particles/antiparticles respectively
(i.e., a versus b symbols in the wave packet). Therefore,
to understand probability (or information) flow we study
the flow of the charge current with all a and b coefficients
included in order to undestand the flow based on the most
general wave packet including particles and antiparticles.
The conserved current for the Klein-Gordon equation,

ð∇2 − μ2Þφ ¼ 0, in curved spacetime is

JμðxÞ ¼ −i
ffiffiffiffiffiffi
−g

p
gμνðφ†∂νφ − ∂νφ

†φÞ; ∂μJμðxÞ ¼ 0:

ð61Þ

The conservation ∂μJμðxÞ ¼ 0 is verified by using the
Klein-Gordon equation ð ffiffiffiffiffiffi−gp Þ−1∂μð ffiffiffiffiffiffi−gp

gμν∂νφÞ ¼ μ2φ.
The conserved charge associated with this current is
computed as an integral over a spacelike Cauchy surface Σ

Q ¼
Z
Σ
JμdΣμ ð62Þ

The conserved charge is independent of the surface Σ.
The Cauchy surface can be specified differently in the

Minkowski versus Rindler bases. In the Minkowski version
the surface is defined by taking a slice of constant x0 and
evaluating the integral as given in textbooks

QMðx0Þ ¼
Z

∞

−∞
dx1J0ðx0; x1Þ

¼
Z

∞

−∞
dk1ðA†ðk1ÞAðk1Þ − B†ðk1ÞBðk1ÞÞ; ð63Þ

where the computation is performed by using the
Minkowski version of the field in Eq. (16) at constant
finite values x0. The time derivative ∂x0QMðx0Þ is

∂0QMðx0Þ ¼
Z

∞

−∞
dx1∂0J0 ¼

Z
∞

−∞
dx1ð∂μJμ − ∂1J1Þ

¼ −J1ðx0;∞Þ þ J1ðx0;−∞Þ: ð64Þ

where the Klein-Gordon equation is used to set ∂μJμ ¼ 0,
and then Stoke’s theorem is applied to write the result in
terms of the current J1ðx0; x1Þ evaluated at the asymptotic
boundaries. In general the current at the boundaries,

J1ðx0;�∞Þ ¼ lim
x1→�∞

ð−iðφ†ðx0; x1Þ∂1φðx0; x1Þ

− ∂1φ
†ðx0; x1Þφðx0; x1ÞÞÞ; ð65Þ

does not vanish as this represents the charge flux of
incoming/outgoing particles, so in such physical processes
∂0QMðx0Þ cannot vanish at asymptotic boundaries. On
the other hand, Eq. (63) shows that QMðx0Þ is time
independent at finite x0. These observations are reconciled
by noting that the support of J1ðx0;�∞Þ is not only at
space infinity x1 ¼ �∞, but also at time infinity x0 ¼ �∞,
such as J1ðx0;�∞Þ ¼ �δðx0 �∞ÞJ, where J is a constant
determined in terms of ðAðkÞ; B†ðkÞÞ as shown in Eq. (81)
below. Then the charge conservation equation takes the
form

∂x0QMðx0Þ ¼ ðδðx0 þ∞Þ − δðx0 −∞ÞÞJ: ð66Þ

This result implies that QMðx0Þ is not in general a constant
at the asymptotic past and future boundaries of Minkowski
space. Furthermore, the conservation of charge QM in
Minkowski space at finite x0 is explained by the fact that
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the flux of charge J into Minkowski space at x0 ¼ −∞ is
exactly equal to the flow of charge J out of the space at
x0 ¼ ∞. This is the statement of conservation of charge
and it implies conservation of information within the
Minkowski spacetime. It also leads to unitarity in the
complete Hilbert space in the quantum field theory.
In the Rindler case the spacelike Cauchy surface needs to

be specified differently in each region because the roles of
ðt; yÞ alternate between time and space in regions I&III
versus regions II&IV. For example, in region I, a spacelike
surface correspond to a fixed value of the Rindler time t
(any ray in Fig. 1) so that the charge of a field configuration
is given by integrating over dΣt ¼ dy at fixed t,

q1ðtÞ ¼
Z
Σ
JμðxÞdΣμ ¼

Z
y2

y1

dyJtðt; yÞ; with

Jt ¼ i
2y

ðφ†
1∂tφ1 − ∂tφ

†
1φ1Þ; ð67Þ

where, in Jt we used
ffiffiffiffiffiffi−gp ¼ 1, gtt ¼ −ð2yÞ−1, and φ1ðt; yÞ

given in Eq. (27). Here Jtðt; yÞ is the charge density, soR
y2
y1
dyJt is the total charge contained in the interval y1 <

y < y2 at time t. Changing the value of t in the range,
−∞ < t < ∞, covers the spacetime bounded by the hyper-
bolas shown in Fig. 1 within region I. Sending y1 → 0 and
y2 → ∞ covers the entire region I. Then q1ðtÞ, with y1 ¼ 0
and y2 ¼ ∞, is the total regional charge within region I at
an arbitrary time t.
By contrast to Eq. (67), in region II a spacelike Cauchy

surface7 corresponds to a fixed value of the time y (a fixed
hyperbola in region II in Fig. 1, not shown) so that the
charge of a field configuration is given by integrating over
dΣy ¼ dt at fixed y,

q2ðyÞ ¼
Z
Σ
JμðxÞdΣμ ¼ −

Z
∞

−∞
dtJyðt; yÞ; with

Jy ¼ ð−2yiÞðφ†
2∂yφ2 − ∂yφ

†
2φ2Þ; ð68Þ

where, in Jy we used
ffiffiffiffiffiffi−gp ¼ 1, gyy ¼ 2y, and φ2ðt; yÞ

given in Eq. (27). The reason for the extra overall sign in
the integral −

R
∞
−∞ dtwill be explained below after Eq. (71).

The Rindler version of the total charge QR for the full
extended Rindler space in the (0,0) universe [the equivalent
of QM for the Minkowski space in Eq. (63)] is given by
integrals at spacelike Cauchy surfaces of constant t in
regions I & III and constant y in regions II & IV. This is
because in regions I & III t is the timelike coordinate
because signðyÞ ¼ þ1 for the spacetime geometry
described by the line element in Eq. (4), while in regions
II & IV y is the timelike coordinate because signðyÞ ¼ −1.
The computation of the total charge QR is to be performed
by using the regional Rindler fields φ1;2;3;4 given in
Eq. (27). We define the total charge, QR ¼ RΣ JμðxÞdΣμ,
as an integral over the union of spacelike Cauchy surfaces
that were used in the definition of q1;2;3;4. Then we find

QR ¼ q1 þ q2 þ q3 þ q4; ð69Þ
where

q1ðtÞ ¼
Z

∞

0

dyJt1 ¼
Z

∞

0

dy
i
2y

ðφ†
1∂tφ1 − ∂tφ

†
1φ1Þ

q2ðyÞ ¼ −
Z

∞

−∞
dtJy2 ¼ −

Z
∞

−∞
dtð−2yiÞðφ†

2∂yφ2 − ∂yφ
†
2φ2Þ

q3ðtÞ ¼ −
Z

∞

0

dyJt3 ¼ −
Z

∞

0

dy
i
2y

ðφ†
3∂tφ3 − ∂tφ

†
3φ3Þ

q4ðyÞ ¼
Z

∞

−∞
dtJy4 ¼

Z
∞

−∞
dtð−2yiÞðφ†

4∂yφ4 − ∂yφ
†
4φ4Þ

ð70Þ
Furthermore, the rate of change of these charges with
respect to time is given by the time derivatives in the
respective regions

∂tq1ðtÞ; − ∂yq2ðyÞ; − ∂tq3ðtÞ; ∂yq4ðyÞ: ð71Þ
Note the extra overall minus signs in the definitions of

the charges q2ðtÞ and q3ðyÞ as well as the extra signs in
taking their time derivatives. The justification for such extra
signs is the comparison of the time increments for the
Minkowski signðdx0Þ to the Rindler signðdTÞ where T is
the monotonically increasing time in the corresponding
regions. Thus, in region III we have T ≡ t and signðdx0Þ ¼
−signðdtÞ because in region III as t decreases as x0

increases. This explains why q3ðtÞ and −∂tq3ðtÞ have an
extra sign: it is because the extra sign is absorbed into
∂=∂ð−tÞ both in the definition of the current Jt in Eq. (67)
and in the rate of change, so that ∂=∂ð−tÞ implies an
increment of time with the same sign as ∂=∂x0. The same
explanation works for region II, where T ≡ −y since y
is negative, and noting that in region II signðdx0Þ ¼
−signðdyÞ ¼ signðdjyjÞ; consequently the overall sign is
absorbed into ∂=∂ð−yÞ ¼ ∂=∂jyj. By contrast, in region IV
where y is negative, we have T ¼ −y but signðdx0Þ ¼
signðdyÞ ¼ −signðdjyjÞ, therefore no extra signs are
needed in region IV. When these extra signs are combined

7One may be tempted to ignore the spacelike requirement of
the Cauchy surface, and based on the fact that ∂t is the conserved
Killing vector in all regions, including region II, one may take the
surface of integration in region II to be again dΣt ¼ dy just like
region I. Applying this reasoning uniformly to every region, one
may wish to define q1;2;3;4 as integrals over y at fixed t, just as in
Eq. (67). This turns out to give the wrong set of sign patterns for
q1;2;3;4 contrary to the correct patterns displayed in our results in
Eqs. (72)–(71): i.e. þa†a for the charges associated to particles
and the opposite signs −b†b for antiparticles. The wrong set of
signs that occur differently in different regions fail the self
consistency check involving the Bogoliubov transformations as
given in Eqs. (80), (81).
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with the signs produced when the currents are integrated on
spacelike Cauchy surfaces (see footnote 7) one obtains the
correct sign patterns for particle/antiparticle charges and
charge fluxes in our results given below.
The explicit computation of q1;2;3;4 shows that they

are constants within each region, but ð∂tq1ðtÞ; ∂−yq2ðyÞ;

∂−tq3ðtÞ; ∂yq4ðyÞÞ receive nontrivial contributions at the
horizons and the asymptotic boundaries of each region
[analogous to constant QM but nontrivial ∂QM at bounda-
ries as in Eqs. (63), (66)]. The results are as follows.
For region I, according to the computations shown in

Appendix A we have

q1 ¼
Z

∞

0

dωðða†1−a1− − b†1−b1−Þ þ ða†1þa1þ − b†1þb1þÞÞ;

∂tq1ðtÞjμ2¼0 ¼
Z

∞

0

dω

2
64 ð lim

v→−∞
− lim

v→0
Þδεðln uÞða†1−a1− − b†1−b1−Þ

þðlim
u→0

− lim
u→∞

Þδεðln jvjÞða†1þa1þ − b†1þb1þÞ

3
75

∂tq1ðtÞjμ2≠0 ¼
Z

∞

0

dω

2
64 −lim

v→0
δεðln uÞða†1−a1− − b†1−b1−Þ

þlim
u→0

δεðln jvjÞða†1þa1þ − b†1þb1þÞ

3
75 ð72Þ

Here the symbol δεðzÞ is a smeared delta function defined
in Eqs. (A7)–(A11). We discuss briefly the meaning of
these equations. First note that the charge q1 is conserved
within region I by itself, ∂tq1ðtÞ ¼ 0 at finite t, since q1
is explicitly time independent. However, the expression
for massless particles ∂tq1ðtÞjμ2¼0 shows that charge is
not conserved locally at both horizons u ¼ 0 or v ¼ 0
and at both asymptotic boundaries u ¼ ∞ or v ¼ ∞;
similarly for massive particles ∂tq1ðtÞjμ2≠0 shows that
charge is not conserved locally at both horizons (the
wave function and current in regions I&III vanish
asymptotically for massive particles, so ∂tq1ðtÞjμ2≠0 at
y → �∞).
That we should expect nontrivial charge flow at the

horizons for the massive particle, ∂tq1ðtÞjμ2≠0 ≠ 0 at t →
�∞ and y ¼ 0, was evident in Figs. 2, 3 that depict the
classical geodesics for massive particles that show geo-
desics crossing the horizons (y ¼ 0) at t ¼ �∞. In the
quantum computation, using general wave packets with
particles and antiparticles, we see in Eq. (72) and Fig. 9 that
at each frequency ω there is a charge flux (−ja1−ðωÞj2 þ
jb†1−ðωÞj2) due to outgoing particles ðoverall − signÞ and
incoming antiparticles ðþsignÞ at the future horizon in
region I ðv ¼ 0Þ, and another charge flux (þja1þðωÞj2 −
jb†1þðωÞj2) due to incoming particles ðþsignÞ and outgoing
antiparticles ð−signÞ at the past horizon in region I ðu ¼ 0Þ.
These incoming and outgoing fluxes sum up to zero
because, for the massive particle, the boundary conditions
are ja1−ðωÞj ¼ ja1þðωÞj and jb†1−ðωÞj ¼ jb†1þðωÞj as seen
in Eq. (43). For massless particles ja1�ðωÞj and similarly
jb†1�ðωÞj are unrelated to each other, but the result for
∂tq1ðtÞjμ2¼0 given above indicates that again the total
incoming flux of charge into region I is equal to the total
outgoing flux of charge.

We emphasize the fact that the incoming and outgoing
particle/antiparticle fluxes sum up to zero separately for
every species of particle or antiparticle, for either massless
or massive particles of every frequency ω. This indicates
that what comes into region I goes out fully in the same
form (species of particle or antiparticle) at each frequency
ω. This is why the total charge within region I remains a
constant ∂tq1 ¼ 0 at finite t, for every species separately,
and not by cancellation among the different species
(i.e. a1�; a3�; b1�; b3�).

FIG. 9. Magnitudes of incoming and outgoing fluxes at the
horizons of each region. Blue arrows ¼ þsign, and red arrows ¼
−sign. For example, for region I, at the future horizon ðv ¼ 0Þ,
the outgoing particle current is proportional to ja21−ðωÞj (red) and
the incoming antiparticle current is proportional to jb1−ðωÞj2
(blue). Similarly at the past horizon of region I ðu ¼ 0Þ, the
incoming particle current is proportional to ja1þðωÞj2 (blue) and
the outgoing antiparticle current is jb†1þðωÞj2 (red). Similar in and
out currents are indicated for each region.
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For region II, the result of the computations shown in Appendix A is

q2 ¼
Z

∞

0

dωðða†1−a1− − b†1−b1−Þ þ ð−b†3þb3þ þ a†3þa3þÞÞ;

∂−yq2ðyÞjμ2¼0
¼
Z

∞

0

dω

2
64 ðlim

v→0
− lim

v→∞
Þδεðln uÞða†1−a1− − b†1−b1−Þ

þðlim
u→0

− lim
u→∞

Þδεðln vÞð−b†3þb3þ þ a†3þa3þÞ

3
75

∂−yq2ðyÞjμ2≠0 ¼
Z

∞

0

dω

2
666666664

þlim
v→0

δεðln uÞða†1−a1− − b†1−b1−Þ
þlim

u→0
δεðln vÞð−b†3þb3þ þ a†3þa3þÞ

− lim
v→∞

δεðln uÞ ja
†
1−þe−πωðμ2Þ−iωei2θb†

3þj2−jb1−þe−πωðμ2Þiωe−i2θa3þj2
1−e−2πω

− lim
u→∞

δεðln vÞ −jb
†
3þþe−πωðμ2Þiωe−i2θa1−j2þja3þþe−πωðμ2Þ−iωei2θb†

1−j2
1−e−2πω

3
777777775

ð73Þ

The interpretation of these expressions for region II is similar to the one above for region I. The total charge q2 is explicitly
time independent within region II, but its rate of change locally at each horizon u ¼ 0 or v ¼ 0, or asymptotic boundaries
u → ∞ or v → ∞, is generally nonzero. However, again what comes into region II goes out of region II in the same total
form (either particle or antiparticle) at each frequency ω. The vanishing of the sum of incoming and outgoing fluxes for all
boundaries of region II is evident without any computation for the massless particle. For the massive particle, simple algebra
such as

−ja†1− þ e−πωðμ2Þ−iωei2θb†3þj2 þ jb†3þ þ e−πωðμ2Þiωe−i2θa1−j2
1 − e−2πω

¼ −ja1−j2 þ jb†3þj2; ð74Þ

shows that the sum of asymptotic fluxes at u → ∞ and
v → ∞, namely [(−ja1−j2 þ jb†3þj2Þ þ ð−ja3þj2 þ jb†1−j2Þ�,
matches the sum of the fluxes at the horizons u ¼ 0 and
v ¼ 0 except for an overall sign. Hence, the total sum over
all boundaries vanishes. We conclude (similar to region I)
that charge, information or probability, are conserved
within region II by itself.
Observe that the incoming (outgoing) particle (antipar-

ticle) charge at the v ¼ 0 horizon of region II, is identical to

the particle (antiparticle) flux that leaves (enters) region I.
This shows that the flux of particles and antiparticles is
continuous across the horizon at the boundary of regions
I&II as indicated in Fig. 9.
For region III, the computations are parallel to those for

region I. The result is obtained from Eq. (72) simply by
replacing ðu;−vÞ → ð−u; vÞ (see Fig. 1) and ða1−;a1þÞ→
ðb†3−;b†3þÞ [seeEq. (27)], andmultiplyingby an overallminus
sign for q but not for ∂q [see Eqs. (70), (71)]. The result is

q3 ¼
Z

∞

0

dωðð−b†3−b3− þ a†3−a3−Þ þ ð−b†3þb3þ þ a†3þa3þÞÞ

∂−tq3ðtÞjμ2¼0 ¼
Z

∞

0

dω

2
64 ð lim

v→∞
− lim

v→0
Þδεðln jujÞðb†3−b3− − a†3−a3−Þ

þðlim
u→0

− lim
u→−∞

Þδεðln vÞðb†3þb3þ − a†3þa3þÞ

3
75

∂−tq3ðtÞjμ2≠0 ¼
Z

∞

0

dω

2
64−lim

v→0
δεðln jujÞðb†3−b3− − a†3−a3−Þ

þlim
u→0

δεðln vÞðb†3þb3þ − a†3þa3þÞ

3
75 ð75Þ

Recall that for the massive particle ja3þj ¼ ja3−j and
jb3þj ¼ jb3−j according to the boundary conditions obtained
in Eq. (43). For the massless particle there are no such rela-
tions. The interpretation is parallel to the discussion above
for region I. Furthermore, at the horizon at the common

boundary for regions II&III we see that what leaves (enters)
region II fully enters (leaves) region III. From this we
conclude (similar to region I or II) that charge, information or
probability, are conserved within region III by itself, inde-
pendent of what goes on in other regions of the extended
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Rindler space. This leads also to unitarity of the scattering
matrix in the quantum Hilbert space of region III by itself.
For region IV, the computations are parallel to those for

region II. The result is obtained from Eq. (73) simply by

replacing ðu; vÞ → ð−u;−vÞ (see Fig. 1) and ða1−; b†3þÞ →
ðb†3−; a1þÞ [see Eq. (27)], and multiplying by an overall
minus sign for q but not for ∂q [see Eqs. (70), (71)]. The
result is

q4 ¼
Z

∞

0

dωðð−b†3−b3− þ a†3−a3−Þ þ ða†1þa1þ − b†1þb1þÞÞ

∂yq4ðyÞjμ2¼0
¼
Z

∞

0

dω

2
64 ðlim

v→0
− lim

v→−∞
Þδεðln jujÞðb†3−b3− − a†3−a3−Þ

þð lim
u→−∞

− lim
u→0

Þδεðln jvjÞða†1þa1þ − b†1þb1þÞ

3
75

∂yq4ðyÞjμ2≠0 ¼
Z

∞

0

dω

2
666666664

þlim
v→0

δεðln jujÞðb†3−b3− − a†3−a3−Þ
−lim
u→0

δεðln jvjÞða†1þa1þ − b†1þb1þÞ

− lim
v→−∞

δεðln jujÞ jb
†
3−þe−πωðμ2Þ−iωei2θa1þj2−ja3−þe−πωðμ2Þiωe−i2θb†

1þj2
1−e−2πω

þ lim
u→−∞

δεðln jvjÞ ja1þþe−πωðμ2Þiωe−i2θb†
3−j2−jb†1þþe−πωðμ2Þ−iωei2θa3−j2
1−e−2πω

3
777777775

ð76Þ

The interpretation is similar to those of regions I or II or III, and again we conclude that charge, information or probability,
are conserved within region IV by itself, independent of what goes on in other regions of the extended Rindler space.
We may now compute the sum of the charges QR, Eq. (69), in all the regions I-IV for universe (0,0), and find

QR ¼ 2
X
�

Z
∞

0

dωðða†1�a1� − b†1�b1�Þ − ðb†3�b3� − a†3�a3�ÞÞ;

∂QRjμ2¼0 ¼
Z

∞

0

dω

0
BBBBB@

þð lim
v→−∞

− lim
v→∞

Þδεðln jujÞ
� ða†1−a1− − b†1−b1−Þ
−ðb†3−b3− − a†3−a3−Þ

�

þð lim
u→−∞

− lim
u→∞

Þδεðln jvjÞ
� ða†1þa1þ − b†1þb1þÞ
−ðb†3þb3þ − a†3þa3þÞ

�
1
CCCCCA

∂QRjμ2≠0 ¼
Z

∞

0

dω
1 − e−2πω

2
6666666666666664

lim
u→−∞

δεðln jvjÞ
� ja1þ þ e−πωðμ2Þiωe−i2θb†3−j2
−jb†1þ þ e−πωðμ2Þ−iωei2θa3−j2

�

þ lim
v→−∞

δεðln jujÞ
� ja3− þ e−πωðμ2Þiωe−i2θb†1þj2
−jb†3− þ e−πωðμ2Þ−iωei2θa1þj2

�

þ lim
u→∞

δεðln vÞ
� jb†3þ þ e−πωðμ2Þiωe−i2θa1−j2
−ja3þ þ e−πωðμ2Þ−iωei2θb†1−j2

�

þ lim
v→∞

δεðln uÞ
� jb1− þ e−πωðμ2Þiωe−i2θa3þj2
−ja†1− þ e−πωðμ2Þ−iωei2θb†3þj2

�

3
7777777777777775

ð77Þ

The last two equations for ∂QR are the sums of all the fluxes ∂q1;2;3;4 given in Eqs. (72)–(76); in this sum the fluxes at each
horizon cancel out and only the asymptotic fluxes in each region remain as shown in Eq. (77). Note that the sum of all
incoming terms in

P ð∂QRÞin is exactly equal to the sum of all outgoing terms in
P ð∂QRÞout. This is easy to see for

∂QRjμ2¼0. Simple algebra, like Eq. (74), shows that it is also true for ∂QRjμ2≠0 when we take into account the results of the
boundary conditions given in Eq. (43), namely

μ2 ≠ 0∶ ja1−j ¼ ja1þj; ja3−j ¼ ja3þj; jb1−j ¼ jb1þj; jb3−j ¼ jb3þj: ð78Þ
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Equation (77) is the statement of charge conservation for
the entire (0,0) universe: QR is conserved within the (0,0)
universe by itself because the charges that flow in and out
its asymptotic regions balance each other exactly such that
the sum of all influxes is equal to the sum of all outflows.
Moreover, each type of charge (a1�; a3�; b1�; b3�) and
corresponding total flux is separately conserved. This
amounts to conservation of probability and information
for the overall (0,0) level.
This result for the Rindler total charge, QR in the (0,0)

universe, may be compared to the total charge QM defined

in Minkowski space as given above in Eq. (63). We expect
the total charge and total boundary in or out fluxes to be the
same in either computation,

QR ¼ QM and
X

ð∂QRÞin=out ¼
X

ð∂QMÞin=out:
ð79Þ

To relate the Rindler/Minkowski results to each other we
use the Bogoliubov transformations in Eqs. (38), (47)
and find

Q ¼
8<
:

¼ 2
P
�

R∞
0 dω½ða†1�a1� − b†1�b1�Þ − ðb†3�b3� − a†3�a3�Þ�

¼ R∞−∞ dk1ðA†ðk1ÞAðk1Þ − B†ðk1ÞBðk1ÞÞ;
ð80Þ

showing that indeed QR ¼ QM according to Eqs. (63), (77). Similarly, the identity for the sum of the in or out fluxes can
also be proven by using the Bogoliubov transformations to find

X
ð∂QÞin=out ¼

(
¼ R∞0 dω½ða†1�a1� − b†1�b1�Þ − ðb†3�b3� − a†3�a3�Þ�
¼ 1

2

R
∞
0 dkðA†

�ðkÞA�ðkÞ − B†
�ðkÞB�ðkÞÞ

: ð81Þ

These checks verify that our approach is self consistent
according to Eqs. (66), (77), (79).
This result implies that charge, information or proba-

bility, is conserved in the (0,0) universe by itself and
furthermore that the (0,0) universe formulated in the
extended Rindler space is equivalent to a full Minkowski
universe on one sheet. From this we may also conclude that
in the absence of interactions or perturbations, Rindler
information does not leak from the (0,0) universe to any
other ðn;mÞ universe.
The same arguments can now be applied at each level

by using the Rindler or Minkowski forms of the same
field φðn;mÞðu; vÞ that we have discussed in the previous
sections. A little thought is sufficient to go over the
same computations by simply changing the symbols for
the oscillators, and be convinced that charge or infor-
mation is again conserved separately within every
level ðn;mÞ.
Thus, it seems the first quantized level-(0,0) wave

function or the quantum field φðu; vÞ, analytically
continued to all levels in the extended Rindler space-
time, describes parallel Minkowski universes. Since all
levels are predictably related to each other by analiticity,
one should not think of phenomena in these parallel
universes as being independent from each other, at least
not in the present context of free fields. This is because
there is only one set of oscillators to construct wave
packets, namely those of level-(0,0), and as we have
shown, all oscillators at other levels are dependent on
the level-(0,0) oscillators.

VIII. DISCUSSION

In summary, we have shown that, although information
does flow between neighboring regions of the (0,0) uni-
verse, regional information remains constant for each
species of particles/antiparticles ða1�; a3�; b1�; b3�Þ due
to the balance of in/out fluxes for each region separately.
The conserved regional charges, q1, q2, q3, q4, are
generally different in each region and they are determined
by the wave packet coefficients of the fields in Eq. (27) for
each region in universe (0,0). Note that the constant q1;2;3;4
as well as the fluxes at boundaries depend on the wave
packet coefficients only in the combinations, a†1�ðωÞa1�
ðωÞ; b†1�ðωÞb1�ðωÞ; a†3�ðωÞa3�ðωÞ; b†3�ðωÞb3�ðωÞ, which
turn into number operators in the second quantized field
theory.
This argument is repeated for each ðn;mÞ universe for

which the corresponding fields are fully determined by
analyticity. Recall that the field in the ðn;mÞ universe
differs from the field in the (0,0) universe by the canonical
transformations in Eqs. (33), (34) or Eqs. (51), (56). We
find that the regional constant charges q1, q2, q3, q4, and
the fluxes at the boundaries, of the Rindler regions in the
ðn;mÞ universe, are identical to those of the (0,0) universe,
because, according to Eqs. (33), (34), the number operators,
a†1�a1� etc., in any ðn;mÞ universe are the same as in the
(0,0) universe since these number operators are invariant
under the canonical transformations. This is true despite the

fact that the wavepacket coefficients aðn;mÞ
1� etc. in the ðn;mÞ

universe are different than the ðn0; m0Þ universe by real
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factors (not just phases). Therefore, as far as information
flow and conservation is concerned, the Rindler multiverse
seems to consist of parallel universes that may not
communicate with each other.
This conclusion emerged because of information con-

servation separately in each Rindler quadrant of
Minkowski space, at all levels of the multiverse, which
holds as long as the Rindler multiverse system is not
disturbed by interactions that may alter the current Jμ or
induce interuniverse transitions.
Note however that there are nontrivial interuniverse

propagators or more general multipoint correlators with
one leg in the ðn;mÞ universe and the other(s) in a different
ðn0; m0Þ universe(s), such as

Gðn0;m0Þ
ðn;mÞ ðui; vi; uj; vjÞ≡ h0Mjφðn;mÞ

i ðu; vÞφ†ðn0;m0Þ
j ðu0; v0Þj0Mi;

ð82Þ

where i, j ¼ 1, 2, 3, 4, indicate the regions I-IV. The
creation/annihilation operators in the analytically continued

fields φðn;mÞ
i ;φ†ðn0;m0Þ

j are related to each other but have
different real factors that depend on ðn;mÞ or ðn0; m0Þ as
given in Eqs. (33), (34). When ðn;mÞ ¼ ðn0; m0Þ ¼ ð0; 0Þ
these propagators or more general n-point functions are
guaranteed to be identical to the well-known propagators or
n-point functions of a Klein-Gordon complex scalar field in
Minkowski space. However, in general they will differ
because of the n;m; n0; m0 dependent factors that modify
computations of the (0,0) universe, such as the modification
of the example in Eq. (48) by the additional factor as seen
below

h0Mja†ðn;mÞ
1− ðωÞaðn0;m0Þ

1− ðω0Þj0Mi ¼
1

2

δðω − ω0Þ
e2πω − 1

e−2πωðn−n0Þ:

ð83Þ

The propagator Gðn0;m0Þ
ðn;mÞ ðu; v; u0; v0Þ is easily computed by

using such relations that include the extra factor e−2πωðn−n0Þ.
The physical meaning of Gðn0;m0Þ

ðn;mÞ ðu; v; u0; vÞ is unclear at

the moment when there are no interactions. In any case,
these propagators will surely play a role if there are
interactions that cause inter-universe transitions.
As examples of disturbances of the Rindler parallel

universes, we may consider the geometry of an eternal
black hole or the cosmological geometry of the minisuper-
space described in Appendix B. Either spacetime may be
considered as introducing some gravitational interaction
that deforms the extended Rindler spacetime nonperturba-
tively. The approach of this paper may be applied similarly
to cosmology as in [3] or black holes, as in [4]. We find
that, although information conservation as discussed above
holds for the noninteracting Rindler multiverse, it can fail
for cases like these. In particular, for black holes it is found
that there is leakage of information precisely at the black

hole singularity through which the current flows between
different levels of the multiverse. The information loss for
black holes [19,20] may be redefined as a loss of informa-
tion for the (0,0) universe, but still conserved in the full
eternal black hole multiverse. The flow of information
away from the (0,0) universe can be tracked quantitatively
by computing the amount of information that leaks to
specific regions in other universes in the extended black
hole multiverse [4]. The question remains as to what
happens to information if the black hole can fully
evaporate.
We have shown that even something as simple as the

extended Rindler space is far richer at the quantum level
than the Minkowski geometry specified by the metric or the
geodesics at the classical level. New phenomena of
physical interest may occur due to the natural multiverse
predicted by the quantum field. Even for the Rindler
multiverse, it would be interesting to explore which types
of perturbative or nonperturbative interactions (such as
black holes, big bang, and others) may induce communi-
cation among the otherwise apparently noninteracting
parallel Rindler universes.
In this paper we discussed a new multiverse concept in

an idealized setting and established certain technical
properties of the first quantized wave function or classical
field and its second quantization, in the extended Rindler
spacetime. Although this spacetime is related to flat
Minkowski spacetime by a simple coordinate transforma-
tion at the classical level, we showed that the presence of
horizons in the Rindler coordinate system led to subtleties
at the quantum level due to cuts in analytic ðu; vÞ
spacetime, and that this naturally implied the presence
of a multiverse in the first and second quantized treatment
of the field in such a spacetime. Analyticity of the field in
the ðu; vÞ coordinates guarantees that unavoidably φðu; vÞ
takes unique values throughout the multiverse. We claim
that similar multiverse properties are also shared by any
spacetime that has horizons and/or singularities, such as
the full spacetime of an eternal black hole [4] as well as
the cosmological minisuperspace geometry (in field
space) described in Appendix B and in more detail in
[3]. The presence of the multiverse structure does not
seem to be directly detectable by an observer in Rindler
region I, or the analogous region I observer outside of a
black hole, because, as we have already emphasized such
an observer is incapable of directly detecting anything
beyond the horizons of region I. Possible observable
physical effects, that even observers in region I may
notice as indirect consequences of a multiverse, could
arise in cosmological or black hole phenomena. The
possibility of transitions through gravitational singular-
ities (see, e.g., [16,21–24]) may also include transitions in
the multiverse. How such new mathematical properties of
the field are relevant for some new physical phenomena is
under investigation.
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It may be worthwhile to emphasize how our multiverse
for extended Rindler spacetime differs from ordinary
Minkowski spacetime. Clearly they are quite different. A
field in ordinary Minkowski spacetime has only the level-
(0,0) field of our multiverse. Analytic continuation of the
ordinary Minkowski plane-wave basis as in Eq. (16),
e−i

E−k
2
ue−i

Eþk
2
v, by u → ue�i2π or v → ve�i2π, does not lead

to any new analyticity results. This is because the
Minkowski coordinate basis is adequate to describe the
multiverse one level at a time and lacks the analyticity
information that is available in the extended Rindler
coordinate basis. An analogy to this is the Schwarzchild
coordinate basis for a black hole, that describes only the
region outside of the horizon, versus the Kruskal-Szekeres
coordinate basis that provides the extension to the full
eternal black hole spacetime. In a similar way, the extended
Rindler coordinate basis captures the entire multiverse
through its analyticity behavior. What could not be cap-
tured directly in the Minkowski basis is clarified in Sec. VI.
Namely, the level-ðn;mÞ field in the Minkowski basis in
Eq. (49) is related by a very non-trivial canonical trans-
formation to the level-(0,0) field. This canonical trans-
formation is just the result of the nontrivial analytic
continuation in the extended Rindler basis, resulting from
u → uei2πn or v → vei2πm with integers n, m with the
patterns given in detail in Eqs. (31), (33). Furthermore, as
seen via the interlevel correlators that appear in Eqs. (82),
(83), there is a wealth of information in our multiverse that
is absent in ordinary Minkowski spacetime.
The notion and description of a multiverse that emerged

in this paper is new and different than other multiverse
notions that originated in the past from other consider-
ations, such as the multiverse of the many worlds of
quantum mechanics, the multiverse that arises from eternal
inflation, or the multiverse that arises in the landscape of
string theory. In particular, our multiverse contains many
levels that are predictably connected to each other by the
analyticity properties of the wave function. This predictable
aspect is unlike other concepts of a multiverse in the
literature. However, in a complete theory perhaps the
different concepts of a multiverse could be connected to
each other; see, e.g., [25,26] for some possible relations,
which however does not address our new brand of multi-
verse. Note that in our case, analyticity connects the
different universes and makes predictions of relations
among them. In future investigations we will consider
the physical significance of the ideas expressed in this
paper in a complete realistic theory of fundamental physics
(possibly in cosmology and/or black holes), including
models that address the effects of quantum gravity, such
as string theory. The analog of the quantum wave function
of a particle is the string field. So, in a deeper investigation
of the multiverse in the sense of the current paper may be
possible in string field theory in which nontrivial back-
grounds [27] and string-string interactions are included.

This may be a context in which various notions of a
multiverse, including our new one, may be connected to
each other.
We have shown that the multiverse, in the quantum

version of certain spacetimes, is an immutable structure of
the wave function—there is no choice here because it
directly follows from quantum mechanics. Our result, that
was not known before, cannot be captured by any amount
of analysis of classical general relativity. It is conceivable
that indirect observational consequences of our findings
could be analyzed through gravitational waves, since the
fluctuations in such gravitational backgrounds, that are
emitted as waves, may encapsulate the predicted multiverse
structure already embedded in the quantum field.
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APPENDIX A: COMPUTATION OF CHARGE
AND BOUNDARY FLUXES

In this Appendix we show the computation of q1, ∂tq1
and q2, ∂−yq2 whose results appear in Eqs. (72), (73)
respectively. The remaining q3, ∂−tq3 and q4, ∂yq4 are
obtained by simple substitution of variables as given just
before Eqs. (75) and (76) respectively.
For region I the definitions of q1, ∂tq1 are given in

Eq. (70),

q1ðtÞ ¼
Z

∞

0

dyJt1 ¼
Z

∞

0

dy
i
2y

ðφ†
1∂tφ1 − ∂tφ

†
1φ1Þ

∂tq1 ¼
Z

∞

0

dy∂tJt1

¼
Z

∞

0

dyð∂μJ
μ
1 − ∂yJ

y
1Þ ¼ −Jy2ðt;∞Þ þ Jy2ðt; 0Þ

ðA1Þ

where the Klein-Gordon equation is used to set ∂μJ
μ
1 ¼ 0,

and then Stoke’s theorem is applied to write the result in
terms of the current Jyðt; yÞ evaluated at the asymptotic
boundaries. Here φ1 that is given in Eq. (27) is written in
terms of ðt; yÞ, and the y-component of the current at the
boundaries is given by the following limits
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φ1ðt; yÞ ¼
Z

∞

0

dω

�
e−iωtða1−ðωÞ

ð2yÞ−iω2S−ð2μ2yÞffiffiffiffiffiffiffiffiffi
4πω

p þ a1þðωÞ
ð2yÞþiω

2Sþð2μ2yÞffiffiffiffiffiffiffiffiffi
4πω

p Þ þ H:c:

�
Jy1ðt;∞ or 0Þ ¼ lim

y→∞ or 0
ð−i2yðφ†

1∂yφ1 − ∂yφ
†
1φ1ÞÞ: ðA2Þ

where the expression for Jyðt; yÞ follows from Jμ in
Eq. (61) after using

ffiffiffiffiffiffi−gp ¼ 1 and gyy ¼ 2y for the Rindler
spacetime.
To compute q1ðtÞ one uses the orthonormality of the

positive and negative frequency modes described in foot-
note 2. Then the integral in Eq. (A1) yields

q1 ¼
Z

∞

0

dωðða†1−a1− − b†1−b1−Þ þ ða†1þa1þ − b†1þb1þÞÞ;

ðA3Þ

as given in Eq. (72). This shows that q1ðtÞ is time
independent, so the charge is conserved ∂tq1 ¼ 0 within
region I at finite t. We will see that in general it is not
conserved, ∂tq1ðtÞ ≠ 0, at the t → �∞ boundaries.
Next we compute the nontrivial fluxes Jy1ðt;∞=0Þ at the

y-boundaries of region I. Consider at first Jy1ðt;∞Þ for the
massive field μ2 > 0. We had argued in Eqs. (43), (44) that

the horizon boundary conditions in Sec. V relate a1�ðωÞ to
each other by a definite phase, and that this implies also the
correct physical asymptotic behavior, φ1ðt; y ∼∞Þ → 0. In
this case the boundary current JyI ðt;∞Þ vanishes asymp-
totically, and therefore the charge flow at the asymptotic
boundary of region I vanishes for the massive field, i.e.,

μ2 > 0∶ Jy1ðt;∞Þ ¼ 0; at all t; including t ¼ �∞:

ðA4Þ
This result is different for the massless field,

μ2 ¼ 0, since the asymptotic φ1ðt;∞Þ does not vanish in
that case. However, due to masslessness, we have
limμ→0S∓ð2μ2yÞ ¼ 1, so the field φ1ðt; yÞ in Eq. (A2)
simplifies. The 2iy∂y derivatives that occur in Jy1ðt; yÞ
in Eq. (A2) are then easily computed by using
−2iy∂yð2yÞ∓iω

2 ¼∓ ωð2yÞ∓iω
2 , and we obtain the following

double integral for Jy1ðt; yÞ

Z
∞

0

dω0dωeiðω0−ωÞtffiffiffiffiffiffiffiffiffiffi
4πω0p ffiffiffiffiffiffiffiffiffi

4πω
p

"
ðωþ ω0Þð−a†1−ðω0Þa1−ðωÞð2yÞiω

0−ω
2 þ a†1þðω0Þa1þðωÞð2yÞ−iω

0−ω
2 Þ þ � � �

þðω − ω0Þð−a†1þðω0Þa1−ðωÞð2yÞ−iω
0þω
2 þ a†1−ðω0Þa1þðωÞð2yÞiω

0þω
2 Þ þ � � �

#
ðA5Þ

where “� � �” represent the Hermitian conjugate and mixed terms that are not shown. As 2y → ∞ these integrals are evaluated
by using the steepest descent method because of the fast oscillating exponentials ð2yÞ∓0iðω�ω0Þ=2. The leading contribution
comes only from the neighborhood ω0 ≃ ω in the first line of (A5); then the double integral is approximated by

lim
y→∞

Z
∞

0

dω2ω
4πω

"
−ja1−ðωÞj2

R∞
−∞ dζe−εjζjðet ffiffiffiffiffi

2y
p Þiξ þ � � �

þja1þðωÞj2
R∞
−∞ dζe−εjζjðe−t ffiffiffiffiffi

2y
p Þ−iξ þ � � �

#
ðA6Þ

where the factor e−εjζj is inserted to insure the
R∞
−∞ dξ integrations are limited to the neighborhood of ζ ¼ ω0 − ω ≃ 0. The ζ

integrals produce smeared delta functions δεðln zÞ,Z
∞

−∞
dζe−εjζjz�iξ ¼ 2π

ε=π
ðln zÞ2 þ ε2

≡ 2πδεðln zÞ: ðA7Þ

The result is

μ2 ¼ 0∶ − Jy1ðt; y ∼∞Þ ¼
 þð lim

v→−∞
δεðln uÞÞ

R∞
0 dωja1−ðωÞj2 þ � � �

−ð lim
u→∞

δεðln jvjÞÞ
R
∞
0 dωja1þðωÞj2 þ � � �

!
: ðA8Þ

where we have used,

lim
y→∞

δεðln ð
ffiffiffiffiffi
2y

p
etÞÞ ¼ lim

y→∞
δεðtþ∞Þ ¼ lim

y→∞
δεðlnðuÞÞ ¼ lim

v→−∞
δεðln uÞ; ðA9Þ
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and similarly for the second term. This shows that there are nonvanishing asymptotic contributions proportional to
ja1−ðωÞj2 when v → −∞ and u is finite, as well as ja1þðωÞj2 when u → ∞ and v is finite. These contributions are at the I∓
boundaries in a Penrose diagram for region I.
To compute Jy1ðt; 0Þ for the massive or massless field, only the y ¼ 0 neighborhood of the field φ1ðt; y ∼ 0Þ is sufficient,

which means S∓ð2μ2yÞ in (A2) may be approximated by S∓ð0Þ ¼ 1. Then Jy1ðt; y ∼ 0Þ takes the same form as Eq. (A5)
except for setting 2y ∼ 0. The fast oscillations argument is valid again, and the integral is evaluated as

μ2 ≥ 0∶ Jy1ðt; y ∼ 0Þ ¼
2
4 −ðlim

v→0
δεðln uÞÞ

R∞
0 dωja1−ðωÞj2 þ � � �

þðlim
u→0

δεðln jvjÞÞ
R∞
0 dωja1þðωÞj2 þ � � �

3
5: ðA10Þ

where we have used,

lim
y→0

δεðln ð
ffiffiffiffiffi
2y

p
etÞÞ ¼ lim

y→0
δεðt −∞Þ ¼ lim

v→0
δεðln uÞ; etc: ðA11Þ

This shows that there are non-vanishing contributions when v → 0 and u is finite as well as when u → 0 and v is finite.
These are the future and past horizons in region I.
Altogether, from Eqs. (71), (A4), (A8), (A10) we have

∂tq1ðtÞjμ2¼0 ¼
Z

∞

0

dω½−lim
v→0

δεðln uÞja1−ðωÞj2 þ lim
u→0

δεðln jvjÞja1þðωÞj2 þ � � ��

∂tq1ðtÞjμ2≠0 ¼
Z

∞

0

dω

" −lim
v→0

δεðln uÞja1−ðωÞj2 þ lim
u→0

δεðln jvjÞja1þðωÞj2 þ � � �
þ lim

v→−∞
δεðln jujÞja1−ðωÞj2 − lim

u→∞
δεðln vÞja1þðωÞj2 þ � � �

#
ðA12Þ

After including the contributions “� � �” from the Hermitian conjugate terms in φ1, the results are given in Eq. (72).
We now turn to regions II and IV. Since space/time are interchaged in regions II and IV, we define the conserved charge

and its derivative as an integral over t at fixed y as explained after Eqs. (70), (71)

q2ðyÞ ¼ −
Z

∞

−∞
dtJy2 ¼ −

Z
∞

−∞
dtð−2yiÞðφ†

2∂yφ2 − ∂yφ
†
2φ2Þ

q2ðyÞ ¼
Z

∞

−∞
dt∂−yð−Jy2Þ ¼

Z
∞

−∞
dtð∂μJ

μ
2 − ∂tJt2Þ ¼ −Jt2ð∞; yÞ þ Jt2ð−∞; yÞ ðA13Þ

The field φ2ðu; vÞ in Eq. (27) is now rewritten in the ðt; yÞ coordinates

φ2ðt; yÞ ¼
Z

∞

0

dω

�
e−iωt

�
a1−ðωÞ

ð2yÞ−iω2S−ð2μ2yÞffiffiffiffiffiffiffiffiffi
4πω

p þ b†3þðωÞ
ð2yÞþiω

2Sþð2μ2yÞffiffiffiffiffiffiffiffiffi
4πω

p
�
þ H:c:

�
: ðA14Þ

Apply this first to the massless case to compute q2ðyÞ when S�ð0Þ ¼ 1. Then, using i2y∂yð2yÞ−iω2 ¼ �ωð2yÞ−iω2 , gives

q2ðyÞ ¼
Z

∞

0

dωðða†1−ðωÞa1−ðωÞ − b†3þðωÞb3þðωÞÞ þ � � �Þ ðA15Þ

where “� � �” represents the contribution from the H.c. part of the field φ2 above. Note that the signs of the charges are
consistent with the definition of particle/antiparticle as represented by a=b symbols respectively.
Now compute the nontrivial fluxes Jt2ð�∞; yÞ at the t → �∞ boundaries of region II. For the massless case we have

Jt2ð∞; yÞ ¼ lim
t→∞

�
i
2y

ðφ†
2∂tφ2 − ∂tφ

†
2φ2Þ

�

¼ lim
t→∞

Z
∞

0

Z
∞

0

dω1dω2ðω1 þ ω2Þ
2y

ffiffiffiffiffiffiffiffiffiffiffi
4πω1

p ffiffiffiffiffiffiffiffiffiffiffi
4πω2

p
�
eiðω1−ω2Þ½a†1−ðω1Þð−2yÞi

ω1
2 þ b3þðω1Þð−2yÞ−i

ω1
2 �

×½a1−ðω2Þð−2yÞ−i
ω2
2 þ b†3þðω2Þð−2yÞþi

ω2
2 �

�
þ � � � ðA16Þ
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The “þ � � �” represents the Hermitian conjugate and mixed terms that are not shown. Due to wild oscillations, at large t only
the neighborhood of ω1 ∼ ω2 can contribute to this integral. Furthermore, because the support of φ2ðt; yÞ at large t is either
at large j2yj → ∞, or small j2yj → 0, terms with ð2yÞ�iðω1þω2Þ=2 in this integral are also negligible since they too vanish at
either limit j2yj → ð0 or ∞Þ due to wild oscillations. Therefore the expression above is simplified by keeping the leading
terms and using the same arguments that followed Eq. (A5)

Jt2ð∞; yÞ ¼
Z

∞

0

dω2ω
4πω × ð−j2yjÞ

" ja1−ðωÞj2 lim
t→∞

R
∞
−∞ dζe−εjζjðet ffiffiffiffiffiffiffiffij2yjp Þiξ þ � � �

þjb3þðωÞj2 lim
t→∞

R
∞
−∞ dζe−εjζjðe−t ffiffiffiffiffiffiffiffij2yjp Þ−iξ þ � � �

#
; ðA17Þ

where we recall that y is negative in region II to rewrite everything in terms of j2yj. Using the definition of the smeared delta
function in Eqs. (A7)–(A11) we evaluate the result as follows

lim
t→∞

Z
∞

−∞
dζe−εjζj

ðet ffiffiffiffiffiffiffiffij2yjp Þiξ
−j2yj ¼ lim

t→∞

δε ln ðet
ffiffiffiffiffiffiffiffij2yjp Þ

−j2yj ≃ lim
t→∞

δεðjyjÞ
−1

¼ −lim
v→0

δεðln uÞ;

lim
t→∞

Z
∞

−∞
dζe−εjζj

ðe−t ffiffiffiffiffiffiffiffij2yjp Þiξ
−j2yj ¼ lim

t→∞

δε ln ðe−t
ffiffiffiffiffiffiffiffij2yjp Þ

−j2yj ≃ lim
t→∞

δεðjyj −∞Þ
−1

¼ − lim
u→∞

δεðln vÞ: ðA18Þ

Hence we obtain

Jt2ð∞; yÞ ¼ −lim
v→0

δεðln uÞ
Z

∞

0

dωja1−ðωÞj2 − lim
u→∞

δεðln vÞ
Z

∞

0

dωjb3þðωÞj2 þ � � � ðA19Þ

The evaluation of Jt2ð−∞; yÞ at t → −∞ proceeds in the same way, leading to

Jt2ð−∞; yÞ ¼ − lim
v→∞

δεðln uÞ
Z

∞

0

dωja1−ðωÞj2 − lim
u→0

δεðln vÞ
Z

∞

0

dωjb3þðωÞj2 þ � � � ðA20Þ

The combined result gives the rate of change of the charge at the boundaries of region II for the massless particle

∂−yq2ðyÞjμ2¼0
¼ −Jt2ð∞; yÞ þ Jt2ð−∞; yÞ

¼
Z

∞

0

dω

" ðlim
v→0

δεðln uÞ − lim
v→∞

δεðln uÞÞðja1−ðωÞj2 þ � � �Þ
ðlim
u→0

δεðln vÞ − lim
u→∞

δεðln vÞÞð−jb3þðωÞj2 þ � � �Þ

#
ðA21Þ

For the massive particle, the presence of S�ð2μ2yÞ in φ2ðt; yÞ in Eq. (A14) complicates the calculation somewhat. The
integral for q2ðyÞ in Eq. (A13) is performed by using the properties of Bessel functions and the result is just like the massless
case given in Eq. (A15). The computation of Jt2ð�∞; yÞ is more complicated because as j2yj → ∞ the nontrivial asymptotic
behavior of S�ð2μ2yÞ must be taken into account, although for j2yj → 0 one still has S�ð0Þ ¼ 1, as in the massless case.
Hence compared to the massless case only the terms involving the u → ∞ or v → ∞ boundaries are altered while the terms
at the horizons are the same. The result is

∂−yq2ðyÞjμ2≠0 ¼ −Jt2ð∞; yÞ þ Jt2ð−∞; yÞ

¼
Z

∞

0

dω

2
666666664

lim
v→0

δεðln uÞðja1−ðωÞj2 þ � � �Þ
þlim

u→0
δεðln vÞð−jb3þðωÞj2 þ � � �Þ

− lim
v→∞

δεðln uÞ ja
†
1−þe−πωðμ2Þ−iωei2θb†

3þj2þ���
1−e−2πω

− lim
u→∞

δεðln vÞ −jb
†
3þþe−πωðμ2Þiωe−i2θa1−j2þ���

1−e−2πω

3
777777775

ðA22Þ

After including the contributions “� � �” from the Hermitian conjugate terms in φ2, the results are given in Eq. (73).
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APPENDIX B: MINISUPERSPACE AND
COSMOLOGICAL MULTIVERSE

The Lagrangian for the geodesically complete version of
the standard model (SM) coupled to general relativity (GR)
is given in [2],

LðxÞ ¼ ffiffiffiffiffiffi
−g

p

0
BBBBB@

LSMðAγ;W;Z;g
μ ;ψq;l; νR; χÞ

þgμνð1
2
∂μϕ∂νϕ −DμH†DνHÞ

−ðλ
4
ðH†H − ω2ϕ2Þ2 þ λ0

4
ϕ4Þ

þ 1
12
ðϕ2 − 2H†HÞRðgÞ

1
CCCCCA: ðB1Þ

This action is invariant under local scale transformations
(Weyl symmetry) and has a noteworthy unique coupling
of conformal scalars to gravity of the form that appears
in the last line above. The relative minus sign in
ðϕ2 − 2H†HÞRðgÞ is mandatory so that a positive gravita-
tional constant GN can be generated by Weyl gauge fixing,
1
12
ðϕ2 − 2H†HÞðxμÞ → ð16πGNÞ−1 at least in some patch

of spacetime xμ, but the relative sign is also essential for
geodesic completeness as outlined below. An attractive
feature of the Weyl invariant formulation is that the
universe-filling dimensionful constants GN , dark energy
Λ and the electroweak scale vEW, are also generated
simultaneously with GN from the same source [2]. The
uniqueness and completeness of this form for a Weyl
invariant and geodesically complete approach to the

SMþ GR was discussed in [2], where its emergence from
a deeper gauge symmetry perspective of 2T-physics [28] is
also outlined (for a summary see [29]). See also [2,30,31]
for the occurrence of the same structure in a supergravity
setting.
In this Appendix, and with more detail in [3], we

reexamine the minisuperspace derived from this theory
for cosmological applications. This was discussed in a
series of papers during 2009-2014 in collaborations
between one of the authors of the current paper and
C. H. Chen, Paul Steinhardt, and Neil Turok, as summa-
rized in [29]. The mini-superspace consists of the cosmo-
logically most relevant homogeneous (only time
dependent) degrees of freedom, including scalar fields
ðϕðx0Þ; hðx0ÞÞ, where h represents8 the Higgs doublet in
a unitary gauge, H ¼ ð0; h= ffiffiffi

2
p Þ, and the cosmological

metric, ds2 ¼ a2ðx0Þð−ðdx0Þ2e2ðx0Þ þ γijðx0; x⃗ÞdxidxjÞ,
where a is the cosmological scale factor, e is the lapse
function (redefined up the factor a, i.e., N ¼ ae) and
γijðx0; x⃗Þ may include spacial curvature and anisotropies.
Moreover, the matter energy-momentum tensor T00

includes the radiation density, ρrðx0Þ=a4ðx0Þ, to represent
an average “fluid” behavior of all conformally invariant
relativistic matter (photons, gluons, quarks, leptons, neu-
trinos, etc.).
The Weyl invariant form of the minisuperspace action

was given in [29,32]. Here we are interested in its Weyl-
fixed form in the so-called γ-gauge

Smini ¼
Z

dτ

8<
:

1
2e ½−ð∂τϕγÞ2 þ ð∂τhγÞ2 þ ðϕ2

γ − h2γÞðð∂τα1Þ2 þ ð∂τα2Þ2Þ�
−e
h
ϕ4
γf
�
hγ
ϕγ

	
− 1

2
ðϕ2

γ − h2γÞvðα1; α2Þ þ ρr
i

9=
;; ðB2Þ

where α1.2ðτÞ are anisotropy degrees of freedom with the
anisotropy potential vðα1; α2Þ given in [29,32]; τ≡ x0 is
called the “conformal time” when the eðτÞ ¼ 1 gauge is
chosen by fixing the τ-reparametrization symmetry of Smini.
The Weyl-symmetric version of Smini starts out with three
Weyl-dependent degrees of freedom, namely ða;ϕ; hÞ, that
transform according to ϕ → Ωϕ, h → Ωh, a → Ω−1a. The
e; α1;2 and ρr degrees of freedom are Weyl invariant.
Furthermore, aϕ; ah, h=ϕ and arbitrary functions of these,
are also Weyl invariant.
Physics depends only on Weyl invariants, but Weyl

gauges that simplify computations or clarify the physics are
welcome. There is an interesting interplay of four Weyl
gauge choices: E-gauge, c-gauge, γ-gauge [29,32] and
string gauge or s-gauge [27]. The action above is in the

γ-gauge which is defined by freezing the scale factor for all
conformal times τ, and labelling the gauge dependent
quantities with γ when they are in the γ-gauge, namely
aγðτÞ ¼ 1, and dynamical ϕγðτÞ; hγðτÞ. So, ðϕγ; hγÞ are
gauge invariant since they can be written as, ϕγ ¼ aγϕγ ¼
aϕ and hγ ¼ aγhγ ¼ ah, where ðaϕ; ahÞ may be evaluated
in any other gauge (see below for the case of the E-gauge).
The γ-gauge is most useful to grasp the geodesic com-
pleteness and transitions through singularities (see, e.g.,
[21–23,29]). Note the light-cone-type structure in ðϕγ; hγÞ
field space in Fig. 10 where, in accordance with the
signatures in Eq. (B2), the fields ϕγðτÞ (hγðτÞ) play the
role of timelike (spacelike) coordinates [just like xμðτÞ in
Eq. (1)]. We may define u≡ ϕγ þ hγ and v≡ ϕγ − hγ
analogous to lightcone coordinates. The quantity zðτÞ ¼
ðϕ2

γðτÞ − h2γðτÞÞ ¼ uðτÞvðτÞ is positive in regions II&IV
and negative in regions I&III, while the blue and orange
solid lines, where either u or v vanish, indicate where
zðτÞ vanishes. The hyperbolas in region II labeled by

8In addition to the Higgs boson there may be more scalar fields
[2]. In that case the h in minisuperspace represents a combination
of all the scalars. The most economical cosmological scenario is
to have just the Higgs, as this seems to be not impossible [22].
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0 < z1 < z2 < ∞ correspond to the curves ðϕγ; hγÞjzfixed
for two fixed values of the field zðτÞ; imagine similar
hyperbolas in all regions I-IV. The analogy to the extended
Rindler space in Fig. 1 is already apparent. We will soon
explain more precisely the physical relation of the ðϕγ; hγÞ
field-space to the mathematical structure of the extended
Rindler spacetime discussed in the main body of the paper.
The E-gauge, which puts the full action (B1) directly

in the Einstein frame, is useful for interpreting the
physics because traditionally physics is discussed in the
E-frame. It is defined by freezing the Weyl invariant,R

1
12

ffiffiffiffiffiffi−gp ðϕ2 − 2H†HÞRðgÞ, to the Einstein-Hilbert form,R ð�16πGNÞ−1 ffiffiffiffiffiffiffiffi−gE
p

RðgEÞ, where the Weyl-fixed fields
are labeled with an extra letter “E”, such as gEμν;ϕE;HE to
indicate that they are in the E-gauge. The overall sign,
�1 ¼ signðϕ2ðxÞ − 2H†ðxÞHðxÞÞ, implies that there are
patches of field space ðϕ; hÞ�, and corresponding regions
of spacetimes xμ, where the E-gauge condition is satisfied
[29]. The � signs, which imply a passage through zero or
infinity, are Weyl-invariant because the sign of ðϕ2ðxÞ −
2H†ðxÞHðxÞÞ cannot be changed by Weyl transformations.
One may ask if a universe can be complete in a patch with
only theþ sign. The answer is no, because the signðϕ2 −
2H†HÞ does flip dynamically multiple times very generi-
cally as a function of xμ, as was established with an
extensive study of analytic solutions in [29,32]. The
dynamics show that the field solutions, and similarly the
geodesics, are stopped artificially if only one sign of
ðϕ2 − 2H†HÞ is imposed by hand. Hence, quite clearly
the traditional SMþ GR, that artificially keeps only the
positive sign, is a geodesically incomplete theory. When
both signs are kept to complete the E-gauge field solutions
and geodesics, the suddenness of the sign flip, is just an
artifact of the E-gauge. By contrast, the sign change occurs
smoothly in other gauges, such as the γ-gauge or the
c-gauge. We see that, as compared to the traditional
GRþ SM, the Weyl invariant GRþ SM in (B1) describes
a larger field space for the same degrees of freedom, as well
as a corresponding larger spacetime. This is how geodesic
completeness is achieved.

Accordingly, in the geodesically complete E-gauge,
that freezes 1

12
ðϕ2

EðτÞ − h2EðτÞÞ ¼ ð�16πGNÞ−1, the minis-
uperspace degrees of freedom include the two fields
ðaEðτÞ; σEðτÞÞ instead of the three fields ða;ϕ; hÞ. Here
aEðτÞ is the scale factor and the scalar σEðτÞ is basically a
rewriting of the Higgs in the E-gauge. Naturally, ðaE; σEÞ
are related to the γ-gauge dynamical degrees of freedom
ðϕγ; hγÞ by Weyl transformations as given in [29,32].

Consider the Weyl invariants a2ðϕ2 − h2Þ and lnðϕ−hϕþhÞ;
by evaluating them in the E-gauge and γ-gauge and
equating them to each other we find

12a2EðτÞ
16πGN

¼ jϕ2
γðτÞ − h2γðτÞj ¼ jzðτÞj;ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

12

16πGN

s
σEðτÞ ¼

1

2
ln

����ϕγðτÞ þ hγðτÞ
ϕγðτÞ − hγðτÞ

����: ðB3Þ

This relation is the exact analog of the Rindler-Minkowski
relation in Eq. (3); it shows that ðϕγ � hγÞ or ðu; vÞ are
Minkowski-like global coordinates in Fig. 10, while
ðσE; a2EÞ are non-global Rindler-like coordinates similar
to ðt; yÞ that reparametrize the four different patches I-IV.
Indeed there is a precise correspondence to the Minkowski
and Rindler coordinates used in the rest of this paper; the
translation dictionary is

12a2Esignðϕ2 − h2Þ
16πGN

¼ z ↔ −2y;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12

16πGN

s
σE ↔ t;

ðϕγ þ hγÞ ¼ u ↔ ðx0 þ x1Þ;
ðϕγ − hγÞ ¼ v ↔ ðx0 − x1Þ: ðB4Þ

Then we can insert this information in Eq. (5) to establish
the E-gauge to γ-gauge relations for every region I-IV in
Fig. 10 in exact correspondence to Fig. 1. With this, we
now have a precise Rindler ↔ Minkowski type map for
our cosmological degrees of freedom ðu; vÞ versus ðσ; zÞ.
This shows that the cosmological geometry in field space
has the same properties as ordinary extended Rindler
spacetime discussed in this paper, but now there are also
interactions that make it much more interesting.
The E-gauge to/from γ-gauge map described above is

helpful to transform the smooth γ-gauge solutions [21,29,32]
to the geodesically complete but singular E-gauge solutions
and vice-versa. It is then understood that at the instant zðτÞ ¼
ðϕ2

γðτÞ − h2γðτÞÞ ¼ uðτÞvðτÞ vanishes in the γ-gauge, there is
a scalar-curvature singularity in the E-gauge where a2EðτÞ ¼
0 at the same τ (although not so in γ-gauge where aγðτÞ ¼ 1

for all τ). Hence in Fig. 10 the “horizons” at u ¼ 0 or v ¼ 0
correspond to big-crunch or big-bang instants as interpreted
in theE-frame.Alsoduring theperiodsof τwhen thequantity
zðτÞ ¼ ðϕ2

γðτÞ − h2γðτÞÞ ¼ uðτÞvðτÞ is positive (negative) in
the γ-gauge, the signðϕ2ðτÞ − h2ðτÞÞ in any Weyl gauge,

FIG. 10. The ðϕγðτÞ; hγðτÞÞ field space.
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including in the E-gauge ðϕ2
EðτÞ−h2EðτÞÞ¼ ð�16πGNÞ−1,

must be the same sign as signðϕ2
γðτÞ − h2γðτÞÞ, since Weyl

transformations cannot change it. Therefore, in regions
II&IV (versus I&III) in Fig. 10, gravity is an attractive
(repulsive) force as interpreted in the E-frame (þGN versus
−GN). The constants z1;2 that label the hyperbolas in region
II correspond to two fixed values of the scale factor at two
instances z1;2 ∼ a2Eðτ1;2Þ. So the successive hyperbolas in
region II describe the expanding universe as τ changes,
while similar hyperbolas in region IVdescribe a contracting
universe in a region of ordinary gravity (þsign in E-gauge).
By contrast, regions I&III are antigravity regions that are
unavoidably probed by geodesically complete generic
cosmological solutions as shown in [21,29,32], as well
as by the quantum wave function of minisuperspace.
Therefore, all four regions are required in a geodesically
complete theory of SMþ GR.
We are now ready for the connection of the minisuper-

space in Smini with the multiverse ideas discussed in the
current paper. The dynamics of the cosmological fields in
Smini in Eq. (B2) may be compared to the dynamics of a
“particle” on the worldline parametrized by τ [like Eq. (1)].
The target spacetime is four dimensional, Xμ ∼ ðϕγ; hγ;
α1; α2Þ; the “particle” (i.e., the universe) moves in a
background gravitational field with metric

ds2 ¼ −dϕ2
γ þ dh2γ þ ðϕ2

γ − h2γÞðdα21 þ dα22Þ
¼ −dudvþ uvðdα21 þ dα22Þ

¼ −
1

4z
dz2 þ zðdσ2 þ dα21 þ dα22Þ: ðB5Þ

Note this is a conformally flat metric in field space. The
scalar curvature is R ¼ 6ðϕ2

γ − h2γÞ−1. There is also a
potential energy,

Ṽ ¼
�
ϕ4
γfðhγ=ϕγÞ −

1

2
ðϕ2

γ − h2γÞvðα1; α2Þ þ ρr

�

¼
�
z2vðσÞ − 1

2
zvðα1; α2Þ þ ρr

�
; ðB6Þ

where a constant ρr > 0 plays the role of “mass2”, thus
generalizing Eq. (1) with additional interactions. Note that z
(equivalently the scale factor a2E) plays the role of Rindler
time in the gravity regions II&IV9 where z > 0. In the
antigravity regions I&III, where z < 0, the overall sign of the
metric seems to be wrong, but this is simply equivalent to
replacingGN by −GN in the Einstein-Hilbert Lagrangian, so
the meaning of the overall sign is physically interpreted as
being in the gravity versus antigravity patches of the E-
gauge. See [16,24] for further applications and interpreta-
tions of this overall sign switch of the metric in the E-gauge.
The quantum wave function satisfies the Wheeler-deWitt

equation (WdWe) that is derived from Smini in Eq. (B2) just
like Eq. (2).10 In either the Minkowski-like ðϕγ; hγÞ ↔
ðu; vÞ or the Rindler-like ðσ; zÞ coordinate systems, the
WdWe was constructed and analyzed in [24], where the
physical meaning of an antigravity region behind cosmo-
logical singularities, as interpreted by observers in the
gravity regions, and the related issues of unitarity (no
problem), were discussed. Explicitly, the WdWe written in
both coordinate systems is given by

0
B@

1
2
ð∂2

ϕγ
− ∂2

hγ
Þ − 1

2ðϕ2
γ−h2γ Þ ð∂2

α1 þ ∂2
α2Þ þ ρr

þ 1
2
ϕ4
γf
�
hγ
ϕγ

	
− 1

2
ðϕ2

γ − h2γÞvðα1; α2Þ

1
CAΨðϕγ; hγ; α1; α2Þ ¼ 0;

� ∂2
z þ 1

4z2 ð−∂2
α1 − ∂2

α2 − ∂2
σ þ 1Þ

þ z
2
vðσÞ − 1

4
vðα1; α2Þ þ ρr

2z

�
ðz1=2Ψðz; σ; α1; α2ÞÞ ¼ 0: ðB7Þ

Close to the singularity in the E-frame we have, a2E ∼ z ∼ ðϕ2
γ − h2γÞ ∼ 0, which is equivalent to being close to the horizons

in Fig. 10. In that neighborhood, assuming that the terms (z
2
vðσÞ − 1

4
vðα1; α2Þ) can be neglected compared to the dominant

and subdominant z−2; z−1 terms, the wave function may be determined from the approximate equation�
∂2
z þ

1

4z2
ð−∂2

α1 − ∂2
α2 − ∂2

σ þ 1Þ þ ρr
2z

�
ðz1=2Ψðz; σ; α1; α2ÞÞ ¼ 0; or�

∂2
z þ

1

4z2
ðp2

1 þ p2
2 þ p2

3 þ 1Þ þ ρr
2z

�
ðz1=2ψpðzÞÞ ¼ 0; ðB8Þ

10The ordering ambiguity of canonical variables allows an additional term in the Laplacian, i.e., instead of ∇2 consider ð∇2 − ξRÞ
where R is the curvature of the metric in field space. In the following equations taken from [24] the conformally exact choice ξ ¼ 1=6
was made, and then the equation was simplified by rescaling the wave function Φ with a factor, Ψ ¼ ðϕ2

γ − h2γ Þ1=2Φ to simplify it to the
form of Eq. (B7).

9Compare a similar timelike role of 2y < 0 in Rindler regions II&IV that was explained following Eq. (70). This played a crucial role
in the treatment and interpretation of Eqs. (70), (71).
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where the second equation applies to solutions of separable
form, Ψðz; σ; α1; α2Þ ∼ e−iðp1α1þp2α2þp3σÞψpðzÞ. The gen-
eral wave packet has a form analogous to the φ1;2;3;4 of
Eq. (27) in various regions I-IV, and continuity across
horizons is required. For example, for region I, the general
solution is

Ψ1ðz; σ; α1; α2Þ

¼
X
�

Z
d3p½aðp⃗Þe−iðp1α1þp2α2þp3σÞψ�

p ðzÞ þ hc�: ðB9Þ

where ψ�
p ðzÞ are the two independent solutions of the

simplified equation in the single variable z. The exact
solutions are known in this case (see below), but it is useful
to first intuitively understand their physical behavior in the
union of the four regions by comparing the ∂2

z þ � � �
equation to a nonrelativistic Schrödinger equation,
ð−∂2

z þ VðzÞÞψ0ðzÞ ¼ 0, with a potential energy, VðzÞ ¼
− 1

4z2 ðp2
1 þ p2

2 þ p2
3 þ 1Þ − ρr

2z, and a wave function ψ0ðzÞ≡
z1=2ψpðzÞ for the 0 eigenvalue. The plot of the potential
VðzÞ is given in Fig. 11 The physical solution for ψ0ðzÞ,
with correct boundary conditions, can be described in-
tuitively as a wave packet approaching from the region
z > 0 (a contracting universe in gravity region IV in
Fig. 10), passing through z ¼ 0 (a cosmological crunch)
and entering the antigravity region where z < 0, then
necessarily reflecting from the barrier (that forms due to
radiation ρr > 0) and unable to tunnel deep into negative
values of z (hence, spending little time in the antigravity
region I or III in Fig. 10), then passing through z ¼ 0
again (a cosmological big bang) and moving on to the
positive region z > 0 (an expanding universe in gravity
region II in Fig. 10). Thus, the exact wave function for the
universe, which consists of Ψ1;2;3;4ðz; σ; α1; α2Þ as de-
scribed above, should have appropriate boundary condi-
tions that restrict the coefficients a1� etc. to fit this physical
behavior.
The exact analytic solution for the wave function

z1=2ψpðzÞ confirms this expected behavior [3]. It should
be emphasized that this quantum behavior of a general
wave packet is in complete agreement with the classical
solution displayed in [21] that featured an attractor behav-
ior for a cosmological bounce consisting of Crunch-Bang
transition with an antigravity region in between. As should
be expected, due to the fuzziness introduced by quantum
mechanics, the passage through the singularity in the
E-frame at aE ¼ 0, is much softer in the quantum version
as compared to the classical version in [21]. This transition

was managed in [21] by using Weyl symmetry, while in the
quantum case here, it amounts to the continuity of the wave
function at the horizons just as discussed for the φ1;2;3;4 in
Sec. III.
Note that Fig. 11 is the same as Fig. 8 after replacing

z ¼ −2y, and the effective potential VðzÞ is the same as
VeffðyÞ in Eq. (45) after renaming the parameters, p2

1 þ
p2
2 þ p2

3 ¼ ω2 and ρr ¼ μ2=2. Therefore, the analytic
solutions for the geodesically complete cosmological wave
function z1=2ψpðzÞ have exactly the same analyticity
behavior as the Rindler field φ1;2;3;4ðu; vÞ given in
Eq. (27). The physical boundary conditions (dying off
wave function in asymptotic antigravity regions I&III) are
reproduced by the horizon boundary conditions (35), (44)
employed for the φ1;2;3;4 and can again be used here. We
find that near z ¼ 0, or equivalently at the u ¼ 0 or v ¼ 0
horizons in Fig. 10, there are branch points and associated
branch cuts that lead to the same multiverse behavior
discussed in the main body of this paper.
What makes up a multiverse is the analytic properties of

the wave function that, via monodromy transformations,
automatically contains different coefficients on different
levels of the multiverse resulting from the canonical
transformations like those in Eqs. (33), (34). This implies
“discretized jumps” in probability for certain phenomena at
different levels of the multiverse. Further progress will be
reported in [3].
In this way, we have demonstrated that there is the

possibility of a new cosmological multiverse in a geodesi-
cally complete cyclic-type cosmology. Now there are
interactions, so there remains to figure out if transitions
between the various levels of the cosmological multiverse
can occur. In the context of trying to determine the
wavefunction for the universe, as in this appendix and in
[3], the multiverse concept discussed in the main body of
the paper is more fitting and it is quite intriguing.

FIG. 11. Cosmological crunch and bang with antigravity in
between.
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