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This is the first of a series of papers in which we use analyticity properties of quantum fields
propagating on a spacetime to uncover a new multiverse geometry when the classical geometry has
horizons and/or singularities. The nature and origin of the “multiverse” idea presented in this paper, that
is shared by the fields in the standard model coupled to gravity, are different from other notions of a
multiverse. Via analyticity we are able to establish definite relations among the universes. In this paper
we illustrate these properties for the extended Rindler space, while black hole spacetime and the
cosmological geometry of mini-superspace (see Appendix B) will appear in later papers. In classical
general relativity, extended Rindler space is equivalent to flat Minkowski space; it consists of the union
of the four wedges in (u, v) light-cone coordinates as in Fig. 1. In quantum mechanics, the wavefunction
is an analytic function of (u, v) that is sensitive to branch points at the horizons u = 0 or » = 0, with
branch cuts attached to them. The wave function is uniquely defined by analyticity on an infinite number
of sheets in the cut analytic (u, v) spacetime. This structure is naturally interpreted as an infinite stack of
identical Minkowski geometries, or “universes”, connected to each other by analyticity across branch
cuts, such that each sheet represents a different Minkowski universe when (u,v) are analytically
continued to the real axis on any sheet. We show in this paper that, in the absence of interactions,
information does not flow from one Rindler sheet to another. By contrast, for an eternal black hole
spacetime, which may be viewed as a modification of Rindler that includes gravitational interactions,
analyticity shows how information is “lost” due to a flow to other universes, enabled by an additional
branch point and cut due to the black hole singularity.
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I. EXTENDED RINDLER SPACETIME

A massive particle moving in a background spacetime
with metric g,, (x) is described by a worldline action
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The einbein e(7) is the gauge field for z-reparametrization
symmetry. Its equation of motion is a constraint that may be
written in terms of the canonical conjugate momentum
pu(2) as, ¢ (x)p,p, + u* = 0. When the system is quan-
tized, the wavefunction in position space ¢(x*) must satisfy
the quantum-ordered constraint that takes the form of the
Klein-Gordon equation in a curved background

(=V2 + u?)p(x) =0, with

1
\/—_—gaﬂ(\/_—ggﬂ <x)ay(p(x)) (2)

Vip =

2470-0010/2018/97(8)/085009(33)

085009-1

The case of g, (x) for Rindler spacetime commonly
refers to the coordinate frame of an observer undergoing
constant proper acceleration in an otherwise flat spacetime
[1]. Using lightcone coordinates (u,v) in flat spacetime,

FIG. 1. Four regions of the map (u, v) to (¢, y).
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Rindler spacetime corresponds to just region-I in Fig. 1,
namely # > 0,v < 0, bounded by horizons at u =0 or
v = 0. This wedge of flat spacetime can be reparametrized
in terms of Rindler coordinates, y > 0, —co < ¢ < o0, as
in Eq. (5).

By extended Rindler spacetime we mean the union of
the four regions I-IV shown in Fig. 1, which seems to be
equivalent to the full Minkowski space. We will motivate
the study of the union of the four regions and will find
new features beyond just Minkowski space that are not
apparent at the classical level (such as geodesics). The new
aspects emerge only at the quantum level as properties of
the first quantized wave function ¢, or equivalently a
property of fields ¢ that satisfy the Klein-Gordon equation
(=V? + 1*)p = 0 in extended Rindler spacetime.

We were motivated to study extended Rindler spacetime
because we found that the wavefunctions for the cases of
cosmology as well as black hole physics have the same
features. These applications are consequences of the
standard model (SM) coupled to general relativity (GR)
that includes a modest modification that lifts the conven-
tional theory to a locally scale invariant (Weyl symmetric)
version of GR + SM [2]. The conventional GR + SM at
low energies is recovered by fixing a Weyl gauge that
introduces the dimensionful parameters, the Newton con-
stant Gy, dark energy A and electroweak scale vgy, all
coming from the same source [2]. This explains that all
dimensionful constants are the same everywhere in the
observed spacetime because they come from the same field
that, when frozen to a constant by a gauge fixing, fills the
entire universe of the conventional GR 4+ SM. The Weyl
symmetry geodesically completes the universe of the
conventional theory at high energies, beyond cosmological
or black hole singularities, by including previously missing
patches of spacetime in a way analogous to enlarging the
Rindler patch in Fig. 1 to the extended Rindler spacetime.
In cosmological studies, using the Friedman equation at the
classical level or the Wheeler deWitt equation at the
quantum level, it is found that the effective geometry of
minisuperspace—as a geometry in field space that includes
the scale factor, curvature, anisotropy, and matter in the
form of radiation and the Higgs field—is closely related to
the geometry of the extended Rindler spacetime discussed
in this paper, including some interactions that are not part of
the discussion here. In certain limits of the interactions the
minisuperspace geometry reduces mathematically exactly
to the extended Rindler space. Then a wedge in minisuper-
space (region II) is related to the expanding spacetime after
the big bang, while the other regions LIII, and IV play a role
in determining a geodesically complete history of the
universe. These comments are amplified in Appendix B
to which the interested reader may turn anytime without
having to read the rest of the paper. Full details will appear
in separate papers [3,4]. Until then, we will discuss the
mathematical properties of the familiar Rindler space and

its extensions without any reference to minisuperspace,
cosmology or black holes. The applications outlined in this
paragraph are motivating factors, otherwise we emphasize
that, this paper stands on its own to discuss mainly the new
quantum aspects of extended Rindler spacetime.

As seen by a traditional Rindler observer in region I,
during the entire time span of the Rindler universe,
—o0 < t < o0, geodesics of moving particles remain only
within the Rindler wedge (see Sec. II). However, region I is
a geodesically incomplete spacetime from the perspective
of other observers, such as a Minkowski observer that uses
x¥ rather than ¢ as “time,” or more generally a proper
observer that uses proper time 7. So even though physical
particles may escape/enter through the horizons, and
physical phenomena may exist in all the four regions in
Fig. 1, a Rindler observer is incapable of detecting such
phenomena from his/her own perspective. Explorers that
wish to understand the deeper nature of space-time beyond
their own limited observational capabilities must therefore
consider all possible observers, not only those observers
limited by information available in some chosen coordinate
system. Examples of observers with limited capabilities of
observation due to geodesically incomplete coordinate
systems include an observer outside of a black hole that
is similar to a Rindler observer. With this thought in mind,
in this paper we are interested in the “extended Rindler
space” that consists of the geodesically complete union of
the four regions in Fig. 1. This means that, in the absence of
interactions, extended Rindler space is essentially flat
Minkowski space. Indeed this is true in classical physics.
However, in quantum physics, we will show that the wave
functions of particles are sensitive to aspects of extended
Rindler space that classical physics cannot capture even
with geodesically complete spacetime. Wave functions for
particles in first quantization amount to fields. Therefore, as
a first exercise, we study here scalar fields in the back-
ground of extended Rindler space.

Rindler geometry has a long history of applications
including the Unruh effect [5-15], therefore, it is inescap-
able that some of our discussion below overlaps old
analyses. But for completeness, as well as for establishing
notation and conceptual background, we include in this
paper some familiar material along with our newer ideas
to help the reader follow our views on the multiverse
aspects of extended Rindler spacetime that becomes
apparent only at the quantum level. The same approach
will be used in future papers to make similar cases for
black holes and cosmology for which the discussion and
results in this paper are a prelude toward the more
complicated multiverse nature of geodesically complete
cosmological spacetimes [3] and eternal black hole space-
times [4]. Therefore, in the present paper we wish to
provide sufficient details to build up the ideas through the
simpler case of the extended Rindler spacetime without
interactions.
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Minkowski spacetime in 1+ 1 dimensions,' (x°, x!), may be rewritten in terms of light cone coordinates (u, v),

0 1

uExo—i—xl, V=X —X,

or x

0:u+1) p_u-v

2 0 Y T

Rindler coordinates (¢, y), that are convenient to describe each region separately, are given by a coordinate transformation

2y = —uv

u

and e?sign(y) = — o (3)

with —co < 7 < oo and —oo < y < o0. In the (7, y) coordinates, the flat Minkowski metric takes the appearance of a curved
metric, ds*> = Guwdx*dx”, with its corresponding Laplacian as in Eq. (2),

ds? = —dudv = —(2y)dt* + (2y)~'dy* = +e*(—dr* + d&?),

1
Vip = —40,0,¢ = —53?4) +0,(2y0,¢) = +e™* (=079 + 0;g), (4)

where % = |2y|, and the (+) = sign(y) refer to regions I&III versus II&IV. For the transformation of Eq. (3) it is useful to
distinguish four regions, LILIILIV, as indicated in Fig. 1. In various regions (z,y) is related to (u, v) as follows

u=+/2ye" = e't,

I(u>0,v<0,y>0) .

v =—y/2ye”t = —e7*¢,

u
2y = —uv, el = ——
v

Himoumop<0)t = +y/=2ye' =8, v =\/2pe™ = +e¢,  y=-—uv, &=+,
v
u
I (yco50y50) U = —1/2ye' = —e'™%, v =+y/2ye”" = te7'e, 2y = —uv, ¥ =——,
) v
u
Iv(u<0.v<0.y<0): u=—y/=2ye' = —e'te, v=—y/=2ye”" = —e ", 2y = —uv, e =4—. (5)
' v

The sign of the square root, +'4/|2y| (which agree with the
signs of u and v), distinguishes region I from III and II from

IV. The square roots £'/|2y| appear in both the classical
and quantum solutions of the extended Rindler system. In
particular, continuity of the solutions in the (#,y) coor-
dinates across the horizons in Fig. 1, require the inclusion
of all four Rindler regions.

An intuitive description of the extended Rindler geom-
etry in classical physics is partially conveyed by the
following comments. The horizons, that form the bounda-
ries of the four regions, occur at either u = 0 or v = 0. The
u = 0 horizons are indicated as the orange line in Fig. 1,
where —oco < v <oo and t=—oc0, y=0; the v=0
horizons are indicated as the blue line in Fig. 1, where
—00 < u < oo and t = oo, y = 0. A foliation of the (u, v)
plane is provided by either fixed values of y or fixed values
of ¢ within each Rindler region separately. The case of
y = —%uv = fixed corresponds to hyperbolas in each
(u,v) region; red curves labeled by y,, in Fig. 1, with
0 < y; <y, < o0, are examples shown only in region L.

The case of = In|u/v| = fixed correspond to straight

'We focus on 1+ 1 dimensions for simplicity; this is easily
generalized to any number of dimensions.

|

rays that extend from the origin to infinity within each
(u,v) region; black rays in Fig. 1, labeled by
—00 <t} < 1, < 400, are examples shown only in region
I. In all regions |y| increases uniformly from the center or
horizons (|y| = 0) to the outer boundaries of the region at
infinity (]y| = o0). On the other hand, going around in the
counterclockwise direction in Fig. 1, the Rindler ¢ that
labels the rays increases from —oo to +oo0 in region I,
followed by a decrease from +oo to —oo in region II,
followed by an increase from —oo to +o0 in region III, and
followed by a decrease from +o0 to —oco in region IV.

It is important to emphasize that in region I, the
Minkowski time, x° = (u + v)/2, increases, while the
Rindler time (the ¢ that labels the rays) also increases
counterclockwise from —co to +oco; however in region III
the Minkowski time x° decreases while the Rindler time ¢
increases counterclockwise from —oo to +oo. This differ-
ence between regions I and III is important in the
interpretation of particle versus antiparticle quantum
waves, and it leads to an interchange of creation/annihi-
lation symbols, a < b", in the construction of the field in
region I versus region III, as exhibited later in Eq. (22)
versus Eq. (24).

The rest of this paper is organized as follows. In Sec. 11
we discuss the geodesics in the classical extended Rindler
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space. In Sec. IIl we discuss the complete and ortho-
normal set of modes of the Klein-Gordon equation in the
extended Rindler background, construct the general first
quantized wavepackets and the second quantized quan-
tum field, insuring that these are continuous across
horizons of the four Rindler quadrants in Fig. 1. In
Sec. IV we determine the analyticity properties of the
first quantized wavepackets and quantum field and show
how, by analytic continuation, these naturally take values
in an infinite stack of Minkowski sheets labeled by two
integers, (n,m), that constitute the multiverse. In Sec. V
we impose boundary conditions at the horizons of the
four quadrants in the (0,0) universe to require that on this
sheet the extended Rindler space is equivalent to
Minkowski space. By analyticity, this determines the
boundary conditions on all (n,m) sheets of the multi-
verse, and we show that the quantum oscillators at
various sheets are related to each other by a specific
canonical transformation determined by analyticity. In
Sec. VI we display the multiverse directly in the
Minkowski basis and derive a very nontrivial canonical
transformation that relates the general level (n,m)
Minkowski field to the Ilevel-(0,0) Minkowski field.
This canonical transformation represents in the
Minkowski basis the analytic continuation of the field
in the Rindler basis, and it could not be obtained without
going through the Rindler basis. In Sec. VII we study
charge (or information) conservation and unitarity and
show that, even though there is a flux of information (or
charge) across the horizons of neighboring quadrants,
charge is conserved within each Rindler quadrant sepa-
rately at each (n, m) universe. From this we conclude that
there is no leakage of information among levels of the
Rindler multiverse. In Sec. VIII we summarize the
essential message of this paper and then suggest that
the multiverse structure discussed here in the simple
context of extended Rindler space is more general and
also emerges in any spacetime that has horizons, such as
black holes, including the Schwarzchild black hole and
others. Furthermore, we argue that in the presence of
interactions, such as gravitational interactions represented
by a black hole, big bang and others, the levels of the
multiverse are no longer isolated from each other, and
charge/information/probability do leak from one level of
the modified multiverse to any other level, as discussed in
other papers including the case of the Rindler-like
geometry of mini-superspace with interactions [3] and
the case of an eternal black hole [4]. Appendix A gives
details of computations of information conservation and
information fluxes across the horizons and at asymptotic
regions in each Rindler wedge. Appendix B is included
to clarify and amplify the physically motivating factors
outlined at the beginning of this section, in particular in
the case of cosmology where the new multiverse idea
should be relevant to the cyclic universe scenario.

II. GEODESICS

Before discussing the first quantized wave function or
equivalently the field, in this section we study the geo-
desics in extended Rindler space. The purpose is to first
understand the motion of particles in the classical geom-
etry. This will provide a background to better understand
the flux of charge or information from the perspective of
wave packets. We will see in Sec. (IV) that the wave
function reveals a far richer geometry involving an infinite
stack of (u,v) sheets with each sheet related to the
classical geometry.

The geodesics in a curved spacetime with metric
gy (x) can be computed by solving the equations of motion
of a massive or massless particle on a worldline x*(z)
moving in the curved background. The action on the
worldline in the first order formalism is given by,
S(x) = [ de{# () p,(x) —L1g" (x()) p() pu(7) + 4]}
The equation of motion for varying the einbein de(z) gives
the on-shell constraint, and the equation of motion for
varying op, gives the relation between the velocity and
momentum. After the variations, choosing the gauge
e(t) = 1 (due to z-reparametrization), these equations take
the form

¢(X)pup, +* =0,  #=g“(x)p,.  (6)

The equation of motion for varying §x* gives an expression
for p, which amounts to a second order differential
equation for x#(z). This is the geodesic equation. A first
integral of the geodesic equation is already contained in the
constraint equation, therefore it can be ignored and con-
centrate on solving just the equations above in order to find
the geodesic solution for x*(7) as a function of z. Note that
7 is invariant under target spacetime reparametrizations so,
unlike observer-dependent choices of “time” in target
space-time, 7 is an unambiguous choice of “time” as the
evolution parameter for the motion of the particle from
the perspective of a proper observer in the frame of the
particle itself.

In the case of the flat 2D Minkowski metric,
ds* = —dudv, or g, = n,, = (7?/2 _%)/2), the inverse met-

ric is g = = (% 7). and the equations to be solved

(6) are, i = —2p, = p“, v = =2p, = p", where p“(z) =
k* and p?(z) = k™ are constants of motion (due to trans-
lation invariance of the action, or the p equations of
motion), while the constraint is, —4p,p, +u> =0=
—k*tk™ + p?. So, the geodesic solution is

2

u(t) =kt + ug, v(z) = o F + v,

and —o0 <k < oo, (7)

where (ug, vo) is the initial position in the (u, v) plane. By
eliminating = between the first two equations this solution is
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FIG. 2. Increasing #(7) in I or IIL

rewritten as a straight line in the flat (u,v) spacetime,
u(z) = (k*/u)?v(z) + constant. Equivalently, the solution
is plotted as a parametric plot that amounts to a timelike
straight line whose direction in (u, v) space is set by the
timelike on-shell momentum, k# = (k™, k™), as shown in
the upper left corners of Figs. 2, 3. Note that k* > 0
corresponds to a particle (both k* and k= positive, so
upward arrow) while k* < 0 corresponds to an antiparticle
(both k* and k= negative, so downward arrow).

In the case of the extended Rindler metric, ds? =
—(2y)dt* + (2y)~'dy?, the inverse metric is ¢* =

s 20},), and the equations to be solved (6) are,

i(z) =~ 249 3() = 2y(c)p
constant of motion (due to translation invariance,
t(r) = t(z) + ¢, of the action, or the p, equations of
) —127—;2+2yp§+/42 =0.
We rewrite this constraint by substituting the expressions
for the momenta in terms of velocities,

y(7), where p,(7) = is a

motion), while the constraint is

| tltl,
i /
v
> Ve 2r NLGL
& 22 2 6
vt
= z
11 (or IV) \
4}
FIG. 3. Decreasing #(z) in I or III.

+u?=0. (8)

So, y(r) is given by the solution of a simple first

order differential equation while #(z) is an integral over
—@
2y(z)°

y(7) = £/ @0? — 2u*y(7),

where the sign change + for the velocity y occurs at a
specific time, 7 =17,, when y(z) vanishes, namely at

ye = (1) = % The solution is,

2 2
U @
Y(T):—E(T—T*)z‘Fﬁ,
1. |t—7,—w/u?
t(r) ==In| ————| +1,. 10
(z) 2nT—T*+a)///t2+ (10)

where (w,7,,1,) are integration constants determined by
initial conditions.

Of course, the geodesics written in terms of (#(z), y(r))
in the extended Rindler space must be the same as those
written in terms of Minkowski space (u(z), v(r)) given in
Eq. (7). Therefore, a more elegant solution is to compute
(t(),y(z)) by using the map between the Rindler and
Minkowski coordinates in Egs. (3), (5) and inserting the
geodesics in Eq. (7), as follows

y(T) _ (1)21}( ) _ _%('uZTZ + (k+ +M2/k—>1+ MOUO)’
1 u(r) 1, |kt +u
7) = s 40| Ly | KT o) 1"

By comparing Eqgs. (10), (11) one can establish the relation
between the integration parameters in the two versions
(w,7,,t,) versus (k, ug, vg) that provide different physical
insights.

The parametric plots of the explicit Minkowski and
Rindler solutions are given in Figs. 2, 3. The Minkowski
plots appear in the upper left corner of these figures
while the Rindler plots appear in the main body of these
figures. These are each other’s images according to the
maps in Eq. (5). In both the Minkowski and Rindler
plots the Rindler regions I-IV traversed by the geodesics
are also shown. The bending point (y,,z,) where the
Rindler plot turns around in region I (or III) occurs
at T =1,.

In these figures the arrows show the direction of
motion as the proper time 7 increases uniformly from
T = —0 to 7 = +o0. Proper time is the time used by an
observer that travels in the frame of the particle.
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Minkowski observers use x’(z) as “time” as measured
by clocks in a static laboratory, while Rindler observers
use #(z) for that purpose noting that this is the clock that
ticks in the frame of a laboratory experiencing constant
proper acceleration [1]. A series of events that occur
sequentially according to proper time 7z, may have
different interpretations when they are rearranged
according to one choice of time versus another. To
see this in the present case, first focus on the Minkowski
plots in the upper left-hand corner of each Figs. 2, 3,
where the upward (downward) trajectory indicates that
the Minkowski time x°(z) increases (decreases) as
proper time 7 increases; hence the upward (downward)
trajectory is for a Minkowski particle (antiparticle) that
has positive (negative) energy E = (k™ + k™)/2, since
both k* are positive (negative). In the Rindler images of
these same geodesics, note that in Fig. 2, #(z) increases
during passage of a Minkowski particle (antiparticle)
through region I (III), so these are interpreted as Rindler
particles by Rindler observers in regions I and III. By
contrast, in Fig. 3, #(r) decreases during passage of a
Minkowski particle (antiparticle) through region III (I),
so these are interpreted as antiparticles by Rindler
observers in regions I or III. So a Rindler observer’s
particle is a mixture of Minkowski particles and anti-
particles, and vice versa. As is well known, this is
expressed as a Bogoliubov transformation for the
corresponding particle creation/annihilation operators,
as rederived below in Egs. (38), (47).

The plots clearly show that the geodesics passing
through regions I or III take an infinite amount of
Rindler time #(z). Hence, only this portion of the
complete geodesic is measurable by the Rindler
observer in region I (or III). Meanwhile, the complete
geodesic, that includes regions beyond I (or III) is
measurable by the Minkowski observer as shown in the
upper left corner of each figure. Of course, the proper
time 7 captures the full geodesics in all curved space-
times, so 7 will be our preferred choice of evolution
parameter to discuss complete geodesics when analyzing
the geometry of more complicated cases, such as
black holes.

Using 7 as the evolution parameter, there is another
way to intuitively determine the complete trajectory for
y(z) without solving it explicitly. The method is exhib-
ited here because this approach can be applied generally
to any spacetime with a timelike Killing vector when
an explicit solution is not available. Consider the
constraint in Eq. (8) that the trajectory y(z) must satisfy
and write it in the form of a vanishing non-relativistic
Hamiltonian

horizon

lorlll

FIG. 4. V(y) and kinetic energy. The particle cannot move to
the region y > y,.

In this form the constraint describes the dynamics
of a nonrelativistic particle in 1-dimension with some
potential energy V(y), such that its total energy
(kinetic + potential) is constrained to be zero. This is
shown in Fig. 4 where the potential energy V(y) in the
current case is plotted as a straight blue line.

For a more general case, such as a black hole, the
potential V(y) is a more general curve. The 0 total energy
level, which is conserved throughout the motion for all 7
(because of the timelike Killing vector) is represented by
the horizontal axis, and the evolving kinetic energy at any
point y, is constrained to be, y7/2u> = —V(y,), corre-
sponds to the length of the vertical red segment that
connects the O energy level and the value of the potential
at y,. Without solving any equations, from this figure we
see intuitively that, as y;(zr) evolves dynamically, a
classical particle/antiparticle is confined to the region,

y(1) <y, = @*/2u* = =", because its kinetic energy
o2
is positive, 2;—2 = —V(y) > 0. Its total-energy-conserving

motion proceeds in the direction of the velocity
[sign(y(z))] indicated by the red arrows on the real axis.
The particle (antiparticle) approaches from region y(z) <
0 which is region IV (region II); reaches the horizon at
y = 0 and proceeds to y(z) > 0 which is region I (region
IID); it reaches a maximum at y, within region I (region
IIl); bounces back at y, at time 7 = 7,, and then moves
toward the horizon, to proceed to y(z) <0 which is
region II (region IV), in the future of region I (region III).

This physical description of the trajectory, obtained
only from the physical interpretation of Fig. 4, clearly
matches the behavior of the Rindler plots in Figs. 2, 3.
This intuitive guide for the complete geodesics can
of course be complemented by analytic methods or
approximations if necessary. This approach has been
applied to the case of the Schwarzchild black hole in
[16] and will feature also in our upcoming work on
black holes [4].
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Finally we comment on the geodesics of a massless particle. The zero mass limit of the constraint in Minkowski basis,
k*k= = p?> - 0, has solutions k* = (k*, (k= = 0)) or ((k* = 0), k™). Therefore the massless Minkowski geodesics are,
u(t) = k't + ug and v(r) = v, or u(z) = uy and v(z) = k™7 + v,. These correspond to lines parallel to either the u or the
v axis that replace the slanted lines in the upper left hand corners of Figs. 2, 3. As for the massive case, for k= =0 these are

particle/antiparticle trajectories. Their images in Rindler coordinates are,

y(z) = —u<1)2v(1) = [—;vo(k% + ug) or —%uo(k‘1+ vo)},
(1) :%m % = Bln va—j”o r %m #j’rvo] (13)

By eliminating 7 between these two equations one finds the
geodesic relation, #(z) = £ 11n|y(r)| + c.., where the con-
stants ¢, are fixed with some initial conditions. The new
parametric plots of (y(7),#(z)) produce a deformation of
the curves in Figs. 2, 3 to two possible branches such that
the remaining branch contains either the ¢+ — 4o or the
t — —oo peak. The remaining branches are separate curves
disconnected from each other and correspond to the plot of
the functions, #(r) = £11n|y(7)| + c..

III. MINKOWSKI FREE FIELD IN EXTENDED
RINDLER BASIS

Consider a complex scalar field in 1+ 1 dimensional
Minkowski spacetime, —oo < x% <00 and —oo < x! < o0, that
satisfies the massive or massless Klein Gordon equation

|

The well-known general solution [17] is a superposition of
relativistic plane waves, e"E"+iK'x' /\/AzE_ and their com-
plex conjugates, that form a properly normalized complete
set of modes, where E = \/k? + p? is the energy,

(. x")
0 e~ iEX+ik!x! eI EX0—ik'x!
= dk'( A(k") ———+ B (k! 7>
[oo < ( ) Vv 4nE ( ) vV 4rE

(15)

For this paper, it will be convenient to split the integral into
two parts, [%_dk' = [°dk + [°_ dk, where k' has been
renamed as k. Changing k — —k in the second integral and
defining, A, (k) = A(+k) with positive k, the field is re-

(V2 —#z)éﬂ(xo»xl) =0. (14) written as
|

0 0 o~ Ex0+ikx! e~ iEx = ikx!

xoxh) = dk( A (k) ——=—+A_(k) —F—=—+ hc,i _p |,
o) = ["ak(4 0T A 0 ey )

—iEsky itk —iEtky Bk
:/°°dk<A R (k)L+hc> (16)
0 " VarE - VanE '

2

where “hcyi_ g7 stands for Hermitian conjugates of the
first two terms but with A’ (k) replaced by B (k) for a
complex field. From now on we will sometimes abbreviate
this piece simply as “hc” unless some clarification is
needed. For a real field, we simply replace Bl(k) by
Al (k) everywhere.

In classical field theory, (Ay(k), B’ (k)) are complex
functions of the positive momentum k. These [A, (k),
B’ (k)] could be fixed by initial/final boundary conditions
that correspond to some wave packets. In quantum field
theory, the (A, (k), AL (k)) and (B, (k), B'_(k)) are pairs of
annihilation/creation operators for particles (A) and anti-
particles (B) acting in the Fock space built on the
Minkowski vacuum [17].

[
[As (k). AL (K)] = 65 26(k — K') = [B(k), BL(K)],
(As(k) or BL(k))|0,) = 0. (17)

Now we would like to setup the equivalent general
superposition of the same field in terms of Rindler modes
rather than the plane wave Minkowski modes. Rindler modes
@4 (t,y) are the complete set of solutions to the Rindler
Klein-Gordon equation given in (4). The positive frequency
modes, ¢ (1,y) = e ¢+, (y), and their complex conju-

Lt %

gate negative energy modes ¢’ (¢, y) = e ¢%, (), satisfy
the time independent differential equation

2 2

1 - U
2 —_ —_— =
<8y +50 g zy) P50(y) =0 (18)
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The linearly independent solutions ¢, (y) are proportional to the Bessel functions 7, (/2yu*). The normalized” positive
frequency solutions in region / are conveniently written in the form

pe(t,9) = () = (1 i) (1)1 (VZyM)
Fo \/4% 2 Zth

e (2y) ¥ , %S_(_”ZW)
= TS$(2.Y/’[ ) = (=)o (20)
W e S, (—u? uv)
In the last step, the region I relations, 2y = —uv and e = —u/v, were used tore-write ¢, (¢, y) in terms of (u, v). The functions

S=(z) are defined such that lim,_;S+(z) = 1, when the argument z = 2yu? = —*uv vanishes. S—(z) are given by the
hypergeometric function (F

[Se)

.z I(1 F iw)] 4, ( "1 F iw)
S-(2) = oF (1 F i) = §j 21
?(Z) 0 l< l 4) (é\/— :Flm g n'l I’l 1 ¥ l(l)) ( )

S+ (z) are entire analytic functions of z in the finite complex z-plane and have an essential singularity at z = oo [18]. For the
massless field S (z) are both replaced by 1 since lim,, oS+ (—u?uv) — 1. The analytic properties of the modes (20) will play
an essential part in our discussion in Sec. IV where they will be discussed in detail.

We can now express the general solution ¢, (u, v) in region I as the general superposition of the normalized basis in an
analogous form to the Minkowski case in Eq. (16),

w ar_(o)p_(t,y) + bi_(w)(p_(t,y))*
u,v) = dw !
#1(u.v) A La1+(a))rp+(t,y)+b1 (@0)(@4(1.5))

. —ia)S— _2 —p)ioS (- 2
:/ dw {al_(w)ijﬁ(w)( 0)*S, () +hey |- (22)
0 47[60 471'0) 1+ 1+

Note that both a;.-coefficients are associated with Rindler wave packets of positive frequency w [see Eq. (20)], so these

represent Rindler particles, while the bf .-coefficients are associated with the complex conjugate wave packets that have
negative frequency and represent Rindler antiparticles. In classical field theory (wave function in first quantization) the

coefficients (a4, b]f ) in region I serve to specify some Rindler wave packets that satisfy some initial/final conditions. In

quantum field theory, the pairs (a,;,a}.) and (b,,,b}.) are creation-annihilation operators for Rindler particles/
antiparticles respectively, acting on the Fock space built on the Rindler vacuum |Og)

*The so called “Klein-Gordon” dot product between two relativistic wave functions ¢, ¢, in curved spacetime is given by an integral
over a spacelike Cauchy surface, (¢]p,) = —i [dZ,\/— gg"”(gol @) — 8yqo;fga2). This relies on the Klein-Gordon current, J{ , =
—i/=gg"” (¢T@D¢2 - By(pT%) which is conserved d,J4 ,(x) = 0. This dot product is independent of the choice of the Cauchy surface.

In the Minkowski case one chooses d%,0 = dx! as a fixed-x" surface, while in the Rindler case in regions I&III one chooses dX, = dy as
a fixed-t surface since i, is a Killing vector. Using ./=g = 1 and ¢ = —(2y)~', one finds

. fody, t
(@1]92) = 1/ 2 (@10:02 = 0upi2). (19)
0o <y
Hence, the basis functions ¢F,, = e¥'¢F, (y) are orthonormalized as follows

;o o dy , - -
((p;,w |(p¥°wz> = ﬁ';zéﬁ?z(i/lzwl)/o 2_y(¢$,w1 (1) %0, (v) = £16(@1 — 02)35, 5,671 T2

As usual, in relativistic field theory, the Klein-Gordon “norm” of basis functions is proportional to the “charge” associated with the
conserved current, while the sign of the frequency term in the exponent of the plane wave, i.e., F', is minus the sign of the charge that
distinguishes particle/antiparticle. In accordance with this, note the overall £’ signs in front of the delta functions in the final expression.
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b‘i’

RS E=

(@)],
(23)

a4 (@), aTi,(a)’)] =0 8(0— ') = [b11(w)

(a1 (w) or by (w))|0g) = 0.

This defines the quantum field ¢, (u, v) and its Hermitian
conjugate @] (u,v) in region I (u > 0,v < 0).

Similarly, the quantum field is constructed region by
region in every region of the extended Rindler space. For
region Il (u# < 0,v > 0) the modes of the Laplace equa-
tion (4) look the same as those in region I (u > 0, v < 0),
but one must introduce a new set of coefficients, (as,, ag 4)
and (b5, b}, ), to write down the general solution (and its
Hermitian conjugate 5 (u, v))

(—u)"S_(—p*uv)
Vire
V'S, (=pPuv)

Varw

Note that ¢3(u, v) is structurally very similar to ¢, (u, v)
except that the (u, v) in region [/ is replaced by the (u, v) in
region III, including a convenient change of signs
(u,—v); = (—u,v);;;, where the sign change is absorbed
in the definition of the corresponding coefficients. The
extra signs do not affect the fact that the modes in Eq. (24)
are orthonormalized solutions of Eq. (4). In addition, in
comparing @3 to ¢, note that the first two terms in ¢s,
which are positive frequency solutions, are associated with
Rindler antiparticle b;F—coefﬁcients by contrast to the
Rindler particle a,-coefficients in ¢;, and vice versa.
The reasoning [5] for this switch of particle <> antiparticle
interpretations of the Rindler waves in region I versus
region III, is that the Minkowski time x° increases as the
Rindler time 7 increases in region I, but x decreases as ¢
increases in region III; this was emphasized in the second
paragraph following Eq. (4), and is also evident in the
|

os.0) = [ dob}

+ b} (0) +hey,, a, |- (24)

o u=S_(—pPuv

i) = [ do]ar o) =S 200
0 L 4rw

o u=S_(—pPuw)

u,v) = do|a,_(0) ———
(pZ( ) A i 1 ( ) \/m

(—u)™S_(=u*uv)

contrast of the directions of the arrows in the geodesics in
Figs. 2, 3. For the quantized field ¢;(u, v), the coefficients
turn into pairs of creation-annihilation operators,
(azy,al.) and (bs.,bl,), for Rindler particles/antipar-
ticles respectively. These act on the Fock space built on the
same Rindler vacuum |Og) as in Eq. (23),

a3z (@), d},. (0)] = 61 16(0 — ) = [bye(w), b}, ()],
(a34 (@) or b3y (w))|0g) = 0. (25)

Appropriate boundary conditions discussed in Sec. V will
provide certain relations between the four complex func-

tions in region I, (ali,bf ,) and those in region III,

(a3i,b§ ), consistently with the quantum commutation
relations above. Before boundary conditions are applied
(ar+,bl.), (asy, b}, ) are treated as if they are unrelated to
each other.

Similarly, one obtains the general solutions in regions II
and IV of the extended (u, v) Rindler space, and then must
insure that the wave function in the full (u,v) space is
continuous across all horizons. It turns out that the fields
@>(u, v) and ¢4 (u, v) in regions Il and IV respectively are
fully determined by analytic continuation of the fields
@1 (u, v) and @3 (u, v) across the horizons. So, there are no
new a, b coefficients beyond those already introduced
above. The full continuous field throughout the extended
Rindler space (u, v) is

@(u,v) = @y + (1)@ (u,v) + 011 @y (u, v)

+ O3 (u,v) + O(1V)py(u, v). (26)
The theta functions, 0(I) = 0(u)0(—v), etc. enforce the
regions [-IV as defined in Fig. 1 and Eq. (5). ¢, is a constant
zero mode that is justified in Eq. (35). The expressions for
@1 (u, v) and @3(u, v) given above, as well as @, (u, v) and
@4(u, v) obtained by analytic continuation are

(RO =~

(—u)~S_(=p*uv)

b} (@)

The analytic continuation of the field across the horizons
needs some explanation. Compare ¢, (u, v) to ¢,(u, v) at
the horizon that separates regions I&Il where » = 0 and
0 < u < co. For continuity of the field we want to argue

(—0)S, (—uv)
+ a1+(w) \/4% + hcaiiabri ’
iw _ 2
+ b;+(w) v +( H MU) + hch2+_’;‘?+:|’
4w a4 =
iw 2
T V'S, (—p uv)
b3+ (w) drw + thSi_’a3i:| ’
—0) S (—pPuv a —bl
(o) EES A (1)
drw -

that, ¢;(u,0) = @,(u,0) for u > 0. In the first half of the
field it is clear that a,_(w)u~"S_(—p*uv) is analytically
continued from one side of the horizon, v < 0, to the
other, v > 0, and noting that S (z), that satisfy S, (0) = 1
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[see Eq. (21)], are analytic entire functions in the finite
complex plane. In the second half of the field, continuity is
not evident because different coefficients a;, (w) and
bL(a)) appear in ¢ (u,v) versus ¢,(u,v). However, in
these apparently problematic terms, the factors (—v)™® or
(v)™ vanish as distributions near v ~ 0 on both sides of the
horizon. This is because |v|!® = ¢/ I*l oscillates wildly as
|| = 0, so the integral [° dw can be computed by the
steepest descent method. Noting that only the neighbor-
hood of @ = 0 can contribute to the leading behavior of
such an integral, a typical smooth integrand F(w) can be
approximated by its value near ® = 0 to give

lim [~ doF(@)e@nd = FO)lim lim [~ doe-toeionl

=0 0 10 e=0t 0
F(0
= l1m - ( ) —=
1;—>011n|v|

(28)

The e™*” factor is introduced as a device to enforce the
integration region to remain close to @ = 0, thus producing
a convergent integral in regions far from @ = 0. This shows
that the terms involving (—v)™ or (v)'® in ¢, »(u, v) vanish
at the » = 0 horizon. Hence we have shown that, despite
the fact that a;, (@) and b}, (») are different, the field is
continuous at the horizon and is given by

P (Ma()) = ¢2(u70)

- ”dw[al_@jﬁwlw =

Even though the field is continuous, its derivative is
discontinuous at the v = 0 horizon because a;, (®) and

(29)

b} . (w) are different. However continuity of the derivative
is not required to have a solution of the Klein-Gordon
equation in the (u,v) variables because the Laplacian
(proportional to 0,0,) is linear rather than quadratic in
0, and similarly in 0,,.. The same argument applies at every
horizon, thus determining all the terms in ¢, 4(u, v) by
analytic continuation from regions I and III. Therefore, we
can state that the full field ¢(u, v) as given in Egs. (26), (27)
has just sufficient amount of continuity throughout the
extended Rindler space (u, v) to be a solution of the Klein-
Gordon equation without any sources.

IV. ANALYTICITY IN THE EXTENDED
RINDLER SPACE

We have already required some analyticity properties in
(u, v) space in order to establish the continuity of the field.
The field discussed in the previous section has branch
points and corresponding branch cuts in the complex (u, v)
planes. This defines an infinite number of sheets in both the
complex u-plane and complex v-plane. On the real axes on
each sheet, the field ¢(u, v) of Egs. (26), (27) takes on

different values that are related to each other continuously
by analytic continuation from sheet to sheet. This presents
itself as a geometry consisting of an infinite stack of
different real Minkowski spaces (u, v) on which the first
quantized wave function (i.e., the classical field) as well as
the second quantized field take on values. The branch
points at u = 0 or v = 0 correspond to the horizons within
each Minkowski plane as shown in Fig. 1. So the
connection between the infinite stack of real Minkowski
spaces is precisely at the horizons. The field is analytically
continued from one Minkowski plane to another by going
slightly off the real axis at the horizons and winding around
a branch cut in either the u or » complex planes and then
back to the real axis on a different sheet. Hence, informa-
tion could potentially flow at the horizons from one
Minkowski plane to any other Minkowski plane. This
shows that there are previously missed aspects of extended
Rindler spacetime, namely the natural presence of a multi-
verse structure consisting of a spacetime with an infinite
stack of Minkowski planes connected to each other at the
horizons. This was not evident from the classical metric or
the geodesics discussed before; it emerged only at the
quantum level.

We now expand on these properties and clarify them.
The analyticity properties of the basis functions, ¢, (u, v) ~
u™@S_(—puv) and @_(u, v) ~ (=v) @S, (—p*uv), follow
from their properties in the complex u# and complex v
planes. Since S+ (z) are entire functions [see remarks after
Eq. (21)], the prefactors u~ and (—v)™® determine the
analyticity properties for both the massless and massive
fields. Clearly, these have branch points at # =0 and
v = 0, respectively. We choose the branch cuts to be on the
positive imaginary axes in both the complex u and » planes
as shown in Figs. 5, 6. This defines an infinite number
of sheets in the analytic # and » planes. The u-sheets
(v-sheets) are labeled by an integer n (m), so the stack of
universes is labeled by these integers (n, m).

Some typical points  (uz, v;), (usr, vyr)s (Wi V1),
(upy, vpy) in regions I-IV in universe (0,0), connected to
each other with some arbitrary analyticity path, are shown
in Fig. 7 (this ignores the small excursions into the complex
u or v plane near the horizons). The images of the points on
the real axes in the complex (u,v) planes are shown in

u-plane

first sheet

FIG. 5. A path on 0" sheet in analytic u -plane.

085009-10



EXTENDED RINDLER SPACETIME AND A NEW ...

PHYS. REV. D 97, 085009 (2018)

v - plane
first sheet
‘s w %
A d . e
Viv V\‘:_j A/

FIG. 6. A path on 0" sheet in analytic v -plane.

Figs. 5, 6. The analyticity path that connects them is also
shown, such that, for clarity, the path goes slightly under
the branch points in the complex planes to stay within the
(0,0) universe. Of course, the analyticity path within the
same (0,0) level can be any other curve in the complex
planes that connects the points as long as it does not cross
the branch cuts in Figs. 5, 6. This is the path of analyticity
on level (0,0) used to establish the continuity of the field
¢(u,v) as given in Egs. (26), (27).

Now we can analytically continue from level (0,0) to any
other level (n, m) by crossing the branch points and coming
back again to the real axes of # and v. This provides the
value of the field in Egs. (26), (27) at different levels (n, m)
that again look like the Minkowski plane. The basis
@+ (u,v) on the real axis of universe (n,m) is related
by monodromy to the basis ¢.(u,v) in Eq. (20) for
universe (0,0). Recall that S—(—u?uv) given in Eq. (21)
are entire functions of their arguments, so they have no
|

(p(nm)(u’ U) _ (

P (u,v) =

@0 + 01y (ue,

< 9o + 0D} (ue™™" e

(uy, viy)

(U, vi) 3 1 (uy, vi)

~

(uIVy Viv

FIG. 7. Figure 7—A path on the real (u, v) plane in the (0,0)
universe.

discontinuities under analytic continuation, so we only
need to analytically continue #~ and v=.

The analytic continuation involves replacing, u — ue
or v = veX™" with integer n or m, to indicate how many
times we wind around the branch points at u = 0 or v = 0
in the respective u or v complex planes in Figs. 5, 6 when
the horizons are crossed in an analytic path on the real
(u, v) plane shown in Fig. 7. The winding numbers, that
may be different at each horizon, will lead to some sheet in
the multiverse. An analytic continuation of the field ¢(u, v)
in Egs. (26), (27) from level (0,0) to level gn m), which is
consistent with the boundary conditions” that are later
explained in Sec. V, can only have the following pattern4

2rin

e ny) + O(11) gy (ue i, pe=im)
FO(II @5 (ue™27  pe® ™) + O(IV )4 (ue=2"", pe=27in) )
—Zniny) + 9(11)¢;(ueznin, UeZm'm) > (31)
+6(I")(ﬂ; (ue—zmm7 Ueerim) + G(IV)(pz(ue‘z”i’”, ,Ue—27zin) )

where (n, m) are integers, and the Hermitian conjugates ‘Pi‘-,zs, , are defined for real (u, v). Here »"™ (u, v) is the canonical
conjugate to @™ (u, v). The alert reader will note that in these expressions the regional fields ¢, , 34 and (,0?2‘3’4 are

JA crucial consequence of boundary conditions is Eq. (43). This requires the oscillators of regions I and III to satisty

ai_a- = ay,ar.,  bi_bi_=by by,  a3.a; =az.as;,  biby_ =bsy by, (30)
A physical consequence of these relations is that the fields ¢, 3(u, v) vanish at the asymptotic regions |u| — oo or |v| — oo in regions I
or ITI. Without these conditions probablity would become infinite in those asymptotic regions. This is explained in Sec. V. The same
physical conditions exist also for all layers of the multiverse. To respect these boundary conditions only certain patterns of winding
numbers are allowed in the definition of the layers of the multiverse as shown in Eq. (31). The consequence of these patterns leads to the

oscillators for level (n, m) given Eq. (33). It can be observed that these rescaled oscillators also satisfy the physical boundary conditions
at all such levels, Ez(lnja(lnj = a(l”ja(l”j, etc. because the relation is true at n = 0 as given in Eq. (43). A different pattern of windings at the
horizons violates the physical boundary conditions discussed above, and this is the reason why they are not consistent.

“This pattern applies only to the extended Rindler space. For black hole spacetimes, S +(uv) have a branch cut that starts at the black
hole singularity uv = 1, therefore the monodromy in Eq. (32) as well as the pattern of analytic continuation is different for black holes
(see [4]).
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analytically continued in a pattern that is different in each region. In each region (u, v) are real in the respective ranges as

seen in Fig. 1. The phases e=2#" = ¢*27" — 1 do not change the reality of the continued (u, v) for each region, but because
of the monodromy properties of the factors, (u¥/®, »*) that appear in the expressions for ¢(u, v), such as
(MeZHin):Fia) — u¢iwe:|:27mm7 (Ue—2m'n):tiw — U:tiweiZern’ S:F (_IuZuvezﬁmuk) — S:F (—/421/”)), (32)

the result for @ (u, v) in Eq. (31) is different than @(u,v). The analytically continued fields ¢, 34 in "™ (u, v)
have the same form as the ¢; ;4 in Eq. (27) except for the fact that the oscillators (a;, bh, b; +,a3.) in Eq. (27) are
Eﬁ'i_z, b, . at.). The relation between (a(l':’g, 1_9(,’3_2 b, at,)

and (a;, bLF, b;i, asy) is obtained by inserting Eq. (32) into the ;34 in Eq. (27), and similarly for the Hermitian

now replaced by new ones in ¢ (u, v) that we label as (a(l';z,

conjugates ¢I,2.3, 4- The result of the analytic continuation in Eq. (31) then yields the desired relations between levels (n, m)

and (0,0)

(n) _ 2non ~(n) _ 1 —2zwnm
a; =aze ay; =ayze ,

(m) _ 2nwm —(m) _ 2nwm
a3i—a e a3i—a3ie N

This analyticity-induced map is a canonical transformation
since

", a"] = layg,al.] et (34)

We explain some notation. We used the overbar symbol

(n) pn) z(m) g(m)

in (a7,b+,as,,b3,) to indicate the canonical conju-

gates of (a(lQ, bﬁ';), a{" . b"), respectively. Forn = m = 0

the overbar is defined to be actually the same the Hermitian

. _(0) 7(0) ~(0) 7(0 o 5 ot
conjugate, (agjg,b(;,agi),bgi))E(aw,b{?a;i,b;i), but

for general n, &5’2 is not the Hermitian conjugate of a@,

although it is its canonical conjugate, and similarly for the
other oscillators.

This shows that the analytic continuation to universe
(n,m) defined by Egs. (31)—~(34) amounts to a canonical
transformation of the creation-annihilation operators. The
full field »") (u, v) is not the naive Hermitian conjugate
of "™ (u,v) but it is its canonical conjugate. The equal
time quantum commutator, [ (,y), """ (t,y")], pro-
duces a delta function §(y —y’) at every universe (n,m)
just as the (0,0) universe. It should be emphasized that
the fields on different levels (") (¢,y), p\""2)(1,y))
with (ny, m;) different from (n,, m,) are not independent
of each other since the corresponding oscillators

() BB alf)) and (a2 B 5. lf)) are

all related to the same set of basic oscillators (al;, bLF,
b; ,.a3y) and their Hermitian conjugates that define the
field in universe (0,0). So the quantum rules for the entire
multiverse, including nontrivial commutators among fields
at different levels, such as, [(p(”l'ml)(t, y),(ﬁ(”z'mZ)(t, Y,
depend only on the quantum rules established at level (0,0).

Propagators, various correlators and probabilities of
processes computed with @) (u,v) may be different

b _ by, B p_een
bg’l) — a3i62mum’ Bg’l) _ b;‘ie—%rwm‘ (33)

|

for different levels because of the shift of normalizations
of the Rindler coefficients as given in Eq. (33). Hence one
must also specify the universe on which boundary con-
ditions are imposed. We define level (0,0) as the reference
universe at which boundary conditions are applied as
shown in the next section. Then, using (p(”'”‘)(u, v) as
given above, probabilities for various physical processes at
universe (n,m), that may depend on the boundary con-
ditions in the (0,0) universe, can be determined. In
particular, we will try to answer the question: is there
probability (or information) flow from one universe labeled
by (n,m) to other universes labeled by (n’, m’)?

V. HORIZON BOUNDARY CONDITIONS

Boundary conditions imposed in universe (0,0) will
automatically fix all boundary conditions for all (n,m)
as determined in the previous section. Accordingly, given
the relationship between Minkowski and Rindler coordi-
nates as given in Eq. (5), we require the (0,0) Rindler field
@9 (u,v) = @(u,v) given in Egs. (26), (27), to be
identical to the Minkowski field ¢(u,v) given in
Egs. (15), (16). For this, it is sufficient to impose boundary
conditions at each horizon, ¢®%(u,0) = ¢(u,0) and
¢%9(0,v) = (0, v). Other boundary conditions could
be considered for the extended Rindler case, however
we emphasize these horizon boundary conditions since
in the case of a black hole it is also appropriate to impose
the same boundary conditions as done in an upcoming
paper [4]. This is because, near the horizons, the black hole
metric and field behave locally just like the flat Minkowski
metric and field. So the horizon boundary conditions used
here for the Rindler case will be used also identically for
black hole case. Hence, for either Rindler or a black hole
metric, using S+ (0) = 1 at horizons in Egs. (26), (27), we
have the desired boundary conditions
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o0 =0(0.0) = |7~ (a0 +B(0)
1o 2000) = [ o a1-(0) S 4 b ()] = 00(p(00) - )
s st0) = [ o0 T a0 L] - p(0) - )
rras(0.0) = [ do| b 0) Tt as o) S = 000)010.0) - 0
n1as0.0) = [ dofar @ T2 4] 0 S — o000, - 0 (35)

where the ¢(u,0) or ¢(0, v) on the right-hand side of Eq. (35) is the Minkowski field (16) evaluated at the horizons

) A ~if%*u | pt S\ — iy Bt JEtk,
qo(u,O):/ dk( sk 4 By (ke A(kjem > + B (k)e™ >
0

Vank VArE
_ (o (AR £ Bk A (ke T + B (ke
e A dk( varE ' V4rE ) (36)

We see in the first line of Eq. (35) that a nontrivial zero mode ¢, is necessary because ¢ 53 4(0,0) all vanish according to
the arguments in Eq. (28). From the second expression in Eq. (35) at the horizon I&Il, a;_ can be extracted by using the
orthonormality and completeness of the basis u¥”/v/4zw on the half-line u > 0; namely (see footnote 2) a;_(w) =
i du(-£ = 10,9(u.0) = (u, 0)i0,
1ntegra1s we obtain

\/‘:;—w), and similarly for bi_ by replacing u~* instead of u'®. After performing the

iy L) [ dk (BN
oy =T [ (B ) (AR)e + B (R)e"),
bl =L [* (B2 e + ae®). @7

Note that on the right-hand side the integral [ dk contains A(k), BY(k) over the full momentum range. To make contact
with the notation A, (k), Bl(k), with only k > 0, the integral can be split to the positive and negative intervals.

The Hermitian conjugate ai_ looks like bi_ above but with A <> B interchanged on the right-hand side of (37). As a
consistency check, it can then be verified that the commutation rules (23) of the Rindler modes, [a,_(w), a]_(o')] =
5(w — @), etc., can be obtained by using only the commutation rules (17) of the Minkowski modes, [A(k),A"(kK')] =
5(k — k') = [B(k), BT(K')], by using the relations above. Similar expressions are obtained at the 4 horizons.

This fixes the 8 Rindler complex coefficients in the level (0,0) universe, a, . bLF, as, b;F, in terms of the 4 Minkowski

complex coefficients, A (k), B'_ (k) (similarly, for the black hole [4]). It is revealing to rewrite the 8 relations in level (0,0) in
[(I£io) _ gHweml o g
V2w \/l_e—Zﬂw )

=/_de(23— ( i’%)

the form of Bogoliubov transformations as follows, where

g

_’6( ) 1 —e W ap_
m( B >(b§+

—ze

[ (;f‘f{%) a8
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and their Hermitian conjugates. These equations can be easily inverted” to obtain an explicit expression for the Minkowski

oscillators (A(k), B'(k)) in terms of the Rindler oscillators (a;+, bLF, a3, b;F).

(ExkyFio o) —rw T
Ay = P/cF o [ VAR Vimm (0] = b))
2VzE  Jo M0 — e b}
+ T Vi (@ (@) — e7h 1 (0))
(ETﬂ)ﬁw i) (b’r ((1)) — e TV ((1)))
Biky =2/ [® | VAE Vim I " (39)
Exk)+io —jeFit(®) T —w
2\/nE 0 +% — (b3 (w) — e a4 (w))

where —oo0 < k < 0. Here ¢, is the zero mode that

satisfies Eq. (35) where’ ¢ = [ zﬂ‘g;k) = 5(0), while o,

is another Rindler zero mode. Note that the two inte-
grands with the upper/lower signs “+£” in Eq. (39) are
equal to each other for the massive case on account of
the relations between a;,(w) etc. explained below in
Egs. (42), (43).

Based on analyticity properties of the wave function,
Unruh [5] gave a simple argument to derive the so called
Unruh modes. An Unruh mode is the following combina-
tion of the Rindler modes that annihilates the Minkowski
vacuum |0,,), such as

a,-(w) = e™b}, ()

Va = e—27m}

This is in agreement with the first line of Eq. (38) where
the Unruh mode above is seen in more detail to be equal

to, —ie™®@) [ dk%(%‘k)‘iw, which is clearly a com-

bination of the Minkowski annihilation operators as
defined in Eq. (17). Knowing the additional detail given
here, of how to write the Unruh mode in terms of the
Minkowski modes as in Eq. (38), is important because
this can be used to compute the action of the Unruh

104) = 0. (40)

modes, or more generally a;_ or b; + on their own as in
Eq. (37), on any general Minkowski state, not only the
vacuum state |0y/). Our explicit relations in Eq. (38)
should be wuseful for wvarious applications involving
quantum effects in Rindler space. Furthermore, our
expressions (38) are more general because they apply
also to black holes [4].

’A(k) and B* (k) are isolated from the right-hand side of Eq. (38)
by multiplying with (E’ F k')*' as appropriate and adding two
terms so that one may use [®dw((E—k)™(E' FK) +
(E—k)(E'FK)"®)=8(kF k)2zE when E(k)=/k*+pu>

To check that Eq. (39) satisfies Eq. (38) use ffw#"(k)x

(E(k) & k) = 5(1). The contributions of the zero modes to the
integrals in Eq. (38) are proportional to §(w), but these vanish
since @ > 0.

The relations (38) reveal additional important properties.
For example, the expressions for the region I coefficients

a1, b}, extracted from Eq. (38) are

() eTif(®) /oo dk (E T k) Fiw
a w) =
Y VT e ) VARE \ 2

x (A(k) + BT (k)e™™®),
( ) eq:ie(w) o dk (E T k> +iw
) =
¥ FivVl-e ) o \VAzE\ 2

x (BY (k) + A(k)e™™).

by

(41)

Now concentrate on the Rindler case because we will next

use the fact that E = \/k> + u? (for a black hole E and k
have a different relation [4]). Then in Eq. (41) insert

E—k u* (E+k\!
2 4 2 ’

(42)

and then see that (a,_, b]_) and (a, ., b} ) are proportional
to each other with overall phases. Similar arguments hold
also for (a;_,b}_) and (a3, b}, ), so we find

a1 () = (5 /4)7e 0 Da,_(0),
a3 () = —(u2/4)0e 0 a;_(0),
bl () =~ /4) b (),
bl () = ~(a/4) b (0) (43)

A significant consequence of these relations is the vanish-
ing of the fields ¢; 3(u, v) in (27) in the asymptotic regions
I and T when either |u| or |v| goes to infinity, namely

lim ¢ (u,v)=0=

u or (—v)—oo

lim  @3(u,v). (44)

(—u) or v>o0

This can be verified by using the asymptotic behavior of the

Bessel functions /-, (\/—2u*uv) as given in Eqs. (20),
(21) when uv < 0, and using the relations in Eq. (43).
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Vet (v)
//2 >0
I orlV) < . ﬁ_\
IV orll) —> ,‘v’? H{or#f) y
horizon

FIG. 8. Incoming/reflected waves at y — —oo (regions II&IV);
vanishing wavefunction at y — +o0 in [ & IIL

Quite independently, the vanishing of the field in the
asymptotic regions of I&IIl is required on physical
grounds because without it the field (or the quantum
wave function) would blow up at infinity, implying
infinite probability. It is gratifying that this required
physical behavior emerged from the boundary conditions
at the horizons automatically without having to impose it
as an additional boundary condition, thus giving con-
fidence that the horizon boundary condition is a correct
physical approach.

Furthermore, note that the vanishing of the field
asymptotically in regions I&III is the expected behavior
for wave packets, on the basis of the classical geodesics
in Figs. 2, 3, as well as on the basis of the intuitive
physical approach using the effective classical mechanical
potential in Fig. 4, and the effective quantum potential
explained below in Eq. (45) and plotted in Fig. 8.

Turning next to regions II&IV, the asymptotic behavior
of the Rindler field is oscillatory as seen from analyzing the
asymptotic behavior of I, (\/—2u*uv) when uv > 0.
Consistent with the geodesics in Figs. 2, 3, this is allowed
physical behavior for incoming or outgoing particles/
antiparticles, or oscillatory waves and wave packets built
from them. Further boundary conditions may be imposed in
regions II&IV to correspond to physical processes for
either incoming or outgoing wave packets for particles or
antiparticles.

There is another intuitive approach to understand the
same general behavior of the wave function, without
doing any calculations, which is in agreement with the

results of the horizon boundary conditions given in the
preceding paragraphs. Namely, by defining w(y)=
V2y¢(y), Eq. (18) takes the standard form of the non-
relativistic Schrodinger equation

(=05 + Ver(V)]w(y) =0,

(45)

where the effective quantum potential, V(y), is plotted
in Fig. 8.

The “Schrodinger energy level” in Eq. (45) is zero,
which corresponds to the real axis in Fig. 8. The intuitive
physics extracted from this figure is that of scattering of
waves from the barrier presented by the “hill.”” Thus,
oscillating waves approaching from y ~ —oo in region
IV (or II) pass the horizon at y = 0 and move into region
I (or III), they get scattered from the barrier and move
within region I (or III) toward the horizon at y = 0, then
they continue into region II (or IV) and go on to its
asymptotic regions, y ~ —oo, as oscillating waves. This
behavior of the quantum wavefunction is fully consistent
with the geodesics in Figs. 2, 3 and the intuition gained
from the mechanical potential for geodesics in Fig. 4. The
effective potential approaches of Figs. 4, 8 are very
important especially when explicit solutions are not avail-
able (such as the case of general black holes, see, e.g., [16]).
A figure of the potential V. (y) conveys much of the
physical behavior, including boundary conditions, such as
the vanishing of the wave function for y — +o0 in Fig. 8§,
consistent with Eq. (44).

Next, it is worth outlining the behavior of the massless
field (u?> = 0) in contrast to the massive field. In this case
Eq. (42) cannot be used naively because in the massless
limit either (E — k) or (E + k) vanishes. So the conse-
quences of Eq. (38) for the massless case need to be
analyzed separately for (E — |k|) = 0. For this purpose, in
these equations the integral [® dk must be split to its
positive and negative regions and the limit (E — |k|) = O
taken. The integrals that contain the wildly oscillating
factors (E — |k|)* vanish in the limit, leaving behind the
correct massless limit of Eq. (38) for region-I in the Rindler
case (not black hole case),

@)= [ A a1 B ()
a ) = o + ] e—zrw
T LV — e o Ak ¥ ¥

eFif(w) o dk

b?; (a)) =

T il—e )y Vank

k= (BL(K) + A (k)e™™) (46)

noting that only half of the AL (k), BIF (k) survive in each line. A similar set of equations hold for region III. Together, these
may be written as Bogoliubov transformations that correspond to the massless limit of Eq. (38)
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el (1 e
dzem (e 1)
—ie?(@) 1 —e ™\ [a
Feem e 1 )
—je—i0(w) 1 —e™ a
e )0
i0i0(®) 1 —em\ /a
dicem e 1 )

The contrast with the massive case in Eq. (38) is the right-
hand side of these equations, noting that only half of the
A (k), B% (k) survive in each line for the massless case.
Furthermore, Eqs. (46), (47) show that, unlike Eq. (43), the
a,, are independent of each other for the massless case.
This implies that the massless field as written in Eq. (27),
but with S(0) =1, does not vanish at the asymptotic
regions of I or III, but rather has an oscillating behavior.
This is consistent with the behavior of the massless limit
of the geodesics in Figs. 2, 3 as discussed in the last
paragraph of Sec. II, which indicate that massless particles/
antiparticles do indeed travel to such asymptotic regions.
This is also evident from the intuitive effective potential
approach in Figs. 4, 8 after the corresponding effective

|

)

Zi) = [ (o)

o)=L ()

o)=L () w

potentials are replaced by their 4> = 0 counterparts. Thus,
the mechanical potential for geodesics becomes a constant
[see Egs. (8), (12)] so the maximum position y, in the
modified Fig. 4 moves to infinity. Similarly the effective
quantum potential in the modified Fig. 8 no longer has a
barrier, so waves can move both ways from y ==F oo to
y = too0.

As a check of our expressions we may compute the
expectation value of the Rindler number density operators
dl_a,_ etc. in the Minkowski vacuum, (0y|al (@) x
a,_(@')|0y), by using directly the Bogoliubov relation
between a;_(w) and A(k) & B' (k) given in Eq. (37). Using
the properties of the Minkowski vacuum, (0,,]AT(k) = 0 =
B(k)|04), we obtain,

o) fr e (ER) 1) 15— )
0 aT o) ()0 _ —o0 4zE(k) \2 2 _ 2 48
< M’ 1—( ) 1 ( )‘ M> \/(1 ~ e_zm”)(] _ e—zﬂ‘”’) 2 e2mw _ ( )

The integral is given in footnote 5. The result for other number operators, aI LAy, bi 1 by, ag L a3y, b;ib3i, is the same.
The factor (e — 1)~! is the well-known thermal distribution which, as expected, is in agreement with previous results [5].

VI. MULTIVERSE LEVELS IN MINKOWSKI BASIS

In this section we display the multiverse directly in the Minkowski basis by obtaining the relation between the general
level (n, m) field and the level-(0,0) field of Eq. (16), both expressed in terms of Minkowski plane waves. The level (n, m)
field ¢ (u, v) can be written in terms of level (n,m) Minkowski oscillators A" (k), B"™ (k) as follows, just

like Eq. (16),

o) (u, v) = / ~ dk <A<n»m>(k) ¢

[Se]

This is equivalent to the same field ") (u, v) given in
Eq. (31) in terms of Rindler oscillators. We will derive a
very non-trivial canonical transformation between the
oscillators (A" (k), B"™ (k)) and the level (0,0) oscil-
lators (A(k), B'(k)) that appear in Eqs. (15), (16). This
relation represents, in the Minkowski basis, the consistent
analytic continuation of the field in the Rindler basis, as

k Lk, iE—k,  E+k

_i%ue—lTL N B(n ) (k) elTLtelTlf> (49)
VarE VArE )

|
given in Eq. (31), and it could not be obtained without
going through the Rindler basis.

In Sec. V we related the level (0,0) Rindler oscillators
((arz. bl.), (asy, bix)) to the Minkowski oscillators
(A, B) and vice versa via Bogoliubov transformations in
Egs. (38), (39). The same arguments can be given for level
(n,m) to claim the analogous forward and inverse
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Bogoliubov  transformations that relate (A" (k),
B (k) < (", By, (aSy, b)) These have the
same formal appearance as Eqgs. (38), (39) except for
inserting the level (n,m) oscillators instead of the level
(0,0) ones. Now, consider the pair (A" (k), B"™) (k)) in
the Bogoliubov relation analogous to (39), and on the right
hand side insert the level (n, m) doublets in the following
form [using Eq. (33)]

( (w)> B (ez”“’” 0 ) (dw
g ((1)) 0 e—Zﬂmm b;i—
ag’ (w) B (eanm 0 ) (aSi @
g (w) 0 e—2ﬂwn b{$ w
Moreover, replace the (0,0) doublets ((a;, b% 4)s
(a3, bIjF)) that appear in (50) in terms of the (0,0) level
Minkowski doublets (A(k), B(k)) by using Eq. (38). This

gives the relation between (A" (k), B"™(k)) and
(A(k), B(k)). The result takes the following form

(i) = L0 (o).

where the 2 x 2 matrix M (k, k') in infinite momentum

space, —o0 < k, k' < o0, is given by,
sevmew LG e)
27\/E(K)E(K K')+ K

x M) (@), (52)

Q

(n)
1F

E

)

FE W

M (kK =

with E(k) = \/k* + p?, while the 2 x 2 matrices M) (@)
in Rindler frequency space —co < @ < co are given by

1 1 —e™

-
e

< eann 0 ) < 1 e—w)
X
0 e—Zﬂa)m e~ 1

eﬂ(z)(2n+l)_g—7ra;(2m+1) emu(Zn) L—nw(Zm)
_ T _ oW oW _ o= 7w
- _ ro2n) _gmra(am) _ erol2n=1) _pmno(2m-1) .

e —e e —e

—7w W __,—w

(53)
For example, for (n,m) = (0, 1) or (1,0), they are
—2rw —nw
M(Ol)(a}): <1+e ¢ >,
—eTT® 0
1 + 2w W
MO0 (@) = < cc ) (54)
—e™? 0

Note the property of M) (@), that when the integers are
interchanged (n, m) — (m,n) and @ - —w, we obtain the
same matrix M) (w)
M) (—@) = M (w). (55)
The diagonal matrices in Eq. (50) are interchanged under the
same transformation. This explains how we end up with an
integral [®_ dw over positive and negative Rindler fre-
quency in Eq. (52) even though the integrals in the
Bogoliubov transformation (38) are only over positive
Rindler frequency. Thus, when the integral [ dw is
split into its positive and negative pieces, and in the negative
piece we replace w — —w and interchange (n, m) — (m, n),
we see that the positive (negative) piece comes from the

contribution of the first (second) doublet in Eq. (50).
The canonical conjugates that appear in the field

¢(”~m>(u, y), written in a row matrix form, are
(A ()0 () = [ (AT R)B) B (K.,
(56)

This is obtained by taking the Hermitian conjugate of
Eq. (51) and replacing (n,m) by (—n,—m) on the right
side. This gives the matrix M) (K, k) as follows

)+ k
Zm/E k’/ < (K) +k’>

x (M ("”")(w)) o (57)

M (K k) =

where the exponent (—17) in (M"")~'T means inverse
and transpose of the 2 x 2 matrix M), noting that the
matrices in Eq. (53) satisfy, M=) (@) = (M) (w))~!
and M=) (@) = (M) (@))717.

These matrices satisfy the following remarkable proper-
ties in Rindler frequency space,

T G [ I (A

. . . 6
and in Minkowski momentum space

o 1 0.
/ dkM ™) (ky , k) 0 i MO (K, ky)

= ((1) _01>5(k1 — k). (59)

®To prove this propeny we use the following integrals,
o 2,,‘2"(@( (k) + k)@=) = §(w; — w,), and [® do x

(Eﬁﬁgi’;') = 2 EE>b(ky — ky).
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These matrix properties indicate that the transformations in
Egs. (51), (56) are canonical transformations since it can be
verified that they satisfy the standard oscillator commuta-
tion rules in momentum space for all (n, m)

{(A(nw(kl) > (A0 (ky) B (ky ) )

B (k)
(b0 O(ky — k 60
() )t - (60

This includes the original Minkowski commutators given
in Eq. (17) that are reproduced in the case of n = m = 0.
Clearly, by the construction of Eq. (51), the level (n, m)
commutator follows directly from the level (0,0) com-
mutator and the remarkable properties of the matrix
M) (k, k') that relates the (0,0) and (n, m) levels to each
other as a canonical transformation.

This establishes the quantum properties of the multiverse
in the Minkowski basis for all levels (n,m). It is evident
that the Minkowski-basis field @) (u,v) at all levels
given in Egs. (49), (51), (52), (53), including n = m = 0,
inherits its properties only from the analyticity properties of
the (0,0) level field ¢(u, v) in the extended Rindler basis.

VII. CHARGE CONSERVATION AND
INFORMATION FLOW

In this section we address the question on whether infor-
mation flows from one level of the Rindler multiverse to
other levels. To do this we consider the probability asso-
ciated with a wave packet. As expected, a wave packet will
on the average follow the path of a geodesic as it develops as
a function of time. Earlier in the paper we discussed the
geodesics at the classical level, and of course at the classical
level, since there is no multiverse, the geodesics cannot give
information on our question. However, a wave packet may
leak to other levels of the multiverse when it crosses the
horizons. The question is whether it does or not.

For the Klein-Gordon field in curved spacetime, that is
normalized according to the Klein-Gordon dot product in
footnote 2, probability is directly related to the conserved
charge current up to the sign of the charge. While the
probability density is always positive, the charge density is
positive/negative for particles/antiparticles respectively
(i.e., a versus b symbols in the wave packet). Therefore,
to understand probability (or information) flow we study
the flow of the charge current with all a and b coefficients
included in order to undestand the flow based on the most
general wave packet including particles and antiparticles.

The conserved current for the Klein-Gordon equation,
(V2 —u?)p = 0, in curved spacetime is

JH(x) = —i/=99" (90,0 — 0,0"0).  8,J"(x) =0.

(61)

The conservation 0,J#(x) =0 is verified by using the
Klein-Gordon equation (,/=¢)~'0,(\/=9¢"“0,9) = u*e.
The conserved charge associated with this current is
computed as an integral over a spacelike Cauchy surface

0= / JHdz, (62)
)

The conserved charge is independent of the surface X.

The Cauchy surface can be specified differently in the
Minkowski versus Rindler bases. In the Minkowski version
the surface is defined by taking a slice of constant x° and
evaluating the integral as given in textbooks

Ou(x%) = /oo dx'JO(x0, x1)

(Se]

—/°° dk' (AT (K")A(K") — BT (k")B(k')),  (63)

(5]

where the computation is performed by using the
Minkowski version of the field in Eq. (16) at constant
finite values x°. The time derivative 9,00, (x°) is

a()QM(X()) = /oo dxlaofo = /oo dxl(aﬂﬂ‘ —31]1)

o] [Se]

= —J1(x%, 00) + J'(x?, —0). (64)

where the Klein-Gordon equation is used to set 9,J* = 0,
and then Stoke’s theorem is applied to write the result in
terms of the current J!(x°, x!) evaluated at the asymptotic
boundaries. In general the current at the boundaries,

J' (X0, £e0) = lim (=i(pT(x% x")01p(x°, x1)

x5+

= 019" (x%. x ) (x", x1))), (65)

does not vanish as this represents the charge flux of
incoming/outgoing particles, so in such physical processes
090 (x°) cannot vanish at asymptotic boundaries. On
the other hand, Eq. (63) shows that Q(x°) is time
independent at finite x°. These observations are reconciled
by noting that the support of J!'(x", £c0) is not only at
space infinity x! = 400, but also at time infinity x° = 4-oo,
such as J! (x°, +00) = +5(x" 4 o0)J, where J is a constant
determined in terms of (A(k), B'(k)) as shown in Eq. (81)
below. Then the charge conservation equation takes the
form

000y (x%) = (8(x° + 00) = 5(x" — 0))J.  (66)

This result implies that Q,,(x") is not in general a constant
at the asymptotic past and future boundaries of Minkowski
space. Furthermore, the conservation of charge Q,, in
Minkowski space at finite x° is explained by the fact that
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the flux of charge J into Minkowski space at x° = —co is
exactly equal to the flow of charge J out of the space at
x% = co. This is the statement of conservation of charge
and it implies conservation of information within the
Minkowski spacetime. It also leads to unitarity in the
complete Hilbert space in the quantum field theory.

In the Rindler case the spacelike Cauchy surface needs to
be specified differently in each region because the roles of
(t,y) alternate between time and space in regions I&III
versus regions [1&IV. For example, in region I, a spacelike
surface correspond to a fixed value of the Rindler time ¢
(any ray in Fig. 1) so that the charge of a field configuration
is given by integrating over d¥; = dy at fixed f,

q:(1) —/ZJ”(x)dZﬂ —/y2 dyJ'(t,y), with

Y1

i .
J' = 2 (@101 — 0,0} 01). (67)

where, in J' we used \/=g = 1, ¢"" = —(2y)~!, and ¢, (£, y)
given in Eq. (27). Here J(¢,y) is the charge density, so
fy‘lz dyJ' is the total charge contained in the interval y; <

y <y, at time t. Changing the value of ¢ in the range,
—o0 < t < o0, covers the spacetime bounded by the hyper-
bolas shown in Fig. 1 within region I. Sending y; — 0 and
y, — oo covers the entire region I. Then ¢, (¢), with y; = 0
and y, = oo, is the total regional charge within region I at
an arbitrary time f.

By contrast to Eq. (67), in region II a spacelike Cauchy
surface’ corresponds to a fixed value of the time y (a fixed
hyperbola in region II in Fig. 1, not shown) so that the
charge of a field configuration is given by integrating over
dZy = dt at fixed y,

¢ (y) = /EJ”(X)dZ,, = —/_oo dtJ¥(t,y), with

(e8]

T = (=2yi) (930,02 — Oy052). (68)

where, in J” we used /=g =1, ¢° =2y, and @,(7,y)
given in Eq. (27). The reason for the extra overall sign in
the integral — ff"m dt will be explained below after Eq. (71).

"One may be tempted to ignore the spacelike requirement of
the Cauchy surface, and based on the fact that 9, is the conserved
Killing vector in all regions, including region II, one may take the
surface of integration in region II to be again dX, = dy just like
region I. Applying this reasoning uniformly to every region, one
may wish to define ¢, ;3 4 as integrals over y at fixed ¢, just as in
Eq. (67). This turns out to give the wrong set of sign patterns for
41234 contrary to the correct patterns displayed in our results in
Egs. (72)—(71): i.e. +a'a for the charges associated to particles
and the opposite signs —b'b for antiparticles. The wrong set of
signs that occur differently in different regions fail the self
consistency check involving the Bogoliubov transformations as
given in Egs. (80), (81).

The Rindler version of the total charge Qp for the full
extended Rindler space in the (0,0) universe [the equivalent
of Q,, for the Minkowski space in Eq. (63)] is given by
integrals at spacelike Cauchy surfaces of constant ¢ in
regions I & III and constant y in regions II & IV. This is
because in regions I & III ¢ is the timelike coordinate
because sign(y) =+1 for the spacetime geometry
described by the line element in Eq. (4), while in regions
IT & IV y s the timelike coordinate because sign(y) = —1.
The computation of the total charge Qp is to be performed
by using the regional Rindler fields ¢;,34 given in
Eq. (27). We define the total charge, Or = [ J¥(x)dZ,,
as an integral over the union of spacelike Cauchy surfaces
that were used in the definition of g, ;3 4. Then we find

Or=q1 1t 49+ 93+ qa, (69)

where
0 ) l
q:(1) =/O dyJi =A dyg(cpfatfm—atfﬂ%)

7:(y) = - / arj, = — / dt(=2yi)(@30,02 — 0,0502)

(o] 0

[+ 5] 1
q3(1) = —/ dyJh = —/ dy2—(fp§8,<03 — 0,9}03)
0 0 Yy

q4(y) = / dily = / dt(=2yi) (@40,04 — 0,0404)
(70)

Furthermore, the rate of change of these charges with
respect to time is given by the time derivatives in the
respective regions

at‘]l(t)’ —8,q3(t), ay‘]ét()’)- (71)

Note the extra overall minus signs in the definitions of
the charges ¢,(¢) and ¢3(y) as well as the extra signs in
taking their time derivatives. The justification for such extra
signs is the comparison of the time increments for the
Minkowski sign(dx?) to the Rindler sign(dT) where T is
the monotonically increasing time in the corresponding
regions. Thus, in region III we have T = ¢ and sign(dx’) =
—sign(dt) because in region III as ¢ decreases as x°
increases. This explains why ¢3(¢) and —0,g3(f) have an
extra sign: it is because the extra sign is absorbed into
0/0(—t) both in the definition of the current J' in Eq. (67)
and in the rate of change, so that d/0(—t) implies an
increment of time with the same sign as 9/9x°. The same
explanation works for region II, where T = —y since y
is negative, and noting that in region II sign(dx’) =
—sign(dy) = sign(d|yl|); consequently the overall sign is
absorbed into 9/9(—y) = 9/d|y|. By contrast, in region IV
where y is negative, we have T = —y but sign(dx®) =
sign(dy) = —sign(d|y|), therefore no extra signs are
needed in region IV. When these extra signs are combined

- ayQZ(y)’

085009-19



IGNACIO J. ARAYA and ITZHAK BARS

PHYS. REV. D 97, 085009 (2018)

with the signs produced when the currents are integrated on
spacelike Cauchy surfaces (see footnote 7) one obtains the
correct sign patterns for particle/antiparticle charges and

charge fluxes in our results given below.
The explicit computation of g;,3, shows that they
are constants within each region, but (9,q,(1), 9_,q>(y),
|

0_,q5(1), 0yq4(y)) receive nontrivial contributions at the
horizons and the asymptotic boundaries of each region
[analogous to constant Q,, but nontrivial 9Q,, at bounda-
ries as in Eqgs. (63), (66)]. The results are as follows.

For region I, according to the computations shown in
Appendix A we have

q) = / dw((ai_al_ - b-{_bl_) + (a.i—-&-aH’ - bi—+b1+)),

0

V—=>—00

Ory (D)o = /0 da

Bty (1) = / da

Here the symbol 8, (z) is a smeared delta function defined
in Egs. (A7)-(A11). We discuss briefly the meaning of
these equations. First note that the charge ¢, is conserved
within region I by itself, 9,q;(¢) = 0 at finite ¢, since g,
is explicitly time independent. However, the expression
for massless particles 0,q,(¢)|,—, shows that charge is
not conserved locally at both horizons u =0 or v =0
and at both asymptotic boundaries u = oo or v = oo;
similarly for massive particles 0,q,(f)|, 24 shows that
charge is not conserved locally at both horizons (the
wave function and current in regions I&III vanish
asymptotically for massive particles, so 0,q;()|,, at
y — F00).

That we should expect nontrivial charge flow at the
horizons for the massive particle, 9,4, (t)],240 # 0 at t —
400 and y = 0, was evident in Figs. 2, 3 that depict the
classical geodesics for massive particles that show geo-
desics crossing the horizons (y = 0) at ¢t = foco. In the
quantum computation, using general wave packets with
particles and antiparticles, we see in Eq. (72) and Fig. 9 that
at each frequency w there is a charge flux (=|a,_(w)|* +
|b]_(w)|*) due to outgoing particles (overall — sign) and
incoming antiparticles (+sign) at the future horizon in
region I (v = 0), and another charge flux (+|a, (®)[> -
b}, (w)[*) due to incoming particles (+sign) and outgoing
antiparticles (—sign) at the past horizon in region I (u = 0).
These incoming and outgoing fluxes sum up to zero
because, for the massive particle, the boundary conditions
are |a;_(w)| = |a, (w)| and [b]_(w)| = |b], ()| as seen
in Eq. (43). For massless particles |a;. ()| and similarly
|bl . (w)| are unrelated to each other, but the result for
9:q1(t)],,—o given above indicates that again the total
incoming flux of charge into region I is equal to the total
outgoing flux of charge.

+li_r)%5£(ln |”|)(a1+al+ - bi+b1+)

(Jim —1lim)3,(In u)(al_a,_ —bl_by_)
+(lim — 1im )3, (In [o])(a].ar+ = b}, b1)

~lims, (In u)(a,_a;_ —bl_b_)

(72)

I

We emphasize the fact that the incoming and outgoing
particle/antiparticle fluxes sum up to zero separately for
every species of particle or antiparticle, for either massless
or massive particles of every frequency w. This indicates
that what comes into region I goes out fully in the same
form (species of particle or antiparticle) at each frequency
. This is why the total charge within region I remains a
constant d,q; = 0 at finite ¢, for every species separately,
and not by cancellation among the different species
(.e. ajy, asy, bis, byy).

FIG. 9. Magnitudes of incoming and outgoing fluxes at the
horizons of each region. Blue arrows = +sign, and red arrows =
—sign. For example, for region I, at the future horizon (v = 0),
the outgoing particle current is proportional to |a?_(w)| (red) and
the incoming antiparticle current is proportional to |b,_(w)|?
(blue). Similarly at the past horizon of region I (u = 0), the
incoming particle current is proportional to |a,, (w)|* (blue) and
the outgoing antiparticle current is || L(o) |* (red). Similar in and
out currents are indicated for each region.
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For region 1II, the result of the computations shown in Appendix A is

g = A do((a_ai_ = b]_b\_) + (=3, b3, + @}, a3.)),

(lim — 1im )5, (I u)(a}_ay_ = bj_b;_)

0_yq2(¥)] o Z/mdw .
VIR =0 +(lim0— lim )3, (Inv)(=b}, by, + a5, as,)

+Hlimg, (In u)(aj_a;_—bj_b_)

+lir%5g(ln v)(=bl,bsy +ai,a3.)

0 () = / dao (73)

|a1+e’”’” (yz)’i“’e"ng;r |2_|b17+€—m (”2>ime—:29a}Jr |2

27w

—1limé6,(Inu) =
v—>00

) _ b.[. toT 142 iwg=i20, 2+ s, e 142 —imeneb-:— 2

—1im6,(Inv) 15 v i_‘efz‘mﬂ v B

= U—>0 -

The interpretation of these expressions for region II is similar to the one above for region I. The total charge g, is explicitly
time independent within region II, but its rate of change locally at each horizon u = 0 or » = 0, or asymptotic boundaries
u — oo or v — o0, is generally nonzero. However, again what comes into region II goes out of region II in the same total
form (either particle or antiparticle) at each frequency w. The vanishing of the sum of incoming and outgoing fluxes for all
boundaries of region II is evident without any computation for the massless particle. For the massive particle, simple algebra

such as

—|al_ + e () @b, 2+ |b], + e (u?)ive 0a, | _

1 — e—27m}

shows that the sum of asymptotic fluxes at u — oo and
v — oo, namely [(=|a,_* + (b3, [*) + (=|as. [ + [b}_*)],
matches the sum of the fluxes at the horizons u = 0 and
v = 0 except for an overall sign. Hence, the total sum over
all boundaries vanishes. We conclude (similar to region I)
that charge, information or probability, are conserved
within region II by itself.

Observe that the incoming (outgoing) particle (antipar-
ticle) charge at the v = 0 horizon of region II, is identical to
|

= ~Ja,_[* + [p}, . (74)

[
the particle (antiparticle) flux that leaves (enters) region I.
This shows that the flux of particles and antiparticles is
continuous across the horizon at the boundary of regions
I&II as indicated in Fig. 9.

For region III, the computations are parallel to those for
region I. The result is obtained from Eq. (72) simply by
replacing (u, —v) — (—u, v) (see Fig. 1) and (a,_,a,,) —
(b;_, b; ) [see Eq. (27)], and multiplying by an overall minus
sign for ¢ but not for dq [see Egs. (70), (71)]. The result is

0= [ dol(=b by + al_ay) + (<Blbs, +las,)

3—:@3(f)|ﬂ20:/ do

(lim — lim)&,(In [u|)(b}_bs_ — a}_as_)

v—00 =0

0 +(lim = lim )8,(In v) (b}, by, —a}, as,)

u—0

a—r%(t”;ﬂ;eo:[) dw

Recall that for the massive particle |as, | = |az_| and
|3 | = |bs_| according to the boundary conditions obtained
in Eq. (43). For the massless particle there are no such rela-
tions. The interpretation is parallel to the discussion above
for region 1. Furthermore, at the horizon at the common

+1imé, (In v) (b3, b3, — a3, as..)

U—>—0o0

[ —limd, (In[u[)(b}_bs — a}_as.)

(75)

[
boundary for regions II&III we see that what leaves (enters)
region II fully enters (leaves) region III. From this we
conclude (similar to region I or II) that charge, information or
probability, are conserved within region III by itself, inde-
pendent of what goes on in other regions of the extended
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Rindler space. This leads also to unitarity of the scattering
matrix in the quantum Hilbert space of region III by itself.

For region IV, the computations are parallel to those for
region II. The result is obtained from Eq. (73) simply by

replacing (u, v) = (—u,—v) (see Fig. 1) and (a,_, b§+) -
(b_,a,.) [see Eq. (27)], and multiplying by an overall
minus sign for g but not for d¢q [see Egs. (70), (71)]. The
result is

g4 = A do((—b}_bs_ + d}_as_) + (a}, ar, — b b1y))
[ (tim— lim )5, (Inful)(b]_bs_ — a}_as.)

0,043 oo = / do

+( lim —1lim)3,(In[o])(a], @y, = b} by)
[+Hims, (In [u|) (b3 _bs_ — a}_a;_)

—li_l)l(l]éb.(ln |U|)(a-1r+a1+ - b-i-+b1+)

0443y = / do (76)

|b§_+e‘””(y2)‘i“’eizeal+ |2—|a3_+e‘””(y2)"“’e‘i29bi+ |2

=2,
T—¢ 7

— lim 5, (In [ul)

‘uHJre—mn (”Z)iwe—izabL ‘2_‘b‘;'++e—mn (yz)‘i”’ei29a3, ‘2
l_e—erw

+ lim §.(In|v|)

The interpretation is similar to those of regions I or II or III, and again we conclude that charge, information or probability,
are conserved within region IV by itself, independent of what goes on in other regions of the extended Rindler space.
We may now compute the sum of the charges O, Eq. (69), in all the regions I-IV for universe (0,0), and find

Or = 22% do((aj a;. — b by.) — (bi. by —al,asy)),
+

+( lim — lim)é,(In |u])

(al_a;_—b]_b;_)

v——00 00 |:—(b;_b3_ - a§_03—)}

(aLaH - bLbH) }
—(b. by, —a}, as,)

jar, + e (u?) e~ 20pL_|?
_|b11L+ + e_ﬂw(”z)—i(u€i26a3_|2
|a3_ + e_”w(ﬂz)i{"e_izebhﬁ
b3+ e () ey

( |b§++e—nw<ﬂ2)iwe—i2¢9al_|2 )

( ).

The last two equations for OQy, are the sums of all the fluxes dq, ; 3 4 given in Egs. (72)—(76); in this sum the fluxes at each
horizon cancel out and only the asymptotic fluxes in each region remain as shown in Eq. (77). Note that the sum of all
incoming terms in Y (0Qg);, is exactly equal to the sum of all outgoing terms in . (0Qg),, This is easy to see for
OQg|,2—o- Simple algebra, like Eq. (74), shows that it is also true for dQg| 2.0 When we take into account the results of the
boundary conditions given in Eq. (43), namely

8QR|/42=0 :A dw
+( lim -

U—>—00

fim)a (o) |

Jim 1o )]
)

+ lim 5e(ln|u|)<
I dw v—>—00
I0r|,220 :A 0

_ e—27zm
+1imé,(Inv)

U—00 _|a3++e—ﬂw(ﬂ2)—ia)ei29b']f ‘2
|b1_ +e_”w(y2)iwe_i29a3+|2

_|a']f_ + e—ﬂa}(ﬂ2>—ia}ei20b;(

+1im 6, (Inu)

2
+l

"

) |b1—| = |b1+

W #0: fa_| = layyl, a3 | = las, ; |bs-| = |b34]. (78)
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Equation (77) is the statement of charge conservation for
the entire (0,0) universe: Qy is conserved within the (0,0)
universe by itself because the charges that flow in and out
its asymptotic regions balance each other exactly such that
the sum of all influxes is equal to the sum of all outflows.
Moreover, each type of charge (aii,asy, b1+, bsy) and
corresponding total flux is separately conserved. This
amounts to conservation of probability and information

for the overall (0,0) level.
This result for the Rindler total charge, Qf in the (0,0)
universe, may be compared to the total charge Q,, defined
|

Q:

= 2%: fooo dw[(ahali - bhbli) - (bgj:b3i - a;—taﬁz)]

in Minkowski space as given above in Eq. (63). We expect
the total charge and total boundary in or out fluxes to be the
same in either computation,

QR = QM and Z (aQR)in/out = Z (8QM)in/out'
(79)

To relate the Rindler/Minkowski results to each other we
use the Bogoliubov transformations in Egs. (38), (47)
and find

(80)

= [ Ak (AT(KDA(K) = B (k') B(K")),

showing that indeed Qp = Q,, according to Egs. (63), (77). Similarly, the identity for the sum of the in or out fluxes can
also be proven by using the Bogoliubov transformations to find

= [ dwl(a] ajs — bl b)) — (bj b3y — aj,a3.)]
a in/out — .
2. (00 { =1 [ dk(A" (k)AL (k) — B{(k)B.(k))

These checks verify that our approach is self consistent
according to Egs. (66), (77), (79).

This result implies that charge, information or proba-
bility, is conserved in the (0,0) universe by itself and
furthermore that the (0,0) universe formulated in the
extended Rindler space is equivalent to a full Minkowski
universe on one sheet. From this we may also conclude that
in the absence of interactions or perturbations, Rindler
information does not leak from the (0,0) universe to any
other (n, m) universe.

The same arguments can now be applied at each level
by using the Rindler or Minkowski forms of the same
field "™ (u, v) that we have discussed in the previous
sections. A little thought is sufficient to go over the
same computations by simply changing the symbols for
the oscillators, and be convinced that charge or infor-
mation is again conserved separately within every
level (n,m).

Thus, it seems the first quantized level-(0,0) wave
function or the quantum field ¢(u,v), analytically
continued to all levels in the extended Rindler space-
time, describes parallel Minkowski universes. Since all
levels are predictably related to each other by analiticity,
one should not think of phenomena in these parallel
universes as being independent from each other, at least
not in the present context of free fields. This is because
there is only one set of oscillators to construct wave
packets, namely those of level-(0,0), and as we have
shown, all oscillators at other levels are dependent on
the level-(0,0) oscillators.

(81)

VIII. DISCUSSION

In summary, we have shown that, although information
does flow between neighboring regions of the (0,0) uni-
verse, regional information remains constant for each
species of particles/antiparticles (a4, as, biy,b3y) due
to the balance of in/out fluxes for each region separately.
The conserved regional charges, ¢, ¢, ¢3, qu4, are
generally different in each region and they are determined
by the wave packet coefficients of the fields in Eq. (27) for
each region in universe (0,0). Note that the constant g; 53 4
as well as the fluxes at boundaries depend on the wave
packet coefficients only in the combinations, a|. (@)a,.
(@), bh(a))bli(a)), agi (w)az(w), b;i(a))b3i(a))’ which
turn into number operators in the second quantized field
theory.

This argument is repeated for each (n,m) universe for
which the corresponding fields are fully determined by
analyticity. Recall that the field in the (n,m) universe
differs from the field in the (0,0) universe by the canonical
transformations in Egs. (33), (34) or Egs. (51), (56). We
find that the regional constant charges ¢q;, ¢», g3, g4, and
the fluxes at the boundaries, of the Rindler regions in the
(n, m) universe, are identical to those of the (0,0) universe,
because, according to Egs. (33), (34), the number operators,
al.a,. etc., in any (n,m) universe are the same as in the
(0,0) universe since these number operators are invariant

under the canonical transformations. This is true despite the

fact that the wavepacket coefficients a\"." etc. in the (n, m)

universe are different than the (n’,m’) universe by real
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factors (not just phases). Therefore, as far as information
flow and conservation is concerned, the Rindler multiverse
seems to consist of parallel universes that may not
communicate with each other.

This conclusion emerged because of information con-
servation separately in each Rindler quadrant of
Minkowski space, at all levels of the multiverse, which
holds as long as the Rindler multiverse system is not
disturbed by interactions that may alter the current J* or
induce interuniverse transitions.

Note however that there are nontrivial interuniverse
propagators or more general multipoint correlators with
one leg in the (n, m) universe and the other(s) in a different
(', m’) universe(s), such as

G(n’,m’)

o i, v 0, v7) = (Oaglg™™ (w, )" (', ) Oys),

| (2)

where i, j =1, 2, 3, 4, indicate the regions I-IV. The

creation/annihilation operators in the analytically continued
(n,m) (n',m")

fields ¢; ,q)} are related to each other but have
different real factors that depend on (n,m) or (n',m’) as
given in Egs. (33), (34). When (n,m) = (n',m’) = (0,0)
these propagators or more general n-point functions are
guaranteed to be identical to the well-known propagators or
n-point functions of a Klein-Gordon complex scalar field in
Minkowski space. However, in general they will differ
because of the n, m,n’,m’ dependent factors that modify
computations of the (0,0) universe, such as the modification
of the example in Eq. (48) by the additional factor as seen

below
n,m n',m' 16(w— o —2xw(n—n'
(Oulal™™ (@)al ™ (@)0ps) = S 2L =) et
2 e — ]
(83)

EZ;:L)/)(u v;u',v') is easily computed by

using such relations that include the extra factor e=27("=""),
The physical meaning of GEZ;;”)’)

The propagator G

(u,v;u', v) is unclear at
the moment when there are no interactions. In any case,
these propagators will surely play a role if there are
interactions that cause inter-universe transitions.

As examples of disturbances of the Rindler parallel
universes, we may consider the geometry of an eternal
black hole or the cosmological geometry of the minisuper-
space described in Appendix B. Either spacetime may be
considered as introducing some gravitational interaction
that deforms the extended Rindler spacetime nonperturba-
tively. The approach of this paper may be applied similarly
to cosmology as in [3] or black holes, as in [4]. We find
that, although information conservation as discussed above
holds for the noninteracting Rindler multiverse, it can fail
for cases like these. In particular, for black holes it is found
that there is leakage of information precisely at the black

hole singularity through which the current flows between
different levels of the multiverse. The information loss for
black holes [19,20] may be redefined as a loss of informa-
tion for the (0,0) universe, but still conserved in the full
eternal black hole multiverse. The flow of information
away from the (0,0) universe can be tracked quantitatively
by computing the amount of information that leaks to
specific regions in other universes in the extended black
hole multiverse [4]. The question remains as to what
happens to information if the black hole can fully
evaporate.

We have shown that even something as simple as the
extended Rindler space is far richer at the quantum level
than the Minkowski geometry specified by the metric or the
geodesics at the classical level. New phenomena of
physical interest may occur due to the natural multiverse
predicted by the quantum field. Even for the Rindler
multiverse, it would be interesting to explore which types
of perturbative or nonperturbative interactions (such as
black holes, big bang, and others) may induce communi-
cation among the otherwise apparently noninteracting
parallel Rindler universes.

In this paper we discussed a new multiverse concept in
an idealized setting and established certain technical
properties of the first quantized wave function or classical
field and its second quantization, in the extended Rindler
spacetime. Although this spacetime is related to flat
Minkowski spacetime by a simple coordinate transforma-
tion at the classical level, we showed that the presence of
horizons in the Rindler coordinate system led to subtleties
at the quantum level due to cuts in analytic (u,v)
spacetime, and that this naturally implied the presence
of a multiverse in the first and second quantized treatment
of the field in such a spacetime. Analyticity of the field in
the (u, v) coordinates guarantees that unavoidably ¢(u, v)
takes unique values throughout the multiverse. We claim
that similar multiverse properties are also shared by any
spacetime that has horizons and/or singularities, such as
the full spacetime of an eternal black hole [4] as well as
the cosmological minisuperspace geometry (in field
space) described in Appendix B and in more detail in
[3]. The presence of the multiverse structure does not
seem to be directly detectable by an observer in Rindler
region I, or the analogous region I observer outside of a
black hole, because, as we have already emphasized such
an observer is incapable of directly detecting anything
beyond the horizons of region I. Possible observable
physical effects, that even observers in region I may
notice as indirect consequences of a multiverse, could
arise in cosmological or black hole phenomena. The
possibility of transitions through gravitational singular-
ities (see, e.g., [16,21-24]) may also include transitions in
the multiverse. How such new mathematical properties of
the field are relevant for some new physical phenomena is
under investigation.
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It may be worthwhile to emphasize how our multiverse
for extended Rindler spacetime differs from ordinary
Minkowski spacetime. Clearly they are quite different. A
field in ordinary Minkowski spacetime has only the level-
(0,0) field of our multiverse. Analytic continuation of the
ordinary Minkowski plane-wave basis as in Eq. (16),
e~ T~ by U4 = ueti27 or v — vet2*, does not lead
to any new analyticity results. This is because the
Minkowski coordinate basis is adequate to describe the
multiverse one level at a time and lacks the analyticity
information that is available in the extended Rindler
coordinate basis. An analogy to this is the Schwarzchild
coordinate basis for a black hole, that describes only the
region outside of the horizon, versus the Kruskal-Szekeres
coordinate basis that provides the extension to the full
eternal black hole spacetime. In a similar way, the extended
Rindler coordinate basis captures the entire multiverse
through its analyticity behavior. What could not be cap-
tured directly in the Minkowski basis is clarified in Sec. VI.
Namely, the level-(n, m) field in the Minkowski basis in
Eq. (49) is related by a very non-trivial canonical trans-
formation to the level-(0,0) field. This canonical trans-
formation is just the result of the nontrivial analytic
continuation in the extended Rindler basis, resulting from
u — ue™ or v — ve'" with integers n, m with the
patterns given in detail in Eqs. (31), (33). Furthermore, as
seen via the interlevel correlators that appear in Egs. (82),
(83), there is a wealth of information in our multiverse that
is absent in ordinary Minkowski spacetime.

The notion and description of a multiverse that emerged
in this paper is new and different than other multiverse
notions that originated in the past from other consider-
ations, such as the multiverse of the many worlds of
quantum mechanics, the multiverse that arises from eternal
inflation, or the multiverse that arises in the landscape of
string theory. In particular, our multiverse contains many
levels that are predictably connected to each other by the
analyticity properties of the wave function. This predictable
aspect is unlike other concepts of a multiverse in the
literature. However, in a complete theory perhaps the
different concepts of a multiverse could be connected to
each other; see, e.g., [25,26] for some possible relations,
which however does not address our new brand of multi-
verse. Note that in our case, analyticity connects the
different universes and makes predictions of relations
among them. In future investigations we will consider
the physical significance of the ideas expressed in this
paper in a complete realistic theory of fundamental physics
(possibly in cosmology and/or black holes), including
models that address the effects of quantum gravity, such
as string theory. The analog of the quantum wave function
of a particle is the string field. So, in a deeper investigation
of the multiverse in the sense of the current paper may be
possible in string field theory in which nontrivial back-
grounds [27] and string-string interactions are included.

This may be a context in which various notions of a
multiverse, including our new one, may be connected to
each other.

We have shown that the multiverse, in the quantum
version of certain spacetimes, is an immutable structure of
the wave function—there is no choice here because it
directly follows from quantum mechanics. Our result, that
was not known before, cannot be captured by any amount
of analysis of classical general relativity. It is conceivable
that indirect observational consequences of our findings
could be analyzed through gravitational waves, since the
fluctuations in such gravitational backgrounds, that are
emitted as waves, may encapsulate the predicted multiverse
structure already embedded in the quantum field.
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APPENDIX A: COMPUTATION OF CHARGE
AND BOUNDARY FLUXES

In this Appendix we show the computation of ¢, 9,q,
and g,, 0_,q, whose results appear in Egs. (72), (73)
respectively. The remaining g5, 0_,q3 and q4, O,q, are
obtained by simple substitution of variables as given just
before Egs. (75) and (76) respectively.

For region I the definitions of ¢;, d,q, are given in
Eq. (70),

00 0 l
a1 () =/ dyJ, =/ dy 5= (101 = 0] 1)
0 0 y
31611—A dyo,Ji
. / " dy(0,0 — 0,10) = —J(1.00) + J3(1,0)
0
(A1)

where the Klein-Gordon equation is used to set d,J% = 0,
and then Stoke’s theorem is applied to write the result in
terms of the current J¥(z,y) evaluated at the asymptotic
boundaries. Here ¢, that is given in Eq. (27) is written in
terms of (z,y), and the y-component of the current at the
boundaries is given by the following limits
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n13) = [ doleta(w)

Ji(t,0 or 0)=

y—00 or

where the expression for J”(z,y) follows from J* in
Eq. (61) after using /=g = 1 and ¢’¥ = 2y for the Rindler
spacetime.

To compute ¢;(¢) one uses the orthonormality of the
positive and negative frequency modes described in foot-
note 2. Then the integral in Eq. (A1) yields

0 = / da(a}_a_ — b}_bi_) + (a], ars — b1, b12)).
(A3)

as given in Eq. (72). This shows that ¢,(¢) is time
independent, so the charge is conserved 0,q; = 0 within
region I at finite 7. We will see that in general it is not
conserved, d,q,(t) # 0, at the + - oo boundaries.

Next we compute the nontrivial fluxes J3 (7, 00/0) at the
y-boundaries of region 1. Consider at first J (¢, co) for the
massive field 4> > 0. We had argued in Eqs. (43), (44) that
|

® da' dwe'(@ =)t

0 Vé4rno'Va4rw

Hao —of)(=aj, (@)a,

where - - .7

lim (~i2y(¢}0,01 — O,

(0 + o) (—a]_())ar_(@)(2)*F*
~(@)2y)™"7 +a

29)ES. (212
(2y)"28,( ﬂy))+H.C'

~
3
S
~
S
e

(A2)

the horizon boundary conditions in Sec. V relate a,. (@) to
each other by a definite phase, and that this implies also the
correct physical asymptotic behavior, ¢ (z,y ~ c0) — 0. In
this case the boundary current Jj(z, 00) vanishes asymp-
totically, and therefore the charge flow at the asymptotic
boundary of region I vanishes for the massive field, i.e.,

u>>0: Ji(t,00) =0, atall 7, including 7 = +oo.
(Ad)
This result is different for the massless field,

u? = 0, since the asymptotic ¢, (z, o) does not vanish in
that case. However, due to masslessness, we have
lim, S+ (24%y) =1, so the field ¢;(z,y) in Eq. (A2)
simplifies. The 2iyd, derivatives that occur in Ji(z,y)
in Eq. (A2) are then easily computed by using
—2iyd,(2y)F% =F w(2y)¥%, and we obtain the following
double integral for J{(z,y)

o (@) 25 - a5
(@f)ar (@)(2)"5) +

o tw

+‘11+<
I

represent the Hermitian conjugate and mixed terms that are not shown. As 2y — oo these integrals are evaluated

by using the steepest descent method because of the fast oscillating exponentials (2y)T (“*+@)/2_ The leading contribution
comes only from the neighborhood @’ ~ @ in the first line of (A5); then the double integral is approximated by

—|a;_(w

+lai (o)

o dw2w
drw

lim
y—0o 0

)2 [, die~sl (e!\/2y) + - -
> [, dge~Fl (e

(A6)

—f\/ﬂ)—i«f R

where the factor el is inserted to insure the ff‘; dé integrations are limited to the neighborhood of { = @’ — @w ~ 0. The

integrals produce smeared delta functions §,(In z),

/oo deeell7£iE — o

The result is

/12:(): —J)lj(l,yfvoo) = (

where we have used,

hmé (In \/_e

V—=>—

e/n

R (A7)
(lim 6,(Inw)) [§° doja (@) + -
: A8
= (lims,(In[v])) [§° dolay, (@) + ) (A8)
= hm5 (t+ o0) = hmé (In(u)) = hmooé (Inu), (A9)
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and similarly for the second term. This shows that there are nonvanishing asymptotic contributions proportional to
|a,_(w)|> when v = —co and u is finite, as well as |a;  (w)|> when u — oo and v is finite. These contributions are at the ZF
boundaries in a Penrose diagram for region I.

To compute JJ (7, 0) for the massive or massless field, only the y = 0 neighborhood of the field ¢, (7, y ~ 0) is sufficient,
which means S—(24%y) in (A2) may be approximated by S-(0) = 1. Then J}(z,y ~ 0) takes the same form as Eq. (A5)
except for setting 2y ~ 0. The fast oscillations argument is valid again, and the integral is evaluated as

~(1im, (In ) f§° dolay_(w)” +

2 B A _
W2 >0 Fty~0)= , . (A10)
1 +(limd, (1n [o1)) f5° dola.- (@) +

where we have used,
11m5 (In (y/2ye")) = 11m5 - ) = lir%ég(ln u), etc. (A11)

This shows that there are non-vanishing contributions when » — 0 and u is finite as well as when u — 0 and v is finite.
These are the future and past horizons in region I.
Altogether, from Egs. (71), (A4), (A8), (A10) we have

00100 = [ dol-tims, )y (@)P + ims,(n o) oy @) + -

w ~lims, (In u)|a;_(@)[* + limé, (In [v])] @y (@) * + - --
01q1(0)],p20 = / do| '~ - Al2
Ok = J W1t 5,0 uDlay_ @)  Tima,(nv)lay @) + - A1)
After including the contributions “---” from the Hermitian conjugate terms in ¢, the results are given in Eq. (72).

We now turn to regions II and IV. Since space/time are interchaged in regions II and IV, we define the conserved charge
and its derivative as an integral over ¢ at fixed y as explained after Eqs. (70), (71)

@ (y) =— / diy = - / dt(=2yi)(@s0,02 — 0,030)
@) = / dta_y(—Jﬁ) = / dt((')”J’z‘ —0J5) = —J5(00,y) + J5(—0,y) (A13)

The field ¢,(u, v) in Eq. (27) is now rewritten in the (7, y) coordinates

Py (t,y) = /Ooo dw [e‘"‘” (al_(a)) —(2y)_i%S_(2//t2y) + b;r(a)) —(Zy) &) (2”2)))) + H.c.]. (A14)

drw drw

Apply this first to the massless case to compute g,(y) when S,.(0) = 1. Then, using i2yd,(2y)™"2 = +w(2y)™", gives

9(y) = /Ooo do((a)_(w)a-(0) = b}, (0)bs; (@) + ) (A15)

where “---” represents the contribution from the H.c. part of the field ¢, above. Note that the signs of the charges are
consistent with the definition of particle/antiparticle as represented by a/b symbols respectively.
Now compute the nontrivial fluxes J4(£o0, y) at the - +oco boundaries of region II. For the massless case we have

~tim (Lo t
J3(c0, y) = lim <5 (#2012 = 3:%%))

ei(wn—wz)[a.{--(w1)(—2y)iw71 + b3+(w1)(_2y>_i%} ) +--- (Al6)

i hm/ / da)lda)z (] +602) <
e 2yvAno Ao\ x[ay_(w,)(=2y)7F + b, () (=2y) 7]
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The “+ - - -” represents the Hermitian conjugate and mixed terms that are not shown. Due to wild oscillations, at large ¢ only
the neighborhood of @, ~ w, can contribute to this integral. Furthermore, because the support of ¢, (7, y) at large ¢ is either
at large [2y| — co, or small |2y| — 0, terms with (2y)*(@1+©2)/2 i this integral are also negligible since they too vanish at
either limit |2y| — (0 or oo) due to wild oscillations. Therefore the expression above is simplified by keeping the leading
terms and using the same arguments that followed Eq. (AS)

, ©  dodw a1 (@) Plim [, dge=Fl(e'\/[2y]) + -
Jy(c0.y) = A

T < (= . , (A17)
4@ X (=[2Y1) | +]by. (@) Plim [55, dge=Fl (e \/[23]) 7 + -

where we recall that y is negative in region II to rewrite everything in terms of |2y|. Using the definition of the smeared delta
function in Egs. (A7)-(A11) we evaluate the result as follows

i t./ i£ t /
lim dz:e—e|§| (6 |2y|> :limésln(e |2y|)~ : 58(|y|)

= [ Tl R oy SR T ~limde(In ),
S ~/]2y])* S.In (e /]2 .(|y] =
lim [ dgeda CVIDDT Sl (eI o el = 00) s 0, (A18)
t—oo PSS —|2y| =00 —|2y| t—oo —l U—00
Hence we obtain
J4(c0.y) = ~lims,(Inu) /°° dola,_(w)]? = 1im8,(In v) /°° do|bs, (@) + - -- (A19)
v 0 U—>0 0
The evaluation of J4(—o0,y) at - —oo proceeds in the same way, leading to
Jy(—o0,y) = —limé,(Inu) /oo dola,_(o)* - lin(l)ég(ln v) /oo dw|by, (@) + - - (A20)
V=00 0 u— 0

The combined result gives the rate of change of the charge at the boundaries of region II for the massless particle
O-yq2(¥)l,og = —J5(00, ) + Jh (=00, y)
(1ims,(Inw) = lim 3, (In ) (ja () + )

=/ dw[ , . ) (A21)
0 (lim, (In v) — lim 6, (In ) (=[b3 (@)[* + - )

For the massive particle, the presence of S, (2u4%y) in ¢, (¢, y) in Eq. (A14) complicates the calculation somewhat. The
integral for ¢, (y) in Eq. (A13) is performed by using the properties of Bessel functions and the result is just like the massless
case given in Eq. (A15). The computation of J5(+o0, y) is more complicated because as |2y| — oo the nontrivial asymptotic
behavior of S, (2u%y) must be taken into account, although for [2y| — 0 one still has S, (0) = 1, as in the massless case.
Hence compared to the massless case only the terms involving the # — oo or v — oo boundaries are altered while the terms
at the horizons are the same. The result is

Oy @2 (¥)| 20 = —J5(00, ) + J5(—00,y)
lims, (In u)(|a; (@) + - )

i, (1n 0) (~[bs. (@) + )

(s
= dw \at +emm@ (y2) i 120 o2 (A22)
) ~ 12)"0e20pT P,
A —1}2210 Se(Inu) = e
. —‘b;++€_ﬂw(ﬂ2)iw€_i29al_‘2-‘(—"*
[~ odin ) =
After including the contributions - --” from the Hermitian conjugate terms in ¢,, the results are given in Eq. (73).
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APPENDIX B: MINISUPERSPACE AND
COSMOLOGICAL MULTIVERSE

The Lagrangian for the geodesically complete version of
the standard model (SM) coupled to general relativity (GR)
is given in [2],

LSM(AIJ?W’Z'!]? Wq,l’ VR?X)
+¢* (30,40, — D,H'D,H)
~G(H'H = ?§°)* +54%)
+15(¢* = 2H'H)R(g)

£(x) = =9 (B1)

This action is invariant under local scale transformations
(Weyl symmetry) and has a noteworthy unique coupling
of conformal scalars to gravity of the form that appears
in the last line above. The relative minus sign in
(¢* — 2HTH)R(g) is mandatory so that a positive gravita-
tional constant G can be generated by Weyl gauge fixing,
55 (¢* —2HH)(x*) — (162Gy)™" at least in some patch
of spacetime x*, but the relative sign is also essential for
geodesic completeness as outlined below. An attractive
feature of the Weyl invariant formulation is that the
universe-filling dimensionful constants Gy, dark energy
A and the electroweak scale wvgw, are also generated
simultaneously with Gy from the same source [2]. The
uniqueness and completeness of this form for a Weyl
invariant and geodesically complete approach to the

|
Smini = /dT

where @ ,(7) are anisotropy degrees of freedom with the
anisotropy potential v(a;,@,) given in [29,32]; 7 =x" is
called the “conformal time” when the e(z) = 1 gauge is
chosen by fixing the z-reparametrization symmetry of S, ;.-
The Weyl-symmetric version of S, starts out with three
Weyl-dependent degrees of freedom, namely (a, ¢, i), that
transform according to ¢ — Q¢, h — Qh, a — Q 'a. The
e,a;, and p, degrees of freedom are Weyl invariant.
Furthermore, a¢, ah, h/¢ and arbitrary functions of these,
are also Weyl invariant.

Physics depends only on Weyl invariants, but Weyl
gauges that simplify computations or clarify the physics are
welcome. There is an interesting interplay of four Weyl
gauge choices: E-gauge, c-gauge, y-gauge [29,32] and
string gauge or s-gauge [27]. The action above is in the

2_1g [_(ar¢y)2 + (a‘rhy

¥In addition to the Higgs boson there may be more scalar fields
[2]. In that case the / in minisuperspace represents a combination
of all the scalars. The most economical cosmological scenario is
to have just the Higgs, as this seems to be not impossible [22].

SM + GR was discussed in [2], where its emergence from
a deeper gauge symmetry perspective of 2T-physics [28] is
also outlined (for a summary see [29]). See also [2,30,31]
for the occurrence of the same structure in a supergravity
setting.

In this Appendix, and with more detail in [3], we
reexamine the minisuperspace derived from this theory
for cosmological applications. This was discussed in a
series of papers during 2009-2014 in collaborations
between one of the authors of the current paper and
C. H. Chen, Paul Steinhardt, and Neil Turok, as summa-
rized in [29]. The mini-superspace consists of the cosmo-
logically most relevant homogeneous (only time
dependent) degrees of freedom, including scalar fields
(¢(x°). h(x°)), where h represents® the Higgs doublet in
a unitary gauge, H = (0,h/v/2), and the cosmological
metric, ds® = a*(x")(—=(dx®)?e*(x°) + y;;(x°, X)dx'dx’),
where a is the cosmological scale factor, e is the lapse
function (redefined up the factor a, i.e., N = ae) and
yij(xo,)?) may include spacial curvature and anisotropies.
Moreover, the matter energy-momentum tensor 7
includes the radiation density, p,(x°)/a*(x"), to represent
an average “fluid” behavior of all conformally invariant
relativistic matter (photons, gluons, quarks, leptons, neu-
trinos, etc.).

The Weyl invariant form of the minisuperspace action
was given in [29,32]. Here we are interested in its Weyl-
fixed form in the so-called y-gauge

P+ (8 = (9 + (9,)°)]
—e| 0t (3) =5 @3 = By, a) +p,]

, (B2)

[

y-gauge which is defined by freezing the scale factor for all
conformal times z, and labelling the gauge dependent
quantities with y when they are in the y-gauge, namely
a,(r) =1, and dynamical ¢,(z),h,(z). So, (¢,.h,) are
gauge invariant since they can be written as, ¢, = a,¢, =
a¢ and h, = a,h, = ah, where (a¢, ah) may be evaluated
in any other gauge (see below for the case of the E-gauge).
The y-gauge is most useful to grasp the geodesic com-
pleteness and transitions through singularities (see, e.g.,
[21-23,29]). Note the light-cone-type structure in (¢, h,)
field space in Fig. 10 where, in accordance with the
signatures in Eq. (B2), the fields ¢,(z) (h,(7)) play the
role of timelike (spacelike) coordinates [just like x*(z) in
Eq. (I)]. We may define u=¢,+h, and v=¢, - h,
analogous to lightcone coordinates. The quantity z(z) =
(¢%(r) — hi(r)) = u(r)v(r) is positive in regions &IV
and negative in regions I&III, while the blue and orange
solid lines, where either u or v vanish, indicate where
z(7) vanishes. The hyperbolas in region II labeled by
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G

FIG. 10. The (¢, (7). h, (7)) field space.

0 <z <z < oo correspond to the curves (¢, A, )| fied
for two fixed values of the field z(r); imagine similar
hyperbolas in all regions I-IV. The analogy to the extended
Rindler space in Fig. 1 is already apparent. We will soon
explain more precisely the physical relation of the (¢,. &)
field-space to the mathematical structure of the extended
Rindler spacetime discussed in the main body of the paper.

The E-gauge, which puts the full action (B1) directly
in the Einstein frame, is useful for interpreting the
physics because traditionally physics is discussed in the
E-frame. It is defined by freezing the Weyl invariant,
[15/=9(¢* —2H H)R(g), to the Einstein-Hilbert form,
[ (£162Gy)™"\/=geR(gr), where the Weyl-fixed fields
are labeled with an extra letter “E”, such as gf,,, ¢g, Hg to
indicate that they are in the E-gauge. The overall sign,
+1 = sign(¢p?(x) — 2HT(x)H(x)), implies that there are
patches of field space (¢, h)*, and corresponding regions
of spacetimes x*, where the E-gauge condition is satisfied
[29]. The =+ signs, which imply a passage through zero or
infinity, are Weyl-invariant because the sign of (¢?(x) —
2H"(x)H(x)) cannot be changed by Weyl transformations.
One may ask if a universe can be complete in a patch with
only the + sign. The answer is no, because the sign(¢? —
2H'H) does flip dynamically multiple times very generi-
cally as a function of x¥, as was established with an
extensive study of analytic solutions in [29,32]. The
dynamics show that the field solutions, and similarly the
geodesics, are stopped artificially if only one sign of
(¢* —2H'H) is imposed by hand. Hence, quite clearly
the traditional SM + GR, that artificially keeps only the
positive sign, is a geodesically incomplete theory. When
both signs are kept to complete the E-gauge field solutions
and geodesics, the suddenness of the sign flip, is just an
artifact of the E-gauge. By contrast, the sign change occurs
smoothly in other gauges, such as the y-gauge or the
c-gauge. We see that, as compared to the traditional
GR + SM, the Weyl invariant GR 4+ SM in (B1) describes
a larger field space for the same degrees of freedom, as well
as a corresponding larger spacetime. This is how geodesic
completeness is achieved.

Accordingly, in the geodesically complete E-gauge,
that freezes 5 (¢%(z) — h} (7)) = (£162Gy)~", the minis-
uperspace degrees of freedom include the two fields
(ag(r),0p(7)) instead of the three fields (a, ¢, h). Here
ag(7) is the scale factor and the scalar o(7) is basically a
rewriting of the Higgs in the E-gauge. Naturally, (ag, o)
are related to the y-gauge dynamical degrees of freedom
(¢,.h,) by Weyl transformations as given in [29,32].

d—h

Consider the Weyl invariants a*(¢> —h*) and In(§77);

by evaluating them in the E-gauge and y-gauge and
equating them to each other we find

12a3(7) B
o = () = ()] = [<(0).
12 1 |¢,(z) + h,(7)
162G, E) =310 6, (0) —h, ()| (B3)

This relation is the exact analog of the Rindler-Minkowski
relation in Eq. (3); it shows that (¢, = h,) or (u,v) are
Minkowski-like global coordinates in Fig. 10, while
(0g,a2) are non-global Rindler-like coordinates similar
to (z,y) that reparametrize the four different patches I-IV.
Indeed there is a precise correspondence to the Minkowski
and Rindler coordinates used in the rest of this paper; the
translation dictionary is

12a2sign(¢? — 2 12
agsign(¢? = %) _ oy
167Gy 167Gy

GE(—)t,

(p, +h,) =u< (x*+x"),
(b, —h,) =v < (x0 = x1h).

Then we can insert this information in Eq. (5) to establish
the E-gauge to y-gauge relations for every region I-IV in
Fig. 10 in exact correspondence to Fig. 1. With this, we
now have a precise Rindler <> Minkowski type map for
our cosmological degrees of freedom (u, v) versus (o, z).
This shows that the cosmological geometry in field space
has the same properties as ordinary extended Rindler
spacetime discussed in this paper, but now there are also
interactions that make it much more interesting.

The E-gauge to/from y-gauge map described above is
helpful to transform the smooth y-gauge solutions [21,29,32]
to the geodesically complete but singular E-gauge solutions
and vice-versa. It is then understood that at the instant z(7) =
(¢%(r) — hZ(r)) = u(r)v(r) vanishes in the y-gauge, there is
a scalar-curvature singularity in the E-gauge where a2 (7) =
0 at the same 7 (although not so in y-gauge where a,(z) = 1
for all 7). Hence in Fig. 10 the “horizons” atu = 0orv =0
correspond to big-crunch or big-bang instants as interpreted
in the E-frame. Also during the periods of  when the quantity
2(r) = (¢Z(r) — hi(r)) = u(r)v(r) is positive (negative) in
the y-gauge, the sign(¢?(z) — h%(7)) in any Weyl gauge,

(B4)
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including in the E-gauge (¢%(7) —h%(7)) = (£162Gy)~!,
must be the same sign as sign(¢2(7) — h2(7)), since Weyl
transformations cannot change it. Therefore, in regions
H&IV (versus I&IID) in Fig. 10, gravity is an attractive
(repulsive) force as interpreted in the E-frame (+Gy versus
—Gy). The constants z , that label the hyperbolas in region
II correspond to two fixed values of the scale factor at two
instances z;, ~ a%(z;,). So the successive hyperbolas in
region II describe the expanding universe as z changes,
while similar hyperbolasinregion IV describe a contracting
universe in aregion of ordinary gravity (4sign in E-gauge).
By contrast, regions I&III are antigravity regions that are
unavoidably probed by geodesically complete generic
cosmological solutions as shown in [21,29,32], as well
as by the quantum wave function of minisuperspace.
Therefore, all four regions are required in a geodesically
complete theory of SM + GR.

We are now ready for the connection of the minisuper-
space in S, with the multiverse ideas discussed in the
current paper. The dynamics of the cosmological fields in
Siini in Eq. (B2) may be compared to the dynamics of a
“particle” on the worldline parametrized by 7 [like Eq. (1)].
The target spacetime is four dimensional, X* ~ (¢,. h,,
ap,a,); the “particle” (i.e., the universe) moves in a
background gravitational field with metric

ds* = —d¢? + dh? + (¢3 — h2)(dad + daj)
= —dudv + uv(da?} + da3)
1
— _4_de2 + z(do® + da} + da3). (B5)

%(arz/)y _6%1 ) 2

+ydif (;) 3(9

(82 ( o2, — 8(212—8g+1)
+50(0) —gv(a, ay) +54
Close to the singularity in the E-frame we have, af ~ z ~ (¢? —
in Fig. 10. In that neighborhood, assuming that the terms (§ v(o)

and subdominant 772

Note this is a conformally flat metric in field space. The
scalar curvature is R = 6(¢? — h2)~'. There is also a
potential energy,

= (0110019, =3 2 = B)otan )+,

- [Z%(g) - %zv(al L) + p,] : (B6)

where a constant p, > 0 plays the role of “mass®”, thus
generalizing Eq. (1) with additional interactions. Note that z
(equivalently the scale factor aZ) plays the role of Rindler
time in the gravity regions &IV’ where z > 0. In the
antigravity regions I&III, where z < 0, the overall sign of the
metric seems to be wrong, but this is simply equivalent to
replacing Gy by —Gy in the Einstein-Hilbert Lagrangian, so
the meaning of the overall sign is physically interpreted as
being in the gravity versus antigravity patches of the E-
gauge. See [16,24] for further applications and interpreta-
tions of this overall sign switch of the metric in the E-gauge.

The quantum wave function satisfies the Wheeler-deWitt
equation (WdWe) that is derived from S,;,; in Eq. (B2) just
like Eq. (2)." In either the Minkowski-like (¢b,,%,) <>
(u,v) or the Rindler-like (o,z) coordinate systems, the
WdWe was constructed and analyzed in [24], where the
physical meaning of an antigravity region behind cosmo-
logical singularities, as interpreted by observers in the
gravity regions, and the related issues of unitarity (no
problem), were discussed. Explicitly, the WdWe written in
both coordinate systems is given by

¢2 h2 (ag] +a§2) +/)r

T(d)y, hy, ap, (12) = O,

= hy)v(en. @)

>(Zl/2‘{’(z,a,al,a2)) =0. (B7)

hf) ~ 0, which is equivalent to being close to the horizons
— 1 v(a;, ay)) can be neglected compared to the dominant

,z~! terms, the wave function may be determined from the approximate equation

1 r
(az +-—(= 5%1 - 532 -92+1) +§—Z> (z'?¥(z,0,a;,a,)) =0, or

42

1 Pr
(63 t iz (Pi+p3+pi+1) +2—Z> (22w ,(2)) =0,

(B8)

9Comparf: a similar timelike role of 2y < 0 in Rindler regions lI&IV that was explained following Eq. (70). This played a crucial role

in the treatment and interpretation of Egs. (70), (71).

The ordering ambiguity of canonical variables allows an additional term in the Laplacian, i.e., instead of V? consider (V2 — £R)
where R is the curvature of the metric in field space. In the following equations taken from [24] the conformally exact choice £ = 1/6

was made, and then the equation was simplified by rescaling the wave function ® with a factor, ¥ = (qbf

form of Eq. (B7).

— h2)'/2® to simplify it to the
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where the second equation applies to solutions of separable
form, ¥(z,0,a;,a,) ~ e‘i(”""+”2"2+”3”)1//,,(z). The gen-
eral wave packet has a form analogous to the ¢;,34 of
Eq. (27) in various regions I-IV, and continuity across
horizons is required. For example, for region I, the general
solution is

lPl(Z’ o, 0’170!2)

=Y [ @platpretonreroyi@) . (59)
+

where w3 (z) are the two independent solutions of the
simplified equation in the single variable z. The exact
solutions are known in this case (see below), but it is useful
to first intuitively understand their physical behavior in the
union of the four regions by comparing the 92 + - --
equation to a nonrelativistic Schrodinger equation,
(=02 4+ V(2))wo(z) = 0, with a potential energy, V(z) =
— a2 (P14 p3 + p3 + 1) = &, and a wave function y(z)=
z'/2y,(z) for the 0 eigenvalue. The plot of the potential
V(z) is given in Fig. 11 The physical solution for w(z),
with correct boundary conditions, can be described in-
tuitively as a wave packet approaching from the region
z>0 (a contracting universe in gravity region IV in
Fig. 10), passing through z = 0 (a cosmological crunch)
and entering the antigravity region where z < 0, then
necessarily reflecting from the barrier (that forms due to
radiation p, > 0) and unable to tunnel deep into negative
values of z (hence, spending little time in the antigravity
region I or III in Fig. 10), then passing through z =0
again (a cosmological big bang) and moving on to the
positive region z > 0 (an expanding universe in gravity
region II in Fig. 10). Thus, the exact wave function for the
universe, which consists of W;,34(z,0,a,;) as de-
scribed above, should have appropriate boundary condi-
tions that restrict the coefficients a, . etc. to fit this physical
behavior.

The exact analytic solution for the wave function
22y, (z) confirms this expected behavior [3]. It should
be emphasized that this quantum behavior of a general
wave packet is in complete agreement with the classical
solution displayed in [21] that featured an attractor behav-
ior for a cosmological bounce consisting of Crunch-Bang
transition with an antigravity region in between. As should
be expected, due to the fuzziness introduced by quantum
mechanics, the passage through the singularity in the
E-frame at ap = 0, is much softer in the quantum version
as compared to the classical version in [21]. This transition

V(z)

/\‘_ ,

=)

FIG. 11.
between.

Cosmological crunch and bang with antigravity in

was managed in [21] by using Weyl symmetry, while in the
quantum case here, it amounts to the continuity of the wave
function at the horizons just as discussed for the ¢ ;34 in
Sec. III.

Note that Fig. 11 is the same as Fig. 8 after replacing
z = -2y, and the effective potential V(z) is the same as
Ver(v) in Eq. (45) after renaming the parameters, p? +
p5+ pi=w? and p, =pu?/2. Therefore, the analytic
solutions for the geodesically complete cosmological wave
function z'/?y,(z) have exactly the same analyticity
behavior as the Rindler field ¢;,34(u,v) given in
Eq. (27). The physical boundary conditions (dying off
wave function in asymptotic antigravity regions I&III) are
reproduced by the horizon boundary conditions (35), (44)
employed for the ¢34 and can again be used here. We
find that near z = 0, or equivalently at the u =0 or v =0
horizons in Fig. 10, there are branch points and associated
branch cuts that lead to the same multiverse behavior
discussed in the main body of this paper.

What makes up a multiverse is the analytic properties of
the wave function that, via monodromy transformations,
automatically contains different coefficients on different
levels of the multiverse resulting from the canonical
transformations like those in Egs. (33), (34). This implies
“discretized jumps” in probability for certain phenomena at
different levels of the multiverse. Further progress will be
reported in [3].

In this way, we have demonstrated that there is the
possibility of a new cosmological multiverse in a geodesi-
cally complete cyclic-type cosmology. Now there are
interactions, so there remains to figure out if transitions
between the various levels of the cosmological multiverse
can occur. In the context of trying to determine the
wavefunction for the universe, as in this appendix and in
[3], the multiverse concept discussed in the main body of
the paper is more fitting and it is quite intriguing.
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