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We construct self-dual sectors for scalar field theories on a (2N + 2)-dimensional Minkowski space-time
with the target space being the 2N + 1-dimensional sphere S?V*!. The construction of such self-dual
sectors is made possible by the introduction of an extra functional in the action that renders the static energy
and the self-duality equations conformally invariant on the (2N + 1)-dimensional spatial submanifold. The
conformal and target-space symmetries are used to build an ansatz that leads to an infinite number of exact

self-dual solutions with arbitrary values of the topological charge. The five-dimensional case is discussed in

detail, where it is shown that two types of theories admit self-dual sectors. Our work generalizes the known

results in the three-dimensional case that lead to an infinite set of self-dual Skyrmion solutions.

DOI: 10.1103/PhysRevD.97.085006

I. INTRODUCTION

The beauty of self-duality is that it is characterized by
first-order differential equations, such that their solutions
also solve the second-order Euler-Lagrange equations of
the full theory. The self-dual solutions—which in general
can be constructed analytically—saturate a lower bound of
the energy or Euclidean action for each sector characterized
by the value of the topological charge. Examples include
the instantons in Yang-Mills theories in four-dimensional
Euclidean space [1], the Bogomol’nyi-Prasad-Sommerfield
(BPS) monopoles in three dimensions [2,3], the Belavin-
Polyakov self-dual solutions of the O(3) or CP' nonlinear
sigma model in (2 + 1) dimensions [4], the one-soliton
solutions of integrable field theories in (1 4 1) dimensions
like the sine-Gordon model [5], field theories for d scalar
fields in (d + 1) dimensions [6] (which for the case of
d = 3 include modifications of the Skyrme model [7-10]),
and so on.

The interesting fact about the structures of self-duality
that allow the construction of solutions by performing one
less integration is not the use of dynamical conservation
laws, but rather the existence in the theory of a topological
charge that admits an integral representation. As explained
in Sec. 2 of Ref. [6], one looks for a splitting of the density
of topological charge Q as the product of two quantities, let
us say
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Q_/Aa-’zlav (11)

where a may stand for a set of indices. Being a topological
quantity means that it is invariant under any smooth
variations of the fields, and so the relation 6Q = 0 provides
an identity for the fields that is bilinear in the quantities .4,

and fla. One then introduces the self-duality equations as

A, = A, (1.2)
It turns out that the bilinear identity coming from the
topological charge together with the self-duality equations

imply the Euler-Lagrange equation associated with the
functional [6]

1

E—E/(A?,Jril?,),

(1.3)
which can be the static energy or the Euclidean action
of the theory. If the functional E is positive definite, this
automatically provides a bound given by the topological
charge, i.e.,

1 .
E= [t AP vlozl0l (4

Note that for a given splitting of the density of topological
charge there is the freedom of transforming the quantities

A, and A, as

Aa d Aﬂfﬂa and ./Zla d f;ﬁljﬂ, (15)
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where f, is an arbitrary invertible matrix. The possibility
of introducing such a matrix is what allows the construction
of nontrivial self-dual sectors for Skyrme-type models
[8,9]. In fact, in order to preserve the Lorentz symmetry
this quantity is a matrix in the internal indices only,
contained in the set of indices a. In the cases considered
in this paper a contains only spatial indices, and so f will be
a scalar function.

Under the shift (1.5) the self-duality equations (1.2)
become Ayhy, = £.A,, with 1 being the symmetric invert-
ible matrix 7 = ff7. The topological charge (1.1) remains
unchanged, but the energy functional (1.3) becomes

E=1[(AhypAs+ ,Zlah;/}flﬂ). If one considers the
entries of the matrix 4 as new extra fields, independent

of those originally contained in A, and A,, one observes a
very interesting fact. If one varies E with respect to the
fields h one gets that SE = 0, for any variation 6h, if
AShA = Ah~'6hh™' A. But that is guaranteed by the
new self-duality equations. Therefore, the solutions of
the self-duality equations are not only solutions of the
Euler-Lagrange equations associated to the fields contained
in A, and A,, but also of the Euler-Lagrange equations
associated to the fields A.

In the case of Euclidean Yang-Mills theory, for instance,
one has that A, corresponds to the field tensor F s
and A, corresponds to its Hodge dual F w = 5 Eupo 7.
Then the topological charge is the Pontryagin number
0= f d*xTr(F WF"”), E is the Euclidean action, i.e.,
E =1 [d*xTt(F2,) = éfd“xTr(Ffw + F,zw), and F,, =
+F - the well-known self-duality equations.

In this paper we apply the ideas of Ref. [6] (summarized
above) to construct self-dual sectors for field theories
in a (2N + 2)-dimensional Minkowski space-time, with
the target space being the (2N + 1)-dimensional sphere
S?N+1_ Therefore, our results will generalize in a rather
simple way the results of Refs. [7,8] for self-dual
Skyrmions on S§°. Self-duality equations in space-time
dimensions higher than four have been considered exten-
sively in the literature. Self-dual equations for the Yang-
Mills theory in any dimension were constructed a long time
ago (see, for instance, Refs. [11,12]) and are still a topic of
interest [13,14]. In addition, self-dual and non-self-dual
monopole solutions in higher dimensions have been con-
structed in Higgs-Yang-Mills systems (see, for instance,
Refs. [15,16]). In the case of scalar field theories like
Skyrmions and CPY models, bounds relating energy and
topological charge have been considered, even though self-
duality equations were not constructed (see, for instance,
Refs. [17,18]). However, it is worth mentioning that self-
duality equations connecting gauge and scalar field theories
have been obtained [19]. The solitons that we consider are
static, and since there are no gauge symmetries, the finite-
energy condition imposes that the fields should go to fixed
constant values at spatial infinity. Therefore, as long as

topology is concerned, one can compactify the space
IR?M*1 into the sphere S?*!, and so the soliton solutions
carry a topological charge given by the winding number of
the map SZVE! — SENL!, which can be evaluated through

the integral

2
- - N+1yep1P2Pan+1
Q2N+l - (47[)N+l dz X€ * AlepngHp4p5

H (1.6)

PanPanN+1?
where we have parametrized the target space with N + 1
complex fields Z,, a =1,2,...N + 1, satisfying the con-
straint Z;;Z, = 1, and have defined the quantities

A, =iZ' 8,7, Z'-Z=1, mu=0,12..2N+]1,

(1.7)
and
H, = a,,AU - GDAM = i(@,,ZT -0,Z—-0,Z" -8ﬂZ). (1.8)

We shall use the metric with signature (—) for the space
coordinates and (+) for the time coordinate, i.e.,
ds> = dx} —dx?. In addition, we take %122V =
g2+ 2N+l — 1. Note that even though the target space is
§?N+1 | the target-space symmetry group of such theories is
not SO(2N + 2). The quantities A, and H,, given above
are invariant only under the subgroup U(N + 1), where the
fields transform as Z — UZ, U € U(N + 1).

In Refs. [7,8] we considered the case N = 1, which led
to an infinite number of exact self-dual Skyrmions on the
three-dimensional space IR3, with the fields taking values
on the sphere S°, or equivalently on the group SU(2). In
this paper we shall consider the case N =2, which
corresponds to theories in a Minkowski space-time
IR3*!, with target space S°. As we show in Sec. III, there
are basically two ways of splitting the density of topologi-
cal charges, leading to two different theories. The static
sectors of these theories are conformally invariant in IR?,
and (following the method of Ref. [20]) they lead to an
ansatz based on a generalization of the toroidal coordinates
for IR. The ansatz involves three integers associated with
the angles of the toroidal coordinates, and the topological
charge is the product of these three integers. For both
theories we construct an infinite number of exact self-dual
soliton solutions. However, for one of the theories these
integers are arbitrary, and for the other they have to have
equal moduli.

We then consider the generic case of theories in
(2N + 2)-dimensional Minkowski space-time with target
space S>¥*!. In such cases the number of possibilities of
splitting the density of topological charge is very large,
leading to theories which are conformally invariant in
IR?N*1. Again, this symmetry leads to a toroidal ansatz
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depending on N + 1 integers. We consider the case where
the splitting leads to a theory that admits an infinite number
of self-dual soliton solutions for arbitrary values of these
N + 1 integers. It is worth mentioning that static Skyrmions
in seven space dimensions have been obtained from self-
dual Yang-Mills in eight Euclidean dimensions [18] fol-
lowing the Atiyah-Manton construction [21]. Even though
the Skyrmion is obtained from a self-dual solution (instan-
ton), it is not a self-dual Skyrmion in seven dimensions.
The paper is organized as follows. In Sec. II we review
the results of Ref. [8] on the construction of self-dual
Skyrmions on the three-dimensional space R* with the
target space S°. In Sec. III we consider the case of theories
in (5 + 1) dimensions with the target space being the five-
dimensional sphere S°, and show in detail how to use the
splitting of the topological charge to construct two types of
theories admitting self-dual sectors. We then use the
conformal and target-space symmetries of the self-duality
equations to construct infinite sets of exact self-dual
solutions for these two types of theories. We then general-
ize our results in Sec. I'V to the case of theories in 2N + 2)-
dimensional Minkowski space-time with the target space
being the (2N + 1)-dimensional sphere S?¥*!. Again, we
construct an infinite set of exact self-dual solutions for one
type of theory coming from a particular choice of the
splitting of the topological charge. In Sec. V we present our
conclusions. In Appendix A we give the proof of the
conformal symmetry of the self-duality equations, and in
Appendix B we solve some integrals relevant for the
calculation of the topological charges of the solutions.

II. SOLUTIONS ON §3

We begin with a brief review of the work [8] on self-dual
Skyrmions on the three-dimensional space R* with the
target space S°. In this case field configurations are
characterized by the topological charge Q € 75(S°) =
given by the integral formula

1 .
Q3 = —2/ d3xs’~’kA,~ij,

8

(2.1)

where A; and H,; are defined in Eqgs. (1.7) and (1.8) for
N = 1. We take the splitting of the topological charge
density of the form [see Eq. (1.1)]

A = MfiA;, lei zij

i,jk=12.3,
f1

(2.2)

where M and e are coupling constants, and f; is an
arbitrary function. The self-dual equations for such a
splitting are

Af%Al = 8iijjk’

with A=+Me.  (2.3)

The solutions of the self-duality equations (2.3) solve the
Euler-Lagrange equations associated to the following static
energy functional:

1 I
E=3 / d*x <M2 1A} + a5 (8’-”‘ij)2>.

The BPS bound for such a static energy is given by

1 ) 1 .. 2
EZE/dS.X(MflAl i;fl]kij>

M . 8Mn?
¥ ?/d3)€€”kAiij > 105].  (2.5)

(2.4)

Using the methods of Ref. [20], in Ref. [8] an ansatz was
constructed by exploring the conformal symmetry of the
self-duality equations (2.3) in the three-dimensional space
IR? (see Appendix A). The ansatz is given by

Z=(VF(x)e".\/1-

where m and n are integers, and (z, &, @) are the toroidal
coordinates on IR?,

FlD)e™),  (2.6)

X zzﬁcosq}, X5 :g\/Zsingo, X3 ~ 4 — zsiné,
p p p
(2.7)
where
p=1—+1-zcosé, € [0, 1], E @€ l0,2n].
(2.8)

The infinite set of solutions found in Ref. [8] are given by

B m?z = 2p |mn|
Cmizeni(i-2) 7 \almiz 4?1 -2)]
(2.9)
where the sign of 1 is chosen to keep f; real, i.e.,
sign(1) = —sign(mn). The topological charge and static

energy for such solutions are given by

8Mn?

Q3 = —mn, E= |mn|. (2.10)

It turns out [8] that the solutions for the cases where m? =

n* present a spherically symmetry energy density, and for
the other cases the energy density has only an axial
symmetry around the x; axis. In Fig. 1 we show the
isosurfaces of the topological charge density (or, equiv-
alently, the energy density) for the Q3 = —4 cases, i.e.,
(m=2n=2),(m=4,n=1),and (m=1,n=4). It is
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FIG. 1.

correspond, from left to right, to (m,n) = (2,2), (m,n) =

The isosurfaces of the topological charge density (2.1) for the three-dimensional solutions (2.9), for @ = 1. The densities
(4,1), and (m,n) =

(1,4). The layers from the core of the figure to its

outside are colored in the order yellow (1), blue (2), green (3), red (4), violet (5), and brown (6), where the nth layer denotes the
isosurface with the density Q5 = 427" /72, i.e., the yellow surface corresponds to Q3 = 4/x?, the green surface to Q3 = (47)72, etc.

worth noting that for the cases where m? # n?, the densities
have a toroidal inner structure, which at large distances
leads to an oblate (n > m) or prolate (n < m) shape.
Indeed, in the (m,n) = (4,1) case, the outside looks
prolate but the inside has a dumbbell-like form. In the
(m,n) = (1,4) case, the outside looks oblate but there is a
torus-shaped core. On the other hand, every isosurface is a
sphere in the (m,n) = (2,2) case. Note that the energy
density has the same profile as the topological charge
density.

III. SOLUTIONS ON $°

In this case the topological charge is the winding number
of the map SSpace - farget and is given by

1

327[ dsxgljklmA H; kHlm'

05 = (3.1)

There are two basic ways of splitting the density of this
topological charge [as in Eq. (1.1)] to construct theories
with exact self-dual sectors, as we now explain.

A. Type I theory on S°

The first case corresponds to the following splitting of
the topological charge density:

Az] = MfIAiv AI ! tjklmijHlma
efr

i, jk,im=1,2,..5, (3.2)
where A; and H;; are defined in Eqgs. (1.7) and (1.8) for
N =2, f; is an arbitrary functional of the complex fields
Z,, a=1, 2, 3, and their derivatives, and M and e are
coupling constants. Note that the topological charge density
does not depend on the functional f;, and this represents a

freedom we have when we split it [6,8] [see Eq. (1.5)]. The
self-duality equation in such a case is

ﬂf%Al = 8ijklmijHlm, with A= iMe, (33)

and solutions of it are solutions of the Euler-Lagrange
equations associated to the static energy functional

1 1
B =3 [ @3(M5A o @ ). G
1

The corresponding action is therefore

1
S1=15 / dx <M2 fiAZ - 2 (eﬂwmﬂHmHQﬂ)z).
(3.5)
The bound on the static energy is given by
E ! Px| Mf A+ ! ijkim gy H ’
=5 X fr e_flg ki
M -
F —/ dsxﬁ'l]klmAiijHlm
32M7z
05| (3.6)

In order to construct solutions we need an ansatz that
explores the external (space) and internal (target) sym-
metries of the theory. We shall follow the methods
described in Ref. [20]. As shown in Appendix A, the
self-duality equations (3.3) are invariant under conformal
transformations in five dimensions, i.e., it is invariant under
the conformal group SO(6, 1), which has rank 3. Therefore,
the maximum number of commuting U(1) subgroups is
three, and they can be chosen to be generated by the
following conformal transformations [20]:
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0
0

0 = X10, — x50,

> = x384 — X483,

85 = %S(xlal —I—x282 +X333 +X484)

1
+

% ( (3.7)

a’ + xt —x7 —x3 — x5 — x3)0s.
The first two transformations are infinitesimal rotations
in the planes x; —x, and x3 — x4, and ¢; and ¢, are
the corresponding azimuthal angles. The third transforma-
tion is a linear combination of an infinitesimal special
conformal transformation V(¢s) = x5x;0; —1x295 and an

infinitesimal translation V(Ps) = 0Os along the x5 axis, and a
is a free length scale factor. In addition, £ is the poloidal
angle in five dimensions.

The target-space symmetries are given by the unitary
group U(3), a subgroup of SO(6) which is the symmetry
group of S°. Indeed, the operators (1.7) and (1.8) are
invariant under the transformations
Za i Uabe, ZZZa = 1,

a,b=1,2,3, U -U=1,

(3.8)

which also has rank 3. We shall choose the three (maxi-
mum) commuting U(1) subgroups to be

Q, = diag(e™, 1, 1),
Q; = diag(1, 1, ™).

Q, = diag(1, e, 1),

(3.9)
Following Ref. [20], we choose an ansatz that is invariant
under the joint action of the three external and three internal

commuting U(1)’s given in Egs. (3.7) and (3.9), respec-
tively. The ansatz is

Z = (VFi(z.0)e™?, \/Fy(z.0)e™?,

V1 =F(z,0) = F5(z,0)e™),

(3.10)

where n;, n,, and m are winding numbers associated with
the angles ¢4, ¢, and &, respectively, and z and @ are the two
coordinates on IR’ orthogonal to the three angles ¢;, ¢»,
and &, and defined as

4a®(x3 + x5 + x5 + x3)

Z = ’
(@ +x7 + 03 + 43 + x5 +x3)°
2,2
0 = arctan %. (3.11)
X7+ x5

One can check that, indeed, Oz =00 =0 for { =
(@1, ®2,&). The coordinates (z,0,&, ¢y, p,) constitute a
generalization to IR’ of the toroidal coordinates on IR?, and
in terms of them the Cartesian coordinates are written as

a a .
xlzzﬁcosﬁcowpl, x2:;\/Zcos9sm(p1,

a . a o
X3 :;\/Esmecosqoz, x4:;\/23m9smq;2,

x5 = S/T—zsing, (3.12)
P

with

p=1-+v1-zcosé, (3.13)

where the domains of the variables are z € [0,1],
0 €10,7/2],& ¢y, ¢, € [0,2x]. In terms of the new coor-
dinates, the metric is written as

a? 1
ds? == [ —
’ p2<42(1—Z)

+ zcos20dg? + zsinzed(p%) :

dz* + zd0* + (1 — z)d&

(3.14)

From Egs. (1.7) and (1.8) and the ansatz (3.10), one
observes that A, = Ay = 0, and also that Hy=H,, , =
H,:= H, = 0. Therefore, the five equations in Eq. (3.3)
reduce to only three, since two of them are automatically
satisfied by the ansatz (3.10). In addition, the rhs of
Eq. (3.3) for the three remaining equations are all propor-
tional to the same function of z and 6, namely,
0,F09F, — 0,F10gF,. Therefore, substituting the ansatz
(3.10) into the BPS equation (3.3) leads to the following
three coupled first-order partial differential equations:

3
lf%a—Sanl tan@ = 16mn2(5'zF189F2 - 81F289F1),
p

3
if%a—3n2F2 cotd = 16mn1(8zF|89F2 - azeagFl),
p
,at z .
AMi————m(l = F; —F,)sinfcos @
pl-z

= 16711712(81}71891?2 —8ZF289F1). (315)

Since the right-hand sides of the equations in Eq. (3.15) are
all proportional, they imply that

niF, tanf = n%cmotH:mzli(l —F, —F,)sinfcos.
-z

(3.16)

One can algebraically solve Eq. (3.16) for any nonzero
integers m, n;, and n,, and the solutions are given by
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m?n3zcos*0
nin3(1 — z) + m?z(n3sin0 + n3cos?0)’

F1:

m*n3zsin’0
nin3(1 — z) + m*z(n3sin®0 + njcos®0)

F, (3.17)

By substituting such solutions for F; and F, into
Eq. (3.15), we obtain

f1= P\ 4V2|mnyny P
"7 \JAld®) [2n2(1 = 2) + m2z(n?sin20 + nicos20)]
(3.18)

Since f; is a real function, the sign of 4 and of the integers
must satisfy

signd = sign(mnn,). (3.19)

The density of the topological charge (3.1) is given by

|
@fl"klmAiijHzm

1 /p\> mnn,
“ 2 <;) zsin Qlcos 0 [0:F18F> = 0:F200F ]

1 (p)? m>nin3
- \a) [Bn3(1 - z) + m*z(n3sin?0 + njcos’6)]’

(3.20)

where we have used the convention £!23%° = 1, and so

5
018 — r # .
a) zsinfcos@

The volume element is

(3.21)

51
Px = <ﬁ> 5% sin @ cos 8dzdOdg de,d&. (3.22)
p

32 (1 + @) (mnyn,)>

We now use the fact that

/ld /%dG zsinfcos @
o o Cend(1=2) + mPz(n3sin?0 + nlcos’0)]?
1 1

(3.23)

~ dmintnd
to find that the topological charges of these solutions are
(3.24)

Qs = mnn,.

For the configurations satisfying the self-duality equa-
tions (3.3), the static energy (3.4) becomes

a:/&w,mmezM%@.(mﬁ

The energy density is given by

e \a) [Bn3(1-2z)+mPz(n3sin®0 + njcos’d)*”
(3.26)
Therefore, using Eqgs. (3.22) and (3.23), one gets
M
E; = 327° — |mnyn,|. (3.27)
e

From Egs. (3.20) and (3.26), one observes that the densities
of the topological charge and static energy are proportional.
In order to visualize the shape of such densities, let us write
the density of the topological charge [given in Eq. (3.20)] in
terms of Cartesian coordinates as

a2 [n3(1 + )2+ 4ntpy2(m? — n3) + 4n3py 2 (m* — nd))?

with

pi=\x2+50 =GR+
F=\/p?+p2" 455

where X; = x;/a. Note that Q does not depend on the
angles ¢ and ¢,, and so the energy and topological charge
densities are invariant under the group SO(2) x SO(2) of

(3.29)

: (3.28)

|
rotations in the x; — x, and x5 — x4 planes for any nonzero
values of the integers m, n;, and n,. In addition, for the
cases where n7 = n3, such densities only depend on 7 and
%52, and so they are invariant under the group SO(4) of
rotations on the subspace IR* perpendicular to the x5 axis.
For the cases where m? = n} (or m? = n3), the densities
only depend on 7 and g, (or # and p,?), and so they are
invariant under the group SO(2) x SO(3) of rotations in
the x; —x, (or x; — x,) plane, and on the subspace IR3
perpendicular to the x; — x4 (or x; — x,) plane. Finally, for
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0 3~ 0
P1 4 2 2

FIG. 2. The isosurfaces of the topological charge density (3.20) for the five-dimensional solutions (3.17), with g, and X5 defined in
Eq. (3.29). The densities correspond, from left to right, to (m,n;,n,) = (1,1, 1), (m,n;,ny) = (4,1, 1), (m,ny,ny) = (1,2,2), and
(m,ny,ny) = (1,4, 1). The layers from the core of the figure to its outside are colored in the order yellow (1), blue(2), green (3), red (4),
violet (5), and brown (6), where the nth layer denotes the isosurface with the density Qs = 53-n / (a57r3), i.e., the yellow surface

corresponds to Qs = 25/(a’x3), the green surface to Qs = 1/(a’7?), etc.

the cases where m*> = n? = n3, the densities only depend

on 7 and so they are invariant under the group SO(5) of
rotations on the whole space IR, i.e., the densities are
spherically symmetric.

In Fig. 2 we show some examples of surfaces of constant
topological charge density in terms of the three coordinates
P1, P2, and x5. Their structure is very similar to the three-
dimensional case (see Fig. 1). When m? = n} = n3, the
isosurfaces are four-dimensional spheres, and thus they are
SO(5) invariant. For n? = n} the isosurfaces are indeed
SO(4) invariant, and we note that for m> > n? = nj the
outer isosurfaces have a five-dimensional prolate shape, but
the inside has a dumbbell-like structure. On the other hand,
for m* < n} = n3, the outer isosurfaces look oblate, but the

inner shells have a five-dimensional torus shape.

B. Type II theory on S°

The second field theory for the case N = 2 corresponds
to the following splitting of the topological charge density:

~ 1
A= __—_H..,
! efi !

(3.30)

-Afjl = Mf €A H™,
ik Lm=12 .5

with f;; having the same nature as f; introduced above.
The self-duality equations in this case are

/lf%lé'ijklmAkHlm = Hi with A= +tMe. (331)

e

The solutions of Eq. (3.31) are also solutions of the
Euler-Lagrange equations associated to the static energy
functional

1 1
Ey = 5/ dx (sz%l(eijklmAkHlm)z + ﬁleJ>
e“fir

(3.32)

and the corresponding action is

vpoa, v |-
2 3 HUP: er%l H

(3.33)

The self-duality equations (3.31) is also invariant under
conformal transformations in five dimensions, as shown in
Appendix A. Therefore, we shall use the same ansatz
[given in Eq. (3.10)] used to construct the solutions for the
self-duality equations (3.3). When the ansatz (3.10) is
inserted into the ten equations in Eq. (3.31), one finds that
four of them are automatically satisfied. The remaining six
equations are given by

A(Flang - F269F1) = —n%z(l - Z) tan QaZFl + A80F2,
(3.34)

A(Flang — F289F1) = —l’l%Z(l - Z) COtHaZFz - AagFl,
(3.35)
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A(F]ang - angF]) = m212 sin @ cos Qaz(F] =+ Fz),

(3.36)
2 tan 6
A(F|0,F, — Fy0.F,) = %ﬂagﬂ FADF,,  (337)
z
2coth
A(Flaze—anzFl) :%&ang—AazFl, (338)
z
2sinfHcos O
A(F]aze - anZFl) — —%%59(1‘7] + Fz),
(3.39)
where we have denoted
A =212 ninym. (3.40)
a

The structure of the equations (3.34)—(3.39) is more
complex than that of Eq. (3.15), and we have to analyze
them more carefully. Subtracting Eq. (3.35) from Eq. (3.34)
and then combining with Eq. (3.39) (multiplied by A), one
gets

2 m’ 2ein? 2 m* 22
A FQ—TZ’%SIH 0|0.F, = |N°F, = ancos 0|0.F,.
(3.41)

Now, subtracting Eq. (3.38) from Eq. (3.37) and then
combining with Eq. (3.36) (multiplied by A), one gets

2 m’ 2ein? 2 m* 22
A FZ_TZnISIH 2] aHFlz A Fl—TZI’IZCOS 0 89F2.

(3.42)
Equations (3.41) and (3.42) imply that
m m2
{AQFI - 4zn%cos29] [Aze - 4zn%sin29}
X [0.F\0pF — 0.F20yF,] = 0. (3.43)

If we impose 0,F0yF, — 0.F,0¢F; = 0, then it follows
that the density of topological charge vanishes [see
Eq. (3.20)], and so the solution will be topologically trivial.
Therefore, we have to take

m’z m?z

1= ancoszﬁ, F2 = Wn%sinzﬁ. (344)
But Eq. (3.44) implies that both F| and F, have the same z
dependence, and so it follows that F10,F, — F,0.F; = 0.
But from Eq. (3.39) that implies that dy(F; 4+ F,) = 0, and
consequently [using Eq. (3.44)] one has that

A? = pR e [n3sin?0 + nicos?d] (3.45)
for some function 7(z). Therefore,
njcos’6
F, = 2 2 ,
1 =) n3sin®0 + nicos*¢
2q; 29
Fy = n(zf = (3.46)

nisin®6 + njcos’6’

Subtracting Eq. (3.35) from Eq. (3.34) and using the
relations above, one gets an equation that can only be
satisfied if n = n? = n. Now, we multiply Eq. (3.34) by
cos? @, add it to Eq. (3.35) multiplied by sin® 6, and subtract
that from Eq. (3.36) to get

O m*2 +n*z(1-2)| =2°A=0. (3.47)
Subtracting Eq. (3.37) from Eq. (3.38), one gets
2zA0.n* — n’n? = 0. (3.48)

Multiplying Eq. (3.48) by 2A and subtracting Eq. (3.47)
(multiplied by n?), one gets

0P AN? —n?(m*z +n?(1-2))] =0. (3.49)
If we take 7 to be constant, then F'; and F, do not depend
on z, and so 0,F0gF, — 0,F,05F | = 0, which means that
the density of topological charge vanishes [see Eq. (3.20)]
and we do not want that because the solutions would be
topologically trivial. We then have to take A?> = n?(m?z +
n*(1 — z))/4. But to make this compatible with Eq. (3.45),
we need to take > = m*z/[m?z + n(1 — z)]. But inserting

that into Eq. (3.48), with A = £|n|\/m*z +n*(1 —z)/2,
one gets that we need |n| = ++/m?z + n*(1 — z). The only

possible solution is m*> = n* and to take A to be positive,

and thus from Eq. (3.40) one gets the restriction

sign(4) = sign(n), (3.50)
where we have denoted
n? =n3=m?=n (3.51)

Summarizing, the self-dual solutions are

1
Fy = zcos’0, Fy =zsin’0,  f = \ m%

(3.52)

Note that the solutions (3.52) for F'; and F', are the same as

the solutions (3.17) for the cases where m? = n? = n3.
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Consequently, the solutions for the fields Z,, and thus for
the vector A; and tensor H;;, are the same for the type II
theory (3.33) as for the type I theory (3.4) for the cases

m? = n? = n3. The solutions for the functions f; and f;;,

however, are different even if m? = n7 = n3. Since the
topological charge density does not depend on the func-
tions f; and f;;, it is the same for those two classes of
solutions of these two types of theories. Therefore, the

topological charge for the solutions (3.52) is given by
Qs = sign(mmnny)|n|?, (3.53)

where the sign of the charge comes from the choice of
relative signs between n and the integers n;, n,, and m
in Eq. (3.51).

The energy densities of these solutions are also the same
due to their self-dual character. Indeed, from Eqgs. (3.3) and
(3.4) one obtains that for self-dual solutions one has

~ [ dxf7Az?. Similarly, from Egs. (3.31) and (3.33)
one gets that Ej; ~ [ d°x i - H; for self-dual solutions. But

Eq. (3.3) implies f7A? ~8’fklmA,-ijHlm, and Eq. (3.31)

implies f—”H2-~e”klmA H i H,,. Consequently, for the

solutions (3.52), the topological charge density and energy
density are proportional and spherically symmetric, like the
solutions (3.17) for the cases where m?> = n? = n3 [see

e 1
N7

1
2N+1 2 £2 A2
_/d Tlx |:M INAT + m (8p|p2~--p2N+,Hp2p3Hp4p5 .

discussion below Eq. (3.29)]. In fact, we have that the
energy of the solutions (3.52) is given by

. (3.54)

IV. SOLUTIONS ON §2V+!1

For the case of self-dual models defined on RZV*!, with
generic values of N, there are many possibilities for the
splitting of the density of topological charge (1.6). We shall
consider only the case where the splitting is such that

N —
APl = MfNA P
N _
AP[ = ef P]Pz'“[)z/vﬂszmHmps -« HPavPaN+1L (4.])
and the self-duality equation is
Af%vApl = 8p1p2."p2N+]szp3Hp4ps oo HPPoN+1
with 1= +Me. (4.2)

Therefore, according to the reasoning explained in the
Introduction, solutions of Eq. (4.2) are solutions of the
Euler-Lagrange equations following from the static energy
functional given by

The corresponding action in the (2N + 2)-dimensional Minkowski space-time is

1 1
Sy [ @V [Mz £ -

The bound on the static energy is given by

1
EN = E/dZNJrlX |:MfNAp1 +

2e2f12v (8/40/’1/42"'/42N+1

— €&
P1P2 " Pan+1
efn

M
- 2N+1 D1 [ P2P3 [{PaDs . .. [JPanPaN+1
F p d xgplpz"'PzNHA H H H

S (47[)N+1M

= e |Q2N+l|,

where Q,y. | was given in Eq. (1.6). Clearly the bound is
saturated by solutions of the self-duality equations (4.2).

In order to construct solutions to the self-duality equa-
tions (4.2) we explore their symmetries. As discussed
below Eq. (1.8), the quantities A; and H;; are invariant
under the transformations Z — UZ, with U € U(N + 1),
and so Eq. (4.2) are invariant under such U(N + 1)
symmetry. On the other hand, as shown in Appendix A,

HPawPan+i )2] . (4.3)

HF2H3 FHaks . . . FH2NHN- )2] . (4.4)
HP2P3 [[PaPs . .. HPZNPZN+1:| ?

(4.5)

|

the self-duality equations (4.2) are invariant under the
conformal group SO(2N + 2,1). It turns out that both
UN+1) and SO(2N +2,1) have N +1 commuting
U(1) subgroups. For the case of U(N + 1) these subgroups
can be taken to form the Cartan subgroup of diagonal
matrices, i.e., U = diag(e'™, e, ...e"+1). For the con-
formal group SO(2N + 2, 1) we shall take these commut-
ing U(1) subgroups to be generated by N commuting
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spatial rotations plus a linear combination of a special
conformal transformation and a translation along the x_
axis, as follows (see Ref. [20] for details):

0y, = X9i_10y,, — X2i0y,, |, 1=1,2,...N,
x
9. =" ™ g
i#IN+1
1
+5z (az LY x%) Oys (46
i#2IN 1

a
X1 :;\/Ev I —y;cosg,

a
yi(1 =y;)cos s,

a
y1y2(1 = y3) cos @3,

a—1
a
X20-1 = ;\/E\/ 1=y, H VY3 COS Py,
p=1

N-1
a
XoN-1 = ;\/E H VYaCOS Py,
a=l1

where « is an arbitrary parameter with dimension of length.
We shall construct an ansatz that is invariant under the
diagonal action of the internal and external N + 1 commut-
ing U(1) subgroups, i.e., el ® 8%_, i=1,2,...N, and
e+ @ 9. The appropriate coordinates for such an
ansatz are a generalization of the toroidal coordinates to
R2¥*+! made of the angles ¢;, i = 1,2, ...N, and &, together
with coordinates z, 0 <z <1, and y,, a=1,2,...N — 1,
with 0 <y, <1, where the Cartesian coordinates are

written as follows:

a .
X2 :;\/Z\/ 1 —y;sing,

yi(1=y,)sing,,

y1y2(1 = y3) sin g3,

a—1
a .
X2q = ;\/E\/ 1 _yaH\/yﬁSHl(pm
B=1

N-1
a .
XoN = P vz H VYa SIIPy,
a=1

X2N+1 = — 1 - ZSiH (S, (47)
with z € [0, 1], y, € [0,1], and &, ; € [0, 27], with @ = 1,2,...N =1, i = 1,2,...N, and where we have introduced
p=1—-+v1—-zcosé. (4.8)
The metric in R**! is given by
ds> = h2dz* + Z n2 dy + Z h2,dg? + h2dZ, (4.9)
where the scaling factors are
1 H a
- — S e LyY he=2VT=2,
P2y/z(1-72) ya(l_ya) p
a—1
a
h%:;ﬁ\/l—yaﬂ\/y—, hyy = \fHJyT,, (4.10)
p=1

witha=1,2,..N — 1.

The ansatz that is invariant under the diagonal action of U(1)’s internal and external commuting subgroups (described

above) is given by

Z= | VFi(2.4)eM?, \/Fy(2,y,) €™, ...,

(2, q)€™, (4.11)
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where n; and m are integers. Inserting the ansatz (4.11) into the quantities A; and H;

obtains that

ij» introduced in Egs. (1.7) and (1.8), one

N
A=A, =0, A= —m<1 - ZFk> A, = -nF;, (4.12)
k=1
and
H,.=n0.F; H,,, =n0, F; Hy,, =H,:=H, =H,, = 0,
N N
H& = —mZ@ZFk, H{:y” = —mZ@aFk. (413)
k=1 k=1

Therefore, from Eq. (4.12) one observes that the lhs of the
self-duality equations (4.2) will be nonzero only when the
index p; corresponds to one of the variables in the set of
N + 1 variables (¢;,£). On the other hand, the rhs of
Eq. (4.2) contains the product of N components of the
tensor H;;, and so if p; does not belong to the set (¢;, &),
the set of indices p,ps...poy,1 Will contain all the indices
of that set, and so at least one of the components of the
tensor H;; in that product will have its two indices in the set
(@i, £), and so it vanishes. Therefore, both sides of Eq. (4.2)
vanish when the index p; does not belong to the set (¢;, &).
It turns out that when the index p; belongs to the set
(pi, &), the rths of Eq. (4.2) will be proportional to
Epiriryryzyy oy HCH™ L H™YN-1with the indices r;
taking values in the set (¢;, &), but different from p,. But
that is proportional to the determinant of the N x N matrix
0,F ;, with the index i belonging to the set of N variables
(z,y4)- Consequently, the self-duality equations (4.2) re-
duce to a set of N + 1 equations where their left-hand sides
are linear in the functions F;, and do not involve their
derivatives. On the other hand, their right-hand sides are
all proportional to the determinant of the matrix 0;F;.
Choosing the sign of the £ symbol such that

1
heh,, ...h, hohy . by

5yt YN-1

85’/’1---(/’NZ)’1-~.VN4 —

(4.14)

one then gets that the self-duality equations (4.2) imply the
following relations:

n%fl _ nﬁfz - nzzszN _ m_zz (1 _ ZN:Fk>
h(Pl h(Pz h(/’N hé’ k=1
(—1)N<N—1)/22NN' < ﬁ ) det (OF)
= — m nk S ]
hehy, ...hy hohy by e A ]2\,

(4.15)

where

det (8F) = 8,112 lNa ,Fil 8y1Fi28y2Fi3 .. .8),N71 FiN’ (416)

|

with €153y = 1. We are interested in those cases where all
of the integers m and n;, i = 1,2, ...N are nonzero since
otherwise (as we show below) the topological charge
vanishes. Then, in such cases one can easily solve these
algebraic equations to get the F;’s as

Fo— /” E’Q/"%
! h2/m —I-EN h2 A
Ke Kj
WJFZ;, 2,...N, (4.17)
j=1"J
with
l—Z N—1 a—1
Ke =—» KN_Hyon Ka:(l_ya)Hyﬂ’
z a=1 p=1
a=1,2,..N—1 (4.18)

Therefore we have that 0,F; = —F), »(C)“—A and 0, F; =

(91(

—F 222 where 9.A =-1/7’m 2 Consequently,
Eq. (4.16) becomes
det M
det(OF) = AN 2 N » n2, (4.19)

where the matrix M has the entries M;; =«; and

M;; =0, k; for i>2, and so detM =g¢g;; ; k;X
0y k;,0,,k,...0y _ k; . We now introduce the quantities
N a a
EZ ’ laEZszl_Hyﬁ’
J=1 J=1 p=1
=1,2,..N-1. (4.20)

Consider a matrix A with entries A;; =1 for i < j, and
Ajj =0 for i > j, and so det A = 1. Therefore, the matrix
N = MA has entries Ny; =1; and N;; = 0, 1; for i > 2,

Yi-1"J
and so detM =detN =g 8 1,0y, 1.0y 1; .

iiy...iy ll Y1l Y23t YN-1
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Since 1y = 1, the only possibility for i; in this expression is
iy = N, and since only 1_; depends on yy_1, it follows that
the only possibility for iy is iy = N — 1. It then follows
that the only possibility for iy_; isiy_; = N — 2, and so on.
Therefore,

detM = 8N12...N—18y1118y212' . '8_\)/\/,1 InN—1

= Y7 RN (4.21)
and so
N-2  [N—p-1
det (9F) = L= (4.22)

IANTL2TIN  2°
AN m? [T ng

From Eqgs. (4.15) and (4.22) one can determine f as

2  N—p-1
p) hehy, ...h, hohy . hy AN Am H?’Zl n;
(4.23)
Since f is real, one needs
N
sign [xlm Hn]] = —(=1)NWN=D)/2, (4.24)
j=1
Using Eq. (4.10) one gets that hzh,, ...h, h.hy ...h, =
(92N S yN 29N 3 yya, and so
p\ V-1 22NN
fn= <_) . (4.25)
N a NAN am T nyl

Let us now evaluate the topological charge O,y given
in Eq. (1.6). Due to the self-duality equations (4.2), one can
write it as

24

Oonil = /d2N+1xQ2N+1v QN1 = szsz%-

(4.26)

Using the solutions given in Egs. (4.12) and (4.17), one
gets that

Az XA p\? 1
A=\ (—) —. (4.27)
Tt o) @
Therefore, the density of topological charge is given by
sign(A)22NVFINT - /p\ 2N+l 1
Qong1 = A7)V N - NFIANTT®
(4x)"Hm [ T2y nyl \a z

(4.28)

On the other hand, the volume element is

PN a 2N+1 ZN-1
p 2N

N-2,,N-3

Xyl y2 ---yN—2d§d§01--'d(PNdZdyl---dYN—l-

(4.29)

Integrating in the angles & and ¢;, i =1,2,...N, one
gets that

sign(4)N! N v
=——" [ dzdy,...dyy.|—F——F——
Q2N+l | ;\]:1 n]| < yl yN 1 ZZAN+1

(4.30)

Using the results of Appendix B [see Eq. (B8)] one gets that

N
Qo1 = sign(4)|m H nj| = _(_I)N(N_l)/zm H nj,
=1

where we have used Eq. (4.24).

V. CONCLUSIONS

In this paper, we have introduced Skyrme-type models in
(2N + 2)-dimensional Minkowski space-time with the
target space being the spheres S>¥*!. The models do not
have a gauge symmetry, and consequently in order to
have finite-energy static solutions the fields must go to
a constant at spatial infinity. Therefore, as long as topo-
logical considerations are concerned, the space submani-
fold R*¥*! can be compactified into S3)L!, and the static
solutions define maps SVl — SElt!. The topological
charge (winding number) associated to such maps has an
integral representation, and therefore can be used to
construct field theories with self-dual sectors as explained
in the Introduction. We have used the freedom described in
Eq. (1.5) to introduce an extra functional f that makes the
theories conformally invariant in the space submanifold
R2N+1, Using the methods of Ref. [20], we used the con-
formal group SO(2N +2,1) and the target-space sym-
metry group U(N + 1) to construct a static ansatz based on
a generalization of the toroidal coordinates to a space of
(2N + 1) dimensions. The ansatz was then used to obtain
an infinite number of solutions of the self-duality equations
carrying nontrivial topological charges. Our construction
generalizes the results obtained in Ref. [8] for the three-
dimensional case (N = 1). As shown in Refs. [7,8] the
three-dimensional models do not present finite-energy
solutions when the functional f is constant. This is a
consequence of a theorem due to Chandrasekhar in the
context of plasma and solar physics [22]. We believe the
same happens for the models in (2N + 1) dimensions
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considered in this paper, and it would be interesting to
generalize that theorem in a more general context.

As explained in the text, the number of possible ways
to split the density of the topological charge grows
substantially as N increases. Each one of these possibil-
ities leads to a new model. For the five-dimensional case
(N = 2) we have considered in detail the two possible
models and constructed the topological self-dual
Skyrmions for them. For the higher-dimensional cases
(N > 2), we considered only one possibility correspond-
ing to the case where the self-duality equations impose
the vector A; [defined in Eq. (1.7)] multiplied by the
functional f%, to be proportional to the Hodge dual of the
exterior product of N tensors H;; [defined in Eq. (1.8)].
This case is physically more interesting because the
corresponding theory has a kinetic term quadratic in
space-time derivatives of the fields. In addition, it does
present restrictions on the possible values of the topo-
logical charges of the solutions.

The introduction of the functionals f in the splitting of
the topological charges has lead to the conformal sym-
metry of the models in the space submanifold, and made
possible the existence of finite-energy self-dual solutions
of nontrivial topological charges. As we mentioned above,
we believe that there cannot exist finite-energy solutions
for such theories when these functionals are constants.
Despite the important role played by such functionals,
their physical nature is not well understood yet, and
further studies are necessary to understand them. In
addition, it would be interesting to investigate the break-
ing of the conformal symmetry and its effects on the
soliton solutions.

ACKNOWLEDGMENTS

The authors are very grateful to Nobuyuki Sawado and
Kouichi Toda for many helpful discussions. Y. A. would
like to thank the kind hospitality at the Instituto de Fisica de

|

of
lfz 27wi,i2...i2p+,

Eili2--~i2p+ljlj2-~-j2(N—p)

- ai,é’kwkiz.“izpﬂ - aizficvvillc..jz,,+I

Sao Carlos. His stay in Brazil is supported by a PhD grant
funded by Tokyo University of Science. L. A. F. is partially
supported by Conselho Nacional de Desenvolvimento
Cientifico e Tecndlogico, CNPqg-Brazil, under the
Contract No. 308317/2014-9.

APPENDIX A: CONFORMAL SYMMETRY OF
THE BPS EQUATIONS

In this appendix, we prove that the BPS equations are
invariant under the conformal group on R?*M*!. Let us
consider infinitesimal coordinate transformations dx; = {;,
i=1,2,..2N+1. We take the vector of complex
fields Z,, a =1,2,...N + 1 [introduced in Eq. (1.7)] as
scalar fields under such space transformations. Therefore,
one has [20]
0Z =0,

0A; = =0,(;A;, OH;;j = —0iC;Hy; — 0,8 Hy.

(A1)

The splitting of the topological charge (1.6) [see
Eq. (1.1)] leads to self-duality equations of the form
Af*w = ¥, where w and v are differential forms constructed
out of the vector and tensor fields A; and H;; [introduced in
Egs. (1.7) and (1.8)]. One has that w is a (2p + 1)-form
as w=AANHAH...ANH (with p H’s) and v is a
2(N—p)form as v=HAH... NH [with (N-p)
H’s]. In addition, ¢ is the Hodge dual of ». In components,
the self-duality equations read

1

i dopi 2(N—p)! Ui bapp1JiJ2--J2(N=p) ~J1J2+--J2(N=p)’

(A2)

Af?w

with 1 = £Me [see Eq. (4.2)]. Using Eq. (A1), one then
gets that the self-duality equations (A2) transform as

- 3i2,,+leWi,i2...k

= - (0,80 T 058kt + Oy V) k]

2(N - p)!

Sili2"'i2p+ljlj2“'j2(pr) 9.

[2(N _ p) _ 1]! ],é’kvka...jz(N,,,)

eiliZ'"i2p+ljlj2"‘j2(N—p)£l]12'“12p+1kj2“'j2(N—p) /1f25‘

2(N-p)—=1]12p+1)!

(A3)

Jlgkwlllz--»12p+1 ’

where in the last equality we have used the Hodge dual of Eq. (A2). Therefore, in order for the self-duality equations to be

invariant one needs that

of
{27 =+ aka] Witiy..ingy — (0:,Ck + Ok, )Wkiz...izpﬂ‘” - (aizl,HCk + 8kCi2p+1)Wiliz...k =0.

Such a relation holds true if the space transformations are conformal, i.e., if the functions {; satisfy
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0i¢; + 0;¢; = 2Dg;; (Ad)
for some function D, and if the transformation of the
function f satisfies
of = [4p 2N + 1]Df. (A5)
As was shown in Ref. [20], the equations in Eq. (A4) are
actually the equations that define the conformal trans-
formations. Indeed, if D is a linear function of x;, {;
corresponds to the special conformal transformations; if D
is a constant, then {; leads to the dilatations; and if D = 0,
then {; defines the translations and rotations.
In addition, one can check that

8(d®V*1x) = (2N + 1)Dd?V+1x, (A6)
5(f2w?) = —(2N + 1)Dfw2, (A7)
5(f2?) = —(2N + 1)Df 22 (A8)
s(wd) = —(2N + 1)Dwi. (A9)

Therefore, the topological charge Q ~ [ d*V*xw and the
static energy given by E ~ [ d®V 1 x[M? f2w? + fz] (with

A = *+Me) are invariant under the conformal transforma-
tions in R2V+1,

Note that the functions f|, f;, and fy, introduced in
Egs. (2.2), (3.2), and (4.1) respectively, correspond to the
cases p=0and N =1, N =2, and N = N respectively.
The function f;, introduced in Eq. (3.30), corresponds to
the case p = 1 and N = 2. Therefore, from Eq. (AS5), one
has that such functions transform under the conformal
group as

o/ __D 8 _ 3, ¥u_D

fi 2’ S 27 fu 27

sy @N-1)

———=—-—-——"2D. Al10

APPENDIX B: THE TOPOLOGICAL
CHARGE INTEGRAL

In this appendix we evaluate the integral appearing in
Eq. (4.30) for the topological charge. In fact, instead of
evaluating it directly we find a recursive relation for such
integrals. We start with the first one, corresponding to the
case N = 1 and given by

ldz 1 5

Li(mn)= | ——=m?n?, with
0 ZzA%I)
I1-z 1
Ay =—2q - (B1)
W= om? " 02

The second integral is

ld 1 1
Iz(m,nl,nz)z/ —22/ dy1—3, with
0 ZJo T AR
Am=Fy oy (B2)
@~ m? n? ni’

The quantity A(;) in the denominator is linear in y,
and so the y; integration can be easily performed

to give
1 n?n
L(m.ny.ny) = =5 [I}(m.ny) = I, (m, ny)]
2 (nf = n3)
1
imznzn% (B3)

We now consider the integral appearing in Eq. (4.30) for
N > 3, which is given by

ldz
/) /dyl /dle

Y23
C YN

N+1 ’
A(N)

Iy(m,ny,ny....n
(B4)

where Ay is the same as A defined in Eq. (4.17), which
we write here as

Ay = Aoy + byyn-1s (BS)
with
_1-: N=2 N-2
j
Av- ) + 2+ 2 Yp»

LT RLY S Wt

by = [_2_—2 } [T (B6)
ny Ny

where «; is defined in Eq. (4.18). Again, Ay, is linear
in yy_; and the yy_; integration leads to the recursion
relation

1 (ny—1 — %)
7 2

IN(m,I’lI,I’lz..., N
y—1"N

ny) =

X [Iy_y(m,ny,ny....,ny_p,ny_y)
nN—ZvnN)]'

(B7)

—Iy_1(m,ny,n,...,

Using such a recursion relation, one gets that

Iy(m,ni,ny....ny) = N'mznzn% .n%.  (B8)
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