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We discuss the quantization of linearized gravity in the background de Sitter spacetime using a gauge-
invariant formalism to write the perturbed gravitational field in the static patch. This field is quantized after
fixing the gauge completely. The response rate of this field to monochromatic multipole sources is then
computed in the thermal equilibrium state with the well-known Gibbons-Hawking temperature. We
compare this response rate with the one obtained in the Bunch-Davies-like vacuum state defined in the
Poincaré patch. These response rates are found to be the same as expected. This agreement serves as a
verification of the infrared finite graviton two-point function in the static patch of de Sitter spacetime found
previously.
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I. INTRODUCTION

Physics in de Sitter spacetime is an interesting subject in
its own right but it has increased its importance because the
Universe’s early stage of expansion is believed to have
happened in a de Sitter-like phase [1–5]. Moreover, the
accelerated expansion of our Universe [6] means that de
Sitter spacetime is likely to approximate its late stages of
evolution as well.
It is well known that the graviton two-point function

is divergent in the infrared (IR) in the synchronous-
transverse-traceless gauge in the Poincaré patch, or the
spatially-flat patch, of de Sitter spacetime [7]. These
divergences arise because the graviton mode functions
reduce to those of the massless minimally coupled scalar
field that suffers from IR divergences [8]. In fact it is known
that there is no Hadamard state invariant under the de Sitter
group for massless minimally-coupled scalar field in de
Sitter spacetime [9]. It has been claimed that there is no de
Sitter-invariant vacuum state for linearized gravity because
of these and other IR divergences [see, e.g., Refs. [10–14]].
However, since the gravitational field is a gauge field unlike
the scalar field, it is possible that these IR divergences can
be a gauge artifact.
Indeed it has been shown that the IR-divergent part of the

graviton two-point function mentioned above can be
expressed in a pure-gauge form [15–17]. More recently,
it was shown that the graviton mode functions can be
modified by large gauge transformations corresponding to

global shear transformations to make the two-point func-
tion IR finite and, hence, de Sitter invariant [18]. Some
authors object by asserting that a large gauge transforma-
tion, which by definition affects spatial infinity, would
change physics [19,20]. However, as pointed out in
Ref [18], a large gauge transformation is equivalent to a
local one as long as one is interested only in local physics.
It is also interesting to point out that the graviton two-

point function constructed in the hyperbolic patch [21],
global patch [22], and static patch [23,24] are all IR finite.
These IR-finite two-point functions are consistent with the
fact that the IR divergences in the two-point function
constructed in the Poincaré patch can be gauged away
by (large) gauge transformations.
Now, the Bunch-Davies, or Euclidean, vacuum state

[25–27] is a thermal state of temperature H=2π, where
H is the Hubble constant for the de Sitter expansion,
with respect to the energy corresponding to the time
translation in the static patch [28]. This fact, which we
call the Gibbons-Hawking effect, is closely related to the
Hawking radiation [29] and the Unruh effect [30,31].
Strictly speaking, the Gibbons-Hawking effect has not
been shown for the graviton field, but the two-point
function of Refs. [23,24] was found assuming this effect.
That is, this two-point function is for the thermal state of
gravitons with temperature H=2π in the static patch of de
Sitter spacetime.
In this paper we verify that the Bunch-Davies-like state

for the graviton field in the Poincaré patch of de Sitter
spacetime, which has an IR-divergent two-point function, is
indeed the thermal equilibrium state with temperature
H=2π in the static patch, which has an IR-finite two-point
function. We do so by showing that a conserved multipole
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point source responds to the graviton field in the Bunch-
Davies-like state as if it was placed in a thermal bath of
temperatureH=2π with respect to the energy corresponding
to the time translation in the static patch. Similar calcu-
lations have been done for the scalar and vector fields in
Ref. [32]. Similar comparisons between response rates of
sources in Schwarzschild spacetime have also been made in
the context of the Hawking and Unruh effects in
Refs. [33–36].
The rest of the paper is organized as follows. In Sec. II

we describe the linearized gravitational field (gravitational
perturbations) in (3þ 1)-dimensional de Sitter spacetime
and present the mode functions for these perturbations
in spherical polar coordinates in the Poincaré patch. In
Sec. III, we describe our method of quantization of the
gravitation field and determine the normalization constants
for the modes found in Sec. II such that the annihilation
and creation operators satisfy the standard commutation
relations. We also review the quantization of the linearized
gravitational field in the static patch presented in
Refs. [23,24]. In Sec. IV we verify the Gibbons-
Hawking effect for the gravitational field by comparing
the response rates to a conserved multipole source in the
Bunch-Davies-like state in the Poincaré patch and in the
thermal equilibrium with temperature H=2π in the static
patch. We conclude this paper with some remarks in Sec. V.
In the Appendix we present a derivation of the expansion of
the gravitational plane wave in terms of the modes in
spherical polar coordinates. Throughout this paper we use
the metric signature −þþþ and natural units such that
G ¼ c ¼ ℏ ¼ kB ¼ 1.

II. GRAVITATIONAL PERTURBATIONS IN THE
POINCARÉ PATCH OF DE SITTER SPACETIME

A. Background de Sitter spacetime

The line element covering the expanding half of de Sitter
spacetime (Poincaré patch) is given by:

ds2 ¼ −dτ2 þ e2Hτðdρ2 þ ρ2dΩ2
2Þ; ð1Þ

where

dΩ2
2 ¼ γijdx̂idx̂j ¼ dθ2 þ sin2θdϕ2 ð2Þ

is the line element on the unit 2-sphere. We reserve the
letters from the Latin alphabet starting from i; j; k;… to
denote angular components. The (metric compatible)
covariant derivative on the 2-sphere is denoted by D̂i.
We also indicate any quantity on the 2-sphere with a hat
over it. The line element which describes the static patch of
de Sitter spacetime reads

ds2 ¼ −ð1 −H2r2Þdt2 þ dr2

1 −H2r2
þ r2dΩ2

2; ð3Þ

where the coordinates t and r are given in terms of the
coordinates τ and ρ as follows:

r ¼ ρeHτ; ð4Þ

t ¼ τ −
1

2H
ln ð1 − ρ2e2HτÞ: ð5Þ

The Hubble constant H is related to the cosmological
constant Λ by Λ ¼ 3H2.

B. Linearized gravity in the Poincaré patch
of de Sitter spacetime

The Einstein-Hilbert action with a cosmological constant
term is given by

SEH ¼ 1

16πG

Z ffiffiffiffiffiffi
−g̃

p
ðR̃ − 2ΛÞd4x: ð6Þ

The action for gravitational perturbations in a background
spacetime (or linearized gravity) can be obtained by
expanding the action SEH about a background metric,
i.e., by writing g̃μν ¼ gμν þ

ffiffiffiffiffiffiffiffiffiffiffi
32πG

p
hμν, and retaining only

terms of second order in hμν.
1 In our case, the background

metric gμν is the de Sitter metric and we obtain the
following quadratic Lagrangian:

L ¼ ffiffiffiffiffiffi
−g

p �
∇μhμλ∇νhνλ −

1

2
∇λhμν∇λhμν

þ 1

2
ð∇μh − 2∇νhμνÞ∇μh −H2

�
hμνhμν þ

h2

2

��
; ð7Þ

where h ¼ gμνhμν. The resulting Euler-Lagrange field
equation is

hμν − 2∇ðμj∇λhλjνÞ þ gμν∇λ∇σhλσ

þ∇μ∇νh − gμν□h − 2H2

�
hμν þ

1

2
gμνh

�
¼ 0: ð8Þ

Due to the general coordinate invariance of the full
Einstein-Hilbert action, the linearized theory is invariant
under the gauge transformation

hμν → h0μν ¼ hμν þ∇μξν þ∇νξμ; ð9Þ

provided that the background spacetime is a vacuum
solution to the Einstein’s field equation with a cosmological
constant [37]. We can choose a gauge such that
h ¼ ∇μhμν ¼ 0, which greatly simplifies the equation of
motion to

1The zeroth order term is the Einstein-Hilbert action for the
background solution and the linear term is a total derivative.
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ð□ − 2H2Þhμν ¼ 0: ð10Þ

(See, e.g., Ref. [38] for justification of this gauge.) We shall
find the solutions to Eq. (10) in the Poincaré patch in
spherical polar coordinates. Thus, we expand the field hμν
in terms of harmonic tensors, following Refs. [39,40]. In
3þ 1 dimensions, there will be metric perturbations (i) of
the scalar type, for which the angular dependence comes
from the scalar spherical harmonics and their covariant
derivatives, and (ii) of the vector type, with angular
dependence described by vector spherical harmonics and
their covariant derivatives. Additionally, there are pertur-
bations of the so-called tensor type, with angular depend-
ence described by rank 2 tensor spherical harmonics in
higher dimensions. However, as is well known, there are no
rank 2 tensor spherical harmonics on the 2-sphere [41], and
hence we do not need to consider them here. The scalar
spherical harmonics and their derivatives are orthogonal to
the vector spherical harmonics and their derivatives with
respect to the integration on the unit 2-sphere.
In the Poincaré patch, it is convenient to make an

additional gauge choice in which hμτ ¼ 0. This set of
gauge conditions is called the synchronous-transverse-
traceless (STT) gauge. (This gauge choice is possible
because the hμτ component comes from transverse-traceless
solutions to Eq. (10) of the pure-gauge form hμν ¼
∇μξν þ∇νξμ.)
It follows that the nonvanishing positive-frequency2

components of the scalar-type perturbations, satisfying
the gauge constraints, read

hðS;klmÞ
ρρ ¼ Akl

S

ρ2
Φklðτ; ρÞSðlmÞ; ð11Þ

hðS;klmÞ
ρi ¼ −

Akl
S S

ðlmÞ
i

kS

� ∂
∂ρþ

1

ρ

�
Φklðτ; ρÞ; ð12Þ

hðS;klmÞ
ij ¼ Akl

S S
ðlmÞ
ij Ψklðτ; ρÞ − Akl

S

2
γijΦklðτ; ρÞSðlmÞ; ð13Þ

where SðlmÞ ¼ SðlmÞðθ;ϕÞ are the scalar spherical harmon-
ics, which satisfy

½D̂iD̂
i þ k2S�SðlmÞðθ;ϕÞ ¼ 0: ð14Þ

The eigenvalues k2S are

k2S ¼ lðlþ 1Þ; l ¼ 0; 1; 2;… ð15Þ

Solutions to Eq. (14) are given by

SðlmÞðθ;ϕÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2lþ 1Þ

4π

ðl − jmjÞ!
ðlþ jmjÞ!

s
Pjmj
l ðcos θÞeimϕ: ð16Þ

The tensors SðlmÞ
i ðθ;ϕÞ and SðlmÞ

ij ðθ;ϕÞ are given by

SðlmÞ
i ðθ;ϕÞ ¼ −

D̂iSðlmÞðθ;ϕÞ
kS

ð17Þ

and

SðlmÞ
ij ðθ;ϕÞ ¼

�
D̂iD̂j

k2S
þ 1

2
γij

�
SðlmÞðθ;ϕÞ: ð18Þ

The field Φklðτ; ρÞ is a master variable and Ψklðτ; ρÞ reads

Ψkl ¼ 2ρ2

ðl − 1Þðlþ 2Þ
� ∂2

∂ρ2 þ
3

ρ

∂
∂ρ −

ðl − 1Þðlþ 2Þ
2ρ2

�
Φkl:

ð19Þ

The normalization constants Akl
S will be determined later.

It is not possible to find hμν satisfying the STT gauge
conditions in this form if l ¼ 0 or 1. There are solutions
with l ¼ 0, 1 which are not in this form, but they are either
singular at the origin or of pure-gauge form. Thus, we only
need to consider the values of l larger than or equal to 2. To
emphasize this point we have outlined, in the Appendix, the
expansion of the gravitational plane wave in terms of the
modes in spherical polar coordinates, where only the modes
with l ≥ 2 are present.
The non-vanishing components of the vector-type metric

perturbations can be written as

hðV;klmÞ
ρi ¼ Akl

VΦklðτ; ρÞV ðlmÞ
i ; ð20Þ

hðV;klmÞ
ij ¼ −

2kVAkl
V ρ

2V ðlmÞ
ij

ðl − 1Þðlþ 2Þ
� ∂
∂ρþ

2

ρ

�
Φklðτ; ρÞ: ð21Þ

The vector spherical harmonics satisfy

ðD̂jD̂
j þ k2VÞV ðlmÞ

i ¼ 0; D̂iV ðlmÞ
i ¼ 0; ð22Þ

with

k2V ¼ lðlþ 1Þ − 1; l ¼ 1; 2; 3;…: ð23Þ

The tensor V ðlmÞ
ij is written as

V ðlmÞ
ij ¼ −

1

2kV
ðD̂iV j þ D̂jV iÞ: ð24Þ

On the unit 2-sphere, one can write solutions to Eq. (22) as2The meaning of “positive-frequency” will be clarified later.
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V ðlmÞ
i ðθ;ϕÞ ¼ ϵijffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

lðlþ 1Þp D̂jSðlmÞðθ;ϕÞ; ð25Þ

where ϵij is the Levi-Civita tensor on S2, defined by

ϵθθ ¼ ϵϕϕ ¼ 0; ð26Þ

ϵθϕ ¼ −ϵϕθ ¼ sin θ: ð27Þ

As in the scalar-type case there are no solutions to the
gauge conditions of this form if l ¼ 1. (There are no vector
spherical harmonics for l ¼ 0 as can be seen from the
definition (25).) For the same reason as for the scalar-type
case, we only need to consider the case with l ≥ 2. The
normalization constants Akl

V will be chosen later.
For the scalar- and vector-type perturbations to solve the

equations of motion given by Eq. (10), the master variable
Φklðτ; ρÞ takes the following form (or its complex con-
jugate or a linear combination of the two):

Φklðτ; ρÞ ¼ ke
Hτ
2ffiffiffiffiffiffiffi

2H
p Hð1Þ

3
2

�
k
H
e−Hτ

�
jlðkρÞ; ð28Þ

where Hð1Þ
3
2

ð kH e−HτÞ is the Hankel’s function of the first

kind, jlðkρÞ is the spherical Bessel function of the first
kind, k is a positive constant, and the overall constant
factor has been chosen for later convenience. The time-
dependence of Φklðτ; ρÞ is the same as that for the plane-
wave modes.
We now give a criterion to specify positive-frequency

solutions in this setting. We require that Φkl for the
positive-frequency solutions of the gravitational perturba-
tions to satisfy

∂
∂τΦ

kl ≈ −ike−HτΦkl; ð29Þ

in the limit k → ∞. In other words, it should approach the
positive-frequency solution in flat spacetime in the short
wavelength limit3 Note that Φkl given in Eq. (28) satisfies
this requirement. Now, one of the de Sitter boosts,
τ → τ þ α, ρ → e−αρ, transforms the solution Φkl to
Φke−α;l. Thus, once we choose the solutions (28) as the
positive-frequency solutions for large k, we need to choose
them as such for arbitrary k to preserve the de Sitter
invariance of the set of positive-frequency solutions, which
leads to the de Sitter invariance of the vacuum state (see,
e.g., [16]). This choice of positive-frequency solutions
corresponds to the Bunch-Davies-like state, which is the
standard choice of the vacuum [42]. From now on, we also
set the Hubble constant to unity, i.e., H ¼ 1.

III. QUANTIZATION OF METRIC
PERTURBATIONS

To quantize the field hμν, we follow a standard procedure
outlined, for example, in Refs. [23,43], which follow the
general framework given in Ref. [44]. We first define the
symplectic product between two solutions of the equations
of motion, given by Eq. (8), to be

Ωðh; h0Þ≡
Z
Σ
dΣnαðhμνp0αμν − pαμνh0μνÞ; ð30Þ

where Σ is a Cauchy surface of a given patch of the
spacetime with future-directed unit normal nα and pαμν is
the conjugate momentum current defined by

pαμν ≡ 1ffiffiffiffiffiffi−gp ∂L
∂ð∇αhμνÞ

: ð31Þ

This symplectic product is independent of the choice of the
Cauchy surface [45].
We choose the set of positive-frequency solutions given

in Sec. II, together with their complex conjugates, as a basis
for the solutions to the free field equations (8) in the STT
gauge. Then we define the inner product

hh; h0i ¼ −iΩðh̄; h0Þ; ð32Þ

where h̄μν is the complex conjugate of hμν. A positive- and
a negative-frequency solutions are mutually orthogonal
with respect to this inner product. Moreover, the inner
product (32) is positive definite on the space of positive-
frequency solutions. Note that, since the STT gauge fixes
the gauge completely, the symplectic product is nonde-

generate. In other words, there are no solutions hðnullÞμν in the
STT gauge satisfying ΩðhðnullÞ; hÞ ¼ 0, for all solutions
hμν. (In our case it can readily be verified that all such
solutions to Eq. (8) are pure-gauge solutions of the form
∇μξν þ∇νξμ.) Thus, we are considering only the space of
physical solutions, i.e., all gauge degrees of freedom are
eliminated, and the inner product (32) is positive definite in
the space of positive-frequency solutions.

A. Quantization in the Poincaré patch

The quantum field hμν (in the STT gauge) can be
expanded as

hμν ¼
X
P;l;m

Z
dk
h
aPlmðkÞhðP;klmÞ

μν þ aPlmðkÞ†hðP;klmÞ
μν

i
; ð33Þ

where the label P ¼ S, V stands for scalar-type or
vector-type perturbations, respectively, and the classical

solutions hðP;klmÞ
μν are the positive-frequency solutions given

by Eqs. (11)–(13), (20) and (21). The canonical equal-time
commutation relations are equivalent to

3Note that the proper wave number is given by ke−Hτ in this
case.
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½aPlmðkÞ; aP
0

l0m0 ðk0Þ†� ¼ δPP
0
δll

0
δmm0

δðk − k0Þ ð34Þ

and

½aPlmðkÞ; aP
0

l0m0 ðk0Þ� ¼ ½aPlmðkÞ†; aP
0

l0m0 ðk0Þ†� ¼ 0; ð35Þ
provided the complete set of positive-frequency solutions
are normalized with respect to the inner product (32), i.e., if

hhðP;klmÞ; hðP0;k0l0m0Þi ¼ δPP
0
δll

0
δmm0

δðk − k0Þ: ð36Þ
Then, the vacuum j0i, defined to be the state annihilated by
all aPlmðkÞ, is the standard Bunch-Davies-like state.
In the STT gauge, the conjugate momentum current is

simply pαμν ¼ −∇αhμν, so that the inner product can be
written as

hh; h0i ¼ −i
Z
Σ
dΣðh0μν∂τhμν − hμν∂τh0μνÞ; ð37Þ

where, in this case, Σ is a τ ¼ constant hypersurface. Using
Eq. (37) and the identities

Hð1Þ
ν ðxÞ∂xH

ð1Þ
ν ðxÞ − Hð1Þ

ν ðxÞ∂xH
ð1Þ
ν ðxÞ ¼ 4ieπImν

πx
ð38Þ

and Z
∞

0

dρρ2jlðkρÞjlðk0ρÞ ¼
2

πk2
δðk − k0Þ; ð39Þ

one can readily compute the normalization constants for

hðP;klmÞ
μν , with P ¼ S and V, defined by Eqs. (11)–(13), (20)

and (21), respectively. After some cumbersome but
straightforward computations, we obtain

Akl
V ¼ 1

k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl − 1Þðlþ 2Þ

2

r
ð40Þ

and

Akl
S ¼ 1

k2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl − 1Þlðlþ 1Þðlþ 2Þ

2

r
: ð41Þ

B. Quantization in the static patch

In Refs. [23,24], the quantization procedure outlined in
the previous subsection was used to quantize the metric
perturbations in the static patch of de Sitter spacetime. We
review it here for completeness.
One can write the nonvanishing components of the

(positive-frequency) scalar-type metric perturbations as

hðS;ωlmÞ
ab ¼ SðlmÞ

�
DaDb −

1

2
gab□

�
ðrψωl

S Þ; ð42Þ

hðS;ωlmÞ
ij ¼ r2

2
γijSðlmÞð□þ 2Þðrψωl

S Þ; ð43Þ

where ψωl
S is the master field for this case (see Ref. [23] for

the details). The first letters of the Latin alphabet
(a; b; c;…) are used to denote components in the orbit
spacetime spanned by the t and r coordinates, with metric

ds2orbit ¼ −ð1 − r2Þdt2 þ dr2

1 − r2
: ð44Þ

The derivative operator Da is the covariant derivative on
this spacetime. The positive-frequency vector-type pertur-
bations read

hðV;ωlmÞ
ai ¼ ϵabDbðrψωl

V ÞV ðlmÞ
i ; ð45Þ

with all other components vanishing, where ϵab is the Levi-
Civita tensor in the orbit spacetime.
The master fields ψωl

S and ψωl
V are given by

ψωl
P ðt; rÞ ¼ AP;ωl

statice
−iωtrlþ1ð1 − r2Þiω=2

× F

�
1

2
ðiωþ lþ 1Þ; 1

2
ðiωþ lþ 2Þ; lþ 3

2
; r2

�
;

ð46Þ

where AP;ωl
static are normalization constants. Since we are in

the static patch, the positive-frequency property is manifest
with the factor e−iωt. One then expands the quantum field in
the same manner as in Eq. (33). That is,

hμν¼
X
P;l;m

Z
dω

h
bPlmðωÞhðP;ωlmÞ

μν þbPlmðωÞ†hðP;ωlmÞ
μν

i
: ð47Þ

By normalizing the classical fields hðP;ωlmÞ
μν with respect to

the inner product (32), i.e., by letting

hhðP;ωlmÞ; hðP0;ω0l0m0Þi ¼ δPP
0
δll

0
δmm0

δðω − ω0Þ; ð48Þ
one obtains the usual commutation relations between the
operators bPlmðωÞ and bPlmðωÞ†, i.e.,

½bPlmðωÞ; bP
0

l0m0 ðω0Þ†� ¼ δPP
0
δll

0
δmm0

δðω − ω0Þ; ð49Þ
with all other commutators vanishing. The static vacuum
j0Si is defined by requiring that it should be annihilated by
all the annihilation operators bPlmðωÞ. By computing the
inner product (32) with the metric perturbations given in
Eqs. (42)–(43) and (45), the normalization constants are
determined as follows [23]:

jAS;ωl
staticj2 ¼

sinh πωjΓðiωþlþ2
2

ÞΓðiωþlþ1
2

Þj2
2π2ðl − 1Þlðlþ 1Þðlþ 2ÞjΓðlþ 3

2
Þj2 ð50Þ

and

jAV;ωl
staticj2 ¼

sinh πωjΓðiωþlþ1
2

ÞΓðiωþlþ2
2

Þj2
8π2ðl − 1Þðlþ 2ÞjΓðlþ 3

2
Þj2 : ð51Þ
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IV. RESPONSE RATE TO A MULTIPOLE
EXTERNAL SOURCE

A. Response rate in the Poincaré patch

Having obtained the normalized graviton modes, we
introduce a multipole source term that couples to the field
hμν in the Lagrangian density (7) as follows:

Lintffiffiffiffiffiffi−gp ¼
ffiffiffiffiffiffiffiffi
32π

p

2
TμνðxÞhμνðxÞ; ð52Þ

where Tμν is the energy-momentum tensor of the source.
We note that, since Tμν is a symmetric second rank tensor,
one can expand it in the same way as the metric perturba-
tions. Moreover, the coupling in the interaction term
implies that products of scalar- and vector-type parts vanish
when integrated on the whole spacetime. Thus, we can
consider separately each type of energy-momentum tensor
which couples to the same type of graviton modes.
Moreover, the energy-momentum tensor has to be con-
served in the background spacetime, in order for the
interaction Lagrangian given by Eq. (52) to be gauge
invariant. We construct the conserved scalar-type energy-
momentum tensor Tμν

ðS;ElmÞ with the condition that

Tτμ
ðS;ElmÞ ¼ 0. Then the conservation equation ∇μT

μν
ðS;ElmÞ ¼

0 leads to the following nonzero components:

Tρρ
ðS;ElmÞ ¼

jElS
ρ2

SðlmÞ; ð53Þ

Tiρ
ðS;ElmÞ ¼ −

1

kSρ2

� ∂
∂ρþ

1

ρ

�
jElS SiðlmÞ; ð54Þ

Tij
ðS;ElmÞ ¼ gElS SijðlmÞ −

γijjElS
2ρ4

SðlmÞ; ð55Þ

where

gElS ≡
�

2ρ−2

ðlþ 2Þðl − 1Þ
� ∂2

∂ρ2 þ
3

ρ

∂
∂ρ

�
−

1

ρ4

�
jElS : ð56Þ

The function jElS ðτ; ρÞ is arbitrary and we will choose its
form later.
The conserved vector-type energy-momentum tensor can

be found under the same condition Tτμ
ðV;ElmÞ ¼ 0 as

Tρi
ðV;ElmÞ ¼

jElV
ρ2

V iðlmÞ; ð57Þ

Tij
ðV;ElmÞ ¼ −

2kVgElV
ρ2

V ijðlmÞ; ð58Þ

with all other components vanishing, where

gElV ≡ 1

ðlþ 2Þðl − 1Þ
� ∂
∂ρþ

2

ρ

�
jElV : ð59Þ

Note that this energy-momentum tensor satisfies the con-

servation condition because the V ðlmÞ
ij are traceless. The

function jElV ðτ; ρÞ is arbitrary, as in the scalar-type case.
We now let

jElP ðτ; ρÞ ¼ lim
ρ0→0

λ
e−ðlþ5þnPÞτ

ðlþ 2Þ!
�
−

∂
∂ρ

�
lþ2

δðρ − ρ0ÞeiEτ;

ð60Þ
where nS ¼ 2, nV ¼ 1, and λ is a small coupling constant.
The number of ρ-derivatives has been chosen so that there
is a nonzero but finite response rate for given angular
momentum l. The exponential factor e−ðlþ5þnPÞτ has been
chosen so that the response rate does not vary with τ.
Let us now compute the response rate (probability of

emission/absorption per unit time) of the graviton field in
the vacuum to the multipole sources Tμν

ðP∶ElmÞ. If the initial
state is the vacuum, there is only the possibility of emission,
to lowest order in λ. Due to the form of the sources given by
Eqs. (53)–(55), in the scalar-type case, and by Eqs. (57)–
(58), in the vector-type case, the only nonvanishing
amplitudes (to lowest order in perturbation theory) are
the ones for the emission of a P-type graviton (when the
initial state is the vacuum j0i) with quantum numbers k, l,
and m. These amplitudes are given by

AP
klm ¼ ih0jaPlmðkÞ

Z
d4xLintj0i

¼ i
Z

dτ
Z

dρdΩ2e3τρ2h
ðP;klmÞ
μν Tμν

ðP;ElmÞ: ð61Þ

The response rate from the vacuum j0i is then [32]

RP;E
Poincaré ¼

Z
∞

0

dk
jAP

klmj2
T tot

; ð62Þ

where

T tot ¼ 2πδð0Þ ¼
Z

∞

−∞
dτ ð63Þ

is the total time as measured by the comoving observer
(cf. Refs. [34,35,46–48] and references therein). The source
is nonzero only at ρ ¼ 0. Therefore, we can use the
following expansion around ρ ¼ 0 for the master field:

ϕklðτ; ρÞ ≈
ffiffiffi
π

p
ke

τ
2Hð1Þ

3
2

ðke−τÞ
2

3
2Γðlþ 3

2
Þ

��
kρ
2

�
l

−
ðkρ
2
Þlþ2

ðlþ 3
2
Þ þ

ðkρ
2
Þlþ4

2ðlþ 3
2
Þðlþ 5

2
Þ
�
: ð64Þ

Using this expansion and Eq. (61), we find that the squared
transition amplitude, integrated over k, can be written as
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Z
dkjAP

klmj2 ¼
πλ2jknpAkl

P j−2
22lþ3jΓðlþ 3

2
Þj2

Z
dk
k

Z∞
−∞

dτ
Z∞
−∞

dτ0ðke−τÞlþnPþ3
2ðke−τ0 ÞlþnPþ3

2Hð1Þ
3
2

ðke−τÞHð1Þ
3
2

ðke−τ0 ÞeiEðτ−τ0Þ: ð65Þ

Note that the factor jknPAkl
P j−2 does not depend on k and,

hence, it can be moved outside the integral.4

Now, we make the following change of variables

T ¼ τ þ τ0

2
; ð66Þ

τr ¼ τ − τ0; ð67Þ

K ¼ ke−
τþτ0
2 ; ð68Þ

so that the integrand does not depend on T and the integral
over this variable can be factored out. It will be canceled by
the total time [see Eq. (63)] when we compute the response
rate. Thus, we find

RP;E
Poincaré ¼

πλ2jknpAkl
P j−2

22lþ3jΓðlþ 3
2
Þj2

Z
dK
K

Z
∞

−∞
dτrK2lþ2nPþ3

×Hð1Þ
nþ1
2

ðKe−τr=2ÞHð1Þ
nþ1
2

ðKeτr=2ÞeiEτr : ð69Þ

We perform a further change of variables given by

x ¼ Ke−τr=2; ð70Þ

y ¼ Keτr=2: ð71Þ

We thus obtain

RP;E
Poincaré ¼

πλ2jknpAkl
P j−2

22lþ3jΓðlþ 3
2
Þj2

×

				
Z∞
0

dxxlþnPþ1
2
þiEHð1Þ

3
2

ðxÞ
				
2

: ð72Þ

Using Eq. (A6) of Ref. [32], namely

Z
∞þiϵ

0

zμHð1Þ
ν ðzÞdz ¼ 2μ

π
exp

�
1

2
iðμ − νÞπ

�

× Γ
�
μþ νþ 1

2

�
Γ
�
μ − νþ 1

2

�
;

ð73Þ

for Reμ − jReνj þ 1 > 0, we find the following result:

RP;El
Poincaré ¼

λ2e−πEjΓðlþiEþnPþ3
2

ÞΓðlþiEþnP
2

Þj2
41−nPπjknpAkl

P j2jΓðlþ 3
2
Þj2 : ð74Þ

B. Response rate in the static patch

We now compare the response rate in the Poincaré patch,
Eq. (74), to the one obtained in the static patch from the
same source in thermal equilibrium with temperature 1=2π,
the Gibbons-Hawking temperature for de Sitter spacetime
(with H ¼ 1).
We first assume E > 0. ThenZ
d4x

ffiffiffiffiffiffi
−g

p
Tμν
ðS;ElmÞhμν ¼ 2πλðlþ 1 − iEÞðlþ 3 − iEÞ

× AS;ωl
staticb

S
l;−mðEÞ ð75Þ

andZ
d4x

ffiffiffiffiffiffi
−g

p
Tμν
ðV;ElmÞhμν ¼ 4πλðiE − l − 2Þ × AV;ωl

staticb
V
l;−mðEÞ:

ð76Þ
If the initial state is given by a one-particle state
bPl;−mðωÞ†j0Si, P ¼ S or V, in the static patch, we find
that the absorption probability per unit time is

PS;ωl;−m
static ¼ 2πλ2jlþ 1þ iEj2jlþ 3þ iEj2

× jAS;ωl
staticj2δðω − EÞ; ð77Þ

in the scalar-type case, and

PV;ωl;−m
static ¼ 2πλ2jlþ 2þ iEj2jAV;ωl

staticj2δðω − EÞ; ð78Þ
in the vector-type case. Hence, in the scalar-type case the
absorption rate in thermal equilibrium with temperature
1=2π is

RS;El
static ¼

Z
PS;ωl;−m

static
dω

e2πω − 1

¼ 8λ2e−πEjΓðlþiEþ5
2

ÞΓðlþiEþ2
2

Þj2
πðl − 1Þlðlþ 1Þðlþ 2ÞjΓðlþ 3

2
Þj2 ; ð79Þ

and the absorption rate in the vector-type case reads

RV;El
static ¼

2λ2e−πEjΓðlþiEþ4
2

ÞΓðlþiEþ1
2

Þj2
πðl − 1Þðlþ 2ÞjΓðlþ 3

2
Þj2 : ð80Þ

If E < 0, there is emission of a graviton by the source. The
emission probabilities per unit time are again given by

4The normalization factor squared, jAkl
P j2, appears in the

numerator, but a factor proportional to jAkl
P j4 appears in the

denominator. This explains the factor jAkl
P j−2 in Eq. (65).
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Eqs. (77) and (78) with the change E → jEj. However, in
this case, we have to take into account both spontaneous
and induced emissions. Hence, the emission rates are

RP;El
static ¼

Z
PP;ωl;−m

static dω

�
1

e2πω − 1
þ 1

�
: ð81Þ

Thus, we find that the emission rates are again given by
Eqs. (79) and (80) (without the change E → jEj). By
comparing these results with Eq. (74), where nS ¼ 2 and
nV ¼ 1, and where Akl

P , with P ¼ S and V, are given by
Eqs. (41) and (40), respectively, we findRP;El

static ¼ RP;El
Poinacaré

for both P ¼ S and V.
Thus, we have shown that the response rate of the

vacuum j0i to the conserved external multipole sources
Tμν
ðP;ElmÞ, P ¼ S, V, is identical to the response rate of the

heat bath with temperature 1=2π in the static patch.

V. CONCLUDING REMARKS

In this paper we verified the Gibbons-Hawking effect,
i.e., the fact that the standard vacuum state for quantum
field theory in de Sitter spacetime is a thermal equilibrium
state with temperature H=2π, where H is the Hubble
constant, for the gravitational perturbations. Although this
was an expected result, it is reassuring to verify it explicitly.
Strictly speaking, derivations of this and other related
effects in general spacetimes with bifurcate Killing hori-
zons [28,49,50] have been given only for nongauge fields.
It would be interesting to close this gap and find a general
derivation of this and other related effects applicable also to
gauge fields including perturbative gravity.
Our result also serves as a check of the IR-finite

graviton two-point function in the static patch found in
Refs. [23,24]. That is, we have verified explicitly that the
standard vacuum state for the gravitational pertubations in
the Poincaré patch, correponding to an IR-divergent two-
point function, and the thermal state in the static patch,
corresponding to an IR-finite two-point function, have the
same response to conserved external energy-momentum
sources. The conservation of the energy-momentum tensor
also ensures gauge invariance of the response rates. This is
an interesting first step for examining physics in de Sitter
spacetime using the static patch, where the IR properties of
the gravitational perturbations are better controlled. Since
there have been disagreement about the physical signifi-
cance of the IR divergences in the Poincaré patch, it would
be interesting to develop gravitational perturbation theory
in the static patch, now that the thermal state studied in
Refs. [23,24] has been shown to produce the correct
physics when probed by an external source.
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APPENDIX: EXPANSION OF THE
GRAVITATIONAL PLANE WAVE IN FLAT

SPACE IN TERMS OF THE MODES IN
SPHERICAL POLAR COORDINATES

In this Appendix we review the expansion of the
gravitational plane wave in spatially flat spacetime, includ-
ing the Poincaré patch of de Sitter spacetime, in terms of the
modes in spherical polar coordinates. This Appendix is
included in order to emphasize that only the modes with
l ≥ 2 are present in the expansion of the gravitational plane
waves in the Poincaré patch. We note that both the plane-
wave modes and the modes in spherical polar coordinates

have the time-dependence given by e
Hτ
2 Hð1Þ

3
2

ðke−Hτ=HÞ [see
Eq. (28)]. Hence, it is sufficient to consider the space-
dependence of the plane waves and the vector- and scalar-
type modes. Thus, we extract the space-dependent part of
the scalar-type modes given by Eqs. (11)–(13) as

HðS;klmÞ
ρρ ¼ Akl

S

ρ2
jlðkρÞSðlmÞ; ðA1Þ

HðS;klmÞ
ρi ¼ −

Akl
S S

ðlmÞ
i

kS

� ∂
∂ρþ

1

ρ

�
jlðkρÞ; ðA2Þ

HðS;klmÞ
ij ¼ Akl

S S
ðlmÞ
ij ψklðρÞ − Akl

S

2
γijjlðkρÞSðlmÞ; ðA3Þ

where

ψklðρÞ ¼ 2ρ2

ðl − 1Þðlþ 2Þ

×

� ∂2

∂ρ2 þ
3

ρ

∂
∂ρ −

ðl − 1Þðlþ 2Þ
2ρ2

�
jlðkρÞ: ðA4Þ

We extract the space-dependent part of the vector-type
modes given by Eqs. (20) and (21) as

HðV;klmÞ
ρi ¼ Akl

V jlðkρÞV ðlmÞ
i ; ðA5Þ

HðV;klmÞ
ij ¼ −

2kVAkl
V ρ

2V ðlmÞ
ij

ðl − 1Þðlþ 2Þ
� ∂
∂ρþ

2

ρ

�
jlðkρÞ: ðA6Þ

The scalar plane wave propagating in the z-direction can
be expanded as follows:

eikz ¼
X∞
l¼0

ð2lþ 1ÞiljlðkρÞPlðcos θÞ: ðA7Þ
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The space-dependent part of a circularly polarized gravi-
tational plane wave propagating in the z-direction can be
given as

Hpl
xx ¼ −Hpl

yy ¼ 1

2
eikz; ðA8Þ

Hpl
xy ¼ � i

2
eikz: ðA9Þ

By the standard coordinate transformation of a tensor, we
find

Hpl
ρρ ¼ 1

2
sin2θe�2iϕeikz

¼ 1

2

X∞
l¼0

ð2lþ 1ÞiljlðkρÞsin2θPlðcos θÞe�2iϕ: ðA10Þ

Now, by repeated use of the formula

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p
Pml ðxÞ ¼

1

2lþ 1
½−Pmþ1

lþ1 ðxÞ þ Pmþ1
l−1 ðxÞ�; ðA11Þ

where we let Pml ðxÞ ¼ 0 if jmj > l, we obtain

Hpl
ρρ ¼ 1

2

X∞
l¼0

iljlðkρÞe�2iϕ ×

�
1

2lþ 3
½P2lþ2ðcos θÞ − P2l ðcos θÞ� −

1

2l − 1
½P2l ðcos θÞ − P2l−2ðcos θÞ�

�

¼ −
1

2

X∞
l¼2

ilP2l ðcos θÞe�2iϕ ×

�
1

2l − 1
½jl−2ðkρÞ þ jlðkρÞ� þ

1

2lþ 3
½jlðkρÞ þ jlþ2ðkρÞ�

�
: ðA12Þ

Then, by using

jl−1ðxÞ þ jlþ1ðxÞ ¼
2lþ 1

x
jlðxÞ; ðA13Þ

we find

Hpl
ρρ ¼ −

1

2k2ρ2
X∞
l¼2

ilð2lþ 1ÞjlðkρÞP2l ðcos θÞe�2iϕ

¼ −
1

ρ2
X∞
l¼2

il
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πð2lþ 1Þ

p
jlðkρÞAkl

S S
ðl;�2Þðθ;ϕÞ;

ðA14Þ

where SðlmÞðθ;ϕÞ is defined by Eq. (16) with the constant
Akl
S defined by Eq. (41). By comparing this expression with

Eq. (A1) we find

Hpl
ρρ ¼ −

X∞
l¼2

il
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πð2lþ 1Þ

p
HðS;kl;�2Þ

ρρ : ðA15Þ

To find the vector-type contribution to the plane wave,
we note that

Hpl
ρθ ¼

ρ

2
sin θ cos θe�2iϕeikρ cos θ; ðA16Þ

Hpl
ρϕ ¼ � iρ

2
sin2θe�2iϕeikρ cos θ: ðA17Þ

Hence

ϵijD̂iH
pl
ρj ¼ �kρ2Hpl

ρρ

¼∓ X∞
l¼2

il
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πð2lþ 1Þlðlþ 1Þ

p
Akl
V jlðkρÞSðl;�2Þ;

ðA18Þ

where the constant Akl
V is given by Eq. (40). On the other

hand

ϵijD̂iH
ðV;klmÞ
ρj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þ

p
Akl
V jlðkρÞSðlmÞ: ðA19Þ

By comparing this equation with Eq. (A18) we conclude
that

ϵijD̂iH
pl
ρj ¼∓ X∞

l¼2

il
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πð2lþ 1Þ

p
ϵijD̂iH

ðV;kl;�2Þ
ρj : ðA20Þ

From this equation and Eq. (A15) we find

Hpl
μν¼−

X∞
l¼2

il
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πð2lþ1Þ

p
½HðS;kl;�2Þ

μν �HðV;kl;�2Þ
μν �: ðA21Þ
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