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In ordinary QCD with light, degenerate, fundamental flavors, CP symmetry is spontaneously broken at
θ ¼ π, and domain wall solutions connecting the vacua can be constructed in chiral perturbation theory. In
some cases the breaking of CP saturates a ’t Hooft anomaly, and anomaly inflow requires nontrivial
massless excitations on the domain walls. Analogously, CP can be spontaneously broken in super-
symmetric QCD (SQCD) with light flavors and small soft breaking parameters. We study CP breaking and
domain walls in softly broken SQCD with Nf < N flavors. Relative to ordinary QCD, the supersymmetric
case contains an extra light field, the η0, which has interesting effects on the structure of the walls. Vanishing
of the CP anomaly is associated with the existence of multiple domain wall trajectories through field space,
including walls which support no nontrivial massless excitations. In cases with an anomaly such walls are
forbidden, and their absence in the relevant SQCD theories can be seen directly from the geometry of the
low energy field space. In the case Nf ¼ N − 1, multiple approximately Bogomol'nyi–Prasad–Sommer-
field walls connect the vacua. Corrections to their tensions can be computed at leading order in the soft
breaking parameters, producing a phase diagram for the stable wall trajectory. We also comment on domain
walls in the similar case of QCD with an adjoint and fundamental flavors, and on the impact of adding an
axion in this theory.

DOI: 10.1103/PhysRevD.97.085003

I. INTRODUCTION

The θ dependence of QCD and QCD-like theories is an
important probe of nonperturbative phenomena. In real
QCD, the vacuum energy is a smoothly varying function of
θ, calculable in chiral perturbation theory (ChPT) and
exhibiting manifest 2π periodicity. At largeN, the η0 is light
and the vacuum energy becomes a multibranched function
of θ [1]. At finite N but with a higher degree of degeneracy
among the Nf light fundamental flavors, the potential
exhibits Nf local minima and the vacuum energy is again
multibranched. At θ ¼ π, CP is spontaneously broken in
the global minima [1,2].
When CP is spontaneously broken, the CP-conjugate

vacua can be connected by a domain wall. CP walls in
QCD-like theories with light fundamental flavors were
recently studied in [3]. For Nf > 1, domain walls follow
calculable trajectories through the pion field space of ChPT,
spontaneously breaking the vectorlike SUðNfÞ flavor

symmetry. As a result, the walls support Goldstone modes
among their three-dimensional massless excitations.
It was also shown in [3] that for gcdðN;NfÞ > 1 and

θ ¼ π, there is a ’t Hooft anomaly between CP and a
certain discrete flavor symmetry intertwined with the center
symmetry. Anomaly inflow [4,5] then requires that in these
theories, domain walls connecting the CP vacua must
support nontrivial massless degrees of freedom beyond the
trivial center of mass mode. Similar anomalies and inflow
on domain walls were described in pure gauge theory in [6],
and a sample of other recent work on center anomalies,
intertwined center-flavor symmetries, and related topics
includes [7–10].
We will study spontaneous CP breaking in supersym-

metric QCD with Nf < N light flavors and soft SUSY-
breaking mass terms. CP and its domain walls have several
interesting aspects in these theories:

(i) The CP anomaly in softly broken supersymmetric
QCD (SQCD) is the same as the ordinary non-
supersymmetric QCD anomaly described in [3].
This is because the latter is obtained from the former
by adding large mass terms for the scalars and
increasing the gaugino mass, which does not change
the anomalies (as long as the limit does not change
the value of the topological angle associated with the
anomaly; this will be discussed more thoroughly in
Sec. IV D).
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(ii) Due to mixing with the Uð1ÞR symmetry, the “η0”
associated with spontaneous Uð1ÞA breaking is light
in SQCD even at small N.1 This extra degree of
freedom can permit domain walls along new tra-
jectories in field space relative to ordinary QCD.
Such η0 walls do not support any nontrivial massless
excitations, and in fact we will see that they arise
between CP vacua precisely when gcdðN;NfÞ ¼ 1,
where the anomaly vanishes. SQCD thus reflects the
anomaly in a geometric way: its absence is asso-
ciated with the existence of η0 CP walls.

(iii) In some cases the CP walls are approximately
Bogomol'nyi–Prasad–Sommerfield (BPS) saturated,
with calculable tensions [12]. BPS domain walls in
SQCD have been extensively studied in the literature
[12–21]. SUSY-breaking effects on the tension may
be computed perturbatively. We will also see cases
where η0 CP walls do not exist in the supersym-
metric limit (BPS or not), but then “come in from
infinity” in the presence of small soft breaking.

(iv) In cases where both BPS η0 walls and BPS pionlike
walls [breaking the SUðNfÞV symmetry] exist, their
tensions are equal in the SUSY limit. We can
compare the ΔTs for the different trajectories in
the space of small soft breakings and find a phase
diagram for stability and metastability of the differ-
ent types of walls.

This paper is organized as follows. In Sec. II we review
the vacuum structure of SQCD, focusing on periodicities
and discrete gauge symmetries on the pseudomoduli space.
We plot the η0 direction together with the gaugino con-
densate to make clear the monodromies and the connec-
tions between different branches. In Sec. III we add small
soft breaking terms and derive the conditions for sponta-
neous CP breaking in the global minima. In Sec. IV we
study domain walls connecting the CP vacua, discussing
some of their general properties and constructing numerical
solutions. We show that only pion walls exist when
gcdðN;NfÞ > 1. For generic Nf with gcdðN;NfÞ ¼ 1

we find η0 walls, which depend sensitively on the presence
of SUSY breaking. In Nf ¼ N − 1, BPS η0 walls exist in
the SUSY limit. We compute the corrections to their
tensions from soft breaking effects and compare to the
tension of walls in pion directions. We discuss the various
connections to ’t Hooft anomalies in Sec. IV D. In Sec. V
we comment briefly on domain walls in the theory where
the scalars are completely decoupled.

II. SUPERSYMMETRIC THEORY

Here we review standard results in supersymmetric QCD
with Nf < N flavors, repackaging the low-energy field

space and vacua in a way that is convenient for exhibiting
domain wall trajectories.

A. Moduli space

The effective superpotential is

W ¼ WADS þmTrQQ̄;

WADS ¼ ðN − NfÞ
Λ

3N−Nf
N−Nf

ðdetQQ̄Þ 1
N−Nf

e
iθþ2πk
N−Nf : ð1Þ

For simplicity, we have taken the quark mass matrix to be
proportional to the identity, preserving the SUðNfÞV flavor
symmetry. Λ is the dynamical scale associated with the UV
SUðNÞ theory. Anticipating the addition of soft masses,
particularly a soft gaugino mass, we have left θ explicit
instead of rotating it away. The integer k¼ 0 � � �N−Nf−1

labels the branches of the gaugino bilinear, which is related
to the superpotential via

hλλi ¼ −
32π2

N − Nf
WADS: ð2Þ

It is useful to visualize a subspace of the target space of
the meson theory by restricting

ðQQ̄Þff̄ → δff̄v
2eiη

0
: ð3Þ

The phase of superpotential (or the phase of the gaugino
bilinear) is determined by the η0,

argWADS ¼
−Nfη

0 þ 2πkþ θ

N − Nf
: ð4Þ

From Eq. (4), we can see that the domain of the η0 is g
copies of ðp; qÞ torus knots wrapping around arg λλ, where

g ¼ gcdðNf; N − NfÞ
p ¼ ðN − NfÞ=g
q ¼ Nf=g: ð5Þ

Two examples are depicted in Fig. 1. For fixed η0, there are
N − Nf branches of the gaugino bilinear, while for fixed
arg λλ, there are Nf branches for the η0.
Motion in “pionlike” directions, where QQ̄ is not

proportional to the identity, is also important. In a con-
venient basis, we have

e2πi=Nf ¼ e2πiT−1=Nf

T−1 ¼ diagð1;…; 1; 1 − NfÞ: ð6Þ

Thus motion by 2π=Nf in the π−1 direction of the pseudo-
Goldstone manifold connects different η0 branches at fixed1The η0 in SUSY at large N was discussed in [11].
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arg λλ. We will use the π−1 and η0 directions to make
Ansätze for domain wall trajectories.

B. Vacua

The meson vacua lie at N values of η0, with

Nhη0i − θ − 2πk
N − Nf

¼ 2πω; ω ∈ Z ð7Þ

and

v ¼ Λ
3N−Nf

2N m
Nf−N
2N : ð8Þ

Requiring η0 ∈ ½0; 2πÞ, we have

hη0i ¼ 2πωðN − NfÞ þ 2πkþ θ

N
ð9Þ

¼ 2πnþ θ

N
; n ¼ 0 � � �N − 1; ð10Þ

and the phase of the superpotential/gaugino bilinear is

arghWi ¼ hη0i: ð11Þ

The distance between two neighboring vacua in the η0
direction is

Δhη0i ¼ 2πðN − NfÞ
N

: ð12Þ

In the two examples shown in Fig. 1, the vacua are denoted
by purple dots.

III. CP IN SOFTLY BROKEN SQCD

In the supersymmetric theory, we can always use the
anomalous symmetries to rotate away θ and arg detm. Then
there always exists a definition of CP which is not
spontaneously broken.
In the presence of soft breaking terms, there are physical

vacuum angles, and CP can be spontaneously broken when
some combinations of them are equal to π. We add to the
theory small soft masses of the form2

Vsoft ¼ mλhλλi þmBTrðQQ̄Þ þ c:c: ð13Þ

We will assume that mλ, B ≪ m. In this limit the vacua are
still approximately by Eqs. (8) and (10), and once we have
defined the CP symmetry, we can identify which vacua are
related by this definition of CP in the SUSY limit.
When the soft masses are nonzero, the theory contains

two invariant phases, which we can take to be
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FIG. 1. Examples of branches and vacua in SQCD with Nf < N flavors. Left: N ¼ 3; Nf ¼ 2; θ ¼ 0. Right: N ¼ 6; Nf ¼ 2; θ ¼ 0.
Lines denote the subspace of the low-energy meson theory parametrized by η0 ≡ ðarg detQQ̄Þ1=Nf. For fixed η0, there are N − Nf

branches of the gaugino bilinear (argWADS.) Wrapping around Δη0 ¼ 2π smoothly connects branch k to branch k − NfmodðN − NfÞ,
leading to gcdðNf; N − NfÞ sets of branches that are disconnected in the η0 direction. N vacua are denoted by purple dots and are located
along the line argW ¼ η0. The distance between neighboring vacua in the η0 direction is 2πðN − NfÞ=N.

2We could add m2
QjQj2 þm2

Q̄jQ̄j2 soft masses as well, but will
not do so here for simplicity; in Sec. V we will comment on
decoupling the scalars with large soft masses.
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θ̄A ¼ θ þ N argmλ þ Nf argm

θ̄B ¼ θ þ N argBþ Nf argm: ð14Þ

It is convenient to take m and mλ to be real and positive,
which can be achieved in general using the anomalous
Uð1ÞA and Uð1ÞR symmetries. Then the remaining
phases are θ and argB.3

For general θ; argB, there is one unique global vacuum
and there are no static domain walls. When these phases are
0 or π, however, a CP symmetry can be defined, and in
some cases it is spontaneously broken, leading to static
walls. For either value of argB, CP acts on the Affleck-
Dine-Seiberg (ADS) effective theory as

θ ¼ 0∶ ðQQ̄; kÞ → ðQQ̄†;−kÞ
θ ¼ π∶ ðQQ̄; kÞ → ðQQ̄†;−k − 1Þ: ð15Þ

Correspondingly, in the supersymmetric limit, this CP
symmetry acts on the n-vacua of Eq. (10) as

θ ¼ 0∶ n → −n

θ ¼ π∶ n → −n − 1: ð16Þ

The realization of CP is determined by which vacua
remain global minima in the presence of soft breaking. At
leading order in the soft parameters, the changes in the
vacuum energies are determined entirely by hnjVsoftjni,
where n are the N vacua in the SUSY limit. Using Eqs. (2)
and (11) and assuming argB is 0 or π, we have

hVsofti ¼ Y cos

�
2πnþ θ

N

�
; ð17Þ

where

Y ≡ −mλjhλλij þmBjTrðhQQ̄iÞj
¼ ð−32π2mλ þ NfBÞΛ

3N−Nf
N m

Nf
N : ð18Þ

Since we have used the anomalous symmetries to make m
and mλ real and positive, Y is real. The realization of CP is
as follows:

(i) If Y < 0, then CP is spontaneously broken iff θ ¼ π.
The vacua are n ¼ 0, N − 1.

(ii) If Y > 0, CP is spontaneously broken either if θ ¼ 0
and N is odd, in which case the vacua are
n ¼ ðN � 1Þ=2, or if θ ¼ π and N is even, in which
case the vacua are n ¼ ðN − 1� 1Þ=2.

We can summarize these various cases by saying that CP is
spontaneously broken iff

α ¼ π; ð19Þ

where

α≡ arg ½ð−YÞNeiθ�: ð20Þ

Note that due to the presence of two invariant phases in
the theory, θ̄A ¼ π is neither necessary nor sufficient to
spontaneously break CP.
We can also check two limits, B ¼ 0 andmλ ¼ 0. In each

case there is only one angle, θ̄A and θ̄B, respectively. In
these limits the condition α ¼ π reduces to θ̄A ¼ π or θ̄B þ
Nπ ¼ π when written in terms of the invariant angles.

IV. CP DOMAIN WALLS

When CP is spontaneously broken, we expect to find
domain wall solutions connecting the vacua. For small soft
breaking parameters, some walls may be approximately
those of the supersymmetric theory, in which case we can
study them in that context. Other walls may depend
critically on the presence of the soft breakings. In addition,
in the former case the walls may be approximately BPS.
The BPS equations and a few of the wall properties are
reviewed in the Appendix.
In the simplest case, walls connect nearest neighbors in

the η0 direction, preserving the SUðNfÞV global symmetry.
However, following Eq. (6), walls can also traverse a
combination of pionlike and η0-like directions, homotopi-
cally inequivalent to the pure-η0 wall in the IR theory. When
g > 1, some vacua can only be connected in directions that
involve a pion, because some gaugino branches are not
connected in the η0 direction (see, for example, the right-
hand panel of Fig. 1). To accommodate both possibilities,
we can take QQ̄ to have the form

QQ̄ ¼ diagðρ21eiϕ1 ;…; ρ21e
iϕ1 ; ρ22e

iϕ2Þ: ð21Þ

This is only an ansatz, and in general other pionlike
trajectories may exist, but it will be sufficient for our
purposes. The ϕ1;2 phase basis is related to η0, π−1 [π−1 is
associated with the generator given in Eq. (6)] as

η0 ¼ ð−1þ NfÞϕ1 þ ϕ2

Nf
; π−1 ¼

ϕ1 − ϕ2

Nf
: ð22Þ

Belowwe consider three representative cases forN andNf
in greater detail. For simplicity, we focus on the spontaneous
CP breaking scenario argB ¼ π, where, as discussed in the
previous section, CP is always broken at θ ¼ π and the
minima are at n ¼ 0, N − 1 in the SUSY limit.

A. gcdðN;Nf Þ > 1

gcdðN;NfÞ > 1 implies g ¼ gcdðN;N − NfÞ > 1, in
which case, as we have discussed, adjacent vacua cannot

3Invariant phases can be restored in what follows with the
substitutions θ → θ̄A; argB → ðθ̄B − θ̄AÞ=N.
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be connected by motion purely in the η0 direction in field
space. Therefore, there are no trivial η0 walls connecting the
CP vacua in these theories. However, pionlike walls
still exist.
A cartoon of pionlike trajectories between CP conjugate

vacua is shown in Fig. 2 for Nf ¼ 2; N ¼ 4. We find a BPS
solution numerically in the SUSY limit, shown in Fig. 3.
For small soft breakings this is the leading-order approxi-
mation to the minimal tension wall connecting the CP
conjugate vacua. When we discuss the case Nf ¼ N − 1

below, we will show that the leading-order change in the

wall tension from soft terms is determined entirely by the
BPS trajectory between the supersymmetric vacua.
The absence of η0 walls for g > 1 also reflects the

anomaly structure of the microscropic theory, discussed
further in Sec IV D below. Nonsupersymmetric theories
with g > 1 have a ’t Hooft anomaly at θ ¼ π between CP
and a discrete subgroup of the flavor symmetry intertwined
with the center of the gauge group [3]. At low energies, the
latter is unbroken, so the anomaly is saturated by the
spontaneous breaking of CP. The same symmetries and
anomaly are also present in the softly broken supersym-
metric theory, and CP is spontaneously broken at low
energies. A discrete version of anomaly inflow requires
domain walls to possess nontrivial infrared degrees of
freedom. The η0 walls have only a translation zero mode at
low energies and cannot saturate the anomaly, so they are
forbidden.

B. Nf < N − 1, gcdðN;Nf Þ= 1
When g ¼ 1 and Nf ≠ N − 1 (and Nf ≠ 1, a trivial case

we do not consider explicitly), the CP vacua lie along
branches that are smoothly connected in the η0 direction.
However, such a trajectory must first pass through one or
more intervening vacua. The presence of these vacua
prevents, in the SUSY limit, the existence of BPS walls.
While we could contemplate superposing widely separated
BPS walls connecting the vacua as they are encountered in
the η0 direction, such walls would neither be exactly static
nor BPS.
The problem is that the intervening vacua are degenerate

with the CP vacua in the SUSY limit. With small SUSY
breaking, however, the former are lifted. Now a domain
wall can pass through the lifted vacua in finite “time” and
make its way to the CP conjugate minimum.
This expectation is confirmed numerically in the exam-

ple Nf ¼ 3; N ¼ 5. The trajectory is sketched in Fig. 4,
showing that an η0 wall connecting CP vacua must pass
through one additional metastable vacuum on the way. No
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FIG. 2. Cartoon of domain wall trajectories between nearest
neighbor vacua in Nf ¼ 2; N ¼ 4. Arrows denote different
possible wall trajectories in mixed η0-pion directions (solid
corresponds to the η0 direction; dashed corresponds to motion
“out of the page” in the π−1 direction). The CP conjugate vacua
cannot be connected by motion purely in the η0 direction.
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FIG. 3. Phase and modulus profiles of an SUðNfÞV-breaking BPS domain wall in N ¼ 4; Nf ¼ 2, corresponding to the green path in
Fig. 2. In this case, since gcdðN;NfÞ > 1, only SUðNfÞV -breaking walls are present between the CP vacua. For definiteness we have set
Λ=m ¼ 4. In the left-hand panel, the orange (blue) curve corresponds to the π−1 (η0). In the right-hand panel, the orange (blue) curve
corresponds to ρ1 (ρ2).
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BPS or non-BPS solutions were found in the SUSY limit.
Adding a small soft mass (a B-term for simplicity, with
argB ¼ π), we find a solution, shown in Fig. 5. As
expected, the trajectory looks qualitatively like two super-
posed BPS walls connecting the CP vacua to the vacuum at
η0 ¼ π. For arbitrarily small soft breaking, the wall spends
more and more time near the latter vacuum, pushing the
superposed walls farther apart toward infinity.

C. Nf =N − 1
For Nf ¼ N − 1, the CP vacua are at n ¼ 0, N − 1 in the

SUSY limit, and are nearest neighbors in the η0 direction.
Domain walls between these vacua can run either purely in

the η0 direction or in a mixed η0 − π−1 direction. In the
SUSY limit, if the walls are BPS, they are of equal tension.
A cartoon for N ¼ 3, Nf ¼ 2 is shown in Fig. 6. BPS

walls for this case were studied in [15]. We construct
solutions numerically from the BPS equations and show the
trajectories for a pure η0 wall and a mixed η0 − π−1 wall in
Figs. 7 and 8, respectively. The former preserves the
vectorlike flavor symmetry, while the latter partially spon-
taneously breaks it.
These BPS domain walls are the leading approximation

to the domain walls connecting the CP conjugate vacua in
the presence of small SUSY breaking. For small soft
parameters, the changes in the tensions can be computed
from the BPS walls, without knowledge of the modifica-
tions to the trajectories from SUSY breaking. At first order
in the soft masses, the only contribution to the change in the
wall tensions is the integral over the soft terms evaluated on
the supersymmetric walls,

ΔT ¼
Z

dzVsoftðQQ̄BPSÞ: ð23Þ

All other changes to the trajectory and tension are of higher
order. Therefore, the numerical solutions in Figs. 7 and 8
are sufficient to work out the leading changes to the
tensions. In general one wall becomes metastable, having
higher tension than the other, and we can exhibit a phase
diagram.
To gain some insight into the wall phase diagram, note

that the BPS walls admit a constant of motion,

E ¼ ImðeiδWÞ; ð24Þ

where δ is found by computing E in the two vacua,

δ ¼ π

2
−
�hη0i1 þ hη0i2

2

�
: ð25Þ
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FIG. 4. Cartoon of the domain wall trajectory between CP
vacua for Nf ¼ 3; N ¼ 5. Arrows denote a wall trajectory in the
η0 direction, passing through an intermediate vacuum at η0 ¼ π.
(Mixed π−1 − η0 trajectories are not shown.)
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FIG. 5. Phase and modulus profile of a domain wall in N ¼ 5; Nf ¼ 3, corresponding to the green trajectory in Fig. 4. In this case,
since gcdðNf;N − NfÞ ¼ 1, an SUðNfÞV -preserving wall is present between the CP vacua. However, it is not BPS, and exists only for
finite SUSY breaking. We have taken Λ=m ¼ 4 and B ¼ −1=50.
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For the CP vacua n ¼ 0, N − 1, δ → π=2. Therefore E ¼
ReðWÞ for all walls connecting these vacua.
Furthermore, when B ¼ −32π2mλ, Vsoft ∝ ReðWÞ.

Therefore, for these parameters, tensions along all different
wall trajectories remain equivalent at leading order in the soft
masses. In fact, this line demarcates a phase transition across
which the CP wall changes its field space configuration.
We integrate the soft potential numerically over the BPS

solutions for the sample case N ¼ 3; Nf ¼ 2. Figure 9
shows the resulting phase diagram for the CP domain
walls. The low-energy theory on the walls undergoes a first-
order phase transition across the line Vsoft ∝ ReðWÞ.

D. ’t Hooft anomaly

As mentioned in the Introduction, the CP anomaly found
in [3] in nonsupersymmetric QCD also applies to SQCD
with small soft masses. We briefly review the derivation of
this anomaly. We turn on background gauge fields for the
UðNfÞV flavor symmetries and possible counterterms for
their topological charges. The gauge fields are then those of
SUðNÞ × SUðNfÞ ×Uð1Þ=ðZN × ZNf

Þ. The quotient by
ZN arises because the action of this subgroup of the flavor
symmetries on matter fields in the fundamental represen-
tation can be undone by a transformation in the center of the
gauge group.
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FIG. 6. Cartoon of domain wall trajectories between nearest
neighbor vacua in Nf ¼ N − 1. Orange arrows denote a purely
η0-type trajectory. Green arrows denote a possible mixed η0-pion
direction [solid corresponds to the η0 direction; dashed corre-
sponds to motion “out of the page” in the π−1 direction, which
connects η0 branches according to Eq. (6)].
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FIG. 7. Phase and modulus profile of an SUðNfÞV-preserving BPS domain wall in N ¼ 3; Nf ¼ 2, corresponding to the orange
trajectory in Fig. 6. Parameters are as in Fig. 3.
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FIG. 8. Phase and modulus profile of an SUðNfÞV -breaking BPS domain wall inN ¼ 3; Nf ¼ 2, corresponding to the green trajectory
in Fig. 6. Parameters and curves are as in Fig. 3.
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On T4, we can consider twisted gauge transformations. If
the transformation is twisted by an element of the center, it
is not a gauge transformation, but it is a global symmetry of
the action in the theory without fundamental flavors. In this
theory we can gauge this discrete center symmetry, or
introduce background gauge fields for it [22–24]. Either
amounts to considering gauge field configurations carrying
’t Hooft fluxes [25]. In these configurations the gauge fields
differ across one cycle by a gauge transformation which
is itself twisted around another cycle by a center trans-
formation. Combinations of electric and magnetic fluxes
of this type can carry fractional topological charge of order
1=N.
Boundary conditions for fields in the fundamental

representation explicitly break the center symmetry, so it
cannot be gauged by itself. However, combining center
with twisted flavor transformations preserves the boundary
conditions. Therefore we can still consider ’t Hooft fluxes
as long as they are correlated between the original gauge
symmetry and background gauge fields for the flavor
symmetry.
At θ ¼ π, the ordinary topological charge plus counter-

terms is

π

16π2

Z
TrðFF̃Þ þ θf

16π2

Z
TrðFfF̃fÞ þ

θB
16π2

Z
FBF̃B:

ð26Þ

Each topological charge is integral for SUðNÞ × SUðNfÞ ×
Uð1Þ gauge fields. Then the action is CP invariant if θf;B
are 0 or π. However, with ’t Hooft fluxes, it might be

impossible to chose θf;B so that the action is CP invariant.
The original theory then possesses a ’t Hooft anomaly
between CP and the intertwined flavor-center global
symmetry.
By considering different simple choices for the fluxes

with Oð1=NÞ and Oð1=NfÞ topological charges, it is
straightforward to show that CP-invariant choices for θf
and θB exist iff gcdðN;NfÞ ¼ 1 [3]. In theories with
gcdðN;NfÞ > 1, matching the anomalies in the infrared
provides a fundamental reason why CP must be sponta-
neously broken at θ ¼ π.
These arguments carry over directly to softly broken

SQCD, with one small complication. In QCD, we have
only one invariant vacuum angle, θ̄ ¼ θ þ arg detm. The
CP anomaly is associated with θ̄ ¼ π. In SQCD, we have
two angles if both mλ and B are nonzero. One combination
of them appears as a phase associated with field configu-
rations of nonzero topological charge, and this phase must
be π in order for the classical CP symmetry to have a ’t
Hooft anomaly.
From our analysis of spontaneous CP breaking, we can

infer that the relevant phase in softly broken SQCD is
α ¼ π, where α is given in Eq. (20). Alternatively, we can
consider the vacuum angle dependence of configurations
carrying topological charge. The 2N gaugino zero modes in
an instanton background can be tied off either by bare mλ

insertions, or by a self-energy diagram with a quark-squark
loop and a B-term insertion. Allowing both possibilities for
each zero mode, we expect that the instanton amplitude is
schematically proportional to4

I ∝ ðmλ − NfB=32π2ÞNeiθ: ð27Þ

Equation (27) is rather naive because it uses the loop result
in the perturbative vacuum rather than the instanton back-
ground. But arg I then coincides with α of Eq. (20),
consistent with anomaly matching by spontaneous break-
ing of CP. This provides evidence that it is the radiatively
corrected gaugino mass whose argument controls both
effects.
When CP is spontaneously broken but the CP anomaly

vanishes, the low energy excitations on the domain walls are
not constrained by anomaly inflow, and thewall theories can
be trivial in principle. This does not happen in ordinaryQCD,
where the walls always support Goldstone modes of broken
flavor symmetries. However, in SQCD, the η0 is light. We
have seen that a necessary condition for the existence of
trivial walls is gcdðN;NfÞ ¼ 1. This coincides with the
condition for the vanishing of the ’t Hooft anomaly found in
[3]. We have seen that trivial walls may either be approx-
imately BPS, or depend sensitively on SUSY breaking.

η stable

η − π −1 stable

0.00 0.02 0.04 0.06 0.08 0.10
0.00

0.02

0.04

0.06

0.08

0.10

32π 2mλ

|B
|

FIG. 9. Regions on the soft mass parameter space where
different CP-wall trajectories are stable for θ ¼ argB ¼ π. In
the upper left, the stable wall is SUðNfÞV preserving. In the lower
right, the stable wall partially breaks the flavor symmetry.

4An extra relative factor of 1=2 between the two terms appears
because our normalization for the gaugino mass in Eq. (13) is not
canonical.
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When the anomaly does not vanish, as discussed above,
inflow forbids the presence of a trivial wall. We have seen
that this is explained in a simple geometric way in SQCD:
the vacua are not on branches that are connected in the η0
direction in these theories.

V. ADJOINT QCD WITH FUNDAMENTALS

We close by discussing domain walls in QCD with Nf
fundamental fermions qf, q̄f, one adjoint fermion λ, and an
axion θ. This theory may also be thought of as SQCDþ
axion with squarks and saxion decoupled.5

Again we can focus on the η0 and π−1. For small
universal quark mass mq and small adjoint mass mλ, the
potential is

Vðη0; π−1; θÞ ≃ −mλΛ3 cos

�
θ þ 2πkþ Nfη

0

N

�

−mqΛ3½ðNf − 1Þ cosðη0 þ π−1Þ
þ cosðη0 − ðNf − 1Þπ−1Þ�; ð28Þ

where k is a branch label k ¼ 0 � � �N − 1 for the λλ
condensate.
The η0, π−1, θ, and k degrees of freedom are again subject

to various periodicities, or discrete gauge symmetries
(DGS). We have the DGS

π−1 → π−1 þ 2π ð29Þ

k → kþ N ð30Þ

η0 → η0 þ 2π; k → k − Nf ð31Þ

π−1→π−1þ2π=Nf; η0→η0−2π=Nf; k→kþ1 ð32Þ

θ → θ þ 2π; k → k − 1 ð33Þ

and combinations thereof. These symmetries can be used to
identify different paths in field space that connect vacua.6

First, consider the theory with nondynamical axion and
Λ ≫ mq ≫ mλ. Here there are N quasidegenerate vacua
labeled by k (with η0 ¼ π−1 ¼ 0) and split by mλ.
For mλ ¼ 0, the vacua are connected by domain walls

that traverse pseudo-Goldstone directions in field space.
DGS (32) indicates that one trajectory moves in the η0 and
π−1 directions simultaneously. Define

ϕ≡ η0 − π−1: ð34Þ

Holding other directions fixed, the Lagrangian in the ϕ
direction is

LðϕÞ ¼ f2π
8
N2

fð∂ϕÞ2 þmqΛ3

�
ðNf − 1Þ þ cos

�
Nf

2
ϕ

��
:

ð35Þ

The domain wall tension is then of order

Tϕ ∼ fπ
ffiffiffiffiffiffiffiffiffiffiffiffi
Λ3mq

q
; ð36Þ

and the profile is of the form

ϕðzÞ ¼ 8

Nf
ðtan−1ðemϕzÞÞ

mϕ ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mqΛ3=f2π

q
: ð37Þ

There can also be metastable domain walls in other
directions depending on gcdðN;NfÞ. From DGS (31), the
motion η0 → η0 þ 2π connects branch k to branch kþ Nf,
so if Nf ¼ N − 1, for example, all of the k-vacua are
traversed in the η0 direction. In particular, for zero mλ each
vacuum could be connected by a metastable wall in the η0
direction. The Lagrangian is

Lðη0Þ ¼ f2π
2
Nfð∂η0Þ2 þmqΛ3Nf cosðη0Þ�: ð38Þ

Then the tension is of order

Tη0 ∼ fπNf

ffiffiffiffiffiffiffiffiffiffiffiffi
Λ3mq

q
ð39Þ

and the profile is

η0ðzÞ ¼ 4tan−1ðemη0z Þ
mη0 ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mqΛ3=f2π

q
: ð40Þ

For nonzeromλ, in general there is only one ground state
and none of the domain walls joining the k quasivacua are
static. However, for fixed θ ¼ π, two vacua are degenerate
(the k ¼ 0 and k ¼ N − 1 vacua for small mλ). DGS (32)
again indicates that the η0 and π−1 directions support a
domain wall. Likewise there should be a domain wall
connecting the degenerate CP vacua in the η0 direction; this
wall may be metastable against cosmic string nucleation.
Now turn on dynamical θ. Ifmλ ¼ 0, θ is a flat direction,

and this flat direction smoothly connects the previous
k-vacua. If, however, we give the axion a small mass from
another source,

ΔV ¼ Λ̃4 cosðθÞ; ð41Þ

5Implications of spontaneous CP breaking in ordinary QCD
on axion physics were recently discussed in [26].

6Branches and periodicities in QCD with multiple adjoint
flavors were discussed in [27].
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the N vacua remain degenerate. Then we can control
whether the stable walls go in the axion or pion directions
by adjusting mπ=ma, where a ¼ fθ and ma ∼ Λ̃2=fa. The
axion wall tension is of order

Ta ∼ faΛ̃2: ð42Þ

For the opposite hierarchy mλ ≫ mq, and with fixed θ,
the η0 has Nf vacua,

η0 ¼ −
2πkþ θ

Nf
: ð43Þ

Here only Nf of the N branches give a new vacuum; this is
a result of DGS (31). The vacua are degenerate for mq ¼ 0,
and they are also connected by π−1 → π−1 þ 2π=Nf, which
is a flat direction for mq ¼ 0. Thus there are metastable
static domain walls in the η0 direction for mq ¼ 0 and fixed
θ. The instability corresponds to a cosmic string composed
to the η0 and π−1 directions.
For nonzeromq and fixed θ ¼ π, there are again a pair of

CP-breaking degenerate vacua. As above a stable domain
wall is expected in the η0 and π−1 directions.
With mq ¼ 0 and dynamical θ, the axion is another flat

direction that connects the vacua under θ → θ þ 2π. There
should be an axisymmetric cosmic string solution com-
posed of the axion and π−1 fields. With small mq, the vacua
are split and the two flat directions lifted.
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APPENDIX: BPS DOMAIN WALLS

Here we briefly summarize some of the properties of
domain walls in SQCD. The BPS equations have the form

∂zQ̄ff0 þ
∂W�

Q̄�
ff0

e−iδ ¼ 0 ðA1Þ

and similarly for Q. For universal quark masses, the vacua
are given in Eqs. (8) and (10). δ may be computed from the
constant of motion E ¼ ImðeiδWÞ, which for a domain wall
connecting vacua n1;2 reduces to

E ¼ Nmv2 cos

�
πðn1 − n2Þ

N

�
;

δ ¼ π

2
−
πðn1 þ n2Þ þ θ

N
: ðA2Þ

The tension is

T ¼ ReðeiδΔWÞ ¼ 2Nmv2 sin

�
πðn2 − n1Þ

N

�
: ðA3Þ

Some of the domain walls studied in the main text are
non-BPS, and furthermore exist only in the presence of soft
masses. In this case we must use the second order Euler-
Lagrange equations including the soft potential.
To construct numerical solutions, we take an ansatz for

the η0 and π−1 trajectories based on the cartoon plots given
in the text. Starting from the ϕ1;2 midpoints, we eliminate
another initial condition (in the BPS case) using the
conserved quantity, and then use a shooting method to
determine any remaining initial conditions.
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