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We analyze the concept of causality for the conductivity of graphene described by the Dirac model. It is
recalled that the condition of causality leads to the analyticity of conductivity in the upper half-plane of
complex frequencies and to the standard symmetry properties for its real and imaginary parts. This results
in the Kramers-Kronig relations, which explicit form depends on whether the conductivity has no pole at
zero frequency (as in the case of zero temperature when the band gap of graphene is larger than twice the
chemical potential) or it has a pole (as in all other cases, specifically, at nonzero temperature). Through the
direct analytic calculation it is shown that the real and imaginary parts of graphene conductivity, found
recently on the basis of first principles of thermal quantum field theory using the polarization tensor in
(2þ 1)-dimensional space-time, satisfy the Kramers-Kronig relations precisely. In so doing, the values of
two integrals in the commonly used tables, which are also important for a wider area of dispersion relations
in quantum field theory and elementary particle physics, are corrected. The obtained results are not of only
fundamental theoretical character, but can be used as a guideline in testing the validity of different
phenomenological approaches and for the interpretation of experimental data.
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I. INTRODUCTION

Considerable recent attention has been focused on
graphene, which is a two-dimensional sheet of carbon
atoms packed in a hexagonal lattice [1,2]. This unique
material is interesting not only for condensed matter
physics due to its unusual electrical and mechanical
properties, but for quantum field theory as well. The point
is that the electronic excitations in graphene are either
massless or very light. At energies below a few eV they
possess the linear dispersion relation and obey (2þ 1)-
dimensional Dirac equation where the speed of light c is
replaced with the Fermi velocity vF ≈ c=300 [1–3]. Thus,
graphene makes possible testing many predicted effects of
quantum field theory and quantum electrodynamics which
are not experimentally feasible with much heavier ordinary
electrons. Among other effects one could mention the Klein
paradox [4], the creation of particle-antiparticle pairs from
vacuum in a static [5,6] and time-dependent [7,8] electric
field, and the relativistic quantum Hall effect in a strong
magnetic field [9].
Graphene is also unique in that its response to external

electromagnetic field and quantum fluctuations, described
by the polarization tensor in (2þ 1)-dimensional space-
time, can be found in an explicit form on the basis of first
principles of thermal quantum field theory. Although some

special cases have been considered previously (see, e.g.,
Ref. [10] and literature therein), the complete expression
for the polarization tensor of graphene in the one-loop
approximation has been derived at zero temperature in
Ref. [11] and at any nonzero temperature in Ref. [12],
where the area of application was limited to the pure
imaginary Matsubara frequencies. In doing so both cases of
zero and nonzero width of the gap Δ between the energy
bands (i.e., of gapless and gapped graphene) and chemical
potential μ were considered. The results of Refs. [11,12]
have been extensively used when investigating the Casimir
and Casimir-Polder forces in graphene systems [13–23]
(some other, more phenomenological, approaches used for
this purpose are the density-density correlation functions,
models of the response functions of graphene by Lorenz-
type oscillators, and the Kubo formalism [24–35]).
A more universal representation for the polarization

tensor of graphene at nonzero temperature was derived
in Ref. [36]. Unlike Ref. [12], the polarization tensor of
Ref. [36] allows an analytic continuation to the entire plane
of complex frequencies including the real frequency axis.
At the pure imaginary Matsubara frequencies both repre-
sentations take the same values. The novel representation
was applied in investigations of the Casimir force [37–41]
and, after a continuation to the real frequency axis, for
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better understanding of the reflectances of graphene and
graphene-coated plates [42–44]. In Ref. [45] the polariza-
tion tensor of Ref. [36] was generalized for the case of
doped graphene with a nonzero chemical potential. This
generalization was used [46] to investigate an impact of
nonzero band gap and chemical potential on the thermal
effect in the Casimir force.
One of the most important characteristics of graphene is

its electrical conductivity. This quantity possesses many
surprising properties connected with an existence of the so-
called universal conductivity σ0 ¼ e2=ð4ℏÞ expressed via
the fundamental constants, electron charge e and Planck
constant ℏ. For a pure graphene, having the zero band gap
and no doping, the conductivity is equal to σ0 in the limit of
zero temperature. This result might be considered as
paradoxical if to take into account that with vanishing
temperature the concentration of charge carriers in pure
graphene goes to zero and there is no scattering and no
dissipation processes.
The conductivity of graphene was extensively investi-

gated by many authors using the current-current correlation
functions, the Kubo formalism, the Boltzmann transport
theory, and the two-dimensional Drude model (see the
review papers [47–49] and references therein). Some of
the results obtained employ simple intuitive models,
phenomenological approaches of a limited application
area and even do not agree with each other. To overcome
these troubles, the conductivity of graphene at any temper-
ature was investigated on the basis of first principles of
quantum electrodynamics using the polarization tensor of
Refs. [36,45] analytically continued to the real frequency
axis. In Refs. [50,51] the cases of pure and gapped
graphene were considered, respectively, and in Ref. [52]
of both gapped and doped graphene characterized by
nonzero band gap Δ and chemical potential μ. The real
and imaginary parts of graphene conductivity have been
found in an explicit form. It was shown that the major
contribution to the conductivity of graphene calculated in
the framework of Dirac model is local, whereas the non-
local corrections are negligibly small.
In this paper, we consider the problem of causality in

the response of graphene to electric field. The demand
of causality leads to some constraints on the local con-
ductivity of graphene. Specifically, it should be an analytic
function in the upper half-plane of complex frequencies and
satisfy certain symmetry conditions. These result in the
Kramers-Kronig relations for the real and imaginary parts
of the conductivity of graphene. Until the present time the
Kramers-Kronig relations for graphenewere discussed only
using some approximate, phenomenological approaches
leading to incomplete and even contradictory results (see,
e.g., Refs. [53–56]). Thus, the form of Kramers-Kronig
relations used in Refs. [53–55] does not take into account
that the imaginary part of the conductivity of graphene has
a pole at zero frequency. Furthermore, Ref. [53] arrives to

the Kramers-Kronig relation expressing the real part of
graphene conductivity via its imaginary part, but fails
in obtaining a similar relation with interchanged real
and imaginary parts. An existence of the universal con-
ductivity of graphene σ0 is not taken into account.
Moreover, Ref. [56] admits that under some conditions
the Kramers-Kronig relations for graphene do not hold.
When it is considered that these relations are not only of
fundamental theoretical character, but are used for inter-
pretation of the measurement data (see, e.g., Ref. [55]), it is
of prime importance to conclusively find out their specific
form for graphene and directly prove their validity.
Below we establish an explicit form of the Kramers-

Kronig relations for graphene and demonstrate that the real
and imaginary parts of its conductivity, found independ-
ently on the basis of first principles of quantum electro-
dynamics, satisfy these relations precisely. Depending on
temperature and a relationship between the band gap Δ and
chemical potential μ, an additional pole term in the
Kramers-Kronig relations may arise as it holds in a familiar
case of metals [57]. The obtained relations take proper
account for the universal conductivity of graphene σ0. In
fact, there is no reason that the Kramers-Kronig relations
were not satisfied for the conductivity determined from the
first principles. The obtained results, however, are physi-
cally meaningful because they establish the specific form of
the Kramers-Kronig relations for so unusual material as
graphene and, by performing the direct verification of these
relations, confirm the expressions for its conductivity found
recently in Ref. [52] using the polarization tensor. In the
course of our calculations, the values of two integrals,
indicated incorrectly in the most comprehensive and widely
used table of integrals [58], have been corrected. These
integrals might be also useful in a wider context of
dispersion relations for the scattering amplitudes in quan-
tum field theory and physics of elementary particles.
The paper is organized as follows. In Sec. II, the

brief summary for the polarization tensor, conductivity
of graphene and causality conditions is presented.
Section III contains the proof of the Kramers-Kronig
relations for the conductivity of graphene at zero temper-
ature. The validity of the Kramers-Kronig relations at
nonzero temperature is demonstrated in Sec. IV. In
Sec. V, the reader will find our conclusions and a
discussion. Appendices A and B contain some details of
several mathematical derivations.

II. POLARIZATION TENSOR, CONDUCTIVITY
OF GRAPHENE AND CAUSALITY CONDITIONS

The polarization tensor of graphene in the one-loop
approximation in the momentum representation is defined
according to Refs. [59,60] with the following differences.
We consider the (2þ 1)-dimensional space-time. In the free
Dirac equation the speed of light c is replaced with the
Fermi velocity vF ≈ c=300 although an interaction with the
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electromagnetic field is governed, as usual, by the coupling
constant e=c. In addition, one should take into account that
we consider the polarization tensor at nonzero temperature
T. Because of this, according to the Matsubara formalism,
an integration over the zeroth component q0 of the wave
vector qμ of a loop electronic excitation should be replaced
with a summation over the pure imaginary fermionic
Matsubara frequencies

cq0n ¼ 2πi

�
nþ 1

2

�
kBT
ℏ

; ð1Þ

where kB is the Boltzmann constant and n ¼ 0;�1;�2;….
Finally it is necessary to replace the zeroth component k0 of
the wave vector kμ of an external photon in the argument of
the polarization tensor with the pure imaginary bosonic
Matsubara frequencies

iξl ¼ ck0l ¼ 2πil
kBT
ℏ

; ð2Þ

where l ¼ 0;�1;�2;….
As a result, the polarization tensor takes the form

[11,12,36,59,60]

Πμνðiξl; kÞ ¼ −8παkBT
X∞
n¼−∞

�
nþ 1

2

�

×
Z

dq
ð2πÞ2 tr

1

iγ̃μqμ − Δ=ð2ℏÞ γ̃
μ

×
1

iγ̃μqμ − iγ̃μkμ − Δ=ð2ℏÞ : ð3Þ

Here, α ¼ e2=ðℏcÞ ≈ 1=137 is the fine structure constant,
qμ ¼ðq0n;q1;q2Þ, kμ ¼ðk0l;k1;k2Þ, μ¼ 0, 1, 2, k¼ðk1;k2Þ,
γ̃μ ¼ ημνγν where η

μ
ν ¼ diagðc; vF; vFÞ and γν are the Dirac

matrices. Note also that the numerical factor on the right-
hand side of Eq. (9) takes into account four fermion species
for graphene [1–3].
The polarization tensor (3) was calculated over the

entire axis of imaginary frequencies in Ref. [36], analyti-
cally continued to the real frequency axis and used for
different purposes in Refs. [36,42–44,50,51]. In Ref. [45]
this tensor was generalized for the case of graphene with
nonzero chemical potential μ [this is reached by the
replacement q0n → q0n þ μ=ðℏcÞ] and analytically contin-
ued to the real frequency axis in Ref. [52]. The longitudinal
(in-plane of graphene) and transverse (out-of-plane) elec-
trical conductivities are expressed via the polarization
tensor as [22,50–52]

σkðω; k; TÞ ¼ −i
ω

4πℏk2
Π00ðω; k; TÞ;

σ⊥ðω; k; TÞ ¼ i
c2

4πℏωk2
Πðω; k; TÞ; ð4Þ

where

Πðω; k; TÞ ¼ k2trΠμνðω; k; TÞ þ
�
ω2

c2
− k2

�
Π00ðω; k; TÞ

ð5Þ
and k ¼ jkj. The conductivities of graphene are the com-
plex quantities as well as the polarization tensor along the
real frequency axis.
Calculations show that the major contributions to both

the real and imaginary parts of σkð⊥Þ are given in the local
limit k ¼ 0, whereas the nonlocal corrections are of the
order of ðvF=cÞ2 ∼ 10−5. In the local limit one has

σðω; TÞ≡ σkðω; 0; TÞ ¼ σ⊥ðω; 0; TÞ: ð6Þ

Note that the quantitiesΠ00 andΠ in Eq. (4) go to zero as k2

when k goes to zero, whereas trΠμν goes to a nonzero
constant. Expanding all these quantities up to the first
power in the parameter ðvFk=ωÞ2 < ðvF=cÞ2 and using
Eqs. (28), (40), and (43) in Ref. [52], one obtains that in this
perturbation order

Πðω; k; TÞ ¼ −
ω2

c2
Π00ðω; k; TÞ: ð7Þ

Taking into account Eq. (4), it is seen that Eq. (7) is in
agreement with Eq. (6).
The explicit expressions for the quantity σðω; TÞ in the

most general case of graphene with nonzero Δ and μ have
been derived from Eq. (4) in Ref. [52]. It is convenient to
present the local conductivity of graphene (6) as the sum of
two contributions

σðω; TÞ ¼ σð0ÞðωÞ þ σð1Þðω; TÞ: ð8Þ

The quantity σð0Þ on the right-hand side of this equation is
the contribution to the conductivity which does not depend
on T and μ. It is given by [52]

Reσð0ÞðωÞ ¼ σ0θðℏω − ΔÞ ðℏωÞ
2 þ Δ2

ðℏωÞ2 ;

Imσð0ÞðωÞ ¼ σ0
π

�
2Δ
ℏω

−
ðℏωÞ2 þ Δ2

ðℏωÞ2 ln

����ℏωþ Δ
ℏω − Δ

����
�
; ð9Þ

where Δ is the width of the gap in Dirac’s spectrum and
θðxÞ is the step function equal to unity for x ≥ 0 and zero
for x < 0. Note that under the condition Δ > 2μ the
quantity σð0ÞðωÞ defined in Eq. (9) has the physical
meaning of the total conductivity of graphene at zero
temperature σðω; 0Þ. This means that under the condition
Δ > 2μ it holds [52]

σð1Þðω; 0Þ ¼ lim
T→0

σð1Þðω; TÞ ¼ 0: ð10Þ
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Thus, if Δ > 2μ the conductivity σðω; 0Þ does not depend
on μ (even if μ is not equal to zero but is smaller than Δ=2)
and Reσð0Þ vanishes if ℏω < Δ. The conductivity of
graphene at T ¼ 0 and Δ < 2μ is considered in Sec. III.
The quantity σð1Þ on the right-hand side of Eq. (8)

depends on T, Δ and μ. It can be represented in the
form [52]

Reσð1Þðω; TÞ ¼ −σ0θðℏω − ΔÞ ðℏωÞ
2 þ Δ2

ðℏωÞ2 Fðω; TÞ;

Imσð1Þðω; TÞ ¼ 2σ0
π

Z
∞

Δ
ℏω

dt

�
1þ ðℏωÞ2 þ Δ2

ðℏωÞ2
1

t2 − 1

�

× Fðωt; TÞ; ð11Þ

where the function Fðx; TÞ is defined as

Fðx; TÞ ¼
X
κ¼�1

�
exp

�
ℏxþ 2κμ

2kBT

�
þ 1

�
−1
: ð12Þ

It is convenient to introduce the new integration variable
v ¼ ℏωt=Δ in the second line of Eq. (11) which takes the
form

Imσð1Þðω; TÞ ¼ 2σ0
π

Δ
ℏω

Z
∞

1

dv
�
1þ Δ2 þ ðℏωÞ2

ðvΔÞ2 − ðℏωÞ2
�

× F

�
vΔ
ℏ

; T

�
: ð13Þ

This expression has the pole term CðTÞ=ω at ω ¼ 0, where

CðTÞ ¼ 2σ0
π

Δ
ℏ

Z
∞

1

dv
v2 þ 1

v2
F

�
vΔ
ℏ

; T

�
: ð14Þ

Now we separate the pole term in the imaginary part of
conductivity by adding and subtracting the quantity
CðTÞ=ω on the right-hand side of Eq. (13). Leaving the
first expression in Eq. (11) unchanged, both Reσð1Þ and
Imσð1Þ can be rewritten as

Reσð1Þðω; TÞ ¼−σ0θðℏω−ΔÞ ðℏωÞ
2þΔ2

ðℏωÞ2 Fðω;TÞ;

Imσð1Þðω; TÞ ¼CðTÞ
ω

þ 2σ0
π

ℏωΔ
Z

∞

1

dv
v2þ 1

v2½ðvΔÞ2− ðℏωÞ2�

×F

�
vΔ
ℏ

;T

�
: ð15Þ

Now we discuss the requirements of causality imposed
on the conductivity σðω; TÞ and its constituents σð0ÞðωÞ and
σð1Þðω; TÞ. According to the principle of causality, the
electric current density jðtÞ must not depend on the values
of electric field EðtÞ at times greater than t, i.e.,

jðt; TÞ ¼
Z

∞

0

σðτ; TÞEðt − τÞdτ: ð16Þ

Multiplying both sides of this equation by eiωt and
integrating with respect to t from −∞ to ∞, we obtain
an equation for the Fourier images of the field and current
density

jðω; TÞ ¼ σðω; TÞEðωÞ; ð17Þ
where

σðω; TÞ ¼
Z

∞

0

σðτ; TÞeiωτdτ: ð18Þ

Repeating the well-known reasoning contained in
Ref. [57] for the case of frequency-dependent dielectric
permittivity, it is easy to find the analytic properties of
σðω; TÞ in the plane of complex frequencies and the
symmetry properties of its real and imaginary parts.
Specifically, from Eq. (18) it follows that in the upper
half-plane (Imω > 0) σðω; TÞ is an analytic function with
no singularities. The real and imaginary parts of σðω; TÞ are
the even and odd functions of real frequency, respectively.
From Eq. (18) it is seen also that for the complex ω it holds
σð−ω�; TÞ ¼ σ�ðω; TÞ. Then at the pure imaginary
frequencies σðω; TÞ takes the real values. Equation (16)
is also valid for the contributions σð0ÞðτÞ and σð1Þðτ; TÞ to
the conductivity σðτ; TÞ [with the corresponding contribu-
tions to the total current jð0ÞðtÞ and jð1Þðt; TÞ on the left-hand
side]. From this it follows that all the above properties of
σðω; TÞ are inherent also in σð0ÞðωÞ and σð1Þðω; TÞ.
Note that the explicit expressions (9) and (15) may

appear in disagreement with the formulated above general
properties of conductivity following from the causality
condition (16). The point is that it may exist several
equivalent representations for some quantity along the
positive frequency axis, but only one of them allows
immediate analytic continuation to the entire plane of
complex frequencies. Equations (9) and (15) are written
in the form which is most convenient for applications only
at the real, positive frequencies and can be easily compared
with the results obtained using various approximate and
phenomenological approaches (see below). These equa-
tions, however, can be identically rewritten in the form
where the analytic continuation from the real, positive
frequency axis to the entire complex frequency plane is
achieved by simply putting frequency ω complex. For
example, Eq. (9) can be rewritten in the form

σð0ÞðωÞ ¼ i
2σ0
π

�
Δ
ℏω

−
ðℏωÞ2 þ Δ2

ðℏωÞ2 arctanh
ℏω
Δ

�
; ð19Þ

where all the above properties are evidently satisfied. An
equivalence of Eqs. (9) and (19) along the real, positive
frequency axis follows from the identities [61]
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arctanhx ¼ 1

2
ln
1þ x
1 − x

; 0 ≤ x2 < 1;

arctanhx ¼ arctanh
1

x
þ i

π

2
; ð20Þ

where the last identity is used for x > 1 at the upper bank of
the cut which passes from unity to ∞.
The analytic properties of the functions σðω; TÞ, σð0ÞðωÞ

and σð1Þðω; TÞ result in the validity of the Kramers-Kronig
relations which can be proven in exactly the same manner
as it is done in Ref. [57] for the case of dielectric
permittivity. The form of the Kramers-Kronig relations
depends on the behavior of σ at zero frequency. As is seen
in Eq. (9), both the real and imaginary parts of σð0Þ are
regular at ω ¼ 0 (the first order pole in the first term of
Imσð0Þ is canceled by a similar pole with an opposite sign in
the second term). At ω → ∞ the quantity Reσð0Þ goes to σ0.
Because of this, the Kramers-Kronig relation is valid for the
function Reσð0Þ − σ0. The result is similar to that presented
in Ref. [57] for the dielectric permittivity

Reσð0ÞðωÞ ¼ σ0 þ
2

π

Z
�∞

0

ξImσð0ÞðξÞ
ξ2 − ω2

dξ;

Imσð0ÞðωÞ ¼ −
2ω

π

Z
�∞

0

Reσð0ÞðξÞ
ξ2 − ω2

dξ; ð21Þ

where the crossed sign of integration means that the
principal value of the integral is taken. We note also that

Z
�

∞

0

dξ
ξ2 − ω2

¼ 0: ð22Þ

Because of this it is not necessary to subtract σ0 in the
nominator of the second equality in Eq. (21).
Now we consider the second contribution to the con-

ductivity of graphene, i.e., σð1Þ. As is seen in Eq. (15), the
imaginary part of σð1Þ has the first-order pole. Because of
this, the Kramers-Kronig relations are similar to those
obtained in Ref. [57] for the dielectric permittivity of
conductors

Reσð1Þðω; TÞ ¼ 2

π

Z
�

∞

0

ξImσð1Þðξ; TÞ − CðTÞ
ξ2 − ω2

dξ;

Imσð1Þðω; TÞ ¼ −
2ω

π

Z
�

∞

0

Reσð1Þðξ; TÞ
ξ2 − ω2

dξþ CðTÞ
ω

; ð23Þ

where CðTÞ is defined in Eq. (14). We note that both the
real and imaginary parts of σð1Þ defined in Eq. (15) go to
zero when ω → ∞. Because of this, it is not needed to
subtract any constant from Reσð1Þ like it was done in
Eq. (21). At the same time, it is necessary to subtract CðTÞ
in the nominator of the first dispersion relation in Eq. (23).
This subtraction does not change the value of the integral at

all ω ≠ 0 due to Eq. (22), but makes the Kramers-Kronig
relation correct at ω ¼ 0 (see the relevant discussions
in Ref. [57] for the dielectric permittivity of metals and
in Sec. III).
By combining Eqs. (21) and (23), one arrives to the

Kramers-Kronig relations for the total conductivity of
graphene at any temperature

Reσðω; TÞ ¼ σ0 þ
2

π

Z
�∞

0

ξImσðξ; TÞ − CðTÞ
ξ2 − ω2

dξ;

Imσðω; TÞ ¼ −
2ω

π

Z
�∞

0

Reσðξ; TÞ
ξ2 − ω2

dξþ CðTÞ
ω

: ð24Þ

The Kramers-Kronig relations (21), (23), and (24) follow
from the discussed above general analytic properties of the
local conductivity of graphene. None of the expressions for
the graphene conductivity obtained in the previous liter-
ature using various approximate and phenomenological
methods satisfy these relations precisely. Below we dem-
onstrate, however, that the conductivity (8), (9), (15),
derived independently on the basis of first principles of
quantum electrodynamics at nonzero temperature using the
polarization tensor, is in full agreement with the Kramers-
Kronig relations and, thus, with the demands of causality.

III. KRAMERS-KRONIG RELATIONS FOR THE
CONDUCTIVITY AT ZERO TEMPERATURE

We begin with the case Δ ≥ 2μ when the total conduc-
tivity of graphene at T ¼ 0 is given by Eq. (9), i.e.,
σðω; 0Þ ¼ σð0ÞðωÞ. It is straightforward to substitute the
first line of Eq. (9) in the right-hand side of the second
Kramers-Kronig relation in Eq. (21) and obtain

−
2ω

π

Z
�

∞

0

Reσð0ÞðξÞ
ξ2−ω2

dξ

¼−
2σ0
π

ℏω

�Z
�

∞

Δ

dζ
ζ2−ℏ2ω2

þΔ2

Z
�

∞

Δ

dζ
ζ2ðζ2−ℏ2ω2Þ

�
; ð25Þ

where the integration variable ζ ¼ ℏξ is introduced.
Integrating on the right-hand side of Eq. (25) we find

−
2ω

π

Z
�

∞

0

Reσð0ÞðξÞdξ
ξ2 − ω2

¼ σ0
π

�
2Δ
ℏω

−
ðℏωÞ2 þ Δ2

ðℏωÞ2 ln

����ℏωþ Δ
ℏω − Δ

����
�
¼ Imσð0ÞðωÞ ð26Þ

if to take into account Eq. (9). Thus, the second Kramers-
Kronig relation in Eq. (21) is really satisfied.
Now we substitute the second line of Eq. (9) in the right-

hand side of the first Kramers-Kronig relation in Eq. (21)
and obtain
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σ0 þ
2

π

Z
�

∞

0

ξImσð0ÞðξÞ
ξ2 − ω2

dξ ¼ σ0 −
2σ0
π2

Z
�

∞

0

ξ

ξ2 − ω2

�
ln

����ℏξþ Δ
ℏξ − Δ

����þ Δ2

ðℏξÞ2 ln
����ℏξþ Δ
ℏξ − Δ

����
�
dξ; ð27Þ

where we have taken into account Eq. (22).
In Appendix A, we calculate the following important

integral:

IðbÞ≡
Z
�

∞

0

y
y2 − b2

ln

���� yþ 1

y − 1

����dy ¼
� π2

2
; jbj < 1;

0; jbj > 1
ð28Þ

and indicate relevant incorrect results contained
in Ref. [58].
Introducing the variable y ¼ ℏξ=Δ in the first integral on

the right-hand side of Eq. (27) and using Eq. (28), one
obtains

Z
�

∞

0

ξ

ξ2 − ω2
ln

����ℏξþ Δ
ℏξ − Δ

����dξ ¼
Z
�

∞

0

y
y2 − b2

ln

���� yþ 1

y − 1

����dy

¼
� π2

2
; ℏω < Δ;

0; ℏω > Δ; b≡ ℏω
Δ :

ð29Þ

The second integral on the right-hand side of Eq. (27)
can be evaluated similarly

Δ2

ℏ2

Z
�

∞

0

1

ξðξ2−ω2Þln
����ℏξþΔ
ℏξ−Δ

����dξ¼
Z
�

∞

0

1

yðy2−b2Þln
����yþ1

y−1

����dy
¼ 1

b2

�Z
�

∞

0

y
y2−b2

ln

����yþ1

y−1

����dy−
Z
�

∞

0

dy
y
ln

����yþ1

y−1

����
�

¼
�
0; ℏω<Δ;
−1

2
ðπΔℏωÞ2; ℏω>Δ:

ð30Þ

In obtaining this result we have used Eq. (28) for two
times, namely with b ≠ 0 and b ¼ 0.
Substituting Eqs. (29) and (30) in the right-hand side of

Eq. (27) and using the first line of Eq. (9), one arrives at

σ0 þ
2

π

Z
�∞

0

ξImσð0ÞðξÞ
ξ2 − ω2

dξ ¼
� 0; ℏω < Δ;

σ0
ðℏωÞ2þΔ2

ðℏωÞ2 ; ℏω > Δ

¼ Reσð0ÞðωÞ: ð31Þ

Thus, the conductivity σð0Þ in Eq. (9) satisfies the first
Kramers-Kronig relation in Eq. (21).
Now we continue to consider the case of zero temper-

ature, but assume that Δ < 2μ. In this case it holds

σð1Þðω; 0Þ ¼ lim
T→0

σð1Þðω; TÞ ≠ 0 ð32Þ

and

σðω; 0Þ ¼ σð0ÞðωÞ þ σð1Þðω; 0Þ: ð33Þ
Calculations show that under the condition Δ < 2μ we

have [52]

Reσðω; 0Þ ¼ σ0θðℏω − 2μÞ ðℏωÞ
2 þ Δ2

ðℏωÞ2 ;

Imσðω; 0Þ ¼ σ0
π

�
4μ

ℏω
−
ðℏωÞ2 þ Δ2

ðℏωÞ2 ln

����ℏωþ 2μ

ℏω − 2μ

����
�
: ð34Þ

Similar to Eq. (9), this result is valid at the real, positive
frequency axis. It is easily seen that in the limiting case
ω → 0 one has

Imσðω; 0Þ ¼ Cð0Þ
ω

þO

�
ℏω
2μ

�
; ð35Þ

where

Cð0Þ ¼ σ0
π

ð2μÞ2 − Δ2

ℏμ
: ð36Þ

The last equation is also obtainable as a particular case of
Eq. (14) if one puts there T ¼ 0. In so doing it is necessary
to take into account that at T → 0 only the interval of v
from unity to 2μ=Δ contributes to the integral.
Taking into account that Imσðω; 0Þ has a pole at zero

frequency, the Kramers-Kronig relations are given in this
case by Eq. (24) where one should replace σðω; TÞ with
σðω; 0Þ and CðTÞ with Cð0Þ. It is easily seen that both of
them are satisfied. Really, substituting the first line of
Eq. (34) in the right-hand side of the second Kramers-
Kronig relation in Eq. (24) with C defined in Eq. (36) and
introducing the variable ζ ¼ ℏξ, one obtains

−
2ω

π

Z
�

∞

0

Reσðξ; 0Þ
ξ2 − ω2

dξþ σ0
π

ð2μÞ2 − Δ2

ℏμω

¼ −
2σ0
π

ℏω

�Z
�

∞

2μ

dζ
ζ2 − ℏ2ω2

þ Δ2

Z
�

∞

2μ

dζ
ζ2ðζ2 − ℏ2ω2Þ

�
;

þ σ0
π

ð2μÞ2 − Δ2

ℏμω
: ð37Þ

Calculating the integrals in Eq. (37), we arrive at

−
2ω

π

Z
�

∞

0

Reσðξ; 0Þdξ
ξ2 − ω2

þ σ0
π

ð2μÞ2 − Δ2

ℏμω
:

¼ σ0
π

�
4μ

ℏω
−
ðℏωÞ2 þ Δ2

ðℏωÞ2 ln

����ℏωþ 2μ

ℏω − 2μ

����
�
¼ Imσðω; 0Þ

ð38Þ
in accordance with Eq. (24).
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Now we verify the first Kramers-Kronig relation in
Eq. (24), when CðTÞ is replaced with Cð0Þ from Eq. (36).
It is more illustrative to consider first the case ω ≠ 0 when
Cð0Þ can be simply omitted due to Eq. (22). Substituting the
second line of Eq. (34) in the right-hand side of the first
Kramers-Kronig relation in Eq. (24), we find

σ0 þ
2

π

Z
�

∞

0

ξImσðξ; 0Þ
ξ2 − ω2

dξ ¼ σ0 −
2σ0
π2

Z
�

∞

0

ξ

ξ2 − ω2

×

�
ln

����ℏξþ 2μ

ℏξ − 2μ

����þ Δ2

ðℏξÞ2 ln
����ℏξþ 2μ

ℏξ − 2μ

����
�
dξ: ð39Þ

The first integral on the right-hand side of this equation is
calculated like in Eq. (29) with y ¼ ℏξ=ð2μÞ and b ¼
ℏω=ð2μÞ using Eq. (28). The result is given by Eq. (29)
where Δ is replaced with 2μ. The second integral is
calculated like in Eq. (30). It is equal to zero when ℏω <
2μ and to −ðπΔÞ2=ð2ℏ2ω2Þ when ℏω > 2μ. Substituting
the values of both integrals in Eq. (39) and taking into
account the first line in Eq. (34), one finds

σ0 þ
2

π

Z
�

∞

0

ξImσðξ; 0Þ
ξ2 − ω2

dξ ¼
� 0; ℏω < 2μ;

σ0
ðℏωÞ2þΔ2

ðℏωÞ2 ; ℏω > 2μ:

¼ Reσðω; 0Þ: ð40Þ

Thus, with account of Eq. (22), the first Kramers-Kronig
relation in Eq. (24) is proven for all ω ≠ 0.
At ω ¼ 0 the validity of this Kramers-Kronig relation is

achieved by the subtraction of Cð0Þ in the first line of
Eq. (39). To see this, we substitute Imσðω; 0Þ from Eq. (34)
and Cð0Þ from Eq. (36) in the right-hand side of the first
Kramers-Kronig relation of Eq. (24) at ω ¼ 0 and obtain

σ0 þ
2

π

Z
�

∞

0

ξImσðξ; 0Þ − Cð0Þ
ξ2

dξ ¼ σ0 þ
2σ0
π2

Z
�

∞

0

dξ

×

�
Δ2

ℏμξ2
−
1

ξ
ln

����ℏξþ 2μ

ℏξ − 2μ

���� − Δ2

ðℏξÞ3 ln
����ℏξþ 2μ

ℏξ − 2μ

����
�
: ð41Þ

Calculation of all the three integrals on the right-hand
side of this equation (see Appendix B) results in

σ0 þ
2

π

Z
�

∞

0

ξImσðξ; 0Þ − Cð0Þ
ξ2

dξ ¼ σ0 − σ0 ¼ 0; ð42Þ

as it should be because in accordance to the first line of
Eq. (34)

Reσð0; 0Þ ¼ 0: ð43Þ

This concludes the proof of the Kramers-Kroniog
relations for the conductivity of graphene at zero temper-
ature and validates the fact that expressions (9) for Δ > 2μ
and (34) for Δ < 2μ satisfy the condition of causality. In

some particular cases Eqs. (9) and (34) have been derived
using various models and phenomenological approaches
(see, for instance, Refs. [47,62,63]). Note, however, that the
additional terms in the conductivity of graphene at zero
temperature containing the δ function of ω, which were
obtained within some approaches (see, e.g., Refs. [47,64]),
are not obtainable in our formalism based on the first
principles of quantum electrodynamics. Such terms would
violate the Kramers-Kronig relations and, thus, lead to
contradiction with the principle of causality [65].

IV. KRAMERS-KRONIG RELATIONS AT
NONZERO TEMPERATURE

At first, we prove the validity of the Kramers-Kronig
relations for the temperature-dependent part of the con-
ductivity of graphene σð1Þðω; TÞ defined in Eq. (15). As
usual, we start from the second Kramers-Kronig relation in
Eq. (23). Substituting the first line of Eq. (15) in the right-
hand side of the second Kramers-Kronig relation in
Eq. (23), one obtains

−
2ω

π

Z
�

∞

0

Reσð1Þðξ; TÞ
ξ2 − ω2

dξþ CðTÞ
ω

¼ 2ωσ0
πℏ2

Z
�

∞

Δ
ℏ

ðℏξÞ2 þ Δ2

ξ2ðξ2 − ω2ÞFðξ; TÞdξþ
CðTÞ
ω

: ð44Þ

Introducing the new integration variable v ¼ ℏξ=Δ and
using the second line of Eq. (15), we find

−
2ω

π

Z
�

∞

0

Reσð1Þðξ; TÞ
ξ2 − ω2

dξþ CðTÞ
ω

¼ 2σ0
π

ℏωΔ
Z
�∞

1

dv
v2 þ 1

v2½ðvΔÞ2 − ðℏωÞ2�F
�
vΔ
ℏ

; T

�
þ CðTÞ

ω

¼ Imσð1Þðω; TÞ; ð45Þ

i.e., the second Kramers-Kronig relation in Eq. (23) is
satisfied.
Now we substitute the second line of Eq. (15) to the

right-hand side of the first Kramers-Kronig relation in
Eq. (23). Taking into account that in the second line of
Eq. (15) the pole term is already separated, one can
consider both cases ω ≠ 0 and ω ¼ 0 simultaneously.
The result is

J ≡ 2

π

Z
�

∞

0

ξImσð1Þðξ; TÞ − CðTÞ
ξ2 − ω2

dξ

¼ 4σ0
π2

ℏΔ
Z
�∞

0

ξ2dξ
ξ2 − ω2

Z
�∞

1

dv
ðv2 þ 1ÞFðvΔℏ ; TÞ
v2½ðvΔÞ2 − ðℏωÞ2�

¼ 4σ0
π2

Z
�

∞

0

y2dy
y2 − b2

Z
�

∞

1

dv
v2 þ 1

v2
FðvΔℏ ; TÞ
v2 − y2

; ð46Þ
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where the integration variable y ¼ ℏξ=Δ was introduced
and b ¼ ℏω=Δ.
Note that if b < 1, i.e., ℏω < Δ, then v ≠ b holds over

the entire integration region from unity to infinity. Taking
into account that

Z
�

∞

0

y2dy
ðy2 − b2Þðy2 − v2Þ ¼ 0 for b ≠ v; ð47Þ

one immediately concludes that J ¼ 0.
It remains to consider the case b > 1, i.e., ℏω > Δ. To

deal with this case, we present our integral (46) in the form

J ¼ −
2σ0
π2

Z
�∞

0

ydy
y2 − b2

Z
�∞

1

v2 þ 1

v2
F

�
vΔ
ℏ

; T

�
d ln

���� vþ y
v − y

����:
ð48Þ

Integrating here by parts we find

J ¼ −
2σ0
π2

Z
�

∞

0

ydy
y2 − b2

×

��
v2 þ 1

v2
F

�
vΔ
ℏ

; T

�
ln

���� vþ y
v − y

����
�����

∞

1

−
Z
�∞

1

ln

���� vþ y
v − y

����d
�
v2 þ 1

v2
F

�
vΔ
ℏ

; T

���
: ð49Þ

Taking into account that in accordance to Eq. (12)
Fðx; TÞ → 0 when x → ∞, Eq. (49) leads to

J ¼ 4σ0
π2

F

�
Δ
ℏ
; T

�Z
�

∞

0

ydy
y2 − b2

ln

����1þ y
1− y

����
þ 2σ0

π2

Z
�

∞

0

ydy
y2 − b2

Z
�

∞

1

ln

����vþ y
v− y

����d
�
v2 þ 1

v2
F

�
vΔ
ℏ

; T

��
:

ð50Þ

The first integral on the right-hand side of this equation is
equal to zero due to Eq. (28) and, changing the integration
order with respect to y and v, we have

J ¼ 2σ0
π2

Z
�

∞

1

d

�
v2 þ 1

v2
F

�
vΔ
ℏ

; T

��Z
�

∞

0

ydy
y2 − b2

ln

���� vþ y
v − y

����:
ð51Þ

Now we introduce the integration variable t ¼ y=v in the
last integral and obtain

J ¼ 2σ0
π2

Z
�

∞

1

d

�
v2 þ 1

v2
F

�
vΔ
ℏ

; T

��Z
�

∞

0

tdt

t2 − b̃2
ln

���� tþ 1

t − 1

����;
ð52Þ

where b̃ ¼ b=v can be both larger and less than unity.
According to Eq. (28), the last integral on the right-hand

side of Eq. (52) is equal to zero if b̃ > 1 (i.e., v < b) and to
π2=2 if b̃ < 1 (i.e., v > b). As a result, Eq. (52) is
simplified to

J ¼ σ0

Z
�

∞

b
d

�
v2 þ 1

v2
F

�
vΔ
ℏ

; T

��

¼ −σ0
b2 þ 1

b2
F
�
bΔ
ℏ

; T
�

¼ −σ0
ðℏωÞ2 þ Δ2

ðℏωÞ2 Fðω; TÞ:

ð53Þ

Combining together the results for b < 1 (i.e., ℏω < Δ)
and b > 1 (i.e., ℏω > Δ) and using the first line of Eq. (11),
we conclude from Eq. (46) that

J ¼ −σ0θðℏω − ΔÞ ðℏωÞ
2 þ Δ2

ðℏωÞ2 Fðω; TÞ ¼ Reσð1Þðω; TÞ;

ð54Þ

i.e., the first Kramers-Kronig relation in Eq. (23) is
satisfied.
The total conductivity of graphene at nonzero temper-

ature is given by Eq. (8). Using Eqs. (9) and (15), one
obtains

Reσðω;TÞ¼σ0θðℏω−ΔÞðℏωÞ
2þΔ2

ðℏωÞ2 ½1−Fðω;TÞ�;

Imσðω;TÞ¼σ0
π

��
2Δ
ℏ

þπCðTÞ
σ0

�
1

ω

−
ðℏωÞ2þΔ2

ðℏωÞ2 ln

����ℏωþΔ
ℏω−Δ

����
þ2ℏωΔ

Z
�∞

1

dv
v2þ1

v2½ðvΔÞ2−ðℏωÞ2�F
�
vΔ
ℏ
;T

��
:

ð55Þ

Note that Reσðω; TÞ can be rewritten in especially simple
and transparent equivalent form. For this purpose we use
the definition of F in Eq. (12) and the following identity:

1

2
−

1

ey þ 1
¼ 1

2
tanh

y
2
: ð56Þ

The result is

Reσðω; TÞ ¼ σ0θðℏω − ΔÞ ðℏωÞ
2 þ Δ2

2ðℏωÞ2

×

�
tanh

ℏωþ 2μ

4kBT
þ tanh

ℏω − 2μ

4kBT

�
: ð57Þ

As to Imσðω; TÞ, simple asymptotic expressions for it in
different regions of parameters and the results of numerical
computations can be found in Refs. [50–52]. Although in
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the general case of gapped graphene with nonzero chemical
potential Eqs. (55) and (57) were derived in Ref. [52], in
different special cases similar dependences have been
obtained previously using various approaches based on
the Kubo formalism and two-dimensional Drude model
(see, e.g., Refs. [66–71]).
The Kramers-Kronig relations (24) for the total conduc-

tivity of graphene (55) are satisfied automatically, because
they are obtained by the combination of already proven
Kramers-Kronig relations (21) and (23) satisfied for
σð0ÞðωÞ and σð1Þðω; TÞ, respectively.

V. CONCLUSIONS AND DISCUSSION

In the foregoing, we have investigated the problem of
causality for the conductivity of graphene in the framework
of the Dirac model. Until recently, only some partial results
for the conductivity of graphene have been obtained using
some models and phenomenological approaches. To inves-
tigate the problem of causality, we use the complete results
for the spatially local conductivity found on the basis of
first principles of thermal quantum field theory using the
polarization tensor of graphene in (2þ 1)-dimensional
space-time [50–52]. The spatially nonlocal corrections to
these results were shown to be of the order of 10−5 of the
local contributions and, thus, are of no physical signifi-
cance in the framework of Dirac’s model.
General discussion of causality presented in the paper

leads to the conclusion that both the total conductivity of
graphene and contributions to it σð0ÞðωÞ, depending on the
band gap, and σð1Þðω; TÞ, depending on the band gap and
chemical potential, are the analytic functions in the upper
half-plane of complex frequencies and possess all the
standard symmetry properties. Hence it follows that the
real and imaginary parts of the conductivity of graphene
derived in any specific formalism must satisfy the Kramers-
Kronig relations. The form of these relations, as shown
above, depends on the presence of a pole at zero frequency
and takes into account an existence of the universal
conductivity. There is no pole for the conductivity of
graphene at zero temperature under the condition that
the band gap is larger than twice the chemical potential,
and there is such a pole in all remaining cases. The
fulfilment of the Kramers-Kronig relations can be consid-
ered as a basic guideline in deciding which specific
expression for the conductivity of graphene is correct.
We have shown through the direct analytic calculations

that the real and imaginary parts of the conductivity of
graphene, found in Ref. [52] in the most general case of
nonzero temperature, band gap and chemical potential on
the basis of first principles of thermal quantum field theory,
satisfy both Kramers-Kronig relations precisely. In the
process, the values of two important integrals in the widely
used tables have been corrected, which might be useful in
the context of dispersion relations for the scattering

amplitudes in quantum field theory. One can conclude that
the obtained results are not of only fundamental theoretical
character, but they also open fresh opportunities for the use
of Kramers-Kronig relations in different fields of physics
and for the interpretation of experimental data.
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APPENDIX A: CALCULATION OF IMPORTANT
INTEGRALS

Here, we calculate the integral (28) and correct relevant
integrals in Ref. [58] which are important for various
applications in a wide context of dispersion relations in
different branches of physics.
The integral in Eq. (28) can be presented in the form

IðbÞ ¼ 1

2
½IþðbÞ þ I−ðbÞ�; ðA1Þ

where

IþðbÞ ¼
Z
�∞

0

dy
yþ b

ln

���� yþ 1

y − 1

����;
I−ðbÞ ¼

Z
�

∞

0

dy
y − b

ln

���� yþ 1

y − 1

����: ðA2Þ

We consider the case b ≥ 0, b ≠ 1. It is easily seen that the
integrals in Eq. (A2) converge at the points y ¼ 1, y ¼ b.
Integrating by parts in Eq. (A2), one obtains

I�ðbÞ ¼ 2

Z
�

∞

0

dy
ln jy� bj
y2 − 1

; ðA3Þ

where the out-of-integral terms vanish and the lower
indices � correspond to plus and minus on the right-hand
side, respectively.
From Eq. (A3) we find the derivative of I� with respect

to b

dI�ðbÞ
db

¼ �2

Z
�

∞

0

dy
1

ðy� bÞðy2 − 1Þ : ðA4Þ

Calculating this integral, we obtain the result

dI�ðbÞ
db

¼ �2
ln b

1 − b2
: ðA5Þ

From this it follows that

dIðbÞ
db

¼ 1

2

�
dIþðbÞ
db

þ dI−ðbÞ
db

�
¼ 0; ðA6Þ

KRAMERS-KRONIG RELATIONS AND CAUSALITY … PHYS. REV. D 97, 085001 (2018)

085001-9



i.e., IðbÞ takes the constant values in the intervals ½0; 1Þ and
ð1;∞Þ, where it is a continuous function.
Let us consider first the interval [0,1) and find the values

Iþð0Þ ¼ I−ð0Þ ¼
Z
�

∞

0

dy
y
ln

���� yþ 1

y − 1

����
¼

Z
1

0

dy
y
ln
1þ y
1 − y

þ
Z

∞

1

dy
y
ln
yþ 1

y − 1
: ðA7Þ

Changing the integration variable according to y ¼ 1=x in
the second integral on the right-hand side of Eq. (A7), one
obtains

I�ð0Þ ¼ 2

Z
1

0

dy
y
ln
1þ y
1 − y

¼ 4
X∞
k¼1

1

2k − 1

Z
1

0

y2k−2dy:

ðA8Þ

Calculating this integral and taking into account that [72]

X∞
k¼1

1

ð2k − 1Þ2 ¼
π2

8
; ðA9Þ

we find

I�ð0Þ ¼
π2

2
: ðA10Þ

Then from Eq. (A1) it follows that IðbÞ ¼ π2=2 under the
condition 0 ≤ b < 1 in agreement with the first line
of Eq. (28).
Note that it is also possible now to find the values of

integrals I�ðbÞ at any b. By integrating Eq. (A5) with
respect to b for b < 1, we have

I�ðbÞ ¼ � ln b ln
1þ b
1 − b

∓ Li2ðbÞ � Li2ð−bÞ þ
π2

2
;

ðA11Þ

where LinðxÞ is the polylogarithm function. This equation
can be checked by differentiation taking into account that

dLi2ð�bÞ
db

¼ −
lnð1 ∓ bÞ

b
: ðA12Þ

The value of the arbitrary integration constant in Eq. (A11),
C ¼ π2=2, is determined from Eq. (A10) taking into
account that Li2ð0Þ ¼ 0.
The result (A11) is in disagreement with the formula

2.6.14.27 of Ref. [58] where the independent on b value of
the integrals I�ðbÞ equal to π is indicated leading to an
incorrect result IðbÞ ¼ π. This formula is also in contra-
diction with the formula 2.6.14.24. The latter is in agree-
ment with our result (A10).

Now we consider the case when b varies in the interval
(1;∞), where the dilogarithm function has a cut. Using
Eq. (A12), one can easily check that the integration of
Eq. (A5) results in

I�ðbÞ ¼ � ln b ln
bþ 1

b − 1
� Li2

�
1

b

�
∓ Li2

�
−
1

b

�
: ðA13Þ

The integration constant C ¼ 0 is found from the fact that
I�ðbÞ → 0 when b → ∞. From Eqs. (A1) and (A13) we
have IðbÞ ¼ 0 over the entire interval ð1;∞Þ which
concludes the proof of Eq. (28).
The result (A13) contradicts to the formula 2.6.14.26 of

Ref. [58], where instead of Eq. (A13) an incorrect value
I�ðbÞ ¼ 0 is indicated.

APPENDIX B: INTEGRALS NEEDED IN THE
CASE OF ZERO FREQUENCY

Here, we calculate the integrals contained in Eq. (41).
Introducing the new variable y ¼ ℏξ=ð2μÞ, the right-hand
side of Eq. (41) takes the form

σ0 þ
2σ0
π2

ðI1 − I2Þ; ðB1Þ

where

I1 ¼
Δ2

ð2μÞ2
Z
�

∞

0

�
2

y2
−

1

y3
ln j yþ 1

y − 1
j
�
dy;

I2 ¼
Z
�∞

0

dy
y
ln

���� yþ 1

y − 1

����: ðB2Þ

Using Eq. (28) with b ¼ 0, which is proven in
Appendix A, one obtains I2 ¼ π2=2. Because of this below
we consider only I1. It is easily seen that this integral
converges at y ¼ 0. Really, for y < 1 it holds

ln

���� yþ 1

y − 1

���� ¼ ln
1þ y
1 − y

¼ 2
X∞
k¼1

y2k−1

2k − 1

¼ 2yþ 2
X∞
k¼1

y2kþ1

2kþ 1
: ðB3Þ

In a similar way, for y > 1 one obtains

ln

���� yþ 1

y − 1

���� ¼ ln
yþ 1

y − 1
¼ ln

1þ 1
y

1 − 1
y

¼ 2
X∞
k¼1

1

ð2k − 1Þy2k−1 : ðB4Þ

Substituting Eqs. (B3) and (B4) in the first line of
Eq. (B2), we find
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I1 ¼
Δ2

ð2μÞ2
�Z

1

0

�
2

y2
−

1

y3
ln
1þ y
1 − y

�
dyþ

Z
∞

1

�
2

y2
−

1

y3
ln
yþ 1

y − 1

�
dy

�

¼ −
2Δ2

ð2μÞ2
�Z

1

0

X∞
k¼1

y2k−2

2kþ 1
dy −

Z
∞

1

�
1

y2
−
X∞
k¼1

1

ð2k − 1Þy2kþ2

�
dy

�
: ðB5Þ

Integrating on the right-hand side of this equation, one arrives at

I1 ¼ −
2Δ2

ð2μÞ2
�X∞
k¼1

1

4k2 − 1
− 1þ

X∞
k¼1

1

4k2 − 1

�
: ðB6Þ

Taking into account that [72]

X∞
k¼1

1

4k2 − 1
¼ 1

2
; ðB7Þ

we finally obtain that I1 ¼ 0. Substituting the values of both I1 and I2 in Eq. (B1), one finds

σ0 þ
2σ0
π2

ðI1 − I2Þ ¼ 0 ðB8Þ

in accordance with Eq. (42).
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