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Numerical relativity codes that do not make assumptions on spatial symmetries most commonly adopt
Cartesian coordinates. While these coordinates have many attractive features, spherical coordinates are
much better suited to take advantage of approximate symmetries in a number of astrophysical objects,
including single stars, black holes, and accretion disks. While the appearance of coordinate singularities
often spoils numerical relativity simulations in spherical coordinates, especially in the absence of any
symmetry assumptions, it has recently been demonstrated that these problems can be avoided if the
coordinate singularities are handled analytically. This is possible with the help of a reference-metric version
of the Baumgarte-Shapiro-Shibata-Nakamura formulation together with a proper rescaling of tensorial
quantities. In this paper we report on an implementation of this formalism in the EINSTEIN TOOLKIT. We
adapt the EINSTEIN TOOLKIT infrastructure, originally designed for Cartesian coordinates, to handle
spherical coordinates, by providing appropriate boundary conditions at both inner and outer boundaries.
We perform numerical simulations for a disturbed Kerr black hole, extract the gravitational wave signal,
and demonstrate that the noise in these signals is orders of magnitude smaller when computed on spherical
grids rather than Cartesian grids. With the public release of our new EINSTEIN TOOLKIT thorns, our methods
for numerical relativity in spherical coordinates will become available to the entire numerical relativity
community.
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I. INTRODUCTION

LIGO [1,2] and Virgo’s [3,4] first direct detections of
gravitational waves (GWs) from both binary black hole
(BBH) and binary neutron star (BNS) mergers [5–10] open
a new window for observations of the Universe. Moreover,
the simultaneous detection of GWs and electromagnetic
(EM) radiation from the BNS merger GW170817 has
launched the new field of EM-GW multi-messenger
astronomy [11]. Ever since the breakthrough simulations
of BBHs in numerical relativity about a decade ago
[12–14], increasingly more accurate models of BBH
merger waveforms across the source parameter space have
been generated [15–17]. Together with approximate gravi-
tational wave-form models (see, e.g., [18–23]), these
numerical relativity simulations played a crucial role in
the parameter estimation of GWs [24] by LIGO-VIRGO
[25–27].
Among the missions of current and future GW detectors

are tests of general relativity (GR) [28]. While the remnant
black hole (BH) mass and spin can be estimated from the
inspiral phase [29], measuring the quasinormal ringdown

[30–33] of the remnant BH in the GW signal will provide
an independent measurement of its mass and spin [34], as
well as tests of the no-hair theorem and GR [35,36].
Accurate modeling of the ringdown of a highly distorted
remnant Kerr BH after merger is only possible using
numerical relativity simulations of BBH coalescence
through merger.
Arguably, one of the most widely used evolution schemes

for these type of simulations is the Baumgarte-Shapiro-
Shibata-Nakamura (BSSN) formulation [37,38].1 It is based
on the Arnowitt-Deser-Misner (ADM) formulation of
Einstein’s equations [40–42], and, like the ADM formu-
lation, adopts a 3þ 1 foliation of spacetime [43]. Unlike the
ADM formulation it also introduces a conformal-traceless
decomposition as well as conformal connection functions
(see also [44] for a textbook introduction).
To date, most numerical codes that adopt the BSSN

formulation use finite differencing as well as Cartesian

1Sometimes referred to as BSSNOK, because it is based on the
strategy of [39] to simplify the spatial Ricci tensor.
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coordinates. While Cartesian coordinates offer distinct
advantages (most importantly, they are regular everywhere
and do not feature any coordinate singularities), there are
also several shortcomings: BHs, neutron stars, accretion
disks, etc., are often approximately spherical or axisym-
metric, and Cartesian coordinates are not well suited to take
advantage of these approximate symmetries. Furthermore,
Cartesian coordinates over-resolve angular directions at
large distances, which leads to the necessity of employing
box-in-box mesh refinement.
In large part, the main target of vacuum numerical

relativity simulations are BBH mergers, whose remnants
are Kerr [45] BHs. Being axisymmetric or nearly axisym-
metric, these merger remnants are prime targets for evo-
lutions in spherical coordinates. In [46], the authors
implemented the BSSN equations in spherical coordinates
without regularization in spherical symmetry. An important
ingredient in obtaining stability was the use of the partially
implicit Runge-Kutta methods developed in [47], even
though it became clear later that stability can also be
achieved with higher-order fully explicit Runge-Kutta
methods [48]. In [49], the authors extended the evolution
system described in [46] to full 3D and performed the first
numerical relativity simulations in spherical coordinates
without the assumption of any symmetries. The key idea in
this approach is to handle the coordinate singularities at the
origin and on the axis analytically, rather than numerically,
which can be achieved with the help of a reference-metric
formulation of the BSSN equations [46,50–53] together
with a proper rescaling of all tensorial variables. The same
methods can also be applied to relativistic hydrodynamics
[54]. Several examples of vacuum and hydrodynamics
simulations in spherical coordinates, including an off-
center BH head-on collision, can be found in [55], and
simulations of critical collapse in the absence of spherical
symmetry in [56–59]. This approach has been generalized
in the SENR/NRPY+ code [60,61] for various other curvi-
linear coordinate systems.
The use of spherical coordinates has clear advantages.

Most importantly, the grid can take advantage of the
approximate symmetries of the astrophysical objects to
be simulated. Also, the number of angular grid points is
independent of radius, while in Cartesian coordinates the
number of points per great circle grows with distance from
the origin. The unigrid (i.e., single computational domain
without mesh refinement) character of a spherical mesh
does not produce short-wavelength noise as is the case for
simulations with mesh refinement boundaries [62]. From a
computational standpoint, our unigrid implementation in
the EINSTEIN TOOLKIT offers another advantage: It is well
documented that mesh refinement codes do not scale as
well as unigrid codes (see [63] for comparing scaling
properties of unigrid and mesh refinement in the EINSTEIN
TOOLKIT).

However, these advantages compared to Cartesian coor-
dinates come at a price: Spherical coordinates have a well
know limitation in the form of severely shorter time steps
due to the Courant-Friedrichs-Lewy (CFL) condition, as
the cell volumes are not constant, but decrease with
increasing latitude towards the pole and decreasing radius
towards the origin. A related issue is that the coordinate
system becomes singular both at the origin and the polar
axis, where coordinate values become multivalued.
An approach to combine the best of both worlds is the use

ofmultipatch computational domains, inwhich the domain is
broken up into several overlapping patches locally adapted to
the underlying symmetries of the physical system and free
of coordinate singularities and the time step limitations of
spherical unigrid meshes [64–71]. The SpeC code [72] uses
such a multipatch grid structure [73], but in the context
of a pseudospectral evolution scheme. Other techniques in
numerical relativity codes for dealing with the polar singu-
larities are the use of stereographic angular coordinates,
coupled to the eth formalism [74], as is done in the PITTNull
code [75], and the use of cubed spheres, as is done in
the LLAMA infrastructure [76]. The use of multipatch
grids, however, is not free of caveats either: Interpatch
boundaries require interpolation of fields in ghost zones
which might introduce similar numerical noise as Cartesian
mesh-refinement boundaries.
In this work, we report on an implementation of the

BSSN equations in spherical coordinates described in [49]
as a thorn called SPHERICALBSSN in the publicly available
EINSTEIN TOOLKIT [77,78], using code for the BSSN
equations provided by [60]. The EINSTEIN TOOLKIT was
designed with Cartesian coordinates in mind, so that we
had to adapt our implementation of spherical coordinates to
its infrastructure in some regards. We first identify the x, y
and z coordinates defined in the EINSTEIN TOOLKIT with r,
θ and φ. The EINSTEIN TOOLKIT uses a vertex-centered grid
for finite differencing, meaning that grid points are placed
on the edges of the physical domain. This is not desirable in
spherical coordinates, because grid points at the origin or
on the axis would be singular. We therefore move both the r
and θ axes by half a grid point, so that, effectively, we
implement a cell-centered grid in these directions (compare
Fig. 1 in [49]). While, in Cartesian coordinates, the domain
boundaries in x, y and z all correspond to outer boundaries,
only the upper r domain boundary corresponds to an outer
boundary in spherical coordinates. All other boundary
conditions are “inner” boundary conditions. For the φ
coordinate, these boundary conditions result from perio-
dicity, while for the θ direction as well as at r ¼ 0, the
boundary conditions result from parity across the pole or
the origin. For all inner boundaries, the ghost zones are
filled in using properly identified interior grid points (see
again Fig. 1 in [49] for an illustration), taking into account
the parity of tensorial quantities.

VASSILIOS MEWES et al. PHYS. REV. D 97, 084059 (2018)

084059-2



In MPI-parallelized domain decompositions, the inner
boundary conditions can require information from different
processes and are therefore more difficult to implement
than in the context of OpenMP-parallelized, single-domain
implementations. Using the SLAB thorn [78], we have
implemented the inner boundary conditions in an MPI-
parallelized way, allowing for arbitrary MPI domain
decompositions. We also made several changes to existing
diagnostics in the EINSTEIN TOOLKIT so that they can be
used for evolutions in spherical coordinates, specifically the
apparent horizon (AH) finder [79,80] and a thorn that
computes quasilocal quantities [81,82] on AHs. We test the
new thorn, together with the changes in the existing
diagnostics, for a single Bowen-York spinning BH [83],
which is equivalent to a Kerr BH with an axisymmetric
Brill wave.
Throughout this paper we use units in which c ¼ G ¼ 1,

Latin indices run from 1 to 3, and the Einstein summation
convention is used.

II. IMPLEMENTATION
IN THE EINSTEIN TOOLKIT

The EINSTEIN TOOLKIT is an open source code suite for
relativistic astrophysics simulations. It uses the modular
CACTUS framework [84] (consisting of general modules
called “thorns”) and provides adaptive mesh refinement
(AMR) via the CARPET driver [85–87]. Here we describe
the implementation of the BSSN evolution code in spheri-
cal coordinates within the Toolkit. All codes mentioned
here are either publicly available already, or are in the
process of being released.

A. Evolution system

As outlined in [46,49,55], the key idea in allowing stable
evolutions of the BSSN [37–39] equations in spherical
coordinates is to treat the coordinate singularities analyti-
cally rather than numerically. Specifically, the equations
contain terms that diverge with Oðr−2Þ close to the
origin and Oðsin−2 θÞ close to the axis. Adopting a
reference-metric formulation of the BSSN equations
[46,50–53] together with a proper rescaling of all tensorial
quantities, these terms can be differentiated analytically,
and, for regular spacetimes, all code variables remain finite.
We also assume absence of conical singularities, which is
sometimes referred to as “elementary flatness” [88]. This
approach has been generalized in [60] for a larger number
of curvilinear coordinate systems, such as spherical coor-
dinates with a sinhðrÞ radial coordinate and cylindrical
coordinates, among others. We give a summary of the
evolution system below, and refer the reader to the full
details in [49,55,60].
Central to the method is the conformally related spatial

metric

γ̄ij ¼ e−4ϕγij; ð1Þ

where γij is the physical spatial metric, and ϕ the conformal
factor

e4ϕ ¼ ðγ=γ̄Þ1=3; ð2Þ

where γ and γ̄ are the determinants of the physical and
conformally related metric, respectively. In order to make
the conformal rescaling unique, we adopt Brown’s
“Lagrangian” choice [52]

∂tγ̄ ¼ 0; ð3Þ

fixing γ̄ to its initial value throughout the evolution.
Similarly, the conformally related extrinsic curvature is
defined as

Āij ¼ e−4ϕ
�
Kij −

1

3
γijK

�
; ð4Þ

where Kij is the physical extrinsic curvature and K ¼
γabKab its trace.
The main idea is to write the conformally related metric

as the sum of the flat background metric plus perturbations
(which need not be small)

γ̄ij ¼ γ̂ij þ ϵij; ð5Þ

where γ̂ij is the reference metric in spherical coordinates,

γ̂ij ¼

0
B@

1 0 0

0 r2 0

0 0 r2 sin2 θ

1
CA; ð6Þ

and the corrections ϵij are given by

ϵij ¼

0
BB@

hrr rhrθ r sin θhrφ

rhrθ r2hθθ r2 sin θhθφ

r sin θhrφ r2 sin θhθφ r2 sin2 θhφφ

1
CCA; ð7Þ

where hij is the rescaled evolved metric. This idea is similar
to bimetric formalisms [89–95] in GR, in which reference
metrics are employed to give physical meaning to pseu-
dotensors in curvilinear coordinates, or in the integration of
the Ricci scalar on a hypersurface [96]. The evolved
conformally rescaled extrinsic curvature aij is similarly
related to the conformally related extrinsic curvature Āij

Āij ¼

0
BB@

arr rarθ r sin θarφ

rarθ r2aθθ r2 sin θaθφ

r sin θarφ r2 sin θaθφ r2 sin2 θaφφ

1
CCA: ð8Þ
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The conformal connection coefficients Λ̄i are treated as
independent variables that satisfy the initial constraint

Λ̄i − Δi ¼ 0: ð9Þ
Here

Δi ≡ γ̄abΔi
ab ð10Þ

andΔi
jk is the difference between the Christoffel symbols of

the conformally rescaled and flat reference metric,

Δi
jk ≡ Γ̄i

jk − Γ̂i
jk: ð11Þ

The conformal connection coefficients Λ̄i therefore trans-
form like vectors in the reference-metric formalism. Similar
to our treatment of the metric and the extrinsic curvature we
write

Λ̄i ¼

0
B@

λr

λθ=r

λφ=ðr sin θÞ

1
CA ð12Þ

and evolve the variables λi in our code. We refer the reader
to [49,55,60] for the full details of the evolution system.
The physical metric γij and the physical extrinsic

curvature Kij can be reconstructed from the evolved
variables hij and aij as follows:

γij ¼ e4ϕ

0
BB@

1þ hrr rhrθ r sin θhrφ

rhrθ r2ð1þ hθθÞ r2 sin θhθφ

r sin θhrφ r2 sin θhθφ r2 sin2 θð1þ hφφÞ

1
CCA;

ð13Þ
and

Kij ¼ e4ϕĀij þ
1

3
γijK: ð14Þ

Together with the lapse α and the shift βi, this set of the
3þ 1 variables fα; βi; γij; Kijg, expressed in spherical
coordinates, is stored in the thorn ADMBASE to interface
with existing diagnostics in the EINSTEIN TOOLKIT [77,78].
Numerical code for the evolution system is provided

by the SENR/NRPY+ code, and the time integration is
performed with the method of lines as implemented in the
MOL [77,78] thorn.

B. Spherical parity boundary conditions

There is no global and regular one-to-one map from
spherical to Cartesian coordinates. Instead, at least two
charts are needed to cover an entire sphere of a given radius.
Ultimately, this is due to the fact that θ and φ are
multivalued at the coordinate origin, and φ is multivalued
at the polar axis. As a result, the Jacobian from spherical to

Cartesian coordinates diverges both at the origin and polar
axis. In our implementation in the EINSTEIN TOOLKIT we
use the existing Cartesian grid infrastructure as spherical
coordinates by implementing the internal boundary con-
ditions in a way that uses the underlying topologically
Cartesian grid.
As explained already in the Introduction, we start by

identifying the internal ðx; y; zÞ coordinate representation
used in CARPET with the spherical coordinates ðr; θ;φÞ.
CARPET uses a vertex-centered grid structure, meaning that
grid points exist on the edges of the physical domains. This
is not desirable in spherical coordinates, because of the
coordinate singularities at the origin, r ¼ 0, and the poles at
θ ¼ 0 and θ ¼ π. We therefore shift both the r and θ axes
by half a grid point. Therefore, the physical 3D domain has
the following extents:

r ∈
�
dr
2
; rmax

�
; ð15Þ

θ ∈
�
dθ
2
; π −

dθ
2

�
; ð16Þ

φ ∈ ½0; 2π − dφ�: ð17Þ

Effectively, we therefore adopt a cell-centered grid in the r
and θ directions, but maintain a vertex-centered grid in the
φ direction.
Cartesian coordinates are topologically R3, and all

domain boundaries for large or small values of the
coordinates x, y or z correspond to outer boundaries. In
spherical coordinates, on the other hand, only rmax corre-
sponds to an outer boundary, while all other domain
boundaries represent “inner boundaries.” At r ¼ 0, for
example, a radial grid line can be extended to negative
values of r. We allow for ngzr ghost zone grid points at
negative r; these ghost zone grid points correspond to
interior grid points with positive r for some other values of
the angles θ and φ (see Fig. 1 in [49] for an illustration).
Specifically, we identify ghost zones at the origin with
interior grid points at the coordinate locations

r → −r ð18Þ

θ → π − θ; ð19Þ

φ → φþ π: ð20Þ

We can then fill these ghost zones by applying internal
parity boundary conditions, which we explain in more
detail below. Similarly, meridians, i.e., great circles of
constant φ, can be extended across the pole, and the ghost
zones there can again be identified with internal grid points.
For θmin ¼ 0 we have

VASSILIOS MEWES et al. PHYS. REV. D 97, 084059 (2018)

084059-4



θ → −θ; ð21Þ

φ → φþ π; ð22Þ

and for θmax ¼ π

θ → π − θ; ð23Þ

φ → φþ π: ð24Þ

We also introduce ghost zones for φ, which can be filled by
imposing periodicity.We note that application of this scheme
requires an even number of grid points in the φ direction.
For scalar quantities, field values at interior grid points

can be copied directly into the corresponding ghost zone
grid points. For tensorial quantities, however, we have to
take into account the fact that the direction of unit vectors
changes when crossing the origin or pole (see [49,60] for
more details). This observation leads to parity factors that
arise in the application of the inner boundary conditions.
We list these factors in Table I.
By using the cell-centered grid in r and θ, and using the

described internal boundary conditions, we are able to have
a one-to-one mapping of the internal Cartesian coordinates
in the EINSTEIN TOOLKIT, which are topologically R3, with
the spherical coordinates used in the evolution.
Allowing for arbitrary MPI domain decompositions

requires communication across processes, as a given
process might not be in possession of the point that is
mapped to a ghost zone in its domain. We have imple-
mented these boundary conditions using the SLAB thorn,
which provides MPI-parallelized infrastructure to take 3D
subarrays (“slabs”) of the 3D domain, manipulate them and
then broadcast the manipulated slabs back to all processors
that contain a part of it. In what follows, we show how the
internal boundary conditions are implemented as slab
transfers using the SLAB thorn (see Figs. 1 and 2).
The source slab for the boundary condition at the origin

contains the first ngzr physical points in r, where, again, ngzr
is the number of ghost zones in the r direction, and all
physical points in θ and φ. The operation θ → π − θ is

performed by inverting the slab in the θ direction, while the
φ → φþ π operation corresponds to moving all points
from ½0; π� → ½π; 2π� and, taking into account the perio-
dicity in φ, all points from ½π; 2π� → ½0; π�. The φ part of
the operation is achieved using two separate calls to the slab
transfer. Finally, the source slab is inverted in r and the
resulting slabs transferred into the ghost zones of the
domain. This is illustrated in Fig. 1. Note that the procedure
only fills ghost zones that correspond to physical points in θ
and φ, while “double” and “triple” ghost zones on the edges
and corners of the computational grid need to be filled by
subsequent internal boundary conditions.
We then proceed by imposing the θ boundary conditions

in a similar manner (see schematic in Fig. 2), followed by
applying periodic boundary conditions in φ using an
existing thorn in the EINSTEIN TOOLKIT. This order ensures
that all ghost zones that need to be specified by internal
parity boundaries are filled correctly.
In future applications that include magnetohydrodynam-

ics and/or other matter fields, the same parity boundary
conditions will apply to the matter fields as well. We have
therefore implemented these boundary conditions in a
separate thorn, SPHERICALBC, so that they are available

TABLE I. Table showing the spherical parity factors for vectors
and tensors (see Table I in [49]).

Origin Axis

Vr − þ
Vθ þ −
Vφ − −
Trr þ þ
Trθ − −
Trφ þ −
Tθθ þ þ
Tθφ − þ
Tφφ þ þ FIG. 2. Diagram showing the slab transfers involved in the θmin

and θmax boundary conditions.

FIG. 1. Diagram depicting the slab transfers involved in the rmin
boundary condition.
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for all evolved quantities, and not only for the spacetime
evolution.

C. Time step considerations

It is well known that the time integration of hyperbolic
PDEs in spherical coordinates suffers from severe CFL
time step restrictions, as the cell sizes become smaller and
smaller with increasing latitude from the equator towards
the poles, and decreasing distance from the origin. In a
spherical unigrid in flat spacetimes, the time step due to the
CFL condition is given by [49]:

dt ¼ Cmin
�
dr;

dr
2
dθ;

dr
2
sin

�
dθ
2

�
dφ

�
; ð25Þ

where the CFL factor C is chosen between 0 and 1. The
time step is therefore limited by the azimuthal distance
between cells at the origin and polar axis. Compared with
Cartesian coordinates, where dt ≈ dx (when the same
spatial resolution dx is used in all three coordinates), the
time step in spherical coordinates varies as dt ≈ drdθdφ.
Thus high angular resolution will impose severe time step
restrictions in spherical coordinates.
When using a high number of azimuthal cells, the CFL

restriction might render the numerical integration computa-
tionally unfeasible. There are several approaches to miti-
gate this problem (for an introduction, see, e.g., [97]), from
various multipatch approaches [64–71,74,75] to reducing
the number of azimuthal cells at high latitudes as mesh
coarsening in the azimuthal direction [98], focusing reso-
lution of the polar angle at the equator [99,100], or the use
of filters [101–104], to name a few.
To circumvent the severe time step limitation in cases

when evolving BHs centered at the coordinate origin, we
have devised a simple excision strategy in order to enlarge
time steps in these evolutions. Specifically, we employ a
radial extrapolation of all evolved variables deep inside the
AH during the evolution, which essentially amounts to
excising parts of the BH interior. Similar strategies have
been employed and shown to work in the context of
puncture BH [105–107]. Within a fixed number of radial
points the BSSN variables are not evolved but rather
linearly extrapolated inwards radially from the first evolved
points. When using this technique, we get a dramatic
increase in time step, which is now given by:

dt ¼ Cmin

�
dr; Adrdθ; Adr sin

�
dθ
2

�
dφ

�
; ð26Þ

where A≡ nEx − 1þ 1
2
and nEx is the number of “excised”

radial grid points. In the simulations presented in Sec. III
below, we choose this parameter such that nExdr ≈ rAH=2
initially, and a CFL factor C ¼ 0.4. We emphasize that we
employ this excision for the purposes of speeding up the

simulation only—it is not needed for stability. In Fig. 5
below we compare simulations with and without this
excision; we also note that the simulations in [49,55–60]
did not use such an excision.

D. Diagnostics

We use the AHFINDERDIRECT thorn [79,80] to find AHs
[108] and the QUASILOCALMEASURES thorn [81,82] to
calculate the angular momentum of the apparent horizon
during the evolution. The BH spin is measured using the
flat space rotational Killing vector method [109] that was
shown to be equivalent to the Komar angular momentum
[110] in foliations adapted to the axisymmetry of the
spacetime [111]. Both thorns were written explicitly
for the Cartesian coordinates employed in CARPET—
interpolating entirely in the Cartesian basis both the
ADMBASE variables fγij; Kij; α; βig and the partial deriv-
atives of the spatial metric and extrinsic curvature.
As indicated in Sec. II A above, the ADMBASE variables
in the SPHERICALBSSN thorn are the physical metric,
extrinsic curvature, lapse, and shift in spherical coordinates,
which means we need to transform the ADMBASE

variables and their partial derivatives to Cartesian coor-
dinates after interpolation. This is required because
AHFINDERDIRECT expects the computational domain to
have Cartesian topology (i.e., any surface with constant r,
will not appear to be closed to AHFINDERDIRECT). In its
original form,AHFINDERDIRECT interactswith the rest of the
Toolkit by requesting the interpolation of the metric func-
tions, and their derivatives, at various points in Cartesian
coordinates. To make this work with SPHERICALBSSN, we
modify this behavior by transforming the Cartesian coor-
dinates to spherical (the necessary Jacobians are provided by
aliased functions defined in SPHERICALBSSN), and then
after the interpolation step, transforming the metric func-
tions from spherical to Cartesian coordinates using the
Jacobian Jai ≡ ∂xa

∂xi from spherical to Cartesian coordinates
according to

γij ¼ JaiJbjγab;

γij;k ¼ Jai;cJbjJckγab;

þ JaiJbj;cJckγab;

þ JaiJbjJckγab;c;

Kij ¼ JaiJbjKab;

Kij;k ¼ Jai;cJbjJckKab;

þ JaiJbj;cJckKab;

þ JaiJbjJckKab;c;

βi ¼ Jiaβa; ð27Þ

where we adopt the convention that indices a and b refer to
spherical coordinates r, θ, and φ, and indices i and j to the
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Cartesian coordinates x, y, and z in coordinate transforma-
tions, and a comma indicates ordinary partial differentiation.
When the origin of the AHFINDERDIRECT internal six-patch
system coincides with the coordinate origin, we add a small
offset in θ at points located on the z-axis, as the Jacobian
diverges at those points.
We extract GWs by computing the Weyl scalar Ψ4 using

the electric and magnetic parts of the Weyl tensor and
constructing the numerical tetrad as described in [112] in
spherical coordinates. The calculation of Ψ4 and the
remaining Weyl scalars is contained in a new thorn called
SPHERICALWEYLSCAL. The multipole expansion of the real
and imaginary parts of Ψ4 in spin-weighted spherical
harmonics [113] is performed on the spherical grid used
in the evolution. SPHERICALWEYLSCAL performs the multi-
pole expansion after the calculation of the Weyl scalars.
While the Jacobian for spherical coordinates is

simple to implement directly into the analysis thorns, we
coded our modification to AHFINDERDIRECT and
QUASILOCALMEASURES so that they call aliased functions.
In this way, both codes can now work with arbitrary
coordinate systems, as the calculation of the Jacobians,
etc., are handled by auxiliary routines.

E. Initial Data

As a demonstration of our methods we show in Sec. III
below an evolution of a spinning Bowen-York BH [83],
which describes a perturbed Kerr BH [45].
Bowen-York data are conformally flat, so that hij ¼ 0

identically, as well as Λ̄i ¼ 0. The data are also maximally
sliced, so that K ¼ 0. The momentum constraint can
then be solved analytically for the conformally rescaled
extrinsic curvature; for rotating Bowen-York BHs, the only
nonvanishing component is the rφ component. Given
the analytical solution for this extrinsic curvature, the
Hamiltonian constraint can then be solved numerically
for the conformal factor eϕ. The only non-vanishing
component of the extrinsic curvature variables aij defined
in (8) is then

arφ ¼ 3e−6ϕJ sin θ
r3

; ð28Þ

where J is the magnitude of the BH’s angular momentum
(see also exercise 3.11 in [44]).
In order to allow for future applications with more

general sets of initial data that may have been prepared
in Cartesian coordinates, we do not implement the above
results directly, but instead use the TWOPUNCTURES thorn
[114] to set up the data. This thorn uses spectral methods to
solve the Einstein constraints, and interpolates the
Cartesian ADMBASE variables onto the computational
mesh used in the simulation. We have adapted the thorn
to interpolate the Cartesian ADMBASE variables onto the
spherical grid points instead. Upon the completion of the

interpolation, the metric γij and extrinsic curvature Kij are
transformed from Cartesian to spherical coordinates as
described in Sec. II D above. The evolved metric variables
hij are then computed from

hij¼e−4ϕγij⊙

0
BB@

1 1=r 1=ðrsinθÞ
1=r 1=r2 1=ðr2sinθÞ

1=ðrsinθÞ 1=ðr2sinθÞ 1=ðr2sin2θÞ

1
CCA−1;

ð29Þ

where ⊙ indicates the Hadamard product (element-wise
matrix multiplication) and 1 the identity matrix, while the
evolved extrinsic curvature variables aij are

aij ¼ e−4ϕ
�
Kij −

1

3
γijK

�

⊙

0
B@

1 1=r 1=ðr sinθÞ
1=r 1=r2 1=ðr2 sinθÞ

1=ðr sinθÞ 1=ðr2 sinθÞ 1=ðr2sin2θÞ

1
CA: ð30Þ

We confirmed that these variables agree with the values
listed above to within truncation error.
We complete the specification of the initial data with

choices for the initial lapse and shift. We choose an
initial shift βi ¼ 0 and an initial lapse α ¼ e−2ϕ for the
SPHERICALBSSN runs and βi ¼ 0, α ¼ 2r=ðM þ 2rÞ for
the comparison EINSTEIN TOOLKIT runs.

III. RESULTS

We perform simulations of a single, spinning, and initially
conformally flat BH (the Bowen-York solution [83]), with
the initial data prepared as described in Sec. II E above. Since
the Kerr [45] spacetime is not conformally flat, these initial
data represent a spinningBHwith gravitationalwave content
that will be radiated away [115], allowing the BH to
settle to the Kerr solution. In all results presented here,
dimensionful quantities are reported in terms ofM ¼ 1. The
BH has an initial spin J ¼ 0.8M2 and an ADM mass
[41,42] of MBH ¼ 1.18112M, giving a Kerr parameter
a≡ J=MBH ¼ 0.677M. We perform simulations of these
initial data using our SPHERICALBSSN implementation. For
comparison, we evolve the same initial data in Cartesian
coordinates using the MCLACHLAN [107,116] thorn.
MCLACHLAN is a finite difference code generated using
KRANC [117] that solves the BSSN equations as part of the
EINSTEIN TOOLKIT. For our comparisons here we use 4th-
order spatial finite differences in both codes, but we note that
SENR/NRPY+ and MCLACHLAN are capable of providing
finite-difference stencils for the BSSN equations at arbitrary
order. We summarize the details of the relevant simulation
parameters in Table II.
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A. BH mass and spin

In Figs. 3 and 4 we plot the evolution of the irreducible
mass of the BH and its angular momentum, respectively.
During the first 35M of the evolution the BH mass
increases due to the absorption of some of the GW content
in the spacetime (see Fig. 5 below). We omit this initial time
in Fig. 3, and instead show the long-term behavior after the
BH has settled down. We show results for two different θ
resolutions (Nθ ¼ 32 and 64) with SPHERICALBSSN and
two resolutions (dx ¼ 0.0125 and 0.02 on the finest mesh)
using the EINSTEIN TOOLKIT in Cartesian coordinates
with box-in-box mesh refinement. The radial resolution
in both evolutions (dr ¼ 0.02 and dx ¼ 0.02 on the
finest Cartesian mesh which covers the AH) gives approx-
imately 25 radial points across the minimum diameter
(0.25) of the AH initially. For the irreducible mass shown in
Fig. 3, the results obtained with the higher resolution

SPHERICALBSSN and the two Cartesian runs agree
well, while the lower resolution SPHERICALBSSN run
appears to be under-resolved, showing a linear growth in
the irreducible mass that is unphysical. There is a
notable absence of oscillations in the higher resolu-
tion SPHERICALBSSN run, which can be seen in both
Cartesian runs (converging awaywith increasing resolution).
The evolution of the angular momentum of the AH,

shown in Fig. 4, exhibits a similar behavior. The two high-
resolution runs with MCLACHLAN and SPHERICALBSSN
perform similarly, while the lower resolution runs show
linear drifts in both Cartesian and spherical coordinates. The
Cartesian simulations show larger initial oscillations that do
not seem to converge away with increasing resolution, likely
due to reflections of short-wavelength modes across mesh
boundaries [62,123]. Just as for the irreducible mass, the
high-resolution SPHERICALBSSN simulations performs best.

TABLE II. Summarizing the main parameters of the simulations performed with SPHERICALBSSN and the MCLACHLAN thorn.

SPHERICALBSSN MCLACHLAN

Resolution dr ¼ 0.02, dθ ¼ π=32ðπ=64Þ, dφ ¼ 2π=4 dx ¼ dy ¼ dz ¼ 0.02ð0.0125Þ
Mesh refinement unigrid 10 refinement levels [85]
Outer boundary 200 (500) 512
Outer boundary condition Sommerfeld BC [118] Sommerfeld BC
FD order 4th order centered finite differencing 4th order centered finite differencing
Upwinding 4th order upwinding on shift advection terms 4th order upwinding on shift advection terms
Kreiss-Oliger dissipation 5th order dissipation 5th order dissipation
Dissipation strength ϵ ¼ 0.1 ϵ ¼ 0.1
Time integration Method of lines with RK4 Method of lines with RK4
CFL factor C 0.4 0.4
Prolongation none 5th order spatial, 2nd order temporal prolongation
Lapse evolution 1þ log slicing [119] 1þ log slicing
Lapse advection yes yes
Shift evolution Γ-driver [120], η ¼ 1.0 Γ-driver, η ¼ 2.0
Shift advection yes yes
Evolved conformal factor W ¼ e−2ϕ [121] W ¼ e−2ϕ

Gravitational wave extraction Ψ4 with SPHERICALWEYLSCAL Ψ4 with WEYLSCAL4 thorn [122]
GW extraction radii 20, 60, 100, 140, 180 20, 60, 100, 140, 180

FIG. 3. Comparison of the evolution of the irreducible mass of
the BH for SPHERICALBSSN and MCLACHLAN at two different
resolutions each.

FIG. 4. Comparison of the evolution of the AH angular
momentum for SPHERICALBSSN and MCLACHLAN at two differ-
ent resolutions each.
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To test the effect of the excision described in Sec. II C,
we plot the initial evolution of the irreducible mass for a run
with, and one without, our excision procedure in Fig. 5.
Evidently, the excision procedure does not have any visible
effect on the accuracy or stability of our method.

B. Gravitational waves

In Fig. 6, we plot the absolute value of the multipole
expansion in spin-weighted spherical harmonics −2Ylm of

the Weyl scalar Ψ4, extracted at a radius of r ¼ 180, for the
even l ¼ 2 through 8, m ¼ 0 multipoles (by symmetry,
only the m ¼ 0 modes are nonzero). The plot shows the
Cartesian simulation with dx ¼ 0.02 and two different
θ-resolutions for the spherical simulations. There are
notable differences between the Cartesian and spherical
evolutions: In the spherical simulations, there is an absence
of initial noise pulse before the radiation reaches it peak
value, and the decay after the peak value proceeds much
cleaner and to orders of magnitude below the values
attained in the Cartesian simulation. The reason for this
difference in behavior is the fact that there are partial
reflections of the outgoing wave at each Cartesian mesh
refinement boundary (see, e.g., [62,123]), causing the
unphysical excitation of l ≥ 4 multipole modes, as well
as reflections in the initial noise pulse in seen in the l ¼ 2
mode. These reflections affect strong-field quantities as
well, as described in [123]. Contrary to this, the spherical
grid in SPHERICALBSSN is a single uniform grid, so there is
a complete absence of these reflections (apart from reflec-
tions from the outer boundary), leading to much cleaner
signals especially in the higher-order multipoles.

C. Kerr quasinormal modes

Given that the SPHERICALBSSN simulation provides us
with very accurate higher order modes, we turn our

FIG. 6. jΨ4j for the even l ¼ 2 through 8, m ¼ 0 modes, computed with both SPHERICALBSSN (black and blue lines) and
MCLACHLAN (red lines).

FIG. 5. Comparing the evolution of the BH irreducible mass for
two SPHERICALBSSN runs, with and without the excision
algorithm described in Sec. II C.
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attention to an analysis of the BH’s quasinormal modes. As
explained in the setup of the initial data, the spinning,
initially conformally flat BH should settle down to a Kerr
BH via ringdown of its quasinormal modes (QNM) (see [33]
for a review). In Fig. 7, we plot the l ¼ 2 through 8, m ¼ 0
modes of jΨ4j for the high resolution Nθ ¼ 64 simulation
alone.We note that even (odd) l-modes contain only the real
(imaginary) part of Ψ4. The l ¼ 2 mode follows a clear
exponential decay, but the higher-order modes exhibit a
beating modulation on top of the exponential decay. The
reason for this behavior is that the quasinormal modes for
Kerr are defined in terms of spheroidal harmonics, sSlm,
whilewedecompose thewaveform in termsof spin-weighted
spherical harmonics sYlm. Following [124], we can decom-
pose Ψ4 in terms of spin-weighted spheroidal harmonics
sSl0m with s ¼ −2 according to

Ψ4 ¼
X
l0;m0;n0

Al0m0n0 sSl0m0e−αl0m0n0 teiωl0m0n0 t ð31Þ

where n is the overtone number of each mode, αl0mn is its the
decay rate, ωl0mn its frequency, and the coefficients Al0mn are
the amplitudes of the individual modes. In particular, we see

that eachmode oscillates and decays at well-defined rates. In
practice, however, Ψ4 is projected into the spin-weighted
spherical harmonics sYlm, i.e.,

Ψlm
4 ¼

Z
Ψ4sY�

lmdΩ

¼
X
l0;m0;n0

Al0m0n0e−αl0m0n0 teiωl0m0n0 t
Z

sSl0m0 sY�
lmdΩ

¼
X
l0;m0;n0

Al0m0n0e−αl0m0n0 teiωl0m0n0 tμ�mll0n0 ðaÞδmm0

¼
X
l0;n0

Al0mn0e−αl0mn0 teiωl0mn0 tμ�mll0n0 ðaÞ: ð32Þ

Here the coefficients μ�mll0n0 ðaÞ describe the mixing between
spin-weighted spheroidal and spherical harmonics; they are
defined in Eq. (5) of [125] and depend on the black hole Kerr
parameter a.
Ignoring higher-order overtone modes with n0 > 0,

which decay faster than the fundamental modes, we fit
the l ¼ 3 through 8, m ¼ 0 spherical harmonic modes
computed from our numerical data to the form

FIG. 7. jΨ4j for the even l ¼ 2 through 8, m ¼ 0 modes (left panel), and the odd l ¼ 3 through 7, m ¼ 0 modes (right panel),
computed with SPHERICALBSSN.

FIG. 8. Fits for the QNM ringdown, with even modes l ¼ 2 through 8 in the left panel, and odd modes l ¼ 3 through 7 in the right
panel. The solid lines represent the numerical results for jΨ4j as computed with SPHERICALBSSN, while the points are a result of a fit
(33) to these numerical data.
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Ψl0
4 ðtÞ ≈

Xl0¼10

l0¼2

Al00eð−αl000tÞ sinðωl000tþ ϕl00Þ; ð33Þ

where the unknowns Al00 and ϕl00 serve as 18 parameters
corresponding to the amplitudes (including the mixing
coefficients) and phases, respectively. We fix the αl000 and
ωl000 in the fit to be the values of the decay rate and
frequency that correspond to the Kerr BH in our simulation
(J=M2

BH ¼ 0.573 andMBH ¼ 1.18112), using the tabulated
values and Mathematica notebooks to calculate QNMs
[33,126] found at [127]. The results of the fit for the l ¼ 3
through 8 modes are shown in Fig. 8 for a fitting window of
t ¼ 220–340. The beating of the modes is very well
captured by modeling a given l mode as the sum of the
expected decay rates and frequencies calculated in spin-
weighted spheroidal harmonics, showing that mode mixing
is responsible for the observed beating. A similar type of
equal m mode mixing has been observed in [128].

IV. DISCUSSION

We report on an implementation of the BSSN equations in
spherical coordinates in the EINSTEIN TOOLKIT. While
Cartesian coordinates have advantages for many applica-
tions, spherical coordinates are much better suited to take
advantage of the approximate symmetries in many astro-
physical systems. The problems associated with the coor-
dinate singularities that appear in curvilinear coordinates can
be avoided if these singularities are treated analytically—
which, in turn, is possiblewith the help of a reference-metric
formulation of the BSSN equations [46,50–53] and a proper
rescaling of all tensorial quantities [46,49,55,60].We imple-
ment this formalism in the EINSTEIN TOOLKIT in an effort to
make these techniques publicly available to the entire
numerical relativity community and beyond.
Specifically, we adapt the EINSTEIN TOOLKIT infrastruc-

ture,which originallywas designed forCartesian coordinates,
for spherical coordinates. In contrast toCartesian coordinates,
spherical coordinates feature inner boundary condition,
where ghost zones are filled by copying interior data from
other parts of the numerical grid, taking into account proper
parity conditions. We implemented these boundary condi-
tions, which may require communication across processors,
within an MPI-parallelized infrastructure using the SLAB
thorn. Numerical code for the BSSN equations in spherical
coordinates were provided by SENR/NRPY+ [60,61].
In order to test and calibrate our implementation

we performed simulations of a single, spinning and
initially conformally flat BH, and compared the evolu-
tion of BH mass, spin and GWs using our spherical
BSSN (SPHERICALBSSN) and Cartesian AMR BSSN
(MCLACHLAN) code with comparable grid resolutions.
For sufficiently high resolutions, the evolution on a
spherical mesh conserves irreducible mass and angular
momentum far better than with Cartesian AMR.

In particular, there are no reflections of the initial junk
radiation or outgoing initial gauge pulse [62,123] at mesh
refinement boundaries, causing the evolution of irreducible
mass and spin to be smoother in the unigrid spherical
evolution. The advantage of using unigrid spherical coor-
dinates over Cartesian coordinates with box-in-box mesh
refinement becomes particularly apparent when analyzing
the higher-order l-multipoles of the GWwave signal. These
signals are affected by partial reflections at mesh refine-
ment boundaries, leading to a contamination of all higher
order l, m modes that never fully leaves the computational
domain. This effect is completely absent in the simulations
using the SPHERICALBSSN thorn, where the quasinormal
ringdown of the Kerr BH is observed to much smaller
amplitudes than in the Cartesian simulations. We observe
a significant beating of the exponential ringdown of
multipoles with l > 2, which can be explained by sphe-
roidal-spherical multipole mode mixing. The accurate
modeling of the ringdown of higher order modes is
necessary in order to provide GW detectors with accurate
templates [129], as the measurement of two quasinormal
modes is needed to test the “no hair theorem” [35,126].
The current SPHERICALBSSN thorn adopts uniform

resolution in radius, which requires a large number of
points in order to place the outer boundary sufficiently far
away and to avoid contaminating the inner parts of the
computational domain with noise from the outer boundary
(i.e., to causally disconnect these inner parts from the outer
boundary). Possible approaches to improve this is to adopt
a non-uniform radial grid, e.g., a logarithmic grid as
implemented in [56] or [130], or to use more general
radial coordinates. The SENR/NRPY+ code [60,61] allows
for such generalized radial coordinates—a convenient
choice is sinhðrÞ—and we plan to port these features into
the SPHERICALBSSN thorn in the future.
We also plan to supplement our current implementation

of Einstein’s vacuum equations in spherical coordinates
with methods for relativistic hydrodynamics and magneto-
hydrodynamics as another set of publicly available thorns
for the EINSTEIN TOOLKIT. As shown in [54,55], these
equations can be expressed with the help of a reference-
metric as well. Further using a rescaling of all tensorial
quantities similar to the rescaling of the gravitational field
quantities in this paper, the evolution of hydrodynamical
variables is unaffected by the coordinate singularities. We
hope that with these methods, and possibly implementa-
tions of microphysical processes like radiation transport
and nuclear reaction chains, the EINSTEIN TOOLKIT in
spherical coordinates will become a powerful and efficient
community tool for fully relativistic simulations of a
number of different objects, including rotating neutron
stars, gravitational collapse, accretion disks, and supernova
explosions. We believe that this will result in a new open
source state-of-the-art code that will prove to be a valuable
resource for a broad range of future simulations.
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