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The electromagnetic (EM) perturbations of the black hole solutions in general relativity coupled to
nonlinear electrodynamics (NED) are studied for both electrically and magnetically charged black holes,
assuming that the EM perturbations do not alter the spacetime geometry. It is shown that the effective
potentials of the electrically and magnetically charged black holes related to test perturbative NED EM
fields are related to the effective metric governing the photon motion, contrary to the effective potential of
the linear electrodynamic (Maxwell) field that is related to the spacetime metric. Consequently,
corresponding quasinormal (QN) frequencies differ as well. As a special case, we study new family of
the NED black hole solutions which tend in the weak field limit to the Maxwell field, giving the Reissner-
Nordström (RN) black hole solution. We compare the NED Maxwellian black hole QN spectra with the
RN black hole QN spectra.
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I. INTRODUCTION

It is a well-known fact that most of the exact solutions of
Einstein’s equations have curvature singularity which is
still one of the unexplained problems of the general
relativity. In order to escape from this inexplicable property
of the spacetime, obtaining the black hole solutions without
singularity, i.e., the regular black hole solutions, has been
urged on. One of the simplest ways to obtain a regular black
hole solution is coupling general relativity to some other
fundamental fields such as those described by the nonlinear
electrodynamics (NED). One of the attractive properties of
the NED is the ability to eliminate the curvature singularity
from the black hole solutions [1–6].
It is known that observations [7] and analysis of data [8]

show that the real astrophysical black holes are rotating.
However, constructing the rotating black hole solution in
general relativity coupled to NED is another challenge that
has not been solved completely. So far, several authors have
made a lot of efforts to take rotating black hole solutions
from existing spherically symmetric ones by using the
Newman-Janis algorithm [9–13] and Gürses-Gürsey algo-
rithm [14,15]. Unfortunately, these rotating solutions are not
always representing exact solutions of the whole set of field
equations of the theory. Namely, the energy-momentum

tensor of the rotating regular black hole solutions obtained by
theNewman-Janis algorithm sometimes does not correspond
exactly to theNEDequations [16] and such rotating solutions
could be considered only as approximative solutions.
Moreover, induced rotation parameter violates the weak
energy condition of these approximate solutions [10,11,17].
One of the special properties of the NED field is that in

such a field photon does not follow the null geodesics of the
background spacetime metric anymore, instead, it prop-
agates along the null geodesics of an effective metric which
is characterized by the nonlinearities of the field [18–23].
In the present paper we focus our attention to the

behavior of the dynamical response of the spherically
symmetric, magnetically and electrically charged black
holes representing exact solutions of coupled Einstein’s
gravity and NED to small electromagnetic (EM) perturba-
tions. Especially, we are going to determine if it is possible
to distinguish the black holes related to the NED from the
black holes related to the standard linear electrodynamics
due to their response to EM perturbations.
Perturbations of black holes imply the study of stability

of their spacetime. The stability of the various black holes
in NED has been studied in [24–26]. Since the system is
open, if the black hole is stable against small perturbations,
it relaxes to its equilibrium state by loosing energy through
emitting gravitational, EM or scalar radiation, depending
on the underlying perturbations. The most important part
of this radiation is an intermediate one which is called
ringdown phase that is characterized by a (complex)
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frequency. Its real and imaginary parts represent frequency
of real oscillations and their damping rate, respectively. So
far, different types of perturbations of the various regular
black holes in NED have been studied in [27–33].
The paper is organized as follows. In Sec. II we present

the formalism to construct the electrically and magnetically
charged black hole solutions in general relativity (GR)
coupled to the NED. In Sec. III we present new family of
the magnetically charged black hole solutions. Axial EM
perturbations of the electrically and magnetically charged
spherically symmetric NED black holes and the master
equation for them are presented in Sec. IV. QN frequencies,
temporal evolution and stability of EM perturbations of the
new obtained NED black hole solution are studied in
Sec. V. In Sec. VI, we study and make comparison of the
quasinormal (QN) frequencies of the NED black holes and
the standard linear electrodynamics Reissner-Nordström
(RN) black holes in the eikonal (large multipole number or
high frequency) regime. Finally, we present conclusions
implied by our results in Sec. VII. In this paper we mainly
use geometrized units c ¼ 1 ¼ G. Furthermore, we adopt
ð−;þ;þ;þÞ convention for the signature of the metric.

II. GR COUPLED TO NED

The action of Einstein’s gravity (GR) coupled to the
NED is given as

S ¼ 1

16π

Z
d4x

ffiffiffiffiffiffi
−g

p ðR − LÞ ð1Þ

where g is the determinant of the metric tensor gμν, R is the
scalar curvature, and L represents the Lagrangian density
of the NED field that is function of the electrodynamic
field strength, L ¼ LðFÞ, with F ¼ FμνFμν, where Fμν is
the electrodynamic field tensor that can be written in terms
of a gauge potential as Fμν ¼ ∂μAν − ∂νAμ. Definition of
the EM field tensor shows that Fμν is antisymmetric and it
has only six independent components.
By neglecting the EM sources, one can write the

covariant equations of motion in the form

Gμν ¼ Tμν; ð2Þ
∇νðLFFμνÞ ¼ 0; ð3Þ

where the Einstein tensor Gμν ¼ Rμν − Rgμν=2 and Tμν is
the energy-momentum tensor of the EM field, determined
by the relation

Tμν ¼ 2

�
LFFα

μFνα −
1

4
gμνL

�
; ð4Þ

with LF ¼ ∂FL.
The line element of the static spherically symmetric

black hole reads

ds2 ¼ −fðrÞdt2 þ dr2

fðrÞ þ r2ðdθ2 þ sin2θdϕ2Þ; ð5Þ

where the lapse function fðrÞ depends on the NED field.
This line element satisfies the symmetry Gt

t ¼ Gr
r. The

ansatz for the EM field can be written in general form as

Āμ ¼ φðrÞδtμ −Qm cos θδϕμ ; ð6Þ
where φðrÞ is electric potential, while Qm is the magnetic
charge. Below we construct electrically and magnetically
charged black hole solutions in general relativity coupled to
the NED by the method of Bronnikov [3].

A. Electrically charged black hole solution

The ansatz of the electrically charged black hole solution
is given as Āt ¼ φðrÞ. Then, the EM field tensor has only
nonzero component Ftr ¼ −Frt ¼ −φ0ðrÞ. By the relation
F ¼ FμνFμν we obtain the EM field strength as F ¼ −2φ02.
Let us consider the metric function fðrÞ given in the form

fðrÞ ¼ 1 −
2mðrÞ

r
: ð7Þ

Then from the Einstein equation (2), we obtain only two
independent equations

r2ðLþ 4LFφ
02Þ − 4m0 ¼ 0; ð8Þ

Lr − 2m00 ¼ 0: ð9Þ
By solving above given equations we obtain

L ¼ 2m00

r
; ð10Þ

LF ¼ 2m0 − rm00

2r2φ02 : ð11Þ

One can see from Eqs. (10) and (11) that if the mass function
does not depend on radius, mðrÞ ¼ M, the Lagrangian
density of the electrodynamic field vanishes, and we arrive
at the solution of the general relativity itself, i.e., the
Schwarzschild metric. From equations of motion (3), the
total electric charge inside the sphere with radius r reads

Qe ¼ r2LFφ
0: ð12Þ

By substituting (11) to (12) and solving the differential
equation, one obtains the electric potential φðrÞ in the form

φ ¼ 3m − rm0

2Qe
þ C; ð13Þ

where C is an integration constant. If we take the linear
electrodynamic field, i.e., the Maxwell field, our solution
reduces to the RN black hole spacetime with mðrÞ ¼
M þQ2

e=2r. Then, the electric potential (13) takes the form
φ ¼ Qe=r.
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By choosing the mass function related to the electric
field one can construct singular and regular1 black hole
solutions in NED.

B. Magnetically charged black hole solution

The ansatz of the magnetically charged spherically
symmetric black hole spacetime is given by Āϕ ¼
−Qm cos θ. Nonzero components of the EM field tensor
are Fθϕ ¼ Qm sin θ ¼ −Fϕθ. EM field strength is F ¼
2Q2

m=r4. Solving the Einstein equations (2) for this case
we obtain two independent equations

Lr2 − 4m0 ¼ 0; ð14Þ
4LFq2 − Lr4 þ 2r3m00 ¼ 0; ð15Þ

By solving Eqs. (14) and (15) we obtain

L ¼ 4m0

r2
; ð16Þ

LF ¼ r2ð2m0 − rm00Þ
2Q2

m
; ð17Þ

If we assume that the EM field is linear, i.e., the Maxwell
field, L ¼ F and LF ¼ 1, then, by solving the above
equations we arrive at the mass function m ¼ M −
Q2

m=2r that represents again the RN black hole spacetime
which is the solution of the Einstein-Maxwell equations.

III. NEW MAGNETICALLY CHARGED
BLACK HOLE SOLUTION

In the paper [5], the authors proposed the formalism
presented in Sec. II and obtained some black hole solutions
in GR coupled to NED. They generalized the solutions by
choosing the Lagrangian density in the form

L ¼ 4μ

α

ðαFÞνþ3
4

½1þ ðαFÞν4�1þμ
ν

; ð18Þ

where μ > 0 is a dimensionless constant which character-
izes the strength of nonlinearity of the electrodynamic field,
and α > 0 is constant parameter which is in the unit of
length squared; α is introduced into theory by the definition
Qm ¼ q2=

ffiffiffiffiffiffi
2α

p
. For the magnetically charged nonlinear

electrodynamic field they obtained the solution in the
following form [5]:

fðrÞ ¼ 1 −
2M
r

−
2q3

α

rμ−1

ðrν þ qνÞμν ð19Þ

where q is magnetic charge parameter and ν > 0 is
dimensionless constant. M is the pure gravitational mass,
let us say Schwarzschild mass.
However, our calculations show that the Lagrangian

density (18) gives more general solution in the form

fðrÞ ¼ 1 −
2M
r

þ 2q3

αr
−
2q3

α

rμ−1

ðrν þ qνÞμν ð20Þ

Comparing Eqs. (19) and (20), one can easily notice that
the difference in the mass functions is the ratio −q3=α
which cannot be dropped. Mathematically, dropping it also
satisfies all equations, however, dropping of this term is
equivalent to q ¼ 0, which eliminates the last ratio as
well. The asymptotic behaviour of (20) gives the Arnowitt-
Deser-Misner (ADM) mass of the black hole2 to be
MADM ¼ M.
As shown in [5], the black hole solution (5) with the

metric function (19) is singular at origin, r ¼ 0, and regular
only if the pure gravitational mass is neglected,M ¼ 0, and
μ ≥ 3. However, the black hole solution with metric
function (20) is singular at r ¼ 0, even if M ¼ 0. The
only way to make it regular everywhere in the spacetime is
to assume that the gravitational mass is equal to

M ¼ q3

α
; ð21Þ

with μ ≥ 3. Then one can write the metric function (20) in
the following form:

fðrÞ ¼ 1 −
2Mrμ−1

ðrν þ qνÞμν ð22Þ

HereM is still pure gravitational mass.3 One may argue that
considering the gravitational mass is constant and playing
freely with value of the charge parameter is impossible,
since they are related to each other due to (21). However,
fortunately, we have one more free parameter α which can
provide the gravitational mass to be constant even if the
value of charge changes.

IV. AXIAL EM PERTURBATIONS OF NED
BLACK HOLES

In this section we study axial EM perturbations of black
holes in NED by introducing the axial perturbations into
gauge potential (6) as

Aμ ¼ Āμ þ δAμ; ð23Þ
considering the perturbations given in the form

1In [5] it has been shown that in order for the solution to
represent the regular black hole spacetime, one must choose the
mass function so that it satisfies conditions: limr→0m=r3 ¼ finite,
limr→0m0=r2 ¼ finite, limr→0m00=r ¼ finite.

2In the paper [5] the ADM mass is given as MADM ¼
M þ q3=α.

3In the paper [5] the regular solution also takes the form of
(22), but M is the electromagnetically induced mass.
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δAμ ¼
X
l;m

0
BBB@
2
6664

0

0

Ψlmðt; rÞ∂ϕYlmðθ;ϕÞ= sin θ
−Ψlmðt; rÞ sin θ∂θYlmðθ;ϕÞ

3
7775
1
CCCA; ð24Þ

where Ylmðθ;ϕÞ is the spherical harmonic function of
degree l and order m,4 related to the angular coordinates θ
and ϕ. Below we study electrically and magnetically
charged black hole cases separately.

A. Electrically charged black hole

The gauge potential for the electrically charged spheri-
cally symmetric black hole solution is given in the general
form Āμ ¼ φðrÞδtμ.
The nonvanishing covariant components of the EM field

tensor of the 4-potential (23) with perturbation (24) are
given by

Ftr ¼ −∂rφ;

Ftθ ¼
1

sin θ
∂tΨlm∂ϕYlm;

Ftϕ ¼ − sin θ∂tΨlm∂θYlm;

Frθ ¼
1

sin θ
∂rΨlm∂ϕYlm;

Frϕ ¼ − sin θ∂rΨlm∂θYlm;

Fθϕ ¼ −Ψlm

�
∂θðsin θ∂θYlmÞ þ

1

sin θ
∂2
ϕYlm

�
¼ −lðlþ 1ÞΨlm sin θYlm: ð25Þ

From the relation Fμν ¼ gμαgνβFαβ, we find the nonvanish-
ing contravariant components of the EM field tensor

Ftr ¼ ∂rφ;

Ftθ ¼ −
1

fr2 sin θ
∂tΨlm∂ϕYlm;

Ftϕ ¼ 1

fr2 sin θ
∂tΨlm∂θYlm;

Frθ ¼ f
r2 sin θ

∂rΨlm∂ϕYlm;

Frϕ ¼ −
f

r2 sin θ
∂rΨlm∂θYlm;

Fθϕ ¼ −
lðlþ 1Þ
r4 sin θ

ΨlmYlm: ð26Þ

By combining (25) and (26) and taking only first order
perturbations, we find the EM field strength F in the form

F ≈ −2φ02: ð27Þ

Hereafter, prime denotes the partial derivative with respect
to r (X0 ¼ ∂rX). One can see from (27) that in the
perturbation of gauge potential, EM field strength, F̄,
remains unchanged as

LF ¼ L̄F̄: ð28Þ

By inserting (26) into (3) we get the relation.

∂tFμt þ 1

r2LF
∂rðr2LFFμrÞ þ 1

sin θ
∂θðsin θFμθÞ

þ ∂ϕFμϕ ¼ 0; ð29Þ

For μ ¼ t, we arrive at Gauss’s law

φ ¼
Z

Qe

r2LF
dr; ð30Þ

whereQe is total charge inside the sphere with radius r. For
the RN black hole case LF ¼ 1, therefore, φRN ¼ −Qe=r
justifies above relation.
For the case of μ ¼ r, Eq. (3) has infinite solutions.

Finally, for μ ¼ θ and μ ¼ ϕ we arrive at the same equation

−
∂2Ψ
∂t2 þ f

LF
ðfLFΨ0Þ0 þ f

lðlþ 1Þ
r2

Ψ ¼ 0: ð31Þ

For simplicity, we choose the function Ψ in the form

Ψ ¼ 1ffiffiffiffiffiffi
LF

p Φ; ð32Þ

and introducing the new radial, so-called tortoise coordi-
nate dx ¼ dr=f, we rewrite the Eq. (31) in terms of the new
wave function and arrive at the well-known Schrödinger-
like wave equation

�
−
∂2

∂t2 þ
∂2

∂x2 − VeðrÞ
�
Φeðr; tÞ ¼ 0; ð33Þ

where the effective potential is given by

VeðrÞ ¼ f

�
lðlþ 1Þ

r2
−
fL02

F − 2LFðfL0
FÞ0

4L2
F

�
: ð34Þ

where LF is given by the expression (11). As it has already
been pointed out that F and LF depend explicitly and
implicitly only on r, respectively. Therefore, one can write
the first and second order radial derivatives of LF as L0

F ¼
LFF=F0 and L00

F ¼ ðLFFF − LFFF00Þ=F02, respectively.
However, when the black hole solution is constructed by
the means shown in Sec. II, one will have a problem on
expressing the Lagrangian density L explicitly as a
function of the EM field strength F. Therefore, in this
case it is better to keep the Lagrangian density L as a

4For the EM perturbations l ¼ 1; 2; 3;… and m ¼ �1; 2;
�3;…;�l.
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function of r as in (10) and (11). Moreover, here
LFF ¼ L0

F=F
0. For the RN black hole LF ¼ 1 or m ¼

M −Q2
e=2r (f ¼ 1 − 2M=rþQ2

e=r2), and for the other
black holes which are not solution of electrodynamics
(F ¼ 0), we obtain the well-known potential

VðrÞ ¼ f
lðlþ 1Þ

r2
: ð35Þ

B. Magnetically charged black hole

The ansatz of the black hole with magnetic charge reads
Āμ ¼ −Qm cos θδϕμ . Again we add perturbations (24) to the
4-potential as (23) and write the nonzero covariant com-
ponents of the EM field tensor

Ftθ ¼
1

sin θ
∂tΨlm∂ϕYlm;

Ftϕ ¼ − sin θ∂tΨlm∂θYlm;

Frθ ¼
1

sin θ
∂rΨlm∂ϕYlm;

Frϕ ¼ − sin θ∂rΨlm∂θYlm;

Fθϕ ¼ sin θðQm − lðlþ 1ÞΨlmYlmÞ: ð36Þ

By the relation Fμν ¼ gμαgνβFαβ the nonzero contravariant
components of the EM field tensor can be written as

Ftθ ¼ −
1

fr2 sin θ
∂tΨlm∂ϕYlm;

Ftϕ ¼ 1

fr2 sin θ
∂tΨlm∂θYlm;

Frθ ¼ f
r2 sin θ

∂rΨlm∂ϕYlm;

Frϕ ¼ −
f

r2 sin θ
∂rΨlm∂θYlm;

Fθϕ ¼ 1

r4 sin θ
ðQm − lðlþ 1ÞΨlmYlmÞ: ð37Þ

The EM field strength F up to the first order perturbation
terms

F ≈
2Q2

m

r4
−
4Qmlðlþ 1ÞΨlmYlm

r4
: ð38Þ

One can see from (38) that unlike the case of the electrically
charged black hole, axial perturbations change the EM field
strength. In (38), the first term corresponds to the unper-
turbed EM field strength, F̄, while the second term is the
contribution of the perturbation to the field strength, δF,
i.e., F ¼ F̄ þ δF. Because of the change in the argument F̄,
the expression of L̄F has been also changed as

LF ¼ L̄F̄ þ L̄F̄ F̄δF; ð39Þ

where L̄F̄ F̄ ¼ ∂2
F̄L̄ ¼ ∂F̄L̄F. Note that F̄ and L̄F̄ depend

explicitly and implicitly only on r, respectively, while, LF
is the function of all coordinates. Now we rewrite the
equation of motion (3) in the following form:

∂tðLFFμtÞ þ 1

r2
∂rðr2LFFμrÞ þ 1

sin θ
∂θðsin θLFFμθÞ

þ ∂ϕðLFFμϕÞ ¼ 0: ð40Þ

For the cases μ ¼ t and μ ¼ r, above equation have infinite
solutions. Therefore, we consider the cases μ ¼ θ and
μ ¼ ϕ which imply the following equation:

−
∂2Ψ
∂t2 þ f

L̄F
ðfL̄FΨ0Þ0 þf

lðlþ1Þ
r2

�
1þ4Q2

mL̄F̄ F̄

r4L̄F̄

�
Ψ¼ 0:

ð41Þ

By introducing the new function (32), and the tortoise
coordinate, we arrive again to the wave equation�

−
∂2

∂t2 þ
∂2

∂x2 − VmðrÞ
�
Φmðr; tÞ ¼ 0; ð42Þ

where the effective potential is now given by the expression

VmðrÞ¼f
�
lðlþ1Þ

r2

�
1þ4Q2

mL̄F̄ F̄

r4L̄F̄

�
−
fL̄02

F̄ −2L̄F̄ðfL̄0̄
FÞ0

4L̄2
F̄

�
:

ð43Þ

If we consider linear (Maxwell) electrodynamics, L̄F̄ ¼ 1,
and we recover again the potential (35).
The EM perturbations of the electrically and magneti-

cally charged black holes in the linear EM fields are
governed by the same potentials given in (35). On the
contrary, the EM perturbations of both electrically (34) and
magnetically (43) charged black holes in general relativity
coupled to the NED are governed by different potentials
and indicate that the electrodynamic nonlinearity must play
an important role in behaviour of perturbations (at least for
EM perturbations).

V. QNMs OF MAXWELLIAN REGULAR
BLACK HOLE

As we mentioned already in Sec. III, by changing the
values of the parameters ν and μ one can construct several
different singular and regular black hole solutions. One of
the most interesting case of them is the ν ¼ 1 case, in which
the NED tends to the Maxwell (linear EM) field in the weak
field regime as

L ¼ 4μF þOðF5=4Þ: ð44Þ
Therefore, hereafter, we name ν ¼ 1 model as Maxwellian
black holes. In this section we study the QNMs of the EM
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perturbations of these black holes. To see an effect of the
NED, we compare the results with those related to the RN
black holes.
As other regular black holes or RN black hole space-

times, the Maxwellian regular black holes also have two
horizons: inner r− ≥ 0 and outer rþ ≤ 2M, for q < qext,
one horizon r− ¼ rþ ¼ rext for q ¼ qext, or no horizon
(naked singularity for the RN spacetime) for q > qext–see
Fig. 1. For the RN black hole: qext ¼ M and rext ¼ M.
For the Maxwellian regular black hole with μ ¼ 3: qext ≈
0.2963M and rext ≈ 0.5926M, μ ¼ 4: qext ≈ 0.2109M
and rext ≈ 0.6328M, μ ¼ 5: qext ≈ 0.1638M and rext ≈
0.6554M.5 Note that we are using the same notation q
for the magnetic (or electric) charge of the RN black hole
and magnetic charge of the Maxwellian regular black holes.
One can notice that the range of possible values of

magnetic charge parameter of the Maxwellian regular black
holes is tighter than the one of the RN black hole. Therefore,
in order to simplify the comparison, we normalize their
values by introducing the new parameter Q≡ q=qext. To
study the QNMs one should analyze the effective potentials
of the Maxwellian and RN black holes. Due to the cumber-
some length of the effective potential (43) for the whole

range of parameter μ of the Maxwellian regular black holes
(22), we report here only for the minimum value of the
parameter μ for the black hole to be regular, i.e., μ ¼ 3 as

V ¼ f

�
lðlþ 1Þð2r − 3qÞ

2r2ðqþ rÞ
5qð3r3ð4M − 3qÞ − qr2ð14M þ 3qÞ þ 3q4 þ 5q3r − 4r4Þ

4r2ðqþ rÞ5
�
: ð45Þ

In Fig. 2 we compare the effective potentials of the RN
(35) and regular Maxwellian black holes (45) for the same
normalized charge parameters. One can see from Fig. 2
that outside the event horizon of the black holes both RN
and Maxwellian regular black holes have very similar
potential barriers which tend to zero at infinity. However,
unlike the case in the RN black hole, inside the event

horizon of the Maxwellian black holes, there is another
very narrow potential barrier, located between the inner
horizon r− and another zero of the effective potential r0,
which depends on l and q=M. In Fig. 3 dependence of the
location of r0 on q for several values of l is presented.
As one sees from Fig. 3, the location of r0 is almost

independent of multipole number l, but it is almost linearly
dependent on the charge q. Figures 2 and 3 show that in the
Maxwellian black holes in the region r ∈ ½r−; r0� ∪
½rþ;þ∞Þ there are two potential barriers. Both of them

0 1 2 3 4 5 6

0.0

0.5

1.0

1.5

2.0

r M

V
r

FIG. 2. Radial dependence of effective potentials of the EM
perturbations of black holes in nonlinear (Maxwellian black hole
with μ ¼ 3, blue curve) and linear (RN, black curve) electrody-
namics. Where we set the values of the charge equal Q ¼ 0.8M.

r rext r

0.5

0.0

0.5

1.0

FIG. 1. Radial dependence of the metric function fðrÞ given by
(19). Here we set M ¼ 1. Dashed curve represents black hole,
solid curve represents extreme black hole, and dot-dashed curve
represents no-horizon spacetimes.

horizon

1

2

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5

2.0

q M

r
M

FIG. 3. Location of r0 depending on the charge parameter q for
several values of multipole number l. The shaded and white
regions represent the black hole and no horizon spacetimes.

5These values can be easily obtained by solving the equations
f ¼ 0 and f0 ¼ 0, simultaneously.
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increase with increasing multipole number l. However,
their dependence on the charge parameter are different:
with increasing charge parameter, the inner barrier dra-
matically decreases, while the outer one increases. Despite
these discussion, one must note that according to the
classical physics, there is nothing coming out from black
hole. Therefore, we do not consider the inner potential
barrier. Another really interesting property of the
Maxwellian regular black hole is that even in the no
horizon spacetimes, the effective potential keeps its barrier
form outside r0, i.e., r ∈ ½r0;þ∞Þ.

A. The temporal evolution of perturbations

We study the evolution of the EM perturbations by using
a characteristic integration method [34,35] that involves the
light-cone variables: retarded du≡ dt − dx and advanced
dv≡ dtþ dx time coordinates, with initial data specified
on the two null surfaces u ¼ u0 and v ¼ v0. The wave
equation (42) then takes the form

−4
∂2Φ
∂u∂v ¼ Vðrðu; vÞÞΦ: ð46Þ

This equation is solved numerically. The ðu; vÞ space is
divided into finite grid with constant Δ separating neigh-
boring points of the grid–see Fig. 4. The numerical scheme
used to solve this equation reads

ΦN ¼ ðΦW þΦEÞ
16 − Δ2VS

16þ Δ2VS
−ΦS ð47Þ

where the indices N, W, E, and S refer to grid-points
N ≡ ðu; vÞ, W ≡ ðu − Δ; vÞ, E≡ ðu; v − ΔÞ, and S≡
ðu − Δ; v − ΔÞ. In our simulations the initial perturbation
is Gaussian function centered around the point xc
(in tortoise coordinates) and it takes the form

Φðt ¼ 0; xÞ ¼ A expð−ðx − xcÞ2=σ2Þ
¼ A expð−ðv − vcÞ2=σ2Þ ð48Þ

since

t ¼ 0 ¼ 1

2
ðuþ vÞ ⇒ u ¼ −v ð49Þ

and therefore

x ¼ 1

2
ðv − uÞ ¼ v ð50Þ

for t ¼ 0. At the center of the body, x ¼ 0, we initially put
the boundary condition Φðu; vÞ ¼ 0 which is considered
along the line u ¼ v since for

x ¼ 0 ¼ 1

2
ðv − uÞ ⇒ u ¼ v: ð51Þ

Our tortoise coordinate x is determined from the formula

x ¼
Z

r

0

1

fðr0Þ dr
0 ð52Þ

which implies that x ≥ 0 for r ≥ 0. We are therefore
interested only in the region where v ≥ u. In the integration
loop the coordinates u and v are determined by formulas

u ¼ iuΔ; where iu ¼ f1; 2;…; Ng ð53Þ

and

v ¼ ivΔ; where iv ¼ fiu þ 1; iu þ 2;…; Ng: ð54Þ

We illustrate the temporal evolution of the EM perturba-
tions of the NED Maxwellian regular black holes and the
RN black holes in Fig. 5. One can see from Fig. 5 that the
main difference of the evolution of the EM perturbations in
the black holes in the linear and nonlinear electrodynamics
is that an increase in the value of the charge parameter of
the NED Maxwellian regular black holes prolongs pertur-
bations, while in the linear electrodynamics, it shortens
the life of the EM perturbations. Note that in small and
intermediate values of the charge parameters of the
Maxwellian and RN black holes evolution of the EM
perturbations are almost the same.
Moreover, time domain profiles of the EM perturbations

of the Maxwellian regular black holes show that they are
stable against EM perturbations.

x<0

x=0

x>0

1 2 3 4 5 6 7 8 9 10
1

2

3

4

5

6

7

8

9

10

v

u

FIG. 4. The discretized numerical grid ðu; vÞ. The red dots
represent initial values (horizontal) and boundary values (diago-
nal). The dashed lines correspond to fixed coordinate xwhile dot-
dashed lines correspond to fixed coordinate t. The green dots here
represent the solution at a chosen, fixed coordinate x.
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B. QN frequencies

In this subsection we calculate QN frequencies by
considering the EM perturbations to be harmonically time
dependent as

Φðr; tÞ ¼ ψðrÞe−iωt; ð55Þ

with ω ¼ ωr þ iωi being the QN frequency, ωr represents
frequency of the oscillations, while ωi < 0 (ωi > 0) rep-
resents damping (growing) of these oscillations. Then, the
master equation (42) takes the new form

� ∂2

∂x2 þ ω2 − V

�
ψ ¼ 0: ð56Þ

Since we are going to study the effect of the nonlinearity of
the electrodynamic field, here V is given by the potentials
(43) and (35). Since these potentials vanish at the horizon
(x ¼ −∞) and tend to zero at infinity (x ¼ þ∞), we
choose the boundary condition such that at horizon
(infinity) the wave is purely incoming (outgoing) as

ψ ∼ e∓iωt; x → ∓∞: ð57Þ

Solving the Eq. (56) with the effective potential (45) and
boundary conditions (57) analytically is impossible.
Therefore, to solve this equation, we use the well-known
semianalytical method, the sixth order Wentzel-Kramers-
Brillouin method [36,37]. Calculations show that the QN
frequencies of the EM perturbations of the regular
Maxwellian black holes with μ ¼ 3 are almost the same
as the ones related to the RN black holes. Therefore, we do
not report all the numerical results; in Fig. 6 in order to ease
comparison, we present some of these results. Moreover, in
Fig. 7 we present some nonfundamental QNMs of the axial
EM perturbation of the regular Maxwellian black holes.
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FIG. 5. Temporal evolution of l ¼ 2 (top panel) and l ¼ 4 (bottom panel) fundamental modes of the EM perturbations of the
Maxwellian regular (left panel) and the RN (right panel) black holes for the values Q ¼ 0.2 (black), Q ¼ 0.6 (blue), Q ¼ 0.8 (green),
and Q ¼ 0.998 (red).
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FIG. 6. l ¼ 2, n ¼ 0 QN frequencies of the EM perturbations
of the Maxwellian and RN black holes with the normalized
charge, Q ∈ ½0; 1�, where Q ¼ 0 is located at the junction of the
curves which corresponds to the Schwarzschild black hole.

1
2
3
4
5

0.0 0.2 0.4 0.6 0.8 1.0 1.2
0.0

0.5

1.0

1.5

2.0

2.5

3.0

M r

M
i

FIG. 7. Nonfundamental QN frequencies of the EM perturba-
tion of Maxwellian regular black hole with Q ¼ 0.8 for several
values of the multipole number l. The overtone number, n,
increases as n ¼ 0; 1; 2;…. from bottom to top.
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VI. EIKONAL QNMs

In the paper [38] it has been shown that in the general
relativity framework, the QNMs of any stationary, spheri-
cally symmetric and asymptotically flat black holes in any
dimensions are determined in the eikonal (large multipole
number) regime by the parameters of the circular null
geodesics, i.e., the real part of the QN frequencies is
determined by angular velocity of the unstable null geo-
desics, Ωc, while the imaginary part of the QN frequencies
is determined by the instability timescale of the orbit, so
called Lyapunov exponent, λ. The frequency is thus given
by the relation [38]

ω ¼ Ωcl − i

�
nþ 1

2

�
jλj; ð58Þ

whereΩc and λ for the spacetime metric (5) are given by the
following expressions

Ωc ¼
ffiffiffiffiffi
fc
r2c

s
; ð59Þ

λ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−

r2c
2fc

�
d2

dx2
f
r2

�����
r¼rc

s
; ð60Þ

where x is the tortoise coordinate, rc is radius of the
unstable null circular orbit which is determined by the
solution of equation rcfc0 − 2fc ¼ 0. However, (58) is not
universal feature of all stationary, spherically symmetric
and asymptotically flat black holes in any dimensions, as it
has been shown in [39,40] that these phenomena are
violated in the Einstein-Lovelock theory. Formally, the
same conclusion that the eikonal QNMs of the EM
perturbations are not related to the circular null geodesics,
holds for the metric of the regular black holes considered in
this paper.
However, in our case the situation is slightly different

than in the Einstein-Lovelock gravity. Let us write the
effective potential of the EM perturbation (43) for the large
multipole number regime as

V ¼ l2

�
f
r2

�
1þ 4Q2

mL̄F̄ F̄

r4L̄F̄

�
þO

�
1

l

��
; ð61Þ

It is obvious from the potential (61) that to find the eikonal
QNMs, expressions (59) and (60) do not work. The
potential (61) corresponds to the one of the photon motion
(not null geodesics) around NED Maxwellian black holes.
It is well know that in the NED, photon does not follow the
null geodesics of original metric, instead, it follows the
null geodesics of the effective optical metric [3,18–23].
The effective metric can be constructed as

gμνeff ¼ L̄F̄g
μν − 4L̄F̄ F̄F̄

μ
αF̄αν: ð62Þ

For the magnetically charged Maxwellian black hole with
the line element (5), covariant components of the effective
metric tensor can be written as the conformal transforma-
tion of the covariant metric tensor (geffμν ¼ Ω2gμν) as

geffμν ¼
�
L̄F̄ þ 4Q2

mL̄F̄ F̄

r4

�−1
diag

�
−g;

1

h
; r2; r2sin2θ

	
:

ð63Þ

with

g ¼ f

�
1þ 4Q2

mL̄F̄ F̄

r4L̄F̄

�
; h ¼ f

ð1þ 4Q2
mL̄F̄ F̄

r4L̄F̄
Þ
; ð64Þ

It has been shown that the conformal factorΩ2 plays no role
in the EM perturbations [41] and null geodesics [42]. Now
one can find the parameters of circular photon orbit as

Ωc ¼
ffiffiffiffiffi
gc
r2c

r
; ð65Þ

λ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hc
2r2c

ð2gc − r2cg00cÞ
s

; ð66Þ

where rc is determined by equation rcg0c − 2gc ¼ 0. In Fig. 8
radii of the circular unstable null geodesics of the RN and
Maxwellian black holes are depicted.Numerical calculations
show that formula of the eikonal QN frequencies (58) works
finely in the EM perturbations of the NED black holes only
if instead of the parameters of the circular null geodesics, the
parameters of the circular photon orbit are used. In Fig. 9 the
angular velocity of the circular unstable photon orbit (65)
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FIG. 8. Dependence of radius of circular unstable null geo-
desics on the normalized charge parameter of RN (black) and
Maxwellian regular (blue) black holes.
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and the Lyapunov exponent (66) of the RN and Maxwellian
regular black holes are presented.
One can see fromFig. 9 that in the largemultipole numbers

limit, the EM perturbation of the Maxwellian regular black
hole propagates the QNMs with bigger real frequencies than
the RN one with almost the same decaying rates.

VII. CONCLUSION

In the present paper we demonstrated the formalism
to construct the electrically and magnetically charged
(singular and regular) black hole solutions in general
relativity coupled to the NED. For our special interest,
we constructed the family of new singular NED black hole
solutions which tends to the linear (Maxwell) electrody-
namics in the weak field limit, based on the Lagrangian
density supposed in [5]. We showed that these solutions are
singular at r ¼ 0 and unlike the other standard singular
solutions, these solutions are convertible to the regular ones
by the special condition:M ¼ q3=α. As usual regular black
hole spacetimes, these Maxwellian regular black hole
spacetimes also represent black hole, extremal black hole,
and no horizon spacetimes depending on the values of the
gravitational mass and NED parameters.
The main part of this paper is dedicated to the study of

the axial EM perturbations of the general NED black hole
solutions considering the EM perturbations that do not
alter the spacetime geometry. We showed that the EM
perturbations of the NED black holes give different
potentials and, consequently, different results for the
QN frequencies, as compared to those related to the
RN black holes in the standard electrovacuum theory. It
is well known that the EM perturbations of the electrically
and magnetically charged black holes in linear electrody-
namics (RN) are isospectral, i.e., they have the same
effective potentials and QN frequencies, however, in the
case of the NED black holes, electrically and magnetically
charged black holes have different potentials and different
QNM spectra. As a special case, we calculated QNMs of

the magnetically charged Maxwellian regular black hole
with μ ¼ 3 and compared them with the ones of the RN
black holes by normalizing the charge parameter as Q ¼
q=qext where Q ∈ ½0; 1�. The analysis of the time domain
profile and the QNM frequencies show that the
Maxwellian regular black holes are stable against EM
perturbations.
In the paper [38] it was stated that in the eikonal (high

energy or large multipole number) limit QNMs related with
the unstable circular null geodesics. In this paper we
showed by the EM perturbations of the NED black holes
that this claim is correct in the standard linear electrody-
namics, however, it does not work in the NED, since in the
NED photon does not follow the null geodesics, instead it
follows the null geodesics of an effective metric. We claim
that in the eikonal regime, the QNMs of NED black holes
are determined by the unstable circular photon orbits
determined by the effective geometry.
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