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We can survey an Ellis wormhole which is the simplest Morris-Thorne wormhole in our Galaxy with
microlensing. The light curve of a point source microlensed by the Ellis wormhole shows approximately
4% demagnification while the total magnification of images lensed by a Schwarzschild lens is always larger
than unity. We investigate an extended source effect on the light curves microlensed by the Ellis wormhole.
We show that the depth of the gutter of the light curves of an extended source is smaller than the one of a
point source since the magnified part of the extended source cancels the demagnified part out. We can,
however, distinguish between the light curves of the extended source microlensed by the Ellis wormhole
and the ones by the Schwarzschild lens in their shapes even if the size of the source is a few times larger
than the size of an Einstein ring on a source plane. If the relative velocity of a star with the radius of 106 km
at 8 kpc in the bulge of our Galaxy against an observer-lens system is smaller than 10 km=s on a source
plane, we can detect microlensing of the star lensed by the Ellis wormhole with the throat radius of 1 km
at 4 kpc.
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I. INTRODUCTION

General relativity permits spacetimes with nontrivial
topological structures such as a wormhole spacetime which
is the nonvacuum solution of Einstein equations [1].
Gravitational lensing [2–5] is a good tool to survey for
not only dark and massive objects but also wormholes.
After pioneer works in gravitational lensing by a wormhole
by Kim and Cho [6] and Cramer et al. [7], gravitational
lensing by wormholes with a positive Arnowitt-Deser-
Misner (ADM) mass [8–18], with a vanishing ADM mass
[8,13,19–39], and with a negative ADM mass [7,17,27,40]
were investigated.
An Ellis wormhole [41,42] which is the solution of

Einstein equation with a phantom scalar field is the simplest
and earliest Morris-Thorne wormhole [43]. Instability of
the Ellis wormhole was reported in Refs. [44], contrary to a
conclusion of an earlier work [45]. The uniqueness theorem
of the Ellis wormhole in the Einstein-phantom scalar field
theory has been given [46].
Wormhole solutions without the phantom scalar field

and with the other exotic matters as the sources which have
the same metric of the Ellis wormhole were also obtained in
Refs. [47–51]. Stability of the wormholes depends on both
the metric and the sources. The fact that a wormhole by an
electrically charged dust with negative energy density as
the source which is the same as the metric of the Ellis
wormhole [49,50] is linearly stable against both spherical

and axial perturbations was found by Bronnikov et al. in
2013 [52]. The wormhole solution might be the first
example of stable wormholes without a thin shell in general
relativity. The quasinormal mode of the wormhole was also
investigated in Ref. [53].
The deflection angle of a light ray in the Ellis wormhole

spacetime was obtained by Chetouani and Clément for the
first time in 1984 [19] and it was reexamined several times
[8,21,33–35]. The upper bound of the number density of the
Ellis wormhole with the radius of a throat 10 ≤ a ≤ 104 pc
was given as 10−4h3 Mpc−3 [27] by the strong lensing of
quasars in the data of the Sloan Digital Sky Survey Quasar
Lens Search [54] and the one with a ∼ 1 cm was given as
10−9 AU−3 [26] by the femtolensing of gamma-ray bursts
[55] in the data of the FermiGamma-RayBurstMonitor [56].
In the Ellis wormhole spacetime, the shear [28] and the time
delay of lensed images [29], retrolensing [13,36], gravita-
tional lensing of light rays passing through a throat [13,20],
Einstein rings [24], microlensing [13,22,32,34], astrometric
image centroid displacements [23], binary lenses [31], and
soon [25,26,30,57–61]were investigated. (SeeRefs. [25,28–
31,38,39,62] for exotic lens objects with a gravitational
potential which is asymptotically proportional to 1=rn,
where n is a positive number. An Ellis wormhole and a
Schwarzschild lens have a gravitational potential with n ¼ 2
and n ¼ 1, respectively.)
It is well known that the total magnification of images

lensed by a positive mass is always larger than unity [3].
We cannot, however, apply the magnification theorem for
a Ellis wormhole lens since the Ellis wormhole has a
vanishing ADM mass. Abe found that microlensing light
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curves by the Ellis wormhole are dented near the peak of
the light curves with a characteristic shape [22].
An extended source effect on light curves lensed by the

Schwarzschild lens was investigated by Witt and Mao [63]
and Nemiroff and Wickramasinghe [64] in 1994 and the
first observed extended source effect was reported in 1997
[65]. Can we distinguish the light curve of an extended
source microlensed by the Ellis wormhole from that by the
Schwarzschild lens in their shapes? On this paper, we
investigate an extended source effect on microlensing by
the Ellis wormhole to answer this question.
This paper is organized as follows. In Sec. II, we review

the deflection angle of a light in the Ellis wormhole
spacetime. In Sec. III, we investigate the total magnification
of the images of the extended source lensed by the Ellis
wormhole. In Sec. IV, we give a very short review for the
Schwarzschild lens. In Sec. V, we consider microlensing of
the extended source in the Ellis wormhole spacetime. In
Sec. VI, we discuss and conclude our results. In this paper
we use the units in which the light speed and Newton’s
constant are unity.

II. DEFLECTION ANGLE OF A LIGHT IN AN
ELLIS WORMHOLE SPACETIME

In this section, we briefly review the deflection angle of
a light [8,19,21,33–35] in an Ellis wormhole spacetime
[41,42]. A line element in the Ellis wormhole spacetime
with a vanishing ADM mass is given by, in coordinates
−∞ < t < ∞, −∞ < r < ∞, 0 ≤ θ ≤ π, and 0 ≤ ϕ < 2π,

ds2 ¼ −dt2 þ dr2 þ ðr2 þ a2Þðdθ2 þ sin2θdϕ2Þ; ð2:1Þ
where a is a positive constant. The throat of the wormhole
is at r ¼ 0. We call a the radius of the wormhole throat
since a throat surface area is given by 4πa2. There exist a
time translational Killing vector tα∂α ¼ tt and an axial
Killing vector ϕα∂α ¼ ϕϕ because of stationarity and
axisymmery of the Ellis wormhole spacetime, respectively.
We concentrate on a region 0 < r < ∞ since we are
interested in light rays which do not pass through the throat.
From an equation kμkμ ¼ 0, where kμ is the wave

number of a photon, the trajectory equation of a light is
given by

1

ðr2 þ a2Þ2
�
dr
dϕ

�
2

¼ 1

b2
−

1

r2 þ a2
; ð2:2Þ

where b≡ L=E is the impact parameter and E≡
−gμνtμkν ≥ 0 and L≡ gμνϕμkν are the conserved energy
and angular momentum of the photon, respectively. Here
we have assumed θ ¼ π=2 without loss of generality since
the Ellis wormhole spacetime is a spherical spacetime. A
light ray is scattered when jbj > a while it falls into the
throat when jbj ≤ a. We concentrate on the scattered case
with jbj > a. From Eq. (2.2), the absolute value of the
deflection angle α of a light is obtained as

jαj ¼ 2

Z
∞

r0

jbjdrffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr2 þ a2Þðr2 þ a2 − b2Þ

p − π

¼ 2KðkÞ − π; ð2:3Þ
where r0 ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 − a2

p
is the closest distance of the light ray

from the wormhole throat and KðkÞ is the complete elliptic
integral of the first kind defined as

KðkÞ≡
Z

1

0

dxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − x2Þð1 − k2x2Þ

p ; ð2:4Þ

where 0 < k≡ a=jbj < 1 and we have used x≡ jbj=ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2

p
. Under a weak-field approximation a ≪ jbj,

we obtain the deflection angle as

α ¼ � π

4

�
a
b

�
2

þO

��
a
b

�
4
�
: ð2:5Þ

Here the upper (lower) sign is chosen if b is positive
(negative).
The Ellis wormhole spacetime has a light sphere at r ¼ 0

which is coincidence to the throat. Notice that the deflec-
tion angle of the light α diverges in a strong deflection limit
jbj → a or k → 1 and that the light winds around the throat
or the light sphere infinite times in the strong deflection
limit. See Ref. [34] for the details of the deflection angle of
the light in the strong deflection limit and under the weak-
field approximation in the Ellis wormhole spacetime.

III. MAGNIFICATIONS OF THE LENSED IMAGES
OF AN EXTENDED SOURCE

In this section, we investigate the magnifications of the
images of an extended source lensed by an Ellis worm-
hole. We consider that a light ray emitted by a source with
a source angle ϕ is deflected by the Ellis wormhole as a
lens with a deflection angle α and that an observer sees
the image of the light ray with an image angle θ. We
assume that all the angles are small, i.e., jαj ≪ 1, jθj ≪ 1,
and jϕj ≪ 1. Under the assumptions, a lens equation is
obtained as

DLSα ¼ DOSðθ − ϕÞ; ð3:1Þ
where DLS is the distance between the lens and the source
and DOS is the distance between the observer and the
source. Note that the distance DOL between the observer
and the lens is given by DOL ¼ DOS −DLS and that the
impact parameter of the light ray b is given by b ¼ DOLθ
under the assumptions. Figure 1 shows the lens configu-
ration of gravitational lensing.
From the deflection angle under the weak-field approxi-

mation (2.5), we can express the lens equation (3.1) as

�θ̂−2 ¼ θ̂ − ϕ̂; ð3:2Þ
where the upper (lower) sign is chosen if θ̂ or b is positive
(negative), θ̂≡ θ=θE and ϕ̂≡ ϕ=θE, and θE is the image
angle of an Einstein ring given by
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θE ≡
�

πa2DLS

4DOSD2
OL

�1
3

: ð3:3Þ

The lens equation (3.2) has only a positive solution θ̂ ¼ θ̂þ
and a negative solution θ̂ ¼ θ̂− for any given ϕ̂. We notice
that the lens equation (3.2) has the inversion symmetry
against the symmetric point θ̂ ¼ ϕ̂ ¼ 0. From the inversion
symmetry, we obtain

θ̂−ðϕ̂Þ ¼ −θ̂þð−ϕ̂Þ ð3:4Þ
and then

μp−ðϕ̂Þ ¼ μpþð−ϕ̂Þ; ð3:5Þ
where μp�ðϕ̂Þ is the magnifications of the images of a point

source with the reduced image angles θ̂�ðϕ̂Þ defined as

μp�ðϕ̂Þ≡ θ̂�ðϕ̂Þ
ϕ̂

dθ̂�
dϕ̂

ðϕ̂Þ: ð3:6Þ

We can concentrate on the case for ϕ̂ ≥ 0 without the loss
of generality because of the inversion symmetry. From the
lens equation (3.2), the magnifications of the images of the
point source μp� are rewritten as

μp�ðϕ̂Þ ¼
θ̂6�ðϕ̂Þ

ðθ̂3�ðϕ̂Þ ∓ 1Þðθ̂3�ðϕ̂Þ � 2Þ : ð3:7Þ

The total magnification of the images of the point source
μp is defined as

μpðϕ̂Þ≡ jμpþðϕ̂Þj þ jμp−ðϕ̂Þj: ð3:8Þ
In the region 1 ≪ ϕ̂ ≪ θ−1E , the total magnification of the
point source μp is given by [13]

μp ∼ 1 −
1

2ϕ̂3
< 1: ð3:9Þ

The total magnification of the images of an extended
source μe is obtained as [2]

μeðϕ̂Þ ¼
RR

dϕ̂02Iðϕ̂0Þμpðϕ̂0ÞRR
dϕ̂02Iðϕ̂0Þ ; ð3:10Þ

where Iðϕ̂0Þ is a surface brightness profile of the extended
source and ϕ̂0 is a normalized position vector on a source
plane in units of RE. Here RE is the radius of the Einstein
ring on the source plane defined as

RE ≡DOSθE: ð3:11Þ
We consider an extended source with a radius RS and

with a uniform surface brightness. Introducing the dimen-
sionless radius of the extended source on the source plane
ϕ̂S ≡ RS=RE, the total magnification of the images of the
extended source μe is given by

μeðϕ̂Þ ¼
2

πϕ̂2
S

Z
ϕ̂þϕ̂S

ϕ̂−ϕ̂S

μpðϕ̂0Þϕ̂0 arccos
ϕ̂02 þ ϕ̂2 − ϕ̂2

S

2ϕ̂ϕ̂0 dϕ̂0

ð3:12Þ
for ϕ̂S < ϕ̂ and

μeðϕ̂Þ ¼
2

πϕ̂2
S

Z
ϕ̂þϕ̂S

−ϕ̂þϕ̂S

μpðϕ̂0Þϕ̂0 arccos
ϕ̂02 þ ϕ̂2 − ϕ̂2

S

2ϕ̂ϕ̂0 dϕ̂0

þ 2

ϕ̂2
S

Z
−ϕ̂þϕ̂S

0

μpðϕ̂0Þϕ̂0dϕ̂0 ð3:13Þ

for ϕ̂ < ϕ̂S. In a perfect aligned case with ϕ̂ ¼ 0, we obtain
the total magnification as

μeð0Þ ¼
2

ϕ̂2
S

Z
ϕ̂S

0

μpðϕ̂0Þϕ̂0dϕ̂0: ð3:14Þ

IV. SCHWARZSCHILD LENS

In this section, we give a very short review for a
Schwarzschild lens with a positive ADM mass M under
a weak-field approximation [2]. The deflection angle of a
light is given by

α ¼ 4M
b

: ð4:1Þ
Using the deflection angle (4.1), the lens equation (3.1) is
rewritten as

FIG. 1. Lens configuration of gravitational lensing. A light ray
emitted by a source S with a source angle ϕ is deflected near a
wormhole as a lens L with a deflection angle α. An observer O
sees an image I of the light ray with an image angle θ.DOS,DOL,
and DLS are distances between the observer O and the source S,
between the observer O and the lens L, and between the lens L
and the source S, respectively. b is the impact parameter of the
light ray.
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θ̂−1 ¼ θ̂ − ϕ̂: ð4:2Þ
The lens equation has only a positive and a negative
solutions for any reduced source angle ϕ̂. Note that the
lens equation (4.2) has the inversion symmetry against a
symmetric point θ̂ ¼ ϕ̂ ¼ 0. We can concentrate ourselves
on the case for ϕ̂ ≥ 0 without the loss of generality because
of the inversion symmetry.
The image angle of an Einstein ring is obtained as

θE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4MDLS

DOSDOL

s
: ð4:3Þ

From Eqs. (3.3) and (4.3), we notice that the angle of the
Einstein ring θE by the Schwarzschild lens is the same as
the one by the Ellis wormhole with the radius of the throat a
when the ADM mass is

M ¼ 1

8

�
π2a4DOS

2DLSDOL

�1
3

: ð4:4Þ

The total magnification of the images of a point source is
obtained as

μpðϕ̂Þ ¼
ϕ̂2 þ 2

ϕ̂
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϕ̂2 þ 4

q : ð4:5Þ

In the region 1 ≪ ϕ̂ ≪ θ−1E , the total magnification of the
point source μp is given by

μp ∼ 1þ 2

ϕ̂4
> 1: ð4:6Þ

The total magnification of the images of an extended source
μeðϕ̂Þ with a uniform surface brightness is given by
Eqs. (3.12) and (3.13) with Eq. (4.5).

V. MICROLENSING BY AN ELLIS WORMHOLE

We consider the microlensing [66] of an extended source
which moves with a relative velocity v against an optical
axis ϕ̂ ¼ 0 and which is lensed by an Ellis wormhole.
An Einstein-ring-radius-crossing time tE defined as tE ≡
RE=v gives the timescale of the microlensing. See Fig. 2 for
the motion of the source. We have set a time t to be t ¼ 0
when the reduced angle of the center of the extended source
ϕ̂ ¼ ϕ̂m, where ϕ̂m is the closest reduced angle. In the wide
range of the radius of the throat a, the angle of the Einstein

FIG. 2. The motion of an extended source on a source plane in
units of RE. The reduced angle ϕ̂ defined at the location of an
observer between the center of the extended source and an optical

axis ϕ̂ ¼ 0 is described by ϕ̂ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϕ̂2
m þ v̂2t2

q
, where ϕ̂m is the

closest reduced angle, v̂≡ v=RE is the relative velocity of the
source against the optical axis on the source plane, and t is a time.
We have set the time t to be t ¼ 0 when ϕ̂ ¼ ϕ̂m.

TABLE I. Microlensing of a star at DOS ¼ 8 kpc in the bulge
of our Galaxy lensed by an Ellis wormhole at DOL ¼ 4 kpc.
We assume that the relative velocity v of the star against an
optical axis on a source plane is v ¼ 200 km=s.

a (km) θE (mas) RE (km) tE (day)

1.0 × 10−2 2.8 × 10−5 3.4 × 104 2.0 × 10−3

1.0 × 10−1 1.3 × 10−4 1.6 × 105 9.1 × 10−3

1.0 6.1 × 10−4 7.3 × 105 4.2 × 10−2

1.0 × 101 2.8 × 10−3 3.4 × 106 2.0 × 10−1

1.0 × 102 1.3 × 10−2 1.6 × 107 9.1 × 10−1

1.0 × 103 6.1 × 10−2 7.3 × 107 4.2
1.0 × 104 2.8 × 10−1 3.4 × 108 2.0 × 101

1.0 × 105 1.3 1.6 × 109 9.1 × 101

1.0 × 106 6.1 7.3 × 109 4.2 × 102

1.0 × 107 2.8 × 101 3.4 × 1010 2.0 × 103

1.0 × 108 1.3 × 102 1.6 × 1011 9.1 × 103

1.0 × 109 6.1 × 102 7.3 × 1011 4.2 × 104

1.0 × 1010 2.8 × 103 3.4 × 1012 2.0 × 105

TABLE II. Microlensing of a star atDOS ¼ 50 kpc in the Large
Magellanic Cloud lensed by an Ellis wormhole atDOL ¼ 25 kpc.
We assume that the relative velocity v of the star against an
optical axis on a source plane is v ¼ 200 km=s.

a (km) θE (mas) RE (km) tE (day)

1.0 × 10−2 8.3 × 10−6 6.2 × 104 3.6 × 10−3

1.0 × 10−1 3.9 × 10−5 2.9 × 105 1.7 × 10−2

1.0 1.8 × 10−4 1.3 × 106 7.8 × 10−2

1.0 × 101 8.3 × 10−4 6.2 × 106 3.6 × 10−1

1.0 × 102 3.9 × 10−3 2.9 × 107 1.7
1.0 × 103 1.8 × 10−2 1.3 × 108 7.8
1.0 × 104 8.3 × 10−2 6.2 × 108 3.6 × 101

1.0 × 105 3.9 × 10−1 2.9 × 109 1.7 × 102

1.0 × 106 1.8 1.3 × 1010 7.8 × 102

1.0 × 107 8.3 6.2 × 1010 3.6 × 103

1.0 × 108 3.9 × 101 2.9 × 1011 1.7 × 104

1.0 × 109 1.8 × 102 1.3 × 1012 7.8 × 104

1.0 × 1010 8.3 × 102 6.2 × 1012 3.6 × 105
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ring θE, the radius of the Einstein ring on the source plane
RE, and the Einstein-ring-radius-crossing time tE are shown
in Tables I and II.
As Abe found in Ref. [22], the total magnification of a

point source lensed by the Ellis wormhole can be smaller
than unity when the point source is outside of the Einstein
ring on the source plane. The gutters of light curves of the
point source microlensed by the Ellis wormhole appear
near the peak of the light curves. We can look for the Ellis
wormholes by microlensing light curves with the gutters.
If the radius of a source RS is larger than the radius of the

Einstein ring RE on the source plane, an extended source
effect on microlensing light curves cannot be neglected.
From Eqs. (3.3) and (3.11), we obtain the radius of the
wormhole throat a satisfying RE ¼ RS as

a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4R3

SD
2
OL

πD2
OSDLS

s
: ð5:1Þ

Figure 3 shows the examples of the light curves of a point
source and an extended source with a radius RS ¼ 106 km at
DOS ¼ 8 kpc microlensed by an Ellis wormhole at DOL ¼
4 kpc. In this case, the extended source effect cannot be
neglectedwhen theElliswormhole has the radius of the throat
a≲ 1.6 km obtained from Eq. (5.1). Thus, we consider light
curves microlensed by Ellis wormholes with the radii of the
throata ¼ 1 kmanda ¼ 0.1 km inFig. 3.As a reference, the
light curves of the extended source lensed by a Schwarzschild
lens atDOL ¼ 4 kpc is also plotted there. By using Eq. (4.4),
we have tuned the ADM mass of the Schwarzschild lens to
have the same size of the Einstein ring θE as the size of the
Einstein ring made by the Ellis wormhole.

VI. DISCUSSION AND CONCLUSION

We discuss the extended source effect on the light
curves microlensed by the Ellis wormhole shown in

FIG. 3. Microlensing light curves withDOL ¼ DLS ¼ 4 kpc and with v ¼ 200 km=s. Solid-red, broken-green, and dotted-blue curves
denote the light curves of an extended source with a radius RS ¼ 106 km lensed by an mass (ESM), an extended source with RS ¼
106 km lensed by a massless wormhole (ESW), and a point source lensed by the massless wormhole (PSW), respectively. The left top
panel shows the light curves with a ¼ 0.1 km and the closest separation ϕ̂m ¼ 1, the right top panel shows the light curves with
a ¼ 0.1 km and ϕ̂m ¼ 1.5, the left bottom panel shows the light curves with a ¼ 1 km and ϕ̂m ¼ 0.5, and the right bottom panel shows
the light curves with a ¼ 1 km and ϕ̂m ¼ 1. The vertical axis μ denotes the total magnification and it is given by μ ¼ μe in the ESM and
ESW cases while μ ¼ μp in the PSW case. By using Eq. (4.4), we have tuned the ADMmass of the mass lens to have the same size of the
Einstein ring θE as the size of the Einstein ring made by the wormhole.
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Fig. 3. For discussing it, we should keep in mind that the
point source lensed by the Ellis wormhole is demagnified
(magnified) if the point source is in the outer side
excluding the vicinity of (inside and in the vicinity of)
the Einstein ring on the source plane. We notice that the
light curves have a symmetry against t ¼ 0. The shape of
the light curves of the point source lensed by the Ellis
wormhole and the Schwarzschild lens only depends on the
closest separation ϕ̂m while the one of the extended source
not only depends on ϕ̂m but also the dimensionless radius
of the extended source ϕ̂S.
The timescale of microlensing is determined by the

larger one between the crossing time of the Einstein ring
radius tE and the crossing time of the extended source
RS=v. If the timescale of microlensing is less than a day, it
is difficult to detect microlensing with current micro-
lensing observations at the interval of a few hours. We can
detect microlensing of a star at DOS ¼ 8 kpc in the bulge
of our Galaxy by the Ellis wormhole with the radius of the
throat a ¼ 1 km at DOL ¼ 4 kpc if the relative velocity v
of the star against an observer-lens system is smaller
than 10 km=s.
As shown on the left top (left bottom) panel in Fig. 3,

the light curves of the extended source microlensed by
the Ellis wormhole with the throat radius a ¼ 0.1 km
(a ¼ 1 km) and with the closest separation ϕ̂m ¼ 1

(ϕ̂m ¼ 0.5) flatten while the light curves of the point
source microlensed by the Ellis wormhole have a peak
and gutters. The flattening of the peak and gutters of the
light curves is caused by the cancellation between
the demagnified part and the magnified part of the
extended source. Thus, the gutters of the light curves
of the extended source lensed by the Ellis wormhole
cannot be deeper than the gutters by approximately
4% demagnification which is obtained in the point
source case.
As shown on right top panel, the point source with

ϕ̂m ¼ 1.5 does not across the Einstein ring on the source
plane and the light curve of the point source lensed by the
Ellis wormhole with a ¼ 0.1 km is always demagnified.
On the other hand, the light curve of the extended source
lensed by the Ellis wormhole with ϕ̂m ¼ 1.5 is magnified
for jtj ≲ RS=v since a part of the extended source is
located at the magnified region on the source plane.
As shown on the right bottom panel, the peak of the

light curve of the extended source lensed by the Ellis
wormhole with a ¼ 1 km and with ϕ̂m ¼ 1.0 is higher
than the one of the point source since a part of the

extended source can be extended at the magnified region
on the source plane.
The extended source effect on the total magnification is

tiny for the region 1 ≪ ϕ̂ ≪ θ−1E . Thus, the behavior of the
edge of the light curves will be described well by, from
Eqs. (3.9) and (4.6),

μe ∼ μp ∼ 1 −
1

2ϕ̂3
< 1 ð6:1Þ

and

μe ∼ μp ∼ 1þ 2

ϕ̂4
> 1 ð6:2Þ

for the Ellis wormhole and the Schwarzschild lens, respec-
tively. This implies that the light curves lensed by the Ellis
wormhole do not coincide with the ones lensed by the
Schwarzschild lens in general even if the values of ϕ̂m and
ϕ̂S are changed.
Figure 3 shows that the total magnification of the images

of the extended source lensed by the Schwarzschild lens
monotonically increase as the time t increases for a period
t ≤ 0 while the ones by the Ellis wormhole decrease and
then increase or decrease, increase and then decrease for the
period t ≤ 0.
From the above, we conclude that we can distinguish

between the light curves of the extended source lensed
by the Ellis wormhole and the ones lensed by the
Schwarzschild lens in their shapes even if the size of the
extended source is a few times larger than the size of
the Einstein ring on the source plane.
In the end, we comment on the separation of a couple of

lensed images. The size of the image separation is the same
as the size of the Einstein ring approximately. Table I (II)
shows that a couple of images lensed by an Ellis wormhole
4 (25) kpc away from an observer with a throat which is
larger than a ¼ 104 (105) km could be separated into two
images by using a very long baseline interferometer (VLBI)
such as the VLBI Exploration of Radio Astrometry [67]
with the resolution of sub-milliarcsecond.
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