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We study the propagation of exact gravitational waves in the ghost-free bimetric theory. Our focus is on
type-N spacetimes compatible with the cosmological constants provided by the bigravity interaction
potential, and particularly in the single class known by allowing at least a Killing symmetry: the AdS
waves. They have the advantage of being represented by a generalized Kerr-Schild transformation from
AdS spacetime. This entails a notorious simplification in bigravity by allowing to straightforwardly
compute any power of its interaction square root matrix, opening the door to explore physically meaningful
exact configurations. For these exact gravitational waves the complex dynamical structure of bigravity
decomposes into elementary exact massless or massive excitations propagating on AdS. We use a
complexified formulation of the Euler-Darboux equations to provide for the first time the general solutions
to the massive version of the Siklos equation which rules the resulting AdS-wave dynamics, using an
integral representation originally due to Poisson. Inspired by this progress, we tackle the subtle problem of
how matter couples to bigravity and, more concretely, if this occurs through a composite metric, which is
hard to handle in a general setting. Surprisingly, the Kerr-Schild ansatz brings again a huge simplification in
how the related energy-momentum tensors are calculated. This allows us to explicitly characterize AdS
waves supported by either a massless free scalar field or a wavefront-homogeneous Maxwell field.
Considering the most general allowed Maxwell source instead is a highly nontrivial task, which we
accomplish by again exploiting the complexified Euler-Darboux description and taking advantage of the
classical Riemann method. In fact, this eventually allows us to find the most general configurations for any
matter source.

DOI: 10.1103/PhysRevD.97.084045

I. INTRODUCTION

Gravitational theories are characterized by the existence
of wavy configurations, as in any other relativistic field
theory; they are responsible for propagating the interaction
and transferring energy across spacetime, which eventually
can be measured independently of where they were gen-
erated. This was recently achieved by the LIGO and Virgo
Collaborations with the direct detection of gravitational
waves for the first time [1–6], which provided the missing
crucial element in Einstein’s legacy to understand the
gravitational interaction as geometry and was awarded
the 2017 Nobel Prize in Physics [7]. However, other open

questions remain to be answered, such as the darkmatter and
dark energy problems, whichmight be tackled bymodifying
General Relativity. Therefore, upcoming experimental data
require theoretical results capable of illuminating the way to
proceed. In this sense, the full understanding of gravita-
tional-wave solutions is promising, since they contain
fingerprints to track down features of different theories,
especially beyond the perturbative treatment.
In four dimensions, one of these modified theories is the

massive gravity of de Rham, Gabadadze, and Toley (dRGT)
[8]. It has received a lot of attention for being a consistent
way to include nonlinear massive gravitons in a manner that
is free of the so-called Boulware-Deser ghosts [9], which
permeated many previous attempts. These efforts to include
massive gravitons not only followed the theoretical insight
of Fierz and Pauli [10]—through a long endeavor to
consistently incorporate self-interactions for a massive
spin-2 particle—but they also rely on the belief that such
massive gravitons can help to explain some currently
incomprehensible characteristics of the observed Universe.
The dRGT theory requires a reference metric in addition

to the dynamical massive one in order to formally restore
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diffeomorphism invariance, which entails a precise non-
derivative self-interaction potential built with the square
root matrix of the product of both metrics. As a consistent
extension, Hassan and Rosen [11] showed that the refer-
ence metric can be promoted to an independent dynamical
one without spoiling the nice features of the original theory
(i.e., it is generally covariant and ghost-free), which is the
why the resulting theory is called bigravity. This is the
framework we will work with, so will devote the following
section to reviewing its main ingredients.
The first gravity theory propagating a ghost-free massive

degree of freedom (d.o.f.) was Topologically Massive
Gravity in three dimensions [12,13]. It relies in a parity-
violating Chern-Simons description, which was superseded
by later proposals as New Massive Gravity [14] or Zwei-
Dreibein Gravity [15]. The latter are theories which in
the perturbative regime recover the Fierz-Pauli three-
dimensional limit; in this sense, they are analogous to
dRGT and bigravity theories in lower dimensions. All of
these three-dimensional theories support exact gravita-
tional-wave configurations that exhibit the particular
dynamics of each theory beyond the perturbative level,
and consist of the pure gauge modes of standard (2þ 1)
gravity plus nontrivial contributions reflecting their respec-
tive massive excitations [16–20] (see also the recent review
[21]). It is expected to have similar revealing behavior in
bigravity, i.e., that exact gravitational waves decompose the
complex dynamical structure of the theory into elementary
exact massless and massive excitations.
Exact gravitational waves over flat spacetime rigged by

bigravity were previously investigated in Ref. [22] under
the restriction that both metrics have the same profile. As
we will see in the next section, the interaction terms
inherently include cosmological constants for both metrics;
hence, it is natural to search for wave solutions that can
be interpreted as being propagated over (anti–)de Sitter
[(A)dS] backgrounds. One such configuration is what is
known in the literature as AdS waves, which were
exhaustively studied in General Relativity by Siklos
[23]. They can be represented by a generalized Kerr-
Schild transformation from AdS spacetime. Fortunately,
it has been proved by some of the authors that dealing with
such transformations provides a notorious simplification
in bigravity, allowing to straightforwardly compute the
interaction square root matrix and any of its powers,
independently of the seed metric [24]. Section III reviews
the appearance of exact gravitational waves in General
Relativity and ends by motivating the AdS-wave ansatz,
including its residual symmetries and the reductions they
induce in the solutions. Later, Sec. IV deals with the study
of AdS waves in bigravity and how to decouple the
resulting partial differential equations system for both
independent wave profiles. It turns out that one of the
decoupled profiles obey a massless Klein-Gordon equation
on AdS, which is just the so-called Siklos equation [23].

The other satisfies a massive Klein-Gordon equation on
AdS, with an effective mass proportional to the Fierz-Pauli
one, defining a massive deformation of the Siklos equation.
As a warm up, we start in Sec. V by analyzing sum-
separable solutions of these equations to get a clear
decomposition in the involved physical modes and gain
intuition about the resulting configurations. Thereafter, we
address the general setting in Sec. VI by regarding the
Siklos operator as a complexified version of Euler-Darboux
operators [25,26], which allows us to find the most general
AdS waves rigged by the dynamics of bigravity. Another
controversial issue of bigravity is the way to couple matter,
and Sec. VII is devoted to this issue with a discussion on the
effective metric and explicit calculations for both scalar and
Maxwell fields. Their general solutions are also charac-
terized by again exploiting the Euler-Darboux description
and making use of the Riemann method, which in fact
allows us to find the general solutions of the involved exact
excitations for any matter source. Final remarks and
perspectives of the present work appear in Sec. VIII.
The case of pp-waves propagating in flat spacetime is
additionally analyzed by completeness in Appendix A.
Other appendices are devoted to detailed derivations which
are essential to obtain the main results of the paper.

II. THE BIGRAVITY THEORY

Bigravity as formulated by Hassan and Rosen [11] is a
four-dimensional ghost-free theory describing two dynami-
cal metric fields gμν and fμν interacting via a nonderivative
potential, originally proposed by dRGT to consistently
describe a single massive spin-2 field [8]. One of the metric
fields is massive and the other is massless; hence, the theory
consequently propagates a total of 5þ 2 d.o.f. The inter-
action is encoded through terms computed from a matrix
defined by the following quadratic relation

ðγ2Þμν ¼ γμαγ
α
ν ≡ gμαfαν: ð1Þ

The action defining bigravity is

Sbi½g; f� ¼
1

2κg

Z
d4x

ffiffiffiffiffiffi
−g

p
R½g� þ 1

2κf

Z
d4x

ffiffiffiffiffiffi
−f

p
R½f�

−
m2

κ

Z
d4x

ffiffiffiffiffiffi
−g

p
U½g; f�; ð2Þ

where m is the graviton mass, R½g� and R½f� are the
scalar curvatures associated to the metrics gμν and fμν,
respectively, κg and κf are their corresponding gravitational
constants, and κ is in general a function of these constants.
The interaction is specified by the potential

U½g; f� ¼
X4
k¼0

bkUkðγÞ; ð3Þ
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where bk are the coupling constants of the theory and each
term of the potential is defined as

U0ðγÞ ¼ 1; U1ðγÞ ¼ ½γ�; U2ðγÞ ¼
1

2!
ð½γ�2 − ½γ2�Þ;

U3ðγÞ ¼
1

3!
ð½γ�3 − 3½γ�½γ2� þ 2½γ3�Þ;

U4ðγÞ ¼
1

4!
ð½γ�4 − 6½γ�2½γ2� þ 8½γ�½γ3� þ 3½γ2�2 − 6½γ4�Þ;

ð4Þ

where ½γn� stands for the trace of the nth power of the
square matrix γ defined in Eq. (1). Here, the first con-
tribution plays the role of a cosmological constant for the
metric gμν. Additionally, the last one can be compactly
rewritten in the action (2) as a constant times

ffiffiffiffiffiffi
−f

p
, and thus

it plays the role of a cosmological constant for the other
metric fμν.
The action principle yields a set of two coupled Einstein

field equations

Gμ
ν −

m2κg
κ

Vμ
ν ¼ 0; Gμ

ν −
m2κf
κ

Vμ
ν ¼ 0; ð5Þ

where Gμ
ν and Gμ

ν are the Einstein tensors for gμν and fμν,
respectively. The interaction tensors are defined by varying
the potential with respect to both metrics

Vμ
ν ≡ 2gμαffiffiffiffiffiffi−gp δ

δgαν
ð ffiffiffiffiffiffi

−g
p

UÞ ¼ τμν − Uδμν; ð6aÞ

Vμ
ν ≡ 2fμαffiffiffiffiffiffi

−f
p δ

δfαν
ð ffiffiffiffiffiffi

−g
p

UÞ ¼ −
ffiffiffiffiffiffi−gp
ffiffiffiffiffiffi
−f

p τμν; ð6bÞ

where

τμν ¼ ðb1U0 þ b2U1 þ b3U2 þ b4U3Þγμν
− ðb2U0 þ b3U1 þ b4U2Þðγ2Þμν
þ ðb3U0 þ b4U1Þðγ3Þμν
− b4U0ðγ4Þμν: ð6cÞ

In principle, all of the coupling constants bk are left free.
But, as we already denote the graviton mass by m, in the
consistent linear limit enjoyed by the theory the latter
constant must correspond to the Fierz-Pauli mass in flat
space. This imposes a constraint between the coupling
constants [24]

b2 ¼ −1 − 2b3 − b4; ð7Þ

which we shall use in the present work.

III. EXACT GRAVITATIONAL WAVES:
THE CASE OF AdS WAVES

Gravitational waves are most commonly understood as
small perturbations to a background spacetime in the form

gμν ¼ gð0Þμν þ hμν, where the quadratic and higher contribu-
tions of hμν are neglected, which linearizes the intrinsically
nonlinear Einstein field equations and forces the perturba-
tions to satisfy the standard wave equation. This is the kind
of gravitational waves recently detected by the LIGO and
Virgo observatories [1–6]. Remarkably, in spite of its
inherent nonlinearity, General Relativity also allows the
existence of exact gravitational waves. These are solutions
of the Einstein equations for which the linearization leading
to thewave equation does not rely on any approximation, but
rather emerges from a different mechanism usually involving
the existence of a principal null direction [27]. When such a
vector field associated to the Weyl tensor presents multi-
plicity, this defines the so-called algebraically special space-
times. In the case where this multiplicity is maximal
(fourfold), the spacetimes are classified as type N and
characterize the exact gravitational waves. If these null
vector fields are additionally geodesic (optical rays),1 they
are classified in terms of the irreducible contributions to the
projection of its covariant derivative on the two-dimensional
spatial sections orthogonal to them. When the antisymmetric
part of this projection vanishes (nontwisting rays) and the
traceless contribution of the symmetrical part is also zero
(shear-free rays), there are only two possibilities: the trace
also vanishes (nonexpanding rays), or it is nontrivial
(expanding rays). In vacuum, both cases are described by
the Kundt [30] and Robinson-Trautman [31] classes of exact
gravitational waves, respectively. The nonexpanding Kundt
class contains a subcase where the multiple principal null
direction is additionally a Killing field and therefore a
covariantly constant vector, which describes plane-fronted
gravitational waves with parallel rays, or in short pp-waves.
This was one of the early exact examples of gravitational
waves [32] and probably the most studied. Their dynamics
under bigravity is explored in Appendix A.
As emphasized in the previous section, the theory we

focus on in this paper naturally presents a pair of cosmo-
logical constants. Hence, it is more appropriate to study the
kind of exact gravitational waves that can be propagated
under these circumstances. In General Relativity, the
generalization of the Kundt and Robinson-Trautman waves
in the presence of a cosmological constant was realized
by the CINVESTAV group in the early 1980s [33–35]
(see also Ref. [36] and the review [37]). Here again, the
generalized Kundt class has a subcase where the nonex-
panding ray becomes a Killing vector, which was

1It is not necessary to assume this and other properties of the
null congruences under certain conditions summarized in the
celebrated Goldberg-Sachs theorem [28] and its generalizations
[27,29].
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exhaustively studied by Siklos [23]. The symmetrical
Siklos spacetimes only exist for a negative cosmological
constant and are defined by the metric

ds2 ¼ l2

y2
½−Fðu; y; xÞdu2 − 2dudvþ dy2 þ dx2�; ð8Þ

where the null Killing field is ∂v. In General Relativity the
gravitational profile F satisfies the wave equation on AdS
space written in Poincaré coordinates

ds2AdS ¼
l2

y2
ð−2dudvþ dy2 þ dx2Þ; ð9Þ

where u and v play the role of retarded and advanced times,
respectively. This permits the interpretation that these
solutions are exact gravitational waves propagating on
an AdS background [38] or, in short, AdS waves [18].
The linearization that gives rise to the wave equation

arises in this case because the metric can be written as a
generalized Kerr-Schild transformation

ds2 ¼ ds2AdS − Fk ⊗ k; ð10Þ

where the vector field

kμdxμ ¼ −
l
y
du; ð11Þ

is proportional to the Killing vector ∂v and retains its null
and geodesic properties on AdS. Satisfying such properties
on any seed metric assures that the mixed components of
the transformed Ricci tensor depend linearly on the profile
F and their derivatives [27]. This explains the emergence of
the wave operator.
The line element (8) is form invariant under the family of

transformations

ũ ¼
Z

du
f2

; ỹ ¼ λ

f
y; x̃ ¼ λ

f
ðxþ PÞ;

ṽ ¼ λ2
�
v −

1

2

_f
f
ðy2 þ x2Þ þ f

d
du

�
P
f

�
x

þ 1

2

Z
du

�
B0 þ _P2 − _f

d
du

�
P2

f

���
;

F̃ ¼ ðλfÞ2½F − B2ðy2 þ x2Þ − B1x − B0�; ð12aÞ

where f ¼ fðuÞ, P ¼ PðuÞ, and B0 ¼ B0ðuÞ are arbitrary
functions of the retarded time, a dot denotes a derivative
with respect to u, and the coefficients of the quadratic and
linear terms in the wavefront coordinates at the profile
transformation are determined from the above functions by

B2 ¼ −
̈ f
f
; B1 ¼ 2ðP̈þ PB2Þ: ð12bÞ

These transformations determine the residual symmetries
of the AdS waves (8), were discussed originally by Siklos
in Ref. [23] and extended to any dimension in Ref. [39].
They can be exploited in the following way (see Ref. [18]):
if the solution profile contains a quadratic term in x and y
with the same coefficient, a linear term in x, and/or a zero-
order term, one can choose the functions in the trans-
formation in order that B2, B1, and/or B0 coincide with the
coefficients of these terms, respectively. These selections
entail differential equations for f and P through Eq. (12b),
whose solutions define precise local coordinate transfor-
mations that eliminate the involved contributions in the
transformed profile. This feature will be of great help, as we
will see in Sec. V and later.

IV. AdS WAVES IN BIGRAVITY

In this work we undertake the task of studying the
dynamics of AdS waves in bigravity. Hence, we will take
both metrics as a generalized Kerr-Schild ansatz of the
form (10), additionally allowing the presence of a global
conformal factor in the second metric

gμν ¼ gAdSμν − F1ðu; x; yÞkμkν;
fμν ¼ C2½gAdSμν − F2ðu; x; yÞkμkν�; ð13Þ

which provides the freedom to use two different AdS radii,
whose ratio is precisely C ¼ lf=lg.
In the context of bigravity, not only does the Kerr-Schild

ansatz gives rise to the well-known linearization leading to
the exact wavy behavior of General Relativity described in
the previous section, but (as was noticed first in Ref. [24] by
some of the authors) the null character of the vector (11) in
the generalized transformation also provides a nilpotent
contribution to the interaction square root matrix (1).2 Thus,
we can immediately write down the latter for any seed
metric as

γμν ¼ C

�
δμν −

1

2
ðF2 − F1Þkμkν

�
; ð14Þ

where kμ ≡ gμνkν. This property allows to trivially calculate
the powers of the interaction matrix necessary to compute
the entire set of field equations

ðγnÞμν ¼ Cn

�
δμν −

n
2
ðF2 − F1Þkμkν

�
: ð15Þ

A long but straightforward calculation shows that the
interaction tensors acquire an almost diagonal form, except
for a contribution along the null ray (11), meaning that the
field equations (5) take the simple form

2For preliminary results were both metrics are related by a
Kerr-Schild ansatz see Ref. [40].
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Gμ
ν −

κgm2

κ

�
P1δ

μ
ν − C

P0

2
ðF2 − F1Þkμkν

�
¼ 0; ð16aÞ

Gμ
ν −

κfm2

κC3

�
P2δ

μ
ν þ

P0

2
ðF2 − F1Þkμkν

�
¼ 0; ð16bÞ

where the dependence on the coupling constants is encoded
in the following combinations

P0 ≡ −2Cb4 þ CðC − 4Þb3 þ b1 − 2C; ð16cÞ

P1 ≡ 3C2b4 − C2ðC − 6Þb3 − 3Cb1 − b0 þ 3C2; ð16dÞ

P2 ≡ −CðC2 − 3Þb4 − 3CðC − 2Þb3 − b1 þ 3C: ð16eÞ

Each Einstein tensor only contributes to the diagonal
with a term proportional to the inverse of the corresponding
AdS radius

Gμ
ν − 3l−2δμν ∝ kμkν; ð17aÞ

Gμ
ν − 3C−2l−2δμν ∝ kμkν: ð17bÞ

Hence, the two diagonal contributions from the Einstein
equations (16) fix two combinations of coupling constants
in terms of the AdS radii, defining an effective negative
cosmological constant for each metric

Λeff
1 ≡ −

κgm2

κ
P1 ¼ −

3

l2
; ð18aÞ

Λeff
2 ≡ −

κfm2

κC3
P2 ¼ −

3

C2l2
: ð18bÞ

The other nontrivial terms are the off-diagonal compo-
nents along the null ray, which can be written covariantly as

�
1

2

y2

l2
ΔSF1 þ

Cκgm2P0

2κ
ðF2 − F1Þ

�
kμkν ¼ 0; ð19aÞ

�
1

2

y2

l2
ΔSF2 −

κfm2P0

2Cκ
ðF2 − F1Þ

�
kμkν ¼ 0; ð19bÞ

where ΔS is the operator defining the Siklos equation
[defined below in Eq. (22a)], given by

ΔS ≡ ΔL −
2

y
∂y; ΔL ≡ ∂2

y þ ∂2
x; ð20Þ

with ΔL being the standard Laplacian operator. With the
help of the profile redefinitions3

ℱ≡ κf
κ
F1 þ

C2κg
κ

F2; ð21aÞ

ℋ≡ F2 − F1; ð21bÞ

the system (19) is decoupled and becomes

ΔSℱ ¼ 0; ð22aÞ

ΔSℋ −
l2m̂2

y2
ℋ ¼ 0: ð22bÞ

The first equation forℱ corresponds to the Siklos equation,
since he was the first to describe the dynamics of AdS
waves [23]. Up to a factor, this is just the wave operator
(d’Alembertian) evaluated on the AdS metric (9) written
in Poincaré coordinates. In other words, the profile ℱ

describes an exact massless excitation. The second equa-
tion for ℋ is the massive version of the Siklos one since
Eq. (22b), up to a factor, is just the massive Klein-Gordon
equation evaluated on the AdS spacetime (9) with a mass
given in terms of the Fierz-Pauli one as follows

m̂2 ≡ ðκf þ C2κgÞP0

Cκ
m2: ð22cÞ

Correspondingly, the profile ℋ characterizes an exact
massive excitation.
Finally, it is important to know how the exact decoupled

excitations are defined modulo diffeomorphisms in order
to properly identify their physically relevant contributions.
Since we are using the same coordinates to write both
metrics (f and g), it is easy to check that the new decoupled
profiles change under the residual symmetries (12) of AdS
waves in the following way

ℱ̃ ¼ ðλfÞ2fℱ − ðκf þ C2κgÞ½B2ðx2 þ y2Þ þ B1xþ B0�g;
ð23aÞ

ℋ̃ ¼ ðλfÞ2ℋ: ð23bÞ

This means that only the massless profile inherits the
characteristic indeterminacy of the AdS waves and the
massive one remains essentially the same modulo a trivial
scaling.
In the following we shall characterize these decoupled

exact excitations, first by inspecting their sum-separable
sector in order to identify the principal modes ruling the
dynamics, and later by unveiling their full space of
solutions using Euler-Darboux operators. From the
obtained behaviors the original AdS-wave profiles can
be reconstructed by inverting the redefinitions (21) as

3This decoupling is similar to that found perturbatively in the
cosmological context [41].
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F1 ¼
1

κf þ C2κg
ðκℱ − C2κgℋÞ; ð24aÞ

F2 ¼
1

κf þ C2κg
ðκℱþ κfℋÞ: ð24bÞ

V. SEPARABLE CONFIGURATIONS

It is very illustrative to study the wavefront-coordinate
sum-separable solutions to the decoupled exact excitations
(22). This procedure provides a quick integration and, more
importantly, reveals the d.o.f. propagated by the theory
remaining on these configurations which helps to gain
intuition about the exhibited physical modes as well as the
special points of the parameter space of the theory.

A. Massless profiles m̂ = 0

The closest case to General Relativity corresponds to the
vanishing of the effective mass (22c), m̂ ¼ 0. A particularly
interesting possibility is having zero-mass modes without
requiring the flat-space graviton mass m to vanish, but
rather by imposing P0 ¼ 0. This corresponds to a constraint
on the coupling constants of the theory that reduces the
coupled differential system (19) to the pair of decoupled
Siklos equations

ΔSF1 ¼ 0 ¼ ΔSF2: ð25Þ

As explained before, by looking for a clear decomposition
in the prevailing modes of the theory we will search for
solutions that are sum separable with respect to the wave-
front coordinates, i.e., F1ðu; y; xÞ ¼ X1ðu; xÞ þ Y1ðu; yÞ
and F2ðu; y; xÞ ¼ X2ðu; xÞ þ Y2ðu; yÞ. As a consequence
of this process, each Siklos equation is separated into
ordinary Euler equations for the wavefront coordinates.
The linearly independent solutions are power laws and
together lead to the more general separable solutions in the
massless case

F1ðu; x; yÞ ¼ f3ðuÞ
�
y
l

�
3

þ f2ðuÞ
l2

ðx2 þ y2Þ

þ f1ðuÞ
x
l
þ f0ðuÞ; ð26aÞ

F2ðu; x; yÞ ¼ h3ðuÞ
�
y
l

�
3

þ h2ðuÞ
l2

ðx2 þ y2Þ

þ h1ðuÞ
x
l
þ h0ðuÞ; ð26bÞ

where the f’s and h’s are arbitrary functions of the retarded
time u. We may be tempted to use the residual symmetries
(12) to remove all of the terms that have an unphysical
meaning in standard gravity [18]; interestingly, this can be
achieved for only one of the metrics, while in general the
other profile will keep all of terms

F1ðu; x; yÞ ¼ f3ðuÞ
�
y
l

�
3

; ð27aÞ

F2ðu; x; yÞ ¼ h3ðuÞ
�
y
l

�
3

þ h2ðuÞ
l2

ðx2 þ y2Þ

þ h1ðuÞ
x
l
þ h0ðuÞ: ð27bÞ

We note that F1 corresponds to the physical General
Relativity mode, which in this context describes the
well-known Kaigorodov spacetime [42]. Instead, F2

includes additional contributions that cannot be dropped
and are fingerprints of the massive d.o.f. of the present
theory.

B. Massive profiles m̂ ≠ 0

Let us return to the most general case in which the
effective mass is not trivial and the AdS waves are
described by the decoupled exact excitations (21) obeying
the system (22). Once again, in order to exhibit the
decomposition in the prevailing modes we will search
for decoupled solutions that are sum separable with respect
to the wavefront coordinates, i.e., ℱðu; y; xÞ ¼ X1ðu; xÞ þ
Y1ðu; yÞ and ℋðu; y; xÞ ¼ X2ðu; xÞ þ Y2ðu; yÞ. The sepa-
ration in terms of ordinary Euler equations for the wave-
front coordinates now results in the solution

ℱðu; x; yÞ ¼ f3ðuÞ
�
y
l

�
3

; ð28aÞ

ℋðu; x; yÞ ¼ hþðuÞ
�
y
l

�
ρþ þ h−ðuÞ

�
y
l

�
ρ−
; ð28bÞ

where

ρ� ≡ 3

2
� l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m̂2 −m2

BF

q
; ð28cÞ

are the roots of the characteristic polynomial determining
the linearly independent power-law solutions of the ordi-
nary Euler equation for the massive modes (since their
separable x dependence must be trivial), and

m2
BF ≡ −

9

4l2
; ð28dÞ

corresponds to the well-known Breitenlohner-Freedman
bound, which is the lowest value the square of the mass
of a stable scalar field can take on an AdS background [43].
Since the profileℱ remains massless, we already exploited
the residual symmetries (23) to get rid of the unphysical
terms (which are like those of the previous subsection) and
reduce its solution to Eq. (28a). Hence, the profiles of
both metrics that are free from irrelevant contributions are
constructed using the inversions (24) and are given by
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F1ðu; x; yÞ ¼
1

κf þ C2κg

�
κf3ðuÞ

�
y
l

�
3

− C2κg

�
hþðuÞ

�
y
l

�
ρþ þ h−ðuÞ

�
y
l

�
ρ−
��

;

ð29aÞ

F2ðu; x; yÞ ¼
1

κf þ C2κg

�
κf3ðuÞ

�
y
l

�
3

þ κf

�
hþðuÞ

�
y
l

�
ρþ þ h−ðuÞ

�
y
l

�
ρ−
��

:

ð29bÞ

The saturation of the Breitenlohner-Freedman bound,
m̂2 ¼ m2

BF, leads us to a logarithmic profile due to the
multiplicity in the powers of the solutions to the involved
ordinary Euler operator, ρþ ¼ ρ− ¼ 3=2

ℱðu; x; yÞ ¼ f3ðuÞ
�
y
l

�
3

; ð30aÞ

ℋðu; x; yÞ ¼
�
y
l

�3
2

�
h1ðuÞ þ h2ðuÞ ln

y
l

�
; ð30bÞ

where we have used the residual symmetry (23) to get rid of
the unphysical terms. Again, the profile functions can be
explicitly written through Eqs. (24) as

F1ðu; x; yÞ ¼
1

κf þ C2κg

�
κf3ðuÞ

�
y
l

�
3

− C2κg

�
y
l

�3
2

�
h1ðuÞ þ h2ðuÞ ln

y
l

��
; ð31aÞ

F2ðu; x; yÞ ¼
1

κf þ C2κg

�
κf3ðuÞ

�
y
l

�
3

þ κf

�
y
l

�3
2

�
h1ðuÞ þ h2ðuÞ ln

y
l

��
: ð31bÞ

As we saw before, one advantage of looking for sum-
separable solutions is that it allows to implement the whole
residual symmetry [Eq. (12) or (23)] to get rid of the
nonphysical terms. This clearly exhibits a mode coming
from General Relativity as well as two additional physical
massive modes that are characteristic of these kind of
theories; these are the prevailing modes respecting the
symmetries of the system. For completeness, the same
approach is applied to the pp-wave problem in
Appendix A, providing new results which extend those
already reported for massive gravity [22].

VI. (MASSIVE) SIKLOS EXCITATIONS FROM
EULER-DARBOUX EQUATIONS

A. General exact massless excitations

In order to find the solution to the system (22) in a
general setting, it is quite convenient to incorporate the
wavefront coordinates in a complex variable z ¼ xþ iy
together with its complex conjugate z̄, in terms of which the
Siklos operator (20) can be cast into the form

1

4
ΔS ¼ ∂2

zz̄ −
1

z − z̄
∂ z̄ þ

1

z − z̄
∂z: ð32Þ

The right-hand side is just a complexified version of the
Euler-Darboux operator Eα;β, which we review in
Appendix C (see also Refs. [25,26]), in the case where
the parameters of the operator (C1) take the values
α ¼ −1 ¼ β. The complex variables imply that the
Euler-Darboux operator Eα;β is no longer hyperbolic, but
rather elliptic. In other words, the Siklos equation (22a) is
just a complexified subclass of the Euler-Darboux differ-
ential equations [23].4 Consequently, the general solution
of the Siklos equation can be straightforwardly read from
the related expression (C7) when the parameters of the
Euler-Darboux operator are negative integers and using the
reality condition on the solution. Concretely, for the Siklos
case α ¼ −1 ¼ β, we end up with

ℱðu; z; z̄Þ ¼ uð−1;−1Þ

¼ ðz − z̄Þ3 ∂2

∂z∂z̄
�
1

2

ωðu; zÞ þ ωðu; zÞ
z − z̄

�

¼ y2∂y

�
ωðu; zÞ þ ωðu; zÞ

y

�
; ð33Þ

for an arbitrary complex function ωðu; zÞ, holomorphic on
the complex wavefront coordinate z. This is just the general
solution first reported by Siklos in Ref. [23]. The connection
between the Siklos equation and the Euler-Darboux oper-
ators was pointed out by Siklos himself [23]. But he did not
exploit this fact since he arrived at the solution in a different
and clever way by using the following third-order identity,
satisfied for any function f, that allows another representa-
tion of the Siklos operator in terms of the Laplacian

ΔSðy2∂yfÞ ¼ y2∂y

�
1

y
ΔLðyfÞ

�
: ð34Þ

This allows to use the well-known fact that the real part
of an arbitrary holomorphic function is harmonic and the
general solution to the Laplace equation can always be
represented in this way. In this sense, it is not strictly

4More precisely, when the two parameters α and β coincide it
is called an Euler-Poisson-Darboux equation.
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necessary to invoke the alternative derivation we present
first. However, as we shall see in the following subsection,
the former view is essential to study the general solutions of
the massive case for which no previous results are known.
Before that, we need to reanalyze the manifestation of

residual symmetries since only the massless modes are
practically sensitive to them, see Eq. (23). Such symmetries
are encoded in the holomorphic function ωðu; zÞ, implying
that it must necessarily change under the transformation
(12) according to

ω̃ ¼ ðλfÞ2
�
ωþ κf þ C2κg

2
ðB2z2 þ B1zþ B0Þ

�
: ð35Þ

Hence, any quadratic, linear, and constant holomorphic
dependences on the wavefront coordinates having real
coefficients depending on retarded time u can be eliminated
from ωðu; zÞ with the help of residual symmetries.

B. General exact massive excitations

The equation defining the exact massive modes (22b)
can be written in complex wavefront variables as

�
∂2
zz̄ −

1

z − z̄
∂ z̄ þ

1

z − z̄
∂z þ

l2m̂2

ðz − z̄Þ2
�
ℋ ¼ 0; ð36Þ

where the effective mass is given by Eq. (22b). This
massive generalization is no longer described by an
Euler-Darboux equation, but fortunately (as we review at
the end of Appendix C) it is connected to the extension
(C14) of Euler-Darboux operators containing the original
massless version and whose behavior can be determined
again in terms of the standard Euler-Darboux description.
This is achieved by means of the redefinition

ℋðu; z; z̄Þ ¼
�
z − z̄
2i

�
ρ

hðu; z; z̄Þ; ð37aÞ

where

ρ ¼ ρ� ¼ 3

2
� l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m̂2 −m2

BF

q
; ð37bÞ

is any of the roots defined in Eq. (28c), which remarkably
allows us to rewrite the massive equation as

�
∂2
zz̄ þ

ρ − 1

z − z̄
∂ z̄ −

ρ − 1

z − z̄
∂z

�
h ¼ 0: ð38Þ

As a consequence, the nonderivative massive contribution
is dropped at the cost of changing the kinetic parameters to
α ¼ β ¼ ρ − 1, which of course for a generic value of mass
gives nothing more than the general form of an Euler-
Poisson-Darboux equation. Notice the special selection of
the constant coefficient in front of the right-hand side of
redefinition (37a); in contrast to the treatment in
Appendix C where all the variables in Eq. (C15) are real,

here we need to guarantee that the final result is real.
It is necessary to remark that (as is proven in Appendix C)
we can equivalently represent the massive configuration
in terms of one root or the other, which is why we refer
to them generically as ρ in Eq. (37b). In Appendix C
we address how to find the general solution to these
equations in terms of a superposition constructed by means
of an integral representation. However, before addressing
the general problem with the methods described in
Appendix C, we find it illustrative to first study a particular
class for which the profile can be written without the use of
integrals; this case involves a discretization of the mass
above the Breitenlohner-Freedman bound (28d).

1. Special case with discrete mass

We start by assuming that the parameters of the Euler-
Poisson-Darboux equation (38) take integer values, that is,
ρ − 1 ¼ n with n ∈ Z; inserting this into the definition of
the exponent (37b), we obtain the following restriction for
the effective mass

m̂2 ¼ m2
BF þ

ð2n − 1Þ2
4l2

; ð39Þ

i.e., the related configurations involve only discrete values
of mass with a gap above the Breitenlohner-Freedman
bound (28d) for the first value, making all of them
physically acceptable. Additionally, each of these discrete
values presents a double degeneration allowing two sol-
utions to share the same mass value: the first characterized
by a positive integer and the second by a nonpositive one.
These solutions must satisfy Eq. (38), which becomes�

∂2
zz̄ þ

n
z − z̄

∂ z̄ −
n

z − z̄
∂z

�
h ¼ 0; ð40Þ

and can be straightforwardly read from the general solutions
to the Euler-Darboux equations we review in Appendix C,
with positive [Eq. (C5)] and nonpositive [Eq. (C7)] integer
parameters, together with a reality condition. Consequently,
the exact massive modesℋðu; z; z̄Þ satisfying Eq. (36) with
the discrete mass values (39) are necessarily given via the
redefinition (37) by the profiles

ℋ ¼
�
z − z̄
2i

�
nþ1

uðn; nÞ

¼

8>>><
>>>:

2i

�
z − z̄
2i

�
nþ1 ∂2ðn−1Þ

∂zn−1∂z̄n−1
�
ςþ ς̄

z − z̄

�
; n > 0;

2i

�
z − z̄
2i

�
2−n ∂−2n

∂z−n∂z̄−n
�
ςþ ς̄

z − z̄

�
; n ≤ 0;

ð41Þ
where ς ¼ ςðu; zÞ is a complex function that depends
arbitrarily on its arguments, but it is holomorphic in the
complex wavefront coordinate. Notice that we have made
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appropriate choices for the coefficients in order to have a
manifestly real profile. For more general values of the mass
we need a different approach, as explained below.

2. Generic mass value: m̂2 > m2
BF

Let us consider now a generic value for the mass in
Eq. (37b). This requires to integrate the Euler-Poisson-
Darboux equation (38) for a generic value of its parameter.
The involved solution can be written from the general
solutions (C11) to the Euler-Darboux equations we review
in Appendix C. Such a solution is built as a superposition of
two linearly independent particular solutions which are
valid when their parameters take generic values such that
αþ β ≠ 1. For massive configurations, αþ β ¼ 2ðρ − 1Þ
and the integral representation (C11) applies for ρ ≠ 3=2,
i.e., the Breitenlohner-Freedman bound (28d) cannot be
saturated in Eq. (37b). Therefore, any exact massive mode
above this bound, m̂2 > m2

BF, is given by

ℋðu; z; z̄Þ ¼
�
z − z̄
2i

�
ρ

ugðρ − 1; ρ − 1Þ

¼
�
z − z̄
2i

�
3−ρ Z 1

0

φðu; zþ ðz̄ − zÞtÞ

× t1−ρð1 − tÞ1−ρdt

þ
�
z − z̄
2i

�
ρ
Z

1

0

ψðu; zþ ðz̄ − zÞtÞ

× tρ−2ð1 − tÞρ−2dt; ð42Þ

where φ and ψ are two arbitrary real functions and ρ is
given by Eq. (37b). We remark that the above expression is
real. The only effect of taking the complex conjugate ℋ̄
is that the complex argument of the arbitrary functions
changes by

zþ ðz̄ − zÞt ¼ zþ ðz̄ − zÞð1 − tÞ;

i.e., the interpolation parameter is reversed from t to 1 − t.
Using 1 − t as the new integration parameter and the fact
that the rest of each integral is invariant under this
reversing, the integral representation (42) remains intact
and it is concluded that

ℋ ¼ ℋ:

As the last word, a corroboration of the fact that the
solution (42) is not the most general one when the
Breitenlohner-Freedman bound ρ ¼ 3=2 (m̂2 ¼ m2

BF) is
approached resides in the fact that in such a limit we
end up with a solution that possesses a single arbitrary
function, φ̃ ¼ φþ ψ , instead of two as it should be for a
second-order equation. In the following we explain how to
appropriately saturate this celebrated bound.

3. Saturating the Breitenlohner-Freedman bound

For αþ β ¼ 2ðρ − 1Þ ¼ 1 the two solutions from which
the superposition (42) is built are no longer linearly
independent; see Appendix C. This occurs for ρ ¼ 3=2
or from Eq. (37b) when the Breitenlohner-Freedman bound
is saturated

m̂2 ¼ m2
BF ¼ −

9

4l2
: ð43Þ

However, intriguingly, the saturated solution can be
obtained from the generic one through a nontrivial limit
exhibited in general for Euler-Darboux equations in
Appendix C. We start with the observation that the generic
solution (42) can be rewritten as

ℋ ¼
�
z − z̄
2i

�
3−ρ Z 1

0

dtt1−ρð1 − tÞ1−ρ
�
φ̃ðzþ ðz̄ − zÞtÞ

þ ψ̃ðzþ ðz̄ − zÞtÞ ½
1
2i ðz − z̄Þtð1 − tÞ�2ρ−3 − 1

2ρ − 3

�
; ð44Þ

where the arbitrary functions are properly redefined (see
Appendix C). This expression is more appropriate for
exploring the saturation of the bound without losing
generality. In fact, the most general solution for the
Breitenlohner-Freedman mass (43) is just obtained by
taking the limit m̂2 → m2

BF in the previous expression

ℋBF ¼ lim
m̂2→m2

BF

ℋ

¼ lim
ρ→3=2

�
z − z̄
2i

�
ρ

ugðρ − 1; ρ − 1Þ

¼
�
z − z̄
2i

�
3=2

Z
1

0

dtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tð1 − tÞp

�
φ̃ðzþ ðz̄ − zÞtÞ

þ ψ̃ðzþ ðz̄ − zÞtÞ ln
�
z − z̄
2i

tð1 − tÞ
��

: ð45Þ

This kind of logarithmic behavior emerges when massive
configurations approach the Breitenlohner-Freedman
bound and is a characteristic of many massive theories
[16–20].

VII. MATTER COUPLING FOR AdS WAVES

Awidely discussed topic in bigravity is howmatter should
be couple to the gravities. Since there is no experimental
feedback, there are many possibilities that seem (at least
theoretically) consistent. One proposal to democratically
couple matter without reintroducing the Boulware-Deser
ghost is through the construction of an effective metric [44]

gEμν ¼ α2gμν þ 2αβgμλγλν þ β2fμν: ð46Þ

A remarkable feature of such a metric is that it is symmetric
under the simultaneous exchange of the metrics g ↔ f and
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couplings α ↔ β for the usual case of interest where the
vierbein andmetric formalismcoincide.Hence, the resulting
matter coupling will be symmetric with respect to both
metrics as it is, in fact, the vacuum bigravity (2) itself. The
full theory is then described by the action

S½g;f;Matter�¼Sbi½g;f�þ
Z

d4x
ffiffiffiffiffiffiffiffi
−gE

p
LMðgEμν;…Þ; ð47Þ

where the first contribution stands for the bigravity action (2)
and LM is the matter Lagrangian built with the effective
metric (46).
The Einstein field equations now must include the

contribution of the matter sources

Gμ
ν −

m2κg
κ

Vμ
ν ¼ κgT

μ
ν ; Gμ

ν −
m2κf
κ

Vμ
ν ¼ κfT

μ
ν ; ð48Þ

where the energy-momentum tensors are defined by

Tμν ≡ −2ffiffiffiffiffiffi−gp δð
ffiffiffiffiffiffiffiffi
−gE

p
LMÞ

δgμν
¼

ffiffiffiffiffiffiffiffi
−gE

p
ffiffiffiffiffiffi−gp TE

ρσ
δgρσE
δgμν

;

T μν ≡ −2ffiffiffiffiffiffi
−f

p δð
ffiffiffiffiffiffiffiffi
−gE

p
LMÞ

δfμν
¼

ffiffiffiffiffiffiffiffi
−gE

p
ffiffiffiffiffiffi
−f

p TE
ρσ
δgρσE
δfμν

: ð49Þ

In the second equalities we apply the chain rule to rewrite
these tensors in terms of the standard energy-momentum
tensor with respect to the effective metric, TE

μν, which can
be calculated as usual. However, the variation of the
effective metric requires knowledge of the variation of
the square-root γ matrix, which has a cumbersome structure
[45]. Some efforts to avoid such variation were made in
Ref. [46] by contracting the Einstein equations (48) with
the inverse of an appropriate Jacobian. Notably, this is
another difficulty that can be circumvented using the
linearizing properties of generalized Kerr-Schild transfor-
mations, which turn the computation of such variation into
a very easy task. Due to the form of the γ matrix (14) for the
generalized Kerr-Schild transformations (13), the effective
metric (46) is reduced to the form

gEμν ¼ ðαþ βCÞ
�
αgμν þ

β

C
fμν

�
; ð50Þ

whose inverse is

gμνE ¼ 1

ðαþ βCÞ3 ðαg
μν þ βC3fμνÞ: ð51Þ

This gives straightforwardly

δgρσE
δgμν

¼ α

ðαþ βCÞ3 δ
ρ
ðμδ

σ
νÞ;

δgρσE
δfμν

¼ βC3

ðαþ βCÞ3 δ
ρ
ðμδ

σ
νÞ;

ð52Þ

and, consequently, the energy-momentum tensors contrib-
uting to each set of Einstein equations only differ from the
canonical one (calculated from the effective metric) by
constant factors

1

α
Tμν ¼

C
β
T μν ¼ ðαþ βCÞTE

μν: ð53Þ

Another important consequence of the Kerr-Schild
ansatz for the present context is that, after fixing the
effective cosmological constants as in the vacuum (18),
the left-hand sides of both Einstein equations (48) only
have contributions along the null ray kμ; see Eqs. (16)
and (17). This forces any matter supporting the AdS waves
to behave as pure radiation (a null pressureless fluid). The
consequences of the resulting pure radiation constraints
have been explored in standard gravity for scalar fields in
Refs. [18,47].
Regarding the equations of motion for the matter fields,

since they come from matter variation of the action (47),
they necessarily have the standard form but are written in
terms of the effective metric. We shall now consider two
concrete examples of matter fields coupled to AdS waves in
order to test the previous considerations. We start with a
massless free scalar field, and follow with the study of the
Maxwell field.

A. Effective coupling to scalar fields

Let us first consider the effective coupling to a massless
free scalar field—the simplest matter one can think of.
The Lagrangian only consists in the kinetic term, but
constructed with the effective metric

LM ¼ −
1

2
gμνE ∂μϕ∂μϕ: ð54Þ

This gives the standard energy-momentum tensor

TE
μν ¼ ∂μϕ∂νϕ −

1

2
gEμνg

ρσ
E ∂ρϕ∂σϕ; ð55Þ

together with the wave equation associated to the effective
metric, which rules the scalar field dynamics

□
Eϕ ¼ 0: ð56Þ

The scalar field is easily integrated from the emerging
pure radiation constraints, i.e., the vanishing of all of the
components of the energy-momentum tensor except the
one along the null ray, as is imposed by the Einstein
equations [18,47]. Considering the combination

0 ¼ 2TE
uv þ

�
1 −

αF1 þ βCF2

αþ βC

�
TE
vv

¼ ð∂vϕÞ2 þ ð∂xϕÞ2 þ ð∂yϕÞ2; ð57Þ
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the result is that the scalar field is an arbitrary function of
the retarded time

ϕ ¼ ϕðuÞ; ð58Þ
which automatically satisfies the wave equation (56). This
result is exactly the same even if one attempts to promote
the scalar field to be self-interacting by adding a potential to
the Lagrangian (54). The outcome is that no potential is
compatible with supporting an AdS wave unless a non-
minimal coupling to the involved metric is also incorpo-
rated [18,47]. Hence, considering only minimal coupling to
the effective metric, the more general situation is just that of
a massless free scalar field.
So far, we are left only with a contribution along the null

ray in both Einstein equations which gives rise to two
inhomogeneous differential equations for the profiles F1

and F2, which can be decoupled as in the vacuum

y2ΔSℱ ¼ 2κgκfðαþ βCÞ2
κ

_ϕ2y2; ð59aÞ

y2ΔSℋ− l2m̂2ℋ¼2ðβκf−αCκgÞðαþβCÞ
C

_ϕ2y2: ð59bÞ

Because we are dealing with an inhomogeneous linear
system, its most general solution is built by superposing the
general solution to the homogeneous (vacuum) version of
the equations with any particular solution of the inhomo-
geneous ones (with sources)

ℱ ¼ ℱh þℱi; ℋ ¼ ℋh þℋi: ð60Þ

The homogeneous version corresponds to the vacuum
system (22), whose general solution was studied in detail
in the last section and is given by the Siklos solution (33)
for the massless case ℱh and by the integral representation
(42) for the massive one ℋh. In order to incorporate the
inhomogeneous contributions, due to the simple form of the
scalar inhomogeneities in Eqs. (59) it is enough to look for
particular solutions which are independent of the x coor-
dinate; then, the above equations become inhomogeneous
ordinary Euler equations for the y coordinate. The solutions
are easily found and they are proportional to the power
exhibited at the inhomogeneity, except when that power
resonates with one of the vacuum power-law modes (28).5

The result is

ℱi ¼ −
κgκfðαþ βCÞ2

κ
_ϕ2y2; ð61aÞ

ℋi ¼

8>>><
>>>:

−
2ðβκf − αCκgÞðαþ βCÞ

Cðm̂2l2 þ 2Þ
_ϕ2y2; m̂2 ≠ m2

sr;

2ðβκf − αCκgÞðαþ βCÞ
C

_ϕ2y2 ln
y
l
; m̂2 ¼ m2

sr;

ð61bÞ
where the scalar source inhomogeneity enters in resonance
with the vacuum modes when the mass becomes

m2
sr ≡ −

2

l2
: ð61cÞ

What happens in this case is that the scalar source power
equals one of the vacuum values (28c), which becomes
ρþ ¼ 2. We stress that although the resulting scalar resonant
mass is negative, it describes physically admissible con-
figurations above the Breitenlohner-Freedman bound

m2
sr ¼ m2

BF þ
1

4l2
:

With respect to the inhomogeneous contributions (61),
nothing special occurs for the rest of the masses, even for
the Breitenlohner-Freedman bound. In fact, the logarithmic
behavior at m̂2 ¼ m2

sr of the solution (61b) has a resonant
origin and is different from the one appearing at the vacuum
for the multiplicity that occurs when the Breitenlohner-
Freedman bound is saturated.
Superposing these inhomogeneous contributions with

those already studied for the vacuum according to Eq. (60),
we obtain the most general form in which a scalar field can
support bigravity AdS waves. In what follows we study the
related, more complex problem for a Maxwell field.

B. Effective coupling to Maxwell fields

The following is another natural scenario in which bigrav-
ity could interact with matter. We are interested now in
how electromagnetic radiation fields bend the AdS waves.
For this purpose, consider the Maxwell Lagrangian

LM ¼ −
1

16π
gμρE gνσE FμνFρσ; ð62Þ

constructed with the effective metric, where the electromag-
netic strength is given as usual in terms of the vector potential,
Fμν ¼ 2∂ ½μAν�. The standard electromagnetic energy-
momentum tensor resulting from varying with respect to
the effective metric is

4πTE
μν ¼ gρσE FμρFνσ −

1

4
gEμνg

γρ
E gδσE FγδFρσ: ð63Þ

The Maxwell equations in terms of the effective metric are
now obtained taking thevariation through thevector potential

5We emphasize this is a genuine resonance phenomenon.
Notice we can change to a different coordinate y ¼ l expðt=lÞ
for which the ordinary Euler equations become linear equations
with constant coefficients, where the resonance phenomenon is
normally defined. There, the power-law solutions become ex-
ponentials and the power exponents become mass-dependent
frequencies. The resonance is associated to the precise values of
the parameters specifying the system and is independent of the
variables chosen to describe it.
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∇μ
EðgνσE FμνÞ ¼ 0: ð64Þ

After a nontrivial gauge-fixing procedure described in
Appendix B, it is shown that the most general Maxwell
potential Aμ supporting AdS waves, i.e., that is compatible
with the pure radiations constraints, is proportional to the
null rays kμ

A ¼ Auðu; y; xÞdu: ð65Þ

The Maxwell equations (64) reduce to the harmonic
equation

ΔLAu ¼ 0; ð66Þ

whose general solution is the real part of a general
holomorphic function of the complex wavefront coordinate
z ¼ xþ iy

Auðu; y; xÞ ¼ ∂zaðu; zÞ þ ∂zaðu; zÞ; ð67Þ

where, for later convenience, we choose to write the
holomorphic function as the derivative of another holo-
morphic function aðu; zÞ. The only nonvanishing compo-
nents of the Faraday strength tensor are

Fux ¼ −2Reð∂2
zaÞ; Fuy ¼ 2Imð∂2

zaÞ; ð68Þ

and the effective energy-momentum tensor (63) acquires
the form of a pure radiation field [see Eq. (B3)]

4πTE
μν ¼

y4

l4
4j∂2

zaj2
ðαþ βCÞ2 kμkν

¼ y4

l4
ΔLΔLðaāÞ
4ðαþ βCÞ2 kμkν; ð69Þ

which contributes to the equations for the AdS-wave
profiles in the form of inhomogeneities coming from the
Maxwell field. The resulting equations can be decoupled
using the same combinations (21), just as in the vacuum
case. Thus, we get the inhomogeneous second-order system

ΔSℱ ¼ κgκf
8πκl2

y2ΔLΔLðaāÞ; ð70aÞ

ΔSℋ −
l2m̂2

y2
ℋ ¼ ðβκf − αCκgÞ

8πl2Cðαþ βCÞ y
2ΔLΔLðaāÞ: ð70bÞ

The general solution is again represented by the super-
position (60) with the same homogeneous contributionsℱh

and ℋh given by the vacuum configurations (33) and (42),
respectively. The inhomogeneous contributions ℱi and ℋi

are due now to the more complex Maxwell source, and
understanding their behavior in the more general setting
requires a different treatment.

An interesting point to be noticed is that for both studied
sources, if the gravitational constants are tuned by the
condition

αCκg − βκf ¼ 0; ð71Þ

the massive profileℋ becomes decoupled from the sources
and behaves exactly as the vacuum configurations studied
in Sec. VI.
In order to fully understand the Maxwell contributions

to bigravity AdS waves, we shall proceed by gradually
increasing the degree of difficulty. We start by analyzing
the massless sector, m̂2 ¼ 0, which resembles that of
General Relativity with a Maxwell source originally
studied by Siklos in Ref. [23].

1. Massless sector

The inhomogeneous Siklos solution for the Maxwell
source can be straightforwardly read from the following
fourth-order identity relating the Siklos and Laplacian
operators for any function f given in Ref. [23]

ΔSðy3ΔLfÞ ¼ y2ΔLΔLðyfÞ: ð72Þ

Applying the identity to the massless sector (m̂2 ¼ 0) of the
system (70), we obtain that the inhomogeneous contribu-
tions are given by

ℱi ¼ κgκf
8πκl2

y3ΔL

�
aā
y

�
; ð73aÞ

ℋi ¼ ðβκf − αCκgÞ
8πl2Cðαþ βCÞ y

3ΔL

�
aā
y

�
; m̂2 ¼ 0: ð73bÞ

Since the profile ℱ describes a massless mode, their
inhomogeneous contribution (73a) remains the same even
for more general values of the mass. Hence, the most
general massless configuration supported by electromag-
netism is given by the superposition profile (60) together
with the Faraday strength following from the vector
potential (65), which here take the explicit forms [23]

ℱ ¼ y2∂y

�
ωþ ω̄

y

�
þ κgκf
8πκl2

y3ΔL

�
aā
y

�
; ð74aÞ

F ¼ 2Reð∂2
zadzÞ ∧ du: ð74bÞ

We know that the massless profiles are determined
modulo residual symmetries according to the transforma-
tion (23). This imposes that pairs of holomorphic
functions—determining the vacuum and electromagnetic
contributions—that are related under the transformation
(12) as
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ω̃ ¼ ðλfÞ2
�
ω −

κgκf
4πκl2

ðC̄1zþ C̄0Þa

þ
�
κf þ C2κg

2
B2 þ

κgκf
8πκl2

jC1j2
�
z2

þ
�
κf þ C2κg

2
B1 þ

κgκf
8πκl2

ðC0C̄1 þ C̄0C1Þ
�
z

þ κf þ C2κg
2

B0 þ
κgκf
8πκl2

jC0j2
�
; ð75aÞ

ã ¼ λfða − C1z − C0Þ ð75bÞ
all represent the same configuration. Here, C0 ¼ C0ðuÞ and
C1 ¼ C1ðuÞ are additional arbitrary complex functions of
the retarded time which parametrize the indetermination of
the gauge field and which naturally induce a generalization
of the residual symmetry already known for the vacuum
(35). This transformation was unveiled by Siklos in
Ref. [23], without incorporating the diffeomorphic part.
As he emphasized, it is difficult to obtain due to the
quadratic contribution of the electromagnetic holomorphic
dependence in the massless geometric profile (74a). This
exhausts the understanding of the massless excitations in
the presence of Maxwell sources.
The situation is different for the profileℋwhich ismassive

in nature; the inhomogeneous contribution (73b) represents
only a particular case and the general solution for generic
values of the mass with Maxwell sources is a more difficult
problem. There is no obvious generalization of the identity
(72) which would eventually allow to also derive a local
expression for the massive solution. However, the inhomo-
geneous solutions of any linear partial differential equation
generically allows an integral representation. Due to the
connection of the Siklos operator with the Euler-Darboux
ones, we exploit this fact in subsection VII B 3 to use a
complexified version of the Riemann method for hyperbolic
equations, which we briefly review in Appendix D. But first,
we attack the particular case of a Maxwell field whose
strength is homogeneous in thewavefront coordinates, which
ends up possessing an extra symmetry; in this way, the
solution allows a local representation.

2. Massive sector: Wavefront-homogeneous
Maxwell source

Now we consider a particular example inspired by the
fact that the separable vacuum solutions studied in
subsection V B, modulo the use of residual symmetries,
are AdS waves allowing as an additional Killing vector the
spatial translations ∂x. Hence, we assume now that the
Maxwell field is compatible with such symmetry and con-
sequently ∂xFux¼0¼∂xFuy. Taking into account the gen-
eral form of the Faraday strength (68), these conditions imply

∂3
za ¼ 0 ⇒ aðu; zÞ ¼ 1

2
D2z2 þD1zþD0; ð76Þ

where D0 ¼ D0ðuÞ, D1 ¼ D1ðuÞ and D2 ¼ D2ðuÞ are
arbitrary complex functions of the retarded time.
Additionally, D0 and D1 can be eliminated by using the
residual transformation (75). The resulting strength (74b) is in
general homogeneous in all of the wavefront coordinates.
Keeping in mind that the full electromagnetic contribution to
the inhomogeneity of the equations is now independent of the
wavefront coordinate x, it is enough to consider particular
solutions constructed in the same way, i.e., ℱi ¼ ℱiðu; yÞ
andℋi ¼ ℋiðu; yÞ.With this, the system (70)becomes a pair
of ordinary Euler equations

ðy2∂2
y − 2y∂yÞℱ ¼ 2κgκf

πκl2
jD2j2y4; ð77aÞ

ðy2∂2
y−2y∂y− l2m̂2Þℋ¼2ðβκf−αCκgÞ

πl2CðαþβCÞ jD2j2y4: ð77bÞ

Consequently, for a Maxwell field homogeneous in the
wavefront coordinates

F ¼ 2½ReðD2Þdx − ImðD2Þdy� ∧ du; ð78aÞ
the inhomogeneous contributions in the decoupledAdS-wave
profiles are given by

ℱi ¼ κgκf
2πκl2

jD2j2y4; ð78bÞ

ℋi ¼

8>>><
>>>:

−
2ðβκf − αCκgÞjD2j2

πl2Cðαþ βCÞðl2m̂2 − 4Þ y
4; m̂2 ≠ m2

er;

2ðβκf − αCκgÞjD2j2
5πl2Cðαþ βCÞ y4 ln

y
l
; m̂2 ¼ m2

er;

ð78cÞ
where once again the inhomogeneity due to the electromag-
netic source enters in resonance with one of the vacuum
power-law modes (28) when the mass takes the value

m2
er ≡ 4

l2
: ð78dÞ

The electromagnetic resonance is produced because the
power-law dictated by the electromagnetic source equals
the vacuum power ρþ in Eq. (28c), which takes the value 4 at
the above mass. The full solution is obtained by superposing
these inhomogeneous contributions with the vacuum ones
following Eq. (60), which describes all AdS waves of
bigravity supported by electromagnetic fields homogeneous
in thewavefront coordinates. Themost general solutionswith
no additional restrictions on the Maxwell sources are
addressed in the next subsection.

3. Massive sector: General Maxwell source

As has been pointed throughout the paper, the Siklos
operator and its massive generalization can be expressed
as Euler-Poisson-Darboux operators using as independent
variables the complex wavefront coordinate z ¼ xþ iy and
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its complex conjugate z̄, together with the redefinition (37)
for the massive profile. This allows to describe the behavior
of massive excitations in the presence of general Maxwell
sources (70b) by means of an inhomogeneous Euler-
Poisson-Darboux equation

Eρ−1;ρ−1ðhÞ ¼
ðβκf − αCκgÞ

32πl2Cðαþ βCÞ
�
z − z̄
2i

�
2−ρ

ΔLΔLðaāÞ:

ð79Þ

The particular solutions of all inhomogeneous Euler-
Darboux equations (C20) can be obtained using the
Riemann method reviewed in Appendix D. This allows
to express the particular inhomogeneous solution to mas-
sive excitations sourced by general Maxwell fields accord-
ing to Eqs. (37), (D6c), and (D9) as

ℋi ¼
�
z − z̄
2i

�
ρ

uiðρ − 1; ρ − 1Þ

¼
�
z − z̄
2i

�
ρ
Z Z

Ω
dξ0dη0fðu; ξ0; η0ÞRðξ0; η0; z; z̄Þ

¼ ðβκf − αCκgÞ
32πl2Cðαþ βCÞ

�
z − z̄
2i

�
ρ

×
1

2

�Z
z

−z̄
dξ0

Z
z̄

−ξ0
dη0 þ

Z
z̄

−z
dη0

Z
z

−η0
dξ0

�
Δ0

LΔ0
LðaāÞ

×

�
ξ0 − η0

2i

�
ρ
�

2i
z − η0

�
ρ−1

�
2i

ξ0 − z̄

�
ρ−1

× 2F1

�
ρ − 1; ρ − 1; 1;−

ðz − ξ0Þðz̄ − η0Þ
ðz − η0Þðξ0 − z̄Þ

�
; ð80Þ

where 2F1 describes the standard hypergeometric
function.
We have used the double triangular integral representa-

tion (D10) with a negative-inclined hypotenuse together
with the election (D12) for the solution, but the double
representation with a positive-inclined hypotenuse (D13) is
equally adequate. This is where these double representa-
tions become relevant; despite its complexity, they signifi-
cantly ease the construction of a real elliptic solution from
the hyperbolic one. In order to elucidate this far from
obvious fact, we emphasize first the following points: the
nontrivial dependence of the exact massive excitation in
the complex wavefront coordinates emerges by evaluating
the solution to the standard hyperbolic inhomogeneous
Euler-Darboux equation, as defined by the double triangu-
lar integral (D10), in the following way

ℋiðu; z; z̄Þ ∝ uiðu; ξ; ηÞjξ¼z;η¼z̄: ð81Þ

The inhomogeneity in Eq. (79) is a real function of the
originally real wavefront coordinates, which means that
when it is written in terms of the dummy variables inside
the integral (80) obeys

fðu; ξ0; η0Þ ¼ f

�
u;
ξ0 þ η0

2
;
ξ0 − η0

2i

�

¼ f

�
u;
η0 þ ξ0

2
;
η0 − ξ0

2i

�
¼ fðu; η0; ξ0Þ: ð82Þ

Finally, the Riemann-Green function corresponding to the
Euler-Darboux equation (D9) is real for real arguments
and additionally symmetrical under the simultaneous inter-
change of each pairs of variables, i.e.

Rðη0; ξ0; η; ξÞ ¼ Rðξ0; η0; ξ; ηÞ: ð83Þ
We are now in a position to prove the reality of the solution
(80); taking its complex conjugate, we obtain

ℋi ¼
�
z − z̄
2i

�
ρ

uiðu; ξ; ηÞjξ¼z̄;η¼z

¼
�
z − z̄
2i

�
ρ 1

2

�Z
z̄

−z
dξ0

Z
z

−ξ0
dη0 þ

Z
z

−z̄
dη0

Z
z̄

−η0
dξ0

�
fðu; ξ0; η0ÞRðξ0; η0; z̄; zÞ

¼
�
z − z̄
2i

�
ρ 1

2

�Z
z̄

−z
dη00

Z
z

−η00
dξ00 þ

Z
z

−z̄
dξ00

Z
z̄

−ξ00
dη00

�
fðu; ξ00; η00ÞRðξ00; η00; z; z̄Þ

¼
�
z − z̄
2i

�
ρ

uiðu; ξ; ηÞjξ¼z;η¼z̄

¼ ℋi; ð84Þ
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where the first and second equalities are self-explanatory,
while in the third one we use the interchanging properties
(82) and (83) and later we reparametrize the dummy
variables by ðξ0; η0Þ ↦ ðξ00 ¼ η0; η00 ¼ ξ0Þ. In terms of the
new variables both integrals are interchanged, which
justifies the fourth equality. This proof also works follow-
ing the same steps if one uses the integral representation for
a triangle with a positive-inclined hypotenuse (D13).
Another unavoidable exercise is to reconsider from the

present perspective the massless scenario m̂2 ¼ 0 (ρ ¼ 0).

This implies analyzing the relation between the
integral representation for the corresponding particular
inhomogeneous solution obtained from the Riemann
method and the local one already exhibited in
Eq. (73b) that was originally provided by Siklos [23].
In fact, for ρ ¼ 0 the integral expression (80) allows a
double integration by parts. We find it more easy to do
the calculation using the analog triangular integral rep-
resentation with a positive-inclined hypotenuse (D13),
which gives

ℋi
R ¼ −

ðβκf − αCκgÞ
32πl2Cðαþ βCÞ

1

2

�Z
z̄

z
dξ0

Z
z̄

ξ0
dη0 þ

Z
z̄

z
dη0

Z
η0

z
dξ0

�
× Δ0

LΔ0
LðaāÞ

ðξ0 þ η0Þðzþ z̄Þ − 2ðξ0η0 þ zz̄Þ
ð2iÞ2

¼ ðβκf − αCκgÞ
8πl2Cðαþ βCÞRe

�Z
z̄

z
dξ0

Z
z̄

ξ0
dη0∂2

η0ξ0Gðξ0; η0; z; z̄Þ
�

¼ ðβκf − αCκgÞ
8πl2Cðαþ βCÞ

�
−Gðz; z̄; z; z̄Þ þ Re

�
Gðz̄; z̄; z; z̄Þ −

Z
z̄

z
dξ0½∂ξ0Gðξ0; η0; z; z̄Þ�jη0¼ξ0

��

¼ ℋi
S þℋh; ð85aÞ

where in the second equality we used the previously proven
fact that the second integral is the complex conjugate of the
first. Additionally, the integrand can be expressed as the
mixed derivative of the following function

Gðξ0; η0; z; z̄Þ≡ f½ðξ0 þ η0Þðzþ z̄Þ − 2ðξ0η0 þ zz̄Þ�∂2
ξ0η0

− ðzþ z̄ − 2ξ0Þ∂ξ0 − ðzþ z̄ − 2η0Þ∂η0

− 2gaðξ0Þāðη0Þ; ð85bÞ

whose proper evaluation gives the Siklos inhomogeneous
local solution as the first contribution of the third equality

ℋi
S ¼ −

ðβκf − αCκgÞ
8πl2Cðαþ βCÞGðz; z̄; z; z̄Þ

¼ ðβκf − αCκgÞ
8πl2Cðαþ βCÞ

�
z − z̄
2i

�
3

ΔL

�
2iaā
z − z̄

�
: ð85cÞ

The remaining contribution defined asℋh is just a solution
to the homogeneous equation, which finally proves the
compatibility between the Riemann and Siklos particular
inhomogeneous solutions in the massless scenario. Even
though the result is more easy to obtain with the above
representation, it is equally valid if the integration is
performed over the triangle with a negative slope.

C. Effective coupling to any matter source

The Riemann method works so efficiently and in such
a general fashion, that one can go even one step further.

Similar to the previously described AdS waves supported
by a Maxwell field, one can work in a more general setting
where the spacetime ripples of bigravity are caused by any
kind of matter. The first step is to consistently solve the
related pure radiation constraints, which by the proportion-
alities (53) are all expressed in terms of the energy-
momentum tensor associated to the effective metric.
Using Bianchi identities, this also entails solving the related
field equations that are naturally built on the effective
background. If a nontrivial answer emerges from this
process, it only remains to evaluate the surviving contri-
bution to the energy-momentum tensors along the retarded
time and write the single Einstein equation of each set.
Considering as before the decomposition (37), the dynam-
ics of the decoupled exact excitations are rigged now by the
pair of inhomogeneous Euler-Poisson-Darboux equations

E−1;−1ðℱÞ ¼ κgκfðαþ βCÞ2
2κ

TE
uu; ð86aÞ

Eρ−1;ρ−1ðhÞ ¼
ðαþ βCÞðβκf − αCκgÞ

2C

�
z − z̄
2i

�
−ρ
TE
uu:

ð86bÞ

Thereby, in this more generic instance, they would be given
by the following expressions
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ℱi ¼ κgκfðαþ βCÞ2
2κ

1

2

�Z
z

−z̄
dξ0

Z
z̄

−ξ0
dη0 þ

Z
z̄

−z
dη0

Z
z

−η0
dξ0

�
× TE

uu
0 ðξ0 þ η0Þðzþ z̄Þ − 2ðξ0η0 þ zz̄Þ

ðξ0 − η0Þ2 ; ð87aÞ

ℋi ¼ ðαþ βCÞðβκf − αCκgÞ
2C

�
z − z̄
2i

�
ρ

×
1

2

�Z
z

−z̄
dξ0

Z
z̄

−ξ0
dη0 þ

Z
z̄

−z
dη0

Z
z

−η0
dξ0

�
TE
uu

0

×

�
ξ0 − η0

2i

�
ρ−2

�
2i

z − η0

�
ρ−1

�
2i

ξ0 − z̄

�
ρ−1

2F1

�
ρ − 1; ρ − 1; 1;−

ðz − ξ0Þðz̄ − η0Þ
ðz − η0Þðξ0 − z̄Þ

�
: ð87bÞ

This completes the exhaustive scan of the AdS-wave configurations in bigravity.

VIII. CONCLUSIONS

In the preceding work we have tackled the problem of
searching for exact gravitational waves in the context of the
ghost-free bimetric theory. Due to the inherent presence of
cosmological constants in this theory, we focused on the
Kundt class that is compatible with them, and in particular
on the single example where the involved nonexpanding
null ray becomes a Killing symmetry: the AdS waves.
These configurations are additionally characterized by
admitting a Kerr-Schild representation. From previous
results [24], we are aware that this is an exceptional
simplifying tool in the Hassan-Rosen theory not only for
exactly linearizing the Einstein equations as in General
Relativity, but also for the usually involved task of
computing the interaction between the metrics. The mas-
sive nature of bigravity manifests itself in a very clear way,
since the resulting wave equations for the profiles are
explicitly coupled by the mass term. Even though they can
be decoupled through redefinitions, one of the new profiles
is inherently massive. We learned how the physical d.o.f.—
compatible with the symmetries of the problem—are
carried by the waves by looking for configurations that
are sum separable with respect to the coordinates defining
the wavefront. In this respect, another consequence of the
presence of two metrics comes into play even before
turning on the mass. It is well known that spaces belonging
to the Kundt class possess residual symmetries [27],
meaning that some of the metric potentials can be gauged
away with appropriate transformations. In bigravity, we can
only perform such transformations on one of the metrics,
implying that the d.o.f. that would be wiped out in standard
gravity remain present here, and actually propagate physi-
cal modes of the theory.
Regarding the AdS-wave solutions, we can distinguish

two cases in every setting we studied. The massive profile
depends on an effective mass that can be turned off even if
the flat-space Fierz-Pauli mass remains finite. This is
achieved by introducing a fine-tuning between the cou-
plings, which produces two copies of exact massless
profiles. The general solution to this branch in General
Relativity was already reported by Siklos [23], whereas

here we explored the consequences of its observation in the
sense that the equation ruling the behavior of the wave
profiles (now known as the Siklos equation) turns out to be
a particular complexified case of the Euler-Darboux equa-
tions. This proves to be useful to understand the more
complex scenarios described below. The more general
situation involving no fine-tuning corresponds again to a
massless profile, but it also includes a massive one. The
massive behavior is described by an extension of the
previous Euler-Darboux operators. One of the properties
of the extended Euler-Darboux equations consists in the
possibility of eliminating nonderivative contributions
through a redefinition, returning to the standard Euler-
Darboux equation. As consequence, the massive part can be
removed at the cost of generalizing the parameters of the
kinetic contributions. Once again, this allowed us to
provide the most general solution to the problem: a closed
local form where the Euler-Darboux parameters are inte-
gers, which is valid for a discrete family of mass values, and
an integral representation (originally due to Poisson) for
general mass values.
Since the wave profiles obey the (massive) wave equa-

tion over the AdS spacetime, the well-known criterion
of stability on AdSD of respecting the Breitenlohner-
Freedman bound m̂2 ≥ −ðD − 1Þ2=4l2 appears repeatedly
in the massive sector of the problem. With this in mind,
it is interesting to inspect the separable solutions. For
m̂2 ≠ −9=4l2, we have profile solutions in powers of the
conformal AdS coordinate y, which include the standard
Kaigorodov massless contribution [42] that cubically
decays to infinity (located at y ¼ 0 in the AdS background
in which the modes are propagated) plus two other massive
modes. For −9=4l2 < m̂2 < 0, the massless Kaigorodov
contribution becomes subleading at infinity with respect to
the decay of both massive contributions. However, for
m̂2 ≥ 0 the leading massive contribution no longer decays
at infinity. In contrast, the other massive term decays and
becomes subleading even with respect to the massless
Kaigorodov one. Curiously enough, for the precise value
m̂2 ¼ −9=4l2 (corresponding to the critical mass of the
Breitenlohner-Freedman bound) there is a degeneracy in
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the massive solutions, leading to logarithmic AdS waves—
a situation also observed in 2þ 1 massive gravities at
critical points where they are supposed to be dual to
logarithmic conformal field theories [16–20]. This situation
was replicated in the most general solution for which the
integral representation of the exact massive excitation also
acquires a logarithmic dependence when the Breitenlohner-
Freedman bound is saturated.
The natural step to follow was considering the wave

dynamics in the presence of matter; however, this question
should be carefully examined in bigravity. The problem of
matter couplings has been widely discussed and the
proposed alternatives should always be concerned with
not awaking again the undesired d.o.f. In this work we
tested the approach of introducing an effective metric—a
composite of the two original ones—constructed in such a
way that the whole theory is symmetric when replacing one
original metric by the other up to coupling redefinitions. In
general, calculating the two involved energy-momentum
tensors through this effective metric is not an easy task, but
we found that even in this regard the Kerr-Schild ansatz
provides another significant simplification. By definition,
the effective metric contains a mixing term that is the
product of one of the metrics with the coupling square
root matrix; this term is the origin of the difficulties
when performing metric variations to deduce the energy-
momentum tensors. Interestingly enough, under the adop-
tion of Kerr-Schild forms this interacting term is linearized
and the effective metric results in a linear superposition of
both metrics. This leaves a straightforward calculation in
the variational problem and both energy-momentum ten-
sors become proportional to the standard one written in
terms of the effective metric.
After unraveling how to calculate the energy-momentum

tensors, another relevant well-known issue when AdS
waves are supported by matter sources is that their Kerr-
Schild structure is also replicated at the level of the Einstein
equations. In fact, their geometric left-hand side has only a
contribution along the ansatz null ray, which forces the
involved matter to behave effectively as pure radiation, i.e.,
a null dust. This entails solving the resulting pure radiation
constraints for the given source, and only when the result
is nontrivial can the AdS waves be supported by this kind
of matter [18,47]. The first source analyzed was a free
massless scalar field. This situation is the simplest one,
since the outcome of solving the pure radiation constraints
is that the most general scalar field supporting an AdS wave
is just an arbitrary function of the retarded time. The
resulting inhomogeneity added to the Siklos equation is a
simple quadratic dependence on the wavefront coordinate
y. The corresponding particular inhomogeneous part of the
solutions obeys exactly the same dependence since it can be
assumed homogeneous in the other wavefront coordinate,
which reduces the Siklos equation to an Euler ordinary
equation. There is an exception when the mass value is such

that the scalar source enters in resonance with behavior
characteristic of the vacuum; this situation gives rise to
logarithmic modes accompanied by the quadratic reso-
nance power.
The second type of matter source studied—the Maxwell

field—is quite richer. The most general self-gravitating
vector potential that can be constructed that is compatible
with the pure radiation constraints has a single component
along the retarded time direction, which must be the real
part of an arbitrary holomorphic function of the complex
coordinate formed with the wavefront coordinates. This
function also contains an undetermined dependence on the
retarded time. The resulting inhomogeneities added to the
Siklos equation are rather more involved now, since they
possess a quadratic dependence on the complex derivatives
of this holomorphic function. The most general solution to
the inhomogeneous part for the massless cases was already
presented by Siklos himself [23]. The tough part comes
when dealing with the sourced effectively massive equa-
tion. A preliminary simple case is to consider a homo-
geneous Maxwell strength. This reduced the problem of
finding a particular inhomogeneous solution to solving
again an ordinary Euler equation, but this time with a
quartic inhomogeneity in the conformal coordinate y. The
resulting solutions share the same y dependence for all
masses, except for an electromagnetic resonant mass value
for which the companion coefficient develops the charac-
teristic logarithmic behavior of resonance phenomena.
Describing the massive AdS-wave dynamics under the
most general Maxwell source is a highly nontrivial task.
Here, once again, we exploit the connection with the
hyperbolic Euler-Darboux equations, whose inhomo-
geneous versions can be solved by means of the
Riemann method. It consists in providing the general
solution to a given initial value problem by solving a
related characteristic boundary value problem, giving the
so-called Riemann-Green function, which acts as the kernel
in an integral representation of the inhomogeneous sol-
ution. For the Euler-Darboux equations it can be justified
that their Riemann-Green functions are determined in terms
of hypergeometric functions [26]. Adapting this approach
to our elliptic complexified paradigm allows us to provide
the general solution for the exact massive (massless)
wave profiles not only when they are supported by a
Maxwell field, but also in the case when the source is
generalized to any matter consistent with the pure radiation
constraints. Whether the associated integral representation
can be given a closed local form or not depends on the
specific value of the mass. For example, for zero mass it can
be shown that the particular Riemann solution consistently
reduces to the Siklos one modulo homogeneous solutions.
A curious situation (common to all scenarios) is that the
matter can be decoupled from the massive sector by means
of a fine-tuning in the parameters defining the effective
metric.

EXACT GHOST-FREE BIGRAVITATIONAL WAVES PHYS. REV. D 97, 084045 (2018)

084045-17



Tocomplete ourwork,we additionally studied the situation
in which the exact gravitational waves are propagated over
flat spacetime. This involves supplementary constraints on
the bigravity coupling constants in order to get rid of their
naturally defined effective cosmological constants.Within the
Kundt class valid under this circumstance, the exceptional
cases allowing isometries are the well-known pp-waves.
Again, these exact waves were decomposed into a massless
excitation and a massive one. We analyzed in detail the
configurations that are sum separable with respect to the
wavefront coordinates. For the zero-mass case, we obtained
two decoupled massless profiles representing linearly polar-
ized plane waves (standard in General Relativity), plus linear
and homogeneous terms in the wavefront coordinates which
are usually gauged from pp-waves. However, here the
residual symmetries allow to remove the extra terms of only
one of the profiles; they remain untouched in the other and
now describe the propagation of the genuine physical d.o.f.
of bigravity. In the properly massive case, the decoupled
solutionsdescribeon theonehand the linearly polarizedplane
wave of General Relativity for the massless mode, and on the
other hand a superposition of Yukawa exponential decays
and growths in each wavefront direction, corresponding to
massive modes on flat spacetime.
Finally, we emphasize that not only are the methods

introduced in this paper to deal with exact gravitational
waves in the presence of a cosmological constant original
in the context of bigravity, but also that there have been no
similar studies even in General Relativity. We believe that
these methods are useful beyond this setting, since they
teach us how to find the general solution to the Klein-
Gordon equation with sources on the AdS background,
for configurations which are only restricted to be invariant
under a single light-cone translation. It is not too risky to
conjecture that these techniques could have potential
applications, for example, in the AdS=CFT context.
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APPENDIX A: pp-WAVES

As was briefly reviewed in Sec. III, the pp-waves are
characterized within all of the exact gravitational waves by
allowing a covariantly constant null vector field (parallel
rays) and the requirement of propagating plane wavefronts,
which is summarized in the line element [32]

ds2 ¼ −Fðu; x⃗Þdu2 − 2dudvþ dx⃗2; ðA1Þ

where x⃗ ¼ ðx; yÞ denotes a Euclidean vector. Consequently,
the multiple principal null direction is at the same time a
Killing field ∂v and a gradient

kμdxμ ¼ −du: ðA2Þ
Hence, the pp-waves are the simplest nontrivial example
of a Kerr-Schild transformation from Minkowski flat
spacetime

ds2 ¼ ds2M − Fk ⊗ k; ðA3Þ
and again the null and geodesic character of k warrants
the linearization, allowing the profile F to obey the wave
equation in General Relativity. Thus, they are interpreted
as exact gravitational waves propagating on the flat
background.
The pp-wave metric (A1) is form invariant under the

family of transformations [27]

ũ ¼ λðuþ u0Þ;
⃗x̃ ¼ Λ

↔
· ðx⃗þ P⃗Þ;

ṽ ¼ λ−1
�
vþ _P⃗ · x⃗þ 1

2

Z
duðB0 þ _P⃗

2Þ
�
;

F̃ ¼ λ−2ðF − B⃗1 · x⃗ − B0Þ; ðA4aÞ

where u0, λ, and the matrix Λ
↔

∈ SOð2Þ are constants,
P⃗ ¼ P⃗ðuÞ and B0 ¼ B0ðuÞ are arbitrary functions of the
retarded time, a dot denotes a derivative with respect to u,
and the coefficients of the linear terms in the wavefront
coordinates at the profile transformation are determined
from the above functions by

B⃗1 ¼ 2
̈P⃗: ðA4bÞ

Similar to the case of AdS waves, if the solution profile F
contains linear terms in the wavefront coordinates x⃗ and/or
a term which is only a function of the retarded time u, such
contributions can be eliminated by appropriate diffeomor-
phisms; see Ref. [17].
The starting point to explore the behavior of pp-waves in

bigravity is a pair of Kerr-Schild ansatz, where the second
metric is allowed to contain a global conformal factor

gμν ¼ ημν − F1ðu; x⃗Þkμkν;
fμν ¼ C2ðημν − F2ðu; x⃗ÞkμkνÞ: ðA5Þ

As was previously argued in Sec. IV, the interaction square-
root matrix has the form (14) for any Kerr-Schild ansatz
and the interaction terms reduce to the same structure as
the Einstein equations (16). The fact that the wavefronts
of the pp-waves are planes implies there is no longer a
diagonal contribution in their Einstein tensors as those of
the tensors (17); consequently, the effective cosmological
constants (18) do not appear in this case, which imposes the
constraints
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P1 ¼ 0 ¼ P2: ðA6Þ

The only nontrivial contributions are those of the off-
diagonal components along the null ray

�
1

2
ΔLF1 þ

Cκgm2P0

2κ
ðF2 − F1Þ

�
kμkν ¼ 0; ðA7aÞ

�
1

2
ΔLF2 −

κfm2P0

2Cκ
ðF2 − F1Þ

�
kμkν ¼ 0: ðA7bÞ

This system becomes decoupled for the same combina-
tions ℱ and ℋ decoupling the AdS waves (21), which
yields the following equations defining again exact mass-
less and massive excitations propagating now in flat
spacetime

ΔLℱ ¼ 0; ðA8aÞ

ΔLℋ − m̂2ℋ ¼ 0: ðA8bÞ

The effective mass appearing in the later Klein-Gordon
equation is the same as that already defined in Eq. (22c).
These decoupled profiles are determined up to the residual
symmetries of the pp-waves (A4), since they change
according to

ℱ̃ ¼ λ−2½ℱ − ðκf þ C2κgÞðB⃗1 · x⃗þ B0Þ�; ðA9aÞ

ℋ̃ ¼ λ−2ℋ: ðA9bÞ

Similar to the case of AdS waves, only the massless profile
inherits the indeterminacy and the massive one is almost
preserved modulo a trivial scaling.
The decoupled exact massless profile satisfies the wave

equation which, due to the Killing vector ∂v, becomes just
the harmonic equation (A8a) with the general solution

ℱðu; x⃗Þ ¼ Gðu; zÞ þGðu; zÞ; ðA10Þ

where Gðu; zÞ is any function depending arbitrarily on the
retarded time, but that is holomorphic in the complex
wavefront coordinate z ¼ xþ iy. A particularly interesting
case is the fully massless one m̂ ¼ 0 (P0 ¼ 0). Looking
back to Eq. (A7), both of the original profiles are harmonic

ΔLF1 ¼ 0 ¼ ΔLF2; ðA11Þ

and thus are described as in Eq. (A10). Even with this quite
general solution, it is useful to explore the particular cases
that are sum separable with respect to the wavefront
coordinates since they also bring here a clear decomposi-
tion in the prevailing modes of the theory after removing
the unphysical contributions by means of the pp-wave
residual symmetry (A4). Thus, we will search for the most

general solutions of the form F1ðu; x⃗Þ ¼ X1ðu; xÞ þ
Y1ðu; yÞ and F2ðu; x⃗Þ ¼ X2ðu; xÞ þ Y2ðu; yÞ. Such solu-
tions are

F1ðu; x⃗Þ ¼ f2ðuÞðx2 − y2Þ; ðA12aÞ

F2ðu; x⃗Þ ¼ h2ðuÞðx2 − y2Þ þ h⃗1ðuÞ · x⃗þ h0ðuÞ; ðA12bÞ

where all functions of the retarded time are arbitrary and we
have eliminated the linear and homogeneous terms in the
wavefront coordinates appearing in the first profile by using
the residual symmetry (A4). The quadratic contributions to
both profiles are just the sum-separable part of the well-
known plane waves of General Relativity [27], which
corresponds to the linearly polarized ones [48].
Applying the same analysis to the general massive

case m̂ ≠ 0, the sum-separable solutions of Eq. (A8) are
given by

ℱðu; x⃗Þ ¼ f2ðuÞðx2 − y2Þ; ðA13aÞ

ℋðu; x⃗Þ ¼ h⃗þðuÞ · em̂ x⃗ þ h⃗−ðuÞ · e−m̂ x⃗; ðA13bÞ

where e�m̂ x⃗ ¼ ðe�m̂x; e�m̂yÞ denote Euclidean vectors and
the residual symmetry (A9) allows us to get rid of the
unphysical contributions in the massless profile. Here, the
massless profile again corresponds to the linearly polarized
plane-wave contribution of General Relativity, and the
massive one describes a superposition of Yukawa expo-
nential decays and growths in each wavefront direction,
corresponding to standard massive modes in flat spacetime.
From the inversions (24), one gets the solutions for the
original profiles

F1ðu; x⃗Þ ¼
1

κf þ C2κg
½κf2ðuÞðx2 − y2Þ

− C2κgðh⃗þðuÞ · em̂ x⃗ þ h⃗−ðuÞ · e−m̂ x⃗Þ�; ðA14aÞ

F2ðu; x⃗Þ ¼
1

κf þ C2κg
½κf2ðuÞðx2 − y2Þ

þ κfðh⃗þðuÞ · em̂ x⃗ þ h⃗−ðuÞ · e−m̂ x⃗Þ�: ðA14bÞ

Let us note that it is not straightforward to obtain the
m̂ ¼ 0 solution from the last outcome. We end here the
revision of bigravity pp-waves.

APPENDIX B: MOST GENERAL VECTOR
POTENTIAL SUPPORTING AdS WAVES

As emphasized in Sec. VII, the fact that Einstein tensors
have the structure (17) for AdS waves (8) fixes the effective
cosmological constants coming from the interaction con-
tributions as in Eq. (18), which in turn implies that both
Einstein equations (48) establish the vanishing of all of the
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components of the energy-momentum tensors (53) that are
not exclusively in the direction of the null ray kμ. In
particular, for a Maxwell field the following constraints
must be satisfied

4πTE
vv ¼

y2

l2
F2
vx þ F2

vy

ðαþ CβÞ2 ¼ 0;

ðB1aÞ

4π

�
2TE

uv −
αF1 þ CβF2

αþ Cβ
TE
vv

�
¼ y2

l2
F2
vu þ F2

xy

ðαþ CβÞ2 ¼ 0:

ðB1bÞ

These imply that the involved strength components vanish

Fvx ¼ Fvy ¼ Fvu ¼ Fxy ¼ 0; ðB2Þ
and that the energy-momentum tensor (63) acquires the
form of a pure radiation field along the null ray

4πTE
μν ¼

y4

l4
F2
xu þ F2

yu

ðαþ βCÞ2 kμkν: ðB3Þ

Let us start by analyzing the consequences of the first
three pure radiation constraints (B2)

Fva ¼ ∂vAa − ∂aAv ¼ 0; ðB4Þ
with xa ≠ v, which can be integrated as

Aa ¼ ∂a

Z
Avdvþ Âaðu; y; xÞ; ðB5Þ

where Âa are integration functions which are independent
of the null ray parameter v. Consequently, modulo the
gauge transformation

Aα → Ãα ¼ Aα − ∂α

Z
Avdv; ðB6Þ

we end with a gauge where

Ãa ¼ Âaðu; y; xÞ; Ãv ¼ 0: ðB7Þ

Implementing now the last pure radiation constraint (B2)
in the above gauge

Fxy ¼ ∂xÃy − ∂yÃx ¼ 0; ðB8Þ

lead us to

Ãy ¼ ∂y

Z
Ãxdxþ ˆ̂Ayðu; yÞ: ðB9Þ

The gauge (B7) is still preserved by residual gauge trans-
formations, from which we choose

Ãα →
˜̃Aα ¼ Ãα − ∂α

Z
Ãxdx; ðB10Þ

which allows a further fixing after using Eq. (B9)

˜̃Au ¼ ˜̃Auðu; y; xÞ; ˜̃Av ¼ 0 ¼ ˜̃Ax;
˜̃Ay ¼ ˆ̂Ayðu; yÞ:

ðB11Þ

Hence, satisfying the pure radiation constraints entails
the existence of a gauge where the vector potential can
be expressed as

A ¼ Auðu; y; xÞduþ Ayðu; yÞdy: ðB12Þ

It remains to explore the repercussions of this gauge
fixing on the Maxwell equations (64), which become

ΔLAu ¼ ∂y∂uAy: ðB13Þ

This can be understood as an inhomogeneous linear partial
differential equation for the retarded time component Au,
where the inhomogeneity is determined by the spatial
component Ay. The most general solution is a superposition
of the kind (60) for the potential Au ¼ Ah

u þ Ai
u. The

contribution Ah
u must be harmonic since it represents the

general solution to the related homogeneous equation, and
can be written as the real part of a general holomorphic
function in the complex wavefront coordinate z ¼ xþ iy

Ah
uðu; y; xÞ ¼ ∂zaðu; zÞ þ ∂zaðu; zÞ: ðB14Þ

Here, for further applications it is convenient to write the
holomorphic function as the derivative of another holo-
morphic function aðu; zÞ. Regarding the inhomogeneous
contribution Ai

u, since only a particular solution to the
inhomogeneous equation is needed, we can assume that
it does not depend on the spatial coordinate x, i.e.,
Ai
u ¼ Ai

uðu; yÞ. Thus, the inhomogeneous equation (B13)
is reduced to

∂yð∂yAi
u − ∂uAyÞ ¼ 0; ðB15Þ

and is integrated as

Ai
uðu; yÞ ¼ ∂u

Z
Ayðu; yÞdyþ K1ðuÞyþ K2ðuÞ: ðB16Þ

The simplest particular solution is obtained by choosing
K1 ¼ 0 ¼ K2. Consequently, the most general solution to
the Maxwell equation (B13) is

Auðu; y; xÞ ¼ ∂zaðu; zÞ þ ∂zaðu; zÞ þ ∂u

Z
Ayðu; yÞdy:

ðB17Þ
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However, the last expression suggests a third gauge trans-
formation

Aα →
˜̃̃
Aα ¼ Aα − ∂α

Z
Ayðu; yÞdy; ðB18Þ

which further restrict the gauge to its final form

˜̃̃
Au ¼ Ah

uðu; y; xÞ; ˜̃̃
Av ¼ ˜̃̃

Ax ¼ ˜̃̃
Ay ¼ 0; ðB19Þ

i.e., all components but Au are pure gauge. Finally, after
solving the pure radiation constraints and the Maxwell
equations, the vector potential is completely determined.
This allows us to conclude that there exists a gauge where
the most general self-gravitating Maxwell potential sup-
porting AdS waves can be written as

A ¼ Auðu; y; xÞdu ¼ ½∂zaðu; zÞ þ ∂zaðu; zÞ�du: ðB20Þ

The first equality precisely corresponds to the generaliza-
tion of the Kerr-Schild ansatz to include a Maxwell field,
where the vector potential is chosen proportional to the
null vector Aμ ∝ kμ [see, for example, Ref. [24] where the
Kerr-Newman-(A)dS black hole was derived for bigravity
following this approach, inspired by the results of Ref. [49]
for General Relativity].

APPENDIX C: THE EULER-DARBOUX
EQUATIONS

In this appendix we review the main features of solving
the so-called Euler-Darboux equations [50–52], since the
dynamics of the four-dimensional AdS waves (either
massless or massive) can be reduced to their study. Our
discussion mainly follows Ref. [25], but highlights several
aspects not found there. The Euler-Darboux equations are
defined as

Eα;βðuÞ≡
�
∂2
ξη þ

α

ξ − η
∂η −

β

ξ − η
∂ξ

�
u ¼ 0; ðC1Þ

where, according to the Darboux notation [52], α and β
are real parameters labeling not only the above operators,
but also any solution to the previous equation by uðα; βÞ.
For likewise real variables ξ and η, it is the prototype
of a hyperbolic equation [25]. The case of coinciding
parameters is named the Euler-Poisson-Darboux equation
[50–52]. When αþ β ≠ 1 one can introduce a new function
using

u ¼ ðξ − ηÞ1−α−βv;

and by replacing it back into Eq. (C1) it is easy to see that v
must indeed satisfy another Euler-Darboux equation with
parameters 1 − β and 1 − α, i.e.

E1−β;1−αðvÞ ¼ 0:

Namely, there exists a relation between the solutions of the
Euler-Darboux equation with parameters α, β and those
with parameters 1 − β, 1 − α

uðα; βÞ ¼ ðξ − ηÞ1−α−βuð1 − β; 1 − αÞ: ðC2Þ

The previous relation is useful, for example, to straight-
forwardly find the most general solution to the equation
E1;1ðuÞ ¼ 0 as

uð1; 1Þ ¼ uð0; 0Þ
ξ − η

¼ fðξÞ þ gðηÞ
ξ − η

; ðC3Þ

where uð0; 0Þ is the solution to the two-dimensional wave
equation in light-cone coordinates, E0;0ðuÞ ¼ 0, which in
general is separable into left and right movers encoded in
the arbitrary functions f and g.
The general solutions for other integer values of the

parameters can also be easily expressed. In order to
accomplish this, another important feature to realize is
that the different solutions are related not only algebraically
[as in Eq. (C2)], but also through differentiation. For
example, if we know a solution of Eα;βðuÞ ¼ 0, their
derivatives

uðαþm − 1; β þ n − 1Þ ¼ ∂mþn−2uðα; βÞ
∂ξm−1∂ηn−1 ; ðC4Þ

are also solutions, in this case to Eαþm−1;βþn−1ðuÞ ¼ 0. In
particular, by evaluating α ¼ 1 ¼ β, we have that

uðm; nÞ ¼ ∂mþn−2uð1; 1Þ
∂ξm−1∂ηn−1

¼ ∂mþn−2

∂ξm−1∂ηn−1
�
fðξÞ þ gðηÞ

ξ − η

�
; ðC5Þ

i.e., the general solution to the equation Em;nðuÞ ¼ 0 where
m and n are positive integers can be obtained from multiple
differentiations of Eq. (C3). These solutions [in particular,
their Euler-Poisson-Darboux version uðm;mÞ] have been
connected with the characterization of the radial time-
dependent part of the spherical harmonic decomposition
of the scalar wave equation near the spatial infinity of the
Schwarzschild black hole [53].
The general solution for nonpositive integers can be

obtained in a similar way. It is enough to use the form of
Eq. (C4) on the left-hand side of the general algebraic
relation (C2) to arrive at a new differential identity between
solutions
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uð2−β−n;2−α−mÞ¼ðξ−ηÞαþβþmþn−3∂mþn−2uðα;βÞ
∂ξm−1∂ηn−1 :

ðC6Þ

Now, by again evaluating α ¼ 1 ¼ β and redefining the
integers as m0 ¼ n − 1 and n0 ¼ m − 1, we obtain

uð−m0;−n0Þ ¼ ðξ − ηÞm0þn0þ1
∂m0þn0uð1; 1Þ
∂ξn0∂ηm0

¼ ðξ − ηÞm0þn0þ1
∂m0þn0

∂ξn0∂ηm0

�
fðξÞ þ gðηÞ

ξ − η

�
:

ðC7Þ

Hence, the general solutions to the Euler-Darboux equa-
tions where the parameters take nonpositive integer values
are once more generated from Eq. (C3) by differentiation.
As explained in Sec. VI, the Euler-Poisson-Darboux sub-
case uð−1;−1Þ is just the solution of the Siklos equation
characterizing the AdS waves of General Relativity in the
presence of a negative cosmological constant [23].
We now consider the case where the parameters α and β

appearing in Eq. (C1) are real numbers. The first step is to
look for particular separable solutions of the form

upðα; βÞ ¼ XðξÞYðηÞ: ðC8Þ

By inserting this into the Euler-Darboux equation (C1), we
obtain the following solution

up1ðα; βÞ ¼ ðξ − aÞ−αðη − aÞ−β; ðC9Þ

where a is the separation constant. Moreover, we can use
the relation (C2), when αþ β ≠ 1, to construct another
particular solution of Eα;βðuÞ ¼ 0 as follows

up2ðα; βÞ ¼ ðξ − ηÞ1−α−βðξ − aÞβ−1ðη − aÞα−1: ðC10Þ

The previous particular solutions are the seeds to construct
the general solution to the linear Euler-Darboux
equation (C1) as a superposition

ugðα; βÞ ¼
Z

ξ

η
φðaÞðξ − aÞ−αða − ηÞ−βda

þ ðξ − ηÞ1−α−β
Z

ξ

η
ψðaÞðξ − aÞβ−1ða − ηÞα−1da

¼ ðξ − ηÞ1−α−β
Z

1

0

φðξþ ðη − ξÞtÞt−αð1 − tÞ−βdt

þ
Z

1

0

ψðξþ ðη − ξÞtÞtβ−1ð1 − tÞα−1dt; ðC11Þ

where φ and ψ are arbitrary functions and in the second
equality a new interpolation parameter has been introduced,

a ¼ ξþ ðη − ξÞt. This integral representation for the gen-
eral solution was provided first for α ¼ β by Poisson [51],
and then generalized to α ≠ β by Appell [54].
The case αþ β ¼ 1 is not covered by the expression

(C11); we cannot use the relation (C2) to construct a second
independent particular solution. However, interestingly
enough, we can use the final form (C11) to derive the
general solution of this case as a nontrivial limit. First,
we notice that the generic solution (C11) can be rewritten
in the following form

ug ¼ ðξ − ηÞ1−α−β
Z

1

0

dtt−αð1 − tÞ−β
�
φ̃ðξþ ðη − ξÞtÞ

þ ψ̃ðξþ ðη − ξÞtÞ ½ðξ − ηÞtð1 − tÞ�αþβ−1 − 1

αþ β − 1

�
;

ðC12Þ
where, without losing generality, we are considering
that the arbitrary functions could be defined from the
beginning as

φ̃ ¼ φþ ψ ; ψ̃ ¼ ðαþ β − 1Þψ :
The general solution to the Euler-Darboux equation when
αþ β ¼ 1 is precisely the limit of Eq. (C12) when the sum
αþ β approaches unity; therefore

ugðα; 1 − αÞ ¼ lim
β→1−α

ugðα; βÞ

¼
Z

1

0

dtt−αð1 − tÞα−1ðφ̃ðξþ ðη − ξÞtÞ

þ ψ̃ðξþ ðη − ξÞtÞ ln ½ðξ − ηÞtð1 − tÞ�Þ;
ðC13Þ

which is just the general solution reported in Ref. [25]
without justification. This kind of solutions has turned
out to be relevant in General Relativity [specifically
uð1=2; 1=2Þ] in the construction of the so-called Weyl
class describing static axisymmetric vacuum spacetimes
[55], or in their analogues after a double Wick rotation
characterizing colliding plane gravitational waves with
collinear polarization [56]; see Refs. [27,48] for more
recent reviews on these subjects.
In what follows we emphasize there are extensions of the

Euler-Darboux equations [52]

Êα;β;λðUÞ≡
�
Eα;β þ

λ

ðξ − ηÞ2
�
U ¼ 0; ðC14Þ

which can be recast into the standard form. In the previous
case, this is done by just letting

U ¼ ðξ − ηÞρu: ðC15Þ

Indeed, u must obey the standard Euler-Darboux equation
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Eαþρ;βþρðuÞ ¼ 0; ðC16Þ

provided that ρ is a solution to the quadratic equation

ρ2 þ ðαþ β − 1Þρ − λ ¼ 0: ðC17Þ

In this regard, it is important to make the following remark.
In general, the latter polynomial has two roots, say, ρ�.
Therefore, from Eq. (C15) one may be tempted to write
the general solution to the extended Euler-Darboux
equation (C14) as a superposition built from the contribu-
tions of both roots. However, it is enough to consider a
single root since, using relation (C2), it is easy to check that

uðαþ ρ−; β þ ρ−Þ ¼ ðξ − ηÞ
ffiffi
d

p
uðαþ ρþ; β þ ρþÞ; ðC18Þ

where d ¼ ðαþ β − 1Þ2 − 4λ is just the discriminant of
the quadratic equation (C17). Hence, the general solution to
the extension (C14) is the same when written with one root
or the other

U ¼ ðξ − ηÞρþuðαþ ρþ; β þ ρþÞ
¼ ðξ − ηÞρ−uðαþ ρ−; β þ ρ−Þ: ðC19Þ

For α ¼ −1 ¼ β, these are precisely the solutions of the
massive generalization of the Siklos equation we report in
Sec. VI and where the third parameter λ is determined by
the mass. More relativistic examples for which the
extended operator (C14) becomes relevant were reviewed
in Ref. [57], where almost all aspects covered in this
appendix and the following one were also reviewed from a
similar perspective.
Finally, we also need to address the problem of how to

solve the inhomogeneous Euler-Darboux equations

Eα;βðuÞ ¼ fðξ; ηÞ; ðC20Þ

since it is important in this paper to understand the behavior
of AdS waves with matter fields as sources. The inhomo-
geneous solutions of linear hyperbolic equations such as
these can be obtained by using the Riemann method. In
fact, Riemann devised his method by studying the Euler-
Poisson-Darboux equations [58]. Hence, for completeness,
we briefly review this method and how it must be applied to
the Euler-Darboux case in the last appendix.

APPENDIX D: THE RIEMANN METHOD

Here we follow Ref. [26] but adopting a notation
compatible with the previous appendix. First of all, let
us consider a linear second-order differential operator

LðuÞ ¼ ðA∂2
ξξ þ B∂2

ηη þ 2C∂2
ξη þ 2D∂ξ þ 2E∂η þ KÞu;

ðD1Þ

with continuously differentiable coefficients. Multiplying
the above by a smooth function R and differentiating by
parts, the following identity is obtained

RLðuÞ − uL�ðRÞ ¼ ∂ξM þ ∂ηN; ðD2aÞ

where the functions determining the divergence on the
right-hand side

M ¼ ∂ξðARuÞ þ ∂ηðCRuÞ
− 2u½∂ξðARÞ þ ∂ηðCRÞ −DR�; ðD2bÞ

N ¼ ∂ηðBRuÞ þ ∂ξðCRuÞ
− 2u½∂ηðBRÞ þ ∂ξðCRÞ − ER�; ðD2cÞ

are not unique since we can add to them ∂ηΘ and −∂ξΘ,
respectively. However, the linear operator

L�ðRÞ ¼ ∂2
ξξðARÞ þ ∂2

ηηðBRÞ þ 2∂2
ξηðCRÞ

− 2∂ξðDRÞ − 2∂ηðERÞ þ KR; ðD2dÞ

is unique and defines the adjoint of L. Consequently, the
adjoint of L� is L. When additionally L� ¼ L it is said that
the operator L is self-adjoint.
By integrating the identity (D2a) in a well-defined

domain Ω whose boundary is a regular closed curve ∂Ω
with anticlockwise orientation, it follows from Green’s
theorem that

Z Z
Ω
½RLðuÞ−uL�ðRÞ�dξdη¼

Z
∂Ω
ðMdη−NdξÞ: ðD3Þ

One of Riemann’s significant contributions consists in an
approach to solve the Cauchy problem of an inhomo-
geneous hyperbolic equation using the above Green inte-
gral identity [58]. For a hyperbolic operator there exist
characteristic coordinates that allow to get rid of all of the
second-order derivatives except the crossed one; as a result,
the associated inhomogeneous equation can be rewritten as

LðuÞ ¼ ð∂ξη þ 2D∂ξ þ 2E∂η þ KÞu ¼ fðξ; ηÞ; ðD4Þ

where the inhomogeneity f is a continuously differentiable
function, as are the coefficients D, E, and K. Solving the
Cauchy problem means finding the unique solution to this
equation with given values of u, ∂ξu, and ∂ηu on some
initial curve. Let P ¼ ðξ0; η0Þ be the point in the future (or
past) of the initial values curve where it is required to know
the solution. The first step of the Riemann method is to
choose the regular boundary ∂Ω of the identity (D3) in such
a way that it contains both the initial-value curve and the
future (past) point. In the characteristic plane ðξ; ηÞ the
initial-value curve must be a duly-inclined regular arc, and
we can define its intersections with the characteristics
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η ¼ η0 and ξ ¼ ξ0 passing through P as the points Q ¼
ðξ1; η0Þ and R ¼ ðξ0; η1Þ, respectively. Hence, the regular
boundary ∂Ω can be the deformed triangle with vertices
PQR. The second step of the method involves picking out
the function R in the identity (D3) as a homogeneous
solution to the adjoint operator

L�ðRÞ ¼ 0; ðD5aÞ
satisfying the additional conditions

∂ξR − 2ER ¼ 0 when η ¼ η0; ðD5bÞ
∂ηR − 2DR ¼ 0 when ξ ¼ ξ0; ðD5cÞ

Rðξ0; η0; ξ0; η0Þ ¼ 1: ðD5dÞ
This defines a characteristic boundary value problem
whose solution Rðξ; η; ξ0; η0Þ is known as the Riemann-
Green function.6 The knowledge of this function for a
hyperbolic linear partial differential equation allows to
construct the unique solution which is compatible with
the given initial conditions. Concretely, using the defining
properties of the Riemann-Green function (D5) in the
identity (D3) after integrating at the deformed triangle
with vertices PQR and taking into account the definitions
(D2b)–(D2c), it is possible to isolate the value of the
inhomogeneous solution u at the point P ¼ ðξ0; η0Þ, i.e.

uðξ0; η0Þ ¼ uhðξ0; η0Þ þ uiðξ0; η0Þ; ðD6aÞ
where the first contribution solves the homogeneous
equation respecting the initial conditions and is given by

uhðξ0; η0Þ ¼
1

2
uðξ0; η1ÞRðξ0; η1; ξ0; η0Þ

þ 1

2
uðξ1; η0ÞRðξ1; η0; ξ0; η0Þ

þ
Z
QR

ðNdξ −MdηÞ; ðD6bÞ

whereas the second contribution is a particular solution to
the inhomogeneous equation

uiðξ0; η0Þ ¼
Z Z

Ω
fðξ; ηÞRðξ; η; ξ0; η0Þdξdη: ðD6cÞ

An important remark is that in deriving the solution (D6) it
has been implicitly assumed that the initial value arc QR is
negatively inclined, with the future point P on its right,
which is the more natural situation for characteristic
coordinates. However, using a different notation it is also
possible to have a positively inclined initial value arc with
the future point on its left. In this case, the deformed

triangle PQR is clockwise oriented and as a consequence the
solution is again expressed as Eqs. (D6), except that the
expression for the inhomogeneous solution (D6c) changes
sign. Returning to our main objective, if we know the general
homogeneous solution to Eq. (D4), the first contribution
(D6b) is already considered there. Hence, we can rest in the
results of the Riemann approach and just keep the expression
(D6c)–or its negative counterpart in the positively inclined
case–to obtain a particular solution of the inhomogeneous
hyperbolic equation, as long as it is possible to build the
corresponding Riemann-Green function.
For our case of interest [the Euler-Darboux

equation (C20)], the first step is to find the corresponding
adjoint operator that results in a particular case of the
extended Euler-Darboux operators (C14), specifically

E�
α;βðRÞ ¼ Ê−β;−α;−α−βðRÞ ¼ 0: ðD7Þ

Exploiting now the way in which the solutions of the
extended and standard Euler-Darboux equations are related
[Eq. (C15)], the involved exponent is determined from
Eq. (C17) and its two possible values are ρ ¼ fαþ β; 1g.
Since the result is the same regardless of which one is
elected, we choose ρ ¼ αþ β and the general homo-
geneous solutions of the adjoint operator associated to
the Euler-Darboux equations can be written in terms of the
solutions of the latter by just reversing their parameters

R ¼ ðξ − ηÞαþβuðβ; αÞ: ðD8Þ
It only remains to impose the boundary conditions
(D5b)–(D5d) after using, for example, the Poisson integral
representation (C11) for the general solution of the Euler-
Darboux equations. The resulting Riemann-Green function
acquires the following form

Rðξ; η; ξ0; η0Þ ¼
ðξ − ηÞαþβ

ðξ0 − ηÞαðξ − η0Þβ 2F1ðα; β; 1; χÞ; ðD9aÞ

χ ≡ −
ðξ − ξ0Þðη − η0Þ
ðξ − η0Þðξ0 − ηÞ ; ðD9bÞ

which can be derived in different ways [26,52,57], where

2F1 stands for the standard hypergeometric function.
Here, we provide an alternative derivation that allows

us to prove at the same time that Eq. (D6c) is in fact a
particular solution of the inhomogeneous Euler-Darboux
equation (C20) if the above expression is considered as
the corresponding Riemann-Green function. Our main
motivation is to have a concrete expression available
for the particular solution of the complexified version
we study in subsection VII B 3, instead of providing a
general solution to the initial value problem. Hence, we
consider as a concrete initial value arc the straight line
passing by the origin with slope −1; this is equivalent to
choosing ðξ1; η1Þ ¼ ð−η0;−ξ0Þ. In order to make our
derivation more transparent and also to be compatible with

6This should not be confused with the well-known Green
function, which is an inhomogeneous solution for a Dirac delta
source. For the relationship between these functions, see
Ref. [59].
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the main text, we change the notation henceforth by
relabeling the point equipped with the Riemann solution
using standard coordinates, i.e., P ¼ ðξ; ηÞ. Consequently,
the other two vertices of the triangle forming the integration
region Ω are now given by Q ¼ ð−η; ηÞ and R ¼ ðξ;−ξÞ.
Additionally, we use primes to denote the dummy coor-
dinates in the integration. There are two elementary ways to
sweep the triangle surface Ω in the integration (D6c): in the
first, for each horizontal coordinate of the triangle, we sum
on the corresponding vertical interval, and in the second we
do exactly the opposite. We shall use a superposition of
both: they are equivalent in the real domain covered in this
appendix, but this is not the case if they are finally
evaluated in complex limits, as we pretend to do in the
main text. The advantage of this representation is that it
naturally gives a real result in the complexified context.
Taking the above into account and inspired by Eqs. (D6c)
and (D9), we propose as a particular solution to the
inhomogeneous Euler-Darboux equation (C20) the follow-
ing expression

uiðξ; ηÞ ¼ 1

2

�Z
ξ

−η
dξ0

Z
η

−ξ0
dη0 þ

Z
η

−ξ
dη0

Z
ξ

−η0
dξ0

�

× fðξ0; η0Þ ðξ0 − η0Þαþβ

ðξ − η0Þαðξ0 − ηÞβ Fðχ
0Þ; ðD10Þ

where a priori no other assumption is made on FðχÞ except
that it is a function of the variable (D9b) written in the new
notation. Applying now the Euler-Darboux operator (C1) to
the above expression, we obtain the following identity after
a careful evaluation

Eα;βðuiÞ ¼ Fð0Þfðξ; ηÞ

þ 1

2ðξ − ηÞ
�Z

ξ

−η
dξ0

Z
η

−ξ0
dη0 þ

Z
η

−ξ
dη0

Z
ξ

−η0
dξ0

�

× fðξ0; η0Þ ðξ0 − η0Þαþβþ1

ðξ − η0Þαþ1ðξ0 − ηÞβþ1
Ĥα;β;1

0ðFÞ;

ðD11aÞ

where we denote the standard hypergeometric operator by

Ĥa;b;cðFÞ≡ χðχ − 1ÞF00 þ ½ðaþ bþ 1Þχ − c�F0 þ abF:

ðD11bÞ

It is obvious now that if we choose the hitherto arbitrary
function as the hypergeometric

FðχÞ ¼ 2F1ðα; β; 1; χÞ; ðD12Þ

the integral contributions in the identity (D11) vanish.
Considering now that 2F1ðα; β; 1; 0Þ ¼ 1, it is proved that
Eq. (D6c) [or, more specifically, Eq. (D10)] is in fact a
particular solution of the inhomogeneous Euler-Darboux
equation (C20) when the Riemann-Green function (D9) is
considered. We emphasize that there are particular cases
in the parameter space for which it is even possible to
integrate the expression (D10) and arrive at a closed local
form; see subsection VII B 3.
Finally, for later use we write down the counterpart to

Eq. (D10) when a positive-inclined initial arc is considered.
The concrete initial value arc taken is the straight line
passing by the origin with slope 1, which is equivalent to
choosing ðξ1; η1Þ ¼ ðη0; ξ0Þ in the notation of the begin-
ning of the appendix. In the notation of the last part, this
means integrating on the triangle with vertices P ¼ ðξ; ηÞ,
Q ¼ ðη; ηÞ, and R ¼ ðξ; ξÞ, giving

uiðξ; ηÞ ¼ −
1

2

�Z
η

ξ
dξ0

Z
η

ξ0
dη0 þ

Z
η

ξ
dη0

Z
η0

ξ
dξ0

�

× fðξ0; η0Þ ðξ0 − η0Þαþβ

ðξ − η0Þαðξ0 − ηÞβ Fðχ
0Þ: ðD13Þ

The analog of the identity (D11) also follows in this case,
which brings us to the same conclusion (D12). With this,
we end our thorough review of results of the Euler-Darboux
equations which are indispensable to justify the more
important findings of the main text.
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