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We determine the class of axisymmetric and asymptotically flat black-hole spacetimes for which the test
Klein-Gordon and Hamilton-Jacobi equations allow for the separation of variables. The known Kerr, Kerr-
Newman, Kerr-Sen and some other black-hole metrics in various theories of gravity are within the class of
spacetimes described here. It is shown that although the black-hole metric in the Einstein-dilaton-Gauss-
Bonnet theory does not allow for the separation of variables (at least in the considered coordinates), for a
number of applications it can be effectively approximated by a metric within the above class. This gives us
some hope that the class of spacetimes described here may be not only generic for the known solutions
allowing for the separation of variables, but also a good approximation for a broader class of metrics, which
does not admit such separation. Finally, the generic form of the axisymmetric metric is expanded in
the radial direction in terms of the continued fractions and the connection with other black-hole
parametrizations is discussed.
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I. INTRODUCTION

Recent progress in observations of black holes and their
environment in the gravitational [1] and electromagnetic [2]
spectra made it important to develop a general formalism or
parametrization allowing one to describe black holes in any
metric theory of gravity. The only general parametrization
of this kind for axisymmetric and asymptotically flat black
holes was suggested in Ref. [3] and further tested in
Refs. [4,5]. There, any axially symmetric and asymptoti-
cally flat black-hole metric can be represented in terms of a
number of parameters which could be fixed through
observations of the behavior of the black hole in both
regions: near the event horizon (where the strong gravity
regime matters) and far from the black hole (where the post-
Newtonian expansion is implied). The usage of the con-
tinued fractions [6] provided the strong hierarchy of the
orders of parametrization and the quick convergence of the
expansion used. Nevertheless, the price for being a truly
general parametrization is a rather large number of param-
eters which must be fixed by the experimental data.

Therefore, here we will constrain the class of solutions
and consider black-hole metrics written in the coordinates
which guarantee the separation of variables in the Klein-
Gordon and Hamilton-Jacobi equations. The other
motivation for considering such special spacetimes is a
simplification of the analysis of scalar fields and particles’
motions, which makes it possible to give an analytical
treatment for a number of problems, such as quasinormal
modes, scattering and other wave phenomena, gravitational
lensing, black hole shadows, etc. After all, there is still no
evidence that the black holes which we observe via
gravitational waves or electromagnetic spectra of their
environment have a symmetry which does not allow for
the above separation of variables. The current uncertainty
in the measurement of the mass and angular momentum of
the resultant black hole does not allow to strongly constrain
the black hole geometry by observing the ringdown phase
only [7].
However, here we shall not study such an issue as

general conditions for the separability of the variables in
both equations. The latter is intrinsically related to the
symmetry of the background metric [8] and includes the
search for the coordinates which allow the separability.
The seminal work on the generic separability of the Klein-
Gordon and Schrödinger equations in the background of a
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solution of the Einstein equations (independently of the
physical interpretation of this solution, and thus, not only,
but including black holes) was done by Carter [9].1 Being
aimed at testing the strong gravity regime and alternatives
of Einstein gravity, here we have a different task: to
consider asymptotically flat and axisymmetric spacetimes
describing a Kerr-like black hole, but in an arbitrary
metric theory of gravity. The Kerr-like black holes which
we describe here have a number of features of the Kerr
spacetime. They have the same quadrupole moment,
possess a spherical horizon and mirror symmetry, etc.
Therefore, we will use a more practical approach. We

know the way in which the separation of variables occurs
for the well-known black-hole metrics, such as Kerr, Kerr-
Newman, Kerr-Sen, etc. Here we generalize this procedure
of the separation of variables in some sense. We show that,
under the rather basic assumptions of asymptotic flatness,
the existence of a compact event horizon and a special way
of separating the variables, the resultant class of black holes
requires the spheroidal harmonics for the angular part of the
dynamical equations, as it occurs for the Kerr solution.
Such constrained spacetimes have three arbitrary functions
of the radial coordinate which must be fixed to produce the
known black-hole metrics (Kerr, Kerr-Newman, Kerr-Sen,
and others) a priori allowing for the above separation of
variables.
Further we shall consider the rotating Einstein-dilaton-

Gauss-Bonnet (EdGB) black hole spacetime, which was
obtained in Ref. [11] in the form of expansion in terms of
Ref. [11] or slow rotation and coupling constants. We shall
show that the test scalar field in the background of this
metric, written in the coordinates of Ref. [11] or Ref. [3],
does not allow for the separation of variables. Nevertheless,
we shall show that for a number of applications (such as the
position and frequency of the innermost stable circular
orbit, binding energy, etc.) the terms in the expansion
violating the separation of variables can be safely
neglected. This gives us some hope that the class of
black-hole metrics described here and the associated para-
metrization derived can be used not only as an accurate
description of Kerr-like black holes, but also as an effective
approximation for a much more general class of black-hole
solutions.
The class of axisymmetric metrics allowing for the

separation of variables in the Hamilton-Jacobi equations
alonewas considered recently in Ref. [12] andwe shall show
that the class of metrics considered in the present paper is a
subclass of the metrics described in Ref. [12]. In the general
case the Johannsen metric [12] does not allow for the
separation of variables in the Klein-Gordon equations.
The paper is organized as follows. Section II is devoted

to deduction of a general form of the metric allowing for the

separation of variables in the Klein-Gordon and Hamilton-
Jacobi equations. In this form there are three functions of
the radial coordinates which must be fixed for any
particular case. In Sec. III A we will relate the obtained
metric with the Carter ansatz, while in Sec. III B we will
show that the axisymmetric metric of Ref. [12] does not
allow for the separation of variables in the Klein-Gordon
equation and includes our axisymmetric ansatz as a
particular case. In Sec. IV we write down the form of
these three functions for various black-hole metrics, such as
Kerr, Kerr-Newman, Kerr-Sen, etc. and show that the
rotating Einstein-dilaton-Gauss-Bonnet black-hole space-
time does not belong to the considered class. In Sec. V we
compute the binding energy of the EdGB black hole with
and without terms that violate the separation of variables,
while in Sec. VI we do the same for the other characteristic
variable: the frequency at the innermost stable circular
orbit. Finally, in Sec. VII we discuss the obtained results
and further perspectives of our approach.

II. GENERAL FORM OF THE BLACK-HOLE
METRIC WITH SEPARABLE KLEIN-GORDON

AND HAMILTON-JACOBI EQUATIONS

A. Separation of variables in the
Klein-Gordon equation

Here we will imply that the spacetime under consid-
eration is
(1) axially symmetric,
(2) asymptotically flat, and
(3) possesses a compact event horizon.
Having in mind the above, we will write the arbitrary

axially symmetric metric as follows [3]:

ds2 ¼ −
N2ðr; θÞ −W2ðr; θÞsin2θ

K2ðr; θÞ dt2

− 2Wðr; θÞrsin2θdtdϕþ K2ðr; θÞr2sin2θdϕ2

þ Σðr; θÞ
�
B2ðr; θÞ
N2ðr; θÞ dr

2 þ r2dθ2
�
: ð1Þ

The event horizon is determined by the equation
Nðr; θÞ ¼ 0. Instead of the angular variable θ, we will
use y ¼ cos θ, so that the previous relation can be rewritten
in the following way:

ds2 ¼ −
N2ðr; yÞ −W2ðr; yÞð1 − y2Þ

K2ðr; yÞ dt2

− 2Wðr; yÞrð1 − y2Þdtdϕþ K2ðr; yÞr2ð1 − y2Þdϕ2

þ Σðr; yÞ
�
B2ðr; yÞ
N2ðr; yÞ dr

2 þ r2
dy2

1 − y2

�
: ð2Þ

We will require that the Klein-Gordon equation for a
massive scalar field

1The electro-vacuum generalization in the Einstein theory,
which includes the Kerr-NUT solution, was done in Ref. [10].
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ð□ − μ2ÞΦ ¼ 0 ð3Þ

not only allows for separation of variables in the chosen
coordinates, but that this separation occurs in a similar
fashion with the Kerr black hole. Namely, we imply that,
after the extraction of a prefactor Npðr; yÞBqðr; yÞ from the
generic wave-like function Φðt; r; y;ϕÞ, the equation for
the remaining function Ψðr; yÞ is separable. Taking into
account the Killing vectors ∂t and ∂ϕ, this will lead to the
following ansatz for the scalar field:

Φðt; r;y;ϕÞ ¼ e−iωtþimϕNpðr;yÞBqðr;yÞΨðr;yÞ: ð4Þ

(4) The above method of separation of variables is our
fourth assumption. Here one can certainly choose p
and q to be zero, but wewould like to see whether the
nonzero values of p and q bring broader possibilities
for the allowed forms of Nðr; yÞ and Bðr; yÞ.

Then, using Eq. (4), the test field equation (3) takes the
form

e−iωtþimϕ

�
Pðr;yÞ∂

2Ψ
∂y2 þQðr;yÞ∂Ψ∂y

þTðr;yÞ∂
2Ψ
∂r2 þUðr;yÞ∂Ψ∂r þVðr;y;ω;mÞΨðr;yÞ

�
¼ 0;

ð5Þ

where P, Q, T, and U depend only on N, B, and their
derivatives. The “free term” with the effective potential
Vðr; y;ω; mÞ comes from tt, tϕ and ϕϕ derivatives in
Eq. (3). Although the simplest case p ¼ q ¼ 0 satisfies all
the requirements, it would narrow the class of black holes
solutions considered here, allowing for the separation of
variables.
The necessary conditions for the separability in the

chosen variables (r and y) are the following:
(a) The ratio

Qðr; yÞ
Pðr; yÞ ¼

4p
Nðr; yÞ

∂N
∂y þ 4qþ 1

Bðr; yÞ
∂B
∂y −

2y
1 − y2

ð6Þ

must be a function of y only.

(b) The ratio

Uðr; yÞ
Tðr; yÞ ¼

4pþ 2

Nðr; yÞ
∂N
∂r þ 4q − 1

Bðr; yÞ
∂B
∂r þ 2

r
ð7Þ

must be a function of r only.
(c) The effective potential Vðr; y;ω; mÞ must also be

representable in a form with separated variables in a
special way which will be discussed below.

We calculate derivatives of the right-hand sides of
Eqs. (6) and (7) with respect to r and y and obtain two
homogeneous equations, which for pþ q ≠ −1=4 have
only the trivial solution

∂2

∂r∂y lnðNÞ ¼ ∂2

∂r∂y lnðBÞ ¼ 0;

implying that

N2ðr; yÞ ¼ RNðrÞSNðyÞ; Bðr; yÞ ¼ RBðrÞSBðyÞ:

Further we shall constrain ourselves to the asymptoti-
cally flat black holes, so that, since

N2ð∞; yÞ ¼ Bð∞; yÞ ¼ 1;

we conclude that SNðyÞ ¼ SBðyÞ ¼ 1.
When pþ q ¼ −1=4, the linear system (6) and (7)

allows for a nontrivial solution

∂2

∂r∂y ln
�
B
N

�
¼ 0;

which we do not consider here, because the function B
vanishes at the event horizon (N ¼ 0).
Thus, we will continue with the metric which has the

following form:

N2ðr; yÞ ¼ RNðrÞ; Bðr; yÞ ¼ RBðrÞ: ð8Þ

Equation (5) now takes the following form:

1

1− y2
∂
∂y ð1− y2Þ∂Ψ∂y þ r2RNðrÞ

RBðrÞ2
∂2Ψ
∂r2 þ

�
2rRNðrÞ
RBðrÞ2

þð2pþ 1Þr2R0
NðrÞ

RBðrÞ2
þð4q− 1Þr2RNðrÞR0

BðrÞ
RBðrÞ3

�∂Ψ
∂r

×

�
ω2

r2K2ðr;yÞΣðr;yÞ
RNðrÞ

− 2mω
rWðr;yÞΣðr;yÞ

RNðrÞ
þ m2W2ðr;yÞ
RNðrÞK2ðr;yÞ−

m2Σðr;yÞ
ð1− y2ÞK2ðr;yÞ−μ2r2Σðr;yÞþHðrÞ

�
Ψ¼ 0; ð9Þ
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where HðrÞ depends on RN , RB, and their derivatives. For
simplicity we here choose p ¼ q ¼ 0, and thus HðrÞ ¼ 0.
The choice of nonzero p and q, allowed by our assumption
4, evidently makes the calculations more involved, but does
not lead to any broader class of the resultant metric
functions Nðr; yÞ and Bðr; yÞ.
In order to separate variables we require that the

coefficient in front of Ψ in Eq. (9) be sum of a function
of r and a function of y for any given ω, m, and μ. This
coefficient is an effective potential Vðr; y;ω; mÞ up to the
multiplier which depends on r and y. Thus, we obtain the
separability of the effective potential which we mentioned
in condition c). Then, we imply that

Wðr; yÞ ¼ RWðrÞ þ SWðyÞRNðrÞ=r
Σðr; yÞ ;

K2ðr; yÞ ¼ RKðrÞ þ SKðyÞRNðrÞ=r2
Σðr; yÞ ;

Σðr; yÞ ¼ RΣðrÞ þ SΣðyÞ=r2:

Using again the asymptotical flatness, we observe that
Wðr; yÞ ¼ Oðr−1Þ unless SWðyÞ ¼ 0. Hence

Wðr; yÞ ¼ RWðrÞ
Σðr; yÞ : ð10Þ

Further we will have to expand functions of y around
y ¼ 0, so that it is necessary to fix here the values of SW , SK
and SΣ at y ¼ 0. It is evident that as RWðrÞ, RKðrÞ and
RKðrÞ are some functions of r, which are not fixed, then the
choice of constants SWð0Þ, SKð0Þ and SΣð0Þ will simply
redefine the above functions of r, so that we choose
SWð0Þ ¼ SKð0Þ ¼ SΣð0Þ ¼ 0 without loss of generality.
Let us now consider the condition on the factor in the

two terms proportional tom2 in Eq. (9), which we denote as
Fðr; yÞ,

Fðr; yÞ≡ W2ðr; yÞ
RNðrÞK2ðr; yÞ −

Σðr; yÞ
ð1 − y2ÞK2ðr; yÞ

¼ r4ð1 − y2ÞR2
WðrÞ − RNðrÞðr2RΣðrÞ þ SΣðyÞÞ2

r2ð1 − y2ÞRNðrÞðr2RKðrÞ þ RNðrÞSKðyÞÞ
:

ð11Þ

First we find that, in the equatorial plane (y ¼ 0), one has

Fðr; 0Þ ¼ R2
WðrÞ

RKðrÞRNðrÞ
−
R2
ΣðrÞ

RKðrÞ
:

Since the asymptotic behavior

lim
r→∞

RKðrÞ ¼ lim
r→∞

RNðrÞ ¼ lim
r→∞

RΣðrÞ ¼ 1;

lim
r→∞

RWðrÞ ¼ 0

is fulfilled, then

Fðr; 0Þ → −1; as r → ∞: ð12Þ

In addition, we find that

lim
r→∞

Fðr; yÞ ¼ −1 −
y2

1 − y2
:

Since Fðr; yÞ is also a sum of a function of r and a
function of y, we conclude that

Fðr; yÞ ¼ R2
WðrÞ

RKðrÞRNðrÞ
−
R2
ΣðrÞ

RKðrÞ
−

y2

1 − y2
: ð13Þ

Comparing the right-hand sides of Eqs. (11) and (13), we
obtain an equality, which must be satisfied for any r and y

r4ð1 − y2ÞR2
WðrÞ − RNðrÞðr2RΣðrÞ þ SΣðyÞÞ2

r2ð1 − y2ÞRNðrÞðr2RKðrÞ þ RNðrÞSKðyÞÞ

¼ R2
WðrÞ

RKðrÞRNðrÞ
−
R2
ΣðrÞ

RKðrÞ
−

y2

1 − y2
: ð14Þ

Taking the limit y → 1 in the above relation (14), we find
that

RKðrÞ ¼
�
RΣðrÞ þ

SΣð1Þ
r2

�
2

−
RNðrÞ
r2

SKð1Þ: ð15Þ

Substituting Eq. (15) into Eq. (14) and expanding in
terms of r−1, we find that

SΣðyÞ ¼ SΣð1Þy2; SKðyÞ ¼ SKð1Þy2: ð16Þ

Finally, using Eqs. (15) and (16), we reduce Eq. (14) to
the following form:

RWðrÞ ¼
� ffiffiffiffiffiffiffiffiffiffiffiffi

SKð1Þ
p

r

�
RΣðrÞ

SΣð1Þ
SKð1Þ

− RNðrÞ þ
S2Σð1Þ
SKð1Þr2

�
:

ð17Þ

It follows thatSΣð1Þ¼SKð1Þ>0; otherwiseRWðrÞ¼Oðr−1Þ.
It is convenient now to introduce a rotation parameter

a≡� ffiffiffiffiffiffiffiffiffiffiffiffi
SKð1Þ

p
, so that

SKðyÞ ¼ SΣðyÞ ¼ a2y2 ð18Þ

and

RKðrÞ ¼
�
RΣðrÞ þ

a2

r2

�
2

−
RNðrÞa2

r2
: ð19Þ

For convenience we introduce a new finite function
RMðrÞ, such that

R. A. KONOPLYA, Z. STUCHLÍK, and A. ZHIDENKO PHYS. REV. D 97, 084044 (2018)

084044-4



RWðrÞ ¼
aRMðrÞ

r2
: ð20Þ

Finally, three arbitrary functions of r remain: RM, RB, and
RΣ. The function RNðrÞ, which defines the event horizon, is
given as

RNðrÞ ¼ RΣðrÞ −
RMðrÞ

r
þ a2

r2
: ð21Þ

The general metric, for which we are able to separate
variables, takes the following form:

Bðr; yÞ ¼ RBðrÞ; ð22aÞ

Σðr; yÞ ¼ RΣðrÞ þ
a2y2

r2
; ð22bÞ

Wðr; yÞ ¼ aRMðrÞ
r2Σðr; yÞ ; ð22cÞ

N2ðr; yÞ ¼ RΣðrÞ −
RMðrÞ

r
þ a2

r2
; ð22dÞ

K2ðr; yÞ ¼ 1

Σðr; yÞ
�
R2
ΣðrÞ þ RΣðrÞ

a2

r2
þ a2RMðrÞ

r3

þ a2y2

r2

�
RΣðrÞ −

RMðrÞ
r

þ a2

r2

��

¼ 1

Σðr; yÞ
�
R2
ΣðrÞ þ RΣðrÞ

a2

r2
þ a2y2

r2
N2ðr; yÞ

�

þ aWðr; yÞ
r

: ð22eÞ

Thus, the metric coefficients depend on the tree functions
of the radial coordinate RBðrÞ, RΣðrÞ, and RMðrÞ. However,
we still have the freedom to choose the radial coordinate, so
that only two of these three functions are independent. In
the next section we will give examples of such choices. In
particular, in a number of cases the choice RΣðrÞ ¼ 1 will
be convenient, corresponding to the Boyer-Lindquist coor-
dinates for the Kerr metric. The Kerr-Sen metric is usually
given in the coordinates for which RBðrÞ ¼ 1, correspond-
ing to Schwarzschild-like coordinates in the nonrotating
limit a → 0.

B. Master equation for a scalar field

The function Ψðr; yÞ ¼ RðrÞSðyÞ, where the angular
function satisfies the following equation:

�
d
dy

ð1 − y2Þ d
dy

þ ðω2 − μ2Þa2y2

−
m2y2

1 − y2
− ðm − aωÞ2 þ λ

�
SðyÞ ¼ 0; ð23Þ

where λ is the separation constant, which can be found for
any particular values of ω, a, μ as spheroidal eigenvalues
either numerically (see, for example, Ref. [13] and refer-
ence therein) or, for instance, in the form of an expansion in
terms of small aω [14]. The radial equation has the form

�
RNðrÞ
RBðrÞ

d
dr

r2RNðrÞ
RBðrÞ

d
dr

þ ðr2ωRΣðrÞ þ a2ω − amÞ2
r2

− RNðrÞðλþ μ2r2RΣðrÞÞ
�
RðrÞ ¼ 0: ð24Þ

Here

RNðrÞ ¼ N2ðr; yÞ ¼ RΣðrÞ −
RMðrÞ

r
þ a2

r2
:

By introducing a new function,

PðrÞ ¼ ρðrÞRðrÞ; ρðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2RΣðrÞ þ a2

q
;

and the tortoise coordinate as

dr� ¼
RBðrÞρ2ðrÞ
RNðrÞr2

dr;

the radial equation is reduced to the wave-like form

�
d2

dr2�
þ
�
ω −

am
ρ2ðrÞ

�
2

− UðrÞ
�
P ¼ 0; ð25Þ

with the effective potential

UðrÞ ¼ RNðrÞr2ðλþ μ2r2RΣðrÞÞ
ρ4ðrÞ þ 1

ρðrÞ
d2ρ
dr2�

: ð26Þ

C. Separation of variables in the
Hamilton-Jacobi equation

It is interesting to notice that the Hamilton-Jacobi
equation,

gμν
∂S
∂xμ

∂S
∂xν þ μ2 ¼ 0; ð27Þ

is also separable for the metrics (22).
Indeed, after introducing the integrals of motion,

∂S
∂t ¼ E; ð28Þ

∂S
∂ϕ ¼ −L; ð29Þ

we obtain
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ð1 − y2Þ
�∂S
∂y

�
2

þ y2

1 − y2
L2 − y2a2ðE2 − μ2Þ

þ r2RNðrÞ
R2
BðrÞ

�∂S
∂r

�
2

þ RΣðrÞ
RNðrÞ

L2 − RΣðrÞr2ðE2 − μ2Þ

−
RMðrÞ
rRNðrÞ

ððL − aEÞ2 þ RΣðrÞr2E2Þ ¼ 0; ð30Þ

which evidently has separable variables.
In Ref. [15] it was shown that the separability of the

Klein-Gordon equation usually implies the separability of
the Hamilton-Jacobi equations as well and the latter implies
also the existence of the additional (Carter) constant. This
class of metrics belongs to type D according to the Petrov
classification and describes compact objects whose multi-
pole moments can be expressed in terms of mass and
angular momentum. On the other hand, if the Hamilton-
Jacobi equations are not separable, the Klein-Gordon
equations are usually not separable as well [15]. This
agrees with our analysis, showing that for this particular
method of separation of variables, the separability of the
Klein-Gordon equation constrains the allowed form of
the metric more than the requirement of the separability
of the Hamilton-Jacobi equations. Usually the existence of
the Carter constant is associated with the Killing tensor of
the second order, which should also be expected in our
case. However, we do not study this issue and refer
interested readers to the exhaustive review [16].

D. Final remarks on the obtained class of metrics

Summarizing this section, as a result of our assumptions
1–4 we have obtained a class of metrics given by Eqs. (2)
and (22), which
(1) allow for separation of variables for the Klein-

Gordon (with a massive term) and Hamilton-Jacobi
equations;

(2) have a spherical horizon;
(3) have a well-defined angular momentum at infinity,

corresponding to the asymptotic gtϕ ¼ −4Ma sin2 θ
r , as

r → ∞. [this behavior follows from the asymptotic
flatness, which implies that RM¼2MþOðr−1Þ]; and

(4) possess mirror symmetry relative to the equatorial
plane, which follows from Eq. (18).

One should note that, apart from the asymptotic flatness
conditions, the radial coordinate is not fixed allowing for
the freedom to choose one of the three radial functions
in Eq. (22).
For example, by defining the new radial coordinate

through

dr0 ¼ RBðrÞdr;

one can transform the coordinates in order to have

RBðr0Þ ¼ 1: ð31Þ

Another choice of the new radial coordinate

r0 ¼ r
ffiffiffiffiffiffiffiffiffiffiffiffi
RΣðrÞ

p
;

leads to

RΣðr0Þ ¼ 1: ð32Þ

In other words only two of the three functions, RM, RB,
and RΣ, are independent. The third one can be fixed by
choosing the radial coordinate.

III. RELATION OF THE OBTAINED METRIC
WITH THE EARLIER APPROACHES

Here we shall learn how the above-obtained black-hole
metric is related to two similar approaches that exist in the
literature. Namely, we shall discuss Carter’s approach
developed in Ref. [15] and Johannsen’s approach for the
Hamilton-Jacobi equation [12].

A. Relation to the Carter ansatz

In Ref. [15] Carter suggested an axisymmetric generali-
zation of the spherical spacetime allowing for the separa-
tion of variables. The resultant metric (not necessarily
describing a black hole) was given in the following form
[Eq. (5.18) in Ref. [15]]:

ds2¼ðCyZrðrÞ−CrZyðyÞÞ
�

dr2

ΔrðrÞ
þ dy2

ΔyðyÞ
�

þΔyðyÞ½Crdt−ZrðrÞdϕ�2−ΔrðrÞ½Cydt−ZyðyÞdϕ�2
CyZrðrÞ−CrZyðyÞ

:

ð33Þ

Comparing Eq. (33) for large r with the asymptotic
expansion for a rotating body [see Eq. (13) in Ref. [3]]

ds2 ≈ −
�
1 −

2M
r

�
dt2 −

4Mað1 − y2Þ
r

dtdϕ

þ dr2 þ r2
�

dy2

1 − y2
þ ð1 − y2Þdϕ2

�
; ð34Þ

we find that

ΔyðyÞ ¼ 1 − y2; ð35aÞ

ΔrðrÞ ¼ r2
�
1 −

2M
r

þO
�
1

r2

��
; ð35bÞ

ZyðyÞ ¼ að1 − y2Þ; ð35cÞ
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ZrðrÞ ¼ r2
�
1þO

�
1

r

��
; ð35dÞ

Cy ¼ 1; ð35eÞ

Cr ¼ a: ð35fÞ

The metric (33) with the conditions (35) is a particular
case of the metric (1) with the functions (22) given by

RΣðrÞ ¼
ZrðrÞ − a2

r2
;

RMðrÞ ¼
ZrðrÞ − ΔrðrÞ

r
;

RBðrÞ ¼ 1: ð36Þ

In other words, the radial coordinate in Carter’s paper is
fixed as in Eq. (31).

B. Relation to the Johannsen deformation of Kerr

In Ref. [12] Johannsen proposed a deformation of the
Kerr black hole for which the Hamilton-Jacobi equation is
separable. This weaker condition is satisfied by a more
general class of the metrics, given by the following metric
coefficients:

gθθ ¼ r2 þ fðrÞ þ a2cos2θ;

grr ¼
gθθ

ΔðrÞA5ðrÞ
; ΔðrÞ≡ r2 − 2Mrþ a2;

gtt ¼ −
gθθ½ΔðrÞ − a2A2ðrÞ2sin2θ�

½ðr2 þ a2ÞA1ðrÞ − a2A2ðrÞsin2θ�2
;

gtϕ ¼ a½ΔðrÞ − ðr2 þ a2ÞA1ðrÞA2ðrÞ�gθθsin2θ
½ðr2 þ a2ÞA1ðrÞ − a2A2ðrÞsin2θ�2

;

gϕϕ ¼ gθθsin2θ½ðr2 þ a2Þ2A1ðrÞ2 − a2ΔðrÞsin2θ�
½ðr2 þ a2ÞA1ðrÞ − a2A2ðrÞsin2θ�2

: ð37Þ

For the metric (37) it is possible to show that Eq. (5) is
not separable, unless the following condition is satisfied:

fðrÞ ¼ ðr2 þ a2Þ
�
A1ðrÞ
A2ðrÞ

− 1

�
: ð38Þ

When Eq. (38) is fulfilled, then Eq. (37) is reduced to
Eq. (1) with the functions (22) given by

RΣðrÞ ¼
�
1þ a2

r2

�
A1ðrÞ
A2ðrÞ

−
a2

r2
¼ 1þ fðrÞ

r2
;

RMðrÞ ¼
ðr2 þ a2ÞA1ðrÞ

rA2ðrÞ
−
r2 − 2Mrþ a2

rA2ðrÞ2
;

RBðrÞ ¼
1

A2ðrÞ
ffiffiffiffiffiffiffiffiffiffiffi
A5ðrÞ

p : ð39Þ

Thus, it can be seen that the class of metric described here is
a subclass of the metrics considered in Ref. [12].

IV. AXISYMMETRIC BLACK HOLES

Here, in the first four subsections we shall show how
various known black-hole metrics which allow for the
above separation of variables can be represented within the
obtained class of metric by fixing the functions RMðrÞ,
RΣðrÞ, and RBðrÞ. The last subsection is devoted to the
rotating black hole in the Einstein-dilaton-Gauss-Bonnet
theory which, in the general case, does not allow for the
separation of variables, but which, as it will be shown, for
some applications can effectively be approximated by a
metric allowing for the separation of variables.

A. Kerr metric

Choosing in Eq. (22)

RMðrÞ ¼ 2M; RΣðrÞ ¼ 1; RBðrÞ ¼ 1

we obtain

Bðr; yÞ ¼ 1;

Σðr; yÞ ¼ 1þ a2y2

r2
;

Wðr; yÞ ¼ 2Ma
r2 þ a2y2

;

N2ðr; yÞ ¼ 1 −
2M
r

þ a2

r2
;

K2ðr; yÞ ¼ r2 þ a2 þ 2Ma2=rþ a2y2N2ðr; yÞ
r2 þ a2y2

¼ r2 þ 2a2 þ a4=r2 þ a2ðy2 − 1ÞN2ðr; yÞ
r2 þ a2y2

: ð40Þ

Then Eq. (1) reproduces the Kerr metric in the Boyer-
Lindquist coordinates

ds2 ¼ −
r2 þ a2 − 2Mr
r2 þ a2cos2θ

ðdt − asin2θdφÞ2

þ sin2θ
r2 þ a2cos2θ

ððr2 þ a2Þdφ − adtÞ2

þ r2 þ a2cos2θ
r2 þ a2 − 2Mr

dr2 þ ðr2 þ a2cos2θÞdθ2: ð41Þ

B. Kerr-Newman metric

The Kerr-Newman metric is obtained by choosing

RMðrÞ ¼ 2M −
Q2

r
; RΣðrÞ ¼ 1; RBðrÞ ¼ 1
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so that

Bðr;yÞ ¼ 1;

Σðr;yÞ ¼ 1þa2y2

r2
;

Wðr;yÞ ¼ 2Ma
r2þa2y2

−
Q2a

rðr2þa2y2Þ ;

N2ðr;yÞ ¼ 1−
2M
r

þa2þQ2

r2
;

K2ðr;yÞ ¼ r2þa2þ 2Ma2=r−Q2a2=r2þa2y2N2ðr;yÞ
r2þa2y2

¼ r2þ 2a2þa4=r2þa2ðy2− 1ÞN2ðr;yÞ
r2þa2y2

: ð42Þ

Then Eq. (1) reproduces the Kerr-Newman metric in the
Boyer-Lindquist coordinates

ds2 ¼ −
r2 þ a2 − 2MrþQ2

r2 þ a2cos2θ
ðdt − asin2θdφÞ2

þ sin2θ
r2 þ a2cos2θ

ððr2 þ a2Þdφ − adtÞ2

þ r2 þ a2cos2θ
r2 þ a2 − 2MrþQ2

dr2 þ ðr2 þ a2cos2θÞdθ2:

ð43Þ

C. Modified Kerr metric

Choosing

RMðrÞ ¼ 2M þ η

r2
; RΣðrÞ ¼ 1; RBðrÞ ¼ 1;

we obtain a deformation of the Kerr metric which does not
change the post-Newtonian parameters

Bðr;yÞ¼1;

Σðr;yÞ¼1þa2y2

r2
;

Wðr;yÞ¼ 2Ma
r2þa2y2

þ ηa
r2ðr2þa2y2Þ ;

N2ðr;yÞ¼1−
2M
r

þa2

r2
−
η

r3
;

K2ðr;yÞ¼ r2þa2þ2Ma2=rþηa2=r3þa2y2N2ðr;yÞ
r2þa2y2

¼ r2þ2a2þa4=r2þa2ðy2−1ÞN2ðr;yÞ
r2þa2y2

: ð44Þ

In this way in Eq. (1) we obtain the black-hole metric
suggested in Ref. [7]

ds2 ¼ −
r2 þ a2 − 2Mr − η=r

r2 þ a2cos2θ
ðdt − asin2θdφÞ2

þ sin2θ
r2 þ a2cos2θ

ððr2 þ a2Þdφ − adtÞ2

þ r2 þ a2cos2θ
r2 þ a2 − 2Mr − η=r

dr2 þ ðr2 þ a2cos2θÞdθ2:

ð45Þ

D. Kerr-Sen metric

The Kerr-Sen metric is obtained by choosing

RMðrÞ ¼ 2M; RΣðrÞ ¼ 1þ 2b
r
; RBðrÞ ¼ 1:

After introducing μ ¼ M − b we obtain

Bðr;yÞ¼ 1;

Σðr;yÞ¼ r2þ2brþa2y2

r2
;

Wðr;yÞ¼ 2Ma
r2þ2brþa2y2

¼ 2ðμþbÞa
r2þ2brþa2y2

;

N2ðr;yÞ¼ 1þ2b
r
−
2M
r

þa2

r2
¼ 1−2μrþa2

r2
;

K2ðr;yÞ¼ ðrþ2bÞ2þa2þ2ðMþbÞa2=rþa2y2N2ðr;yÞ
r2þ2brþa2y2

¼ðrþ2bþa2=rÞ2þa2ðy2−1ÞN2ðr;yÞ
r2þ2brþa2y2

: ð46Þ

The metric (1) reads

ds2¼−
r2þa2−2μr

r2þ2brþa2cos2θ
ðdt−asin2θdφÞ2

þ sin2θ
r2þ2brþa2cos2θ

ððr2þ2brþa2Þdφ−adtÞ2

þ r2þ2brþa2cos2θ
r2þa2−2μr

dr2þðr2þ2brþa2cos2θÞdθ2:

ð47Þ

E. Black hole in the Einstein-dilaton-Gauss-Bonnet
theory

The metric for the axially symmetric black hole in the
Einstein-dilaton-Gauss-Bonnet theory was found perturba-
tively in Ref. [11]. Here we shall use that metric rewritten
in terms of the radial coordinate, such that Eq. (22b) is
satisfied, and, consequently, expanded with respect to y [3].
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This way, we take the black-hole metric in the form with RΣðrÞ ¼ 1,

Σ ¼ 1þ a2

r2
y2; ð48aÞ

N2 ¼ 1 −
2M
r

þ a2

r2
þ ζ

�
M3

3r3
þ 26M4

3r4
þ 22M5

5r5
þ 32M6

5r6
−
80M7

3r7

�

− ζ
a2

r2

�
3267M
1750r

þ 5017M2

875r2
þ 136819M3

18375r3
þ 35198M4

18375r4
−
3818M5

735r5
−
4504M6

245r6
þ 16M7

5r7

�
þOða3; ζ2; y2Þ; ð48bÞ

B ¼ 1 − ζ

�
M2

2r2
þ 4M3

3r3
þ 7M4

r4
þ 64M5

5r5
þ 24M6

r6

�

þ ζ
a2

r2

�
1

4
þ 2071M

875r
þ 2949M2

350r2
þ 122862M3

6125r3
þ 3014M4

105r4
þ 6396M5

245r5
−
48M6

5r6

�
þOða3; ζ2; y2Þ; ð48cÞ

W ¼ 2Ma
r2

�
1 − ζ

�
3M2

10r2
þ 14M3

3r3
þ 3M4

r4
þ 24M5

5r5
−
40M6

3r6

��
þOða3; ζ2; y4Þ; ð48dÞ

K2 ¼ 1þ a2

r2
þW

a
r
−
2Ma2

r3
y2

− ζ
a2

r2

�
4463M
875r

þ 2074M2

175r2
þ 127943M3

6125r3
þ 4448M4

525r4
−
2326M5

245r5
−
2792M6

35r6
þ 16M7

15r7

�
y2 þOða4; ζ2; y4Þ; ð48eÞ

where ζ≡ 16πα2=βM4 is a small dimensionless parameter, and α and β are the Gauss-Bonnet and dilaton coupling
constants, respectively.
It is easy to see that if one takes

RMðrÞ ¼ 2M − ζ

�
M3

3r2
þ 26M4

3r3
þ 22M5

5r4
þ 32M6

5r5
−
80M7

3r6

�

þ ζ
a2

r2

�
3267M
1750r

þ 5017M2

875r2
þ 136819M3

18375r3
þ 35198M4

18375r4
−
3818M5

735r5
−
4504M6

245r6
þ 16M7

5r7

�
; ð49aÞ

RBðrÞ ¼ 1 − ζ

�
M2

2r2
þ 4M3

3r3
þ 7M4

r4
þ 64M5

5r5
þ 24M6

r6

�

þ ζ
a2

r2

�
1

4
þ 2071M

875r
þ 2949M2

350r2
þ 122862M3

6125r3
þ 3014M4

105r4
þ 6396M5

245r5
−
48M6

5r6

�
; ð49bÞ

then the functions B and N2, given by

Bðr; yÞ ¼ RBðrÞ; ð50aÞ

N2ðr; yÞ ¼ 1 −
RMðrÞ

r
þ a2

r2
; ð50bÞ

are reproduced precisely on the equatorial plane. Once the
above choice is made and, in addition, if we require the
separation of variables, the functions W and K2 must be
defined as follows:

Wðr; yÞ ¼ aRMðrÞ
r2Σðr; yÞ ; ð50cÞ

K2ðr; yÞ ¼ 1

Σðr; yÞ
�
1þ a2

r2
þ a2y2

r2
N2ðr; yÞ

�

þ aWðr; yÞ
r

: ð50dÞ

Then, the functions Wðr; yÞ and K2ðr; yÞ get small cor-
rections proportional to aζ and a2ζ, respectively.
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As a result we have obtained the metric, given by
Eqs. (50a)–(50d), which allows for the separation of
variables and can serve as an approximation of the
EdGB black hole. In order to test this approximation in
the equatorial plane in the next section we will calculate the
frequency at the innermost stable circular orbit (ISCO) and
the binding energy for the full black-hole metric (48) and its
approximation derived here [Eqs. (50a)–(50d)]. These
quantities do not depend on the function B.

V. BINDING ENERGY AND FREQUENCY AT THE
INNERMOST STABLE CIRCULAR ORBIT

A. Binding energy

The binding energy is the amount of energy released by
the particle going over from a given stable circular orbit
located at ri to the ISCO at rISCO, i.e.,

BE ¼ 1 −
EðrISCOÞ
EðriÞ

; ð51Þ

where the initial circular orbit ri is normally considered to
be at spatial infinity. The binding energy is the simplest
characteristic that may be associated with the amount of
energy the accreting matter releases before falling onto the
black-hole event horizon. It was calculated for various
black holes in Ref. [17].
Defining the four-momentum of a massive particle as

pα ≡m
dxα

ds
; ð52Þ

where s is an invariant affine parameter, we also recall that
in a stationary, axisymmetric metric there are three integrals
of motion which can be related to the particle’s rest massm,
to its energy E ¼ −pt, and its angular momentum L ¼ pϕ.
The normalization condition on the four-momentum

pαpα ¼ −m2 ð53Þ
leads to the following relation in the equatorial plane:

m2grr

�
dr
ds

�
2

¼ VeffðrÞ; ð54Þ

where the effective potential is defined as

VeffðrÞ≡ −ðgttE2 − 2gtϕELþ gϕϕL2 þm2Þjθ¼π=2

¼ K2ðr; π=2Þ
N2ðr; π=2Þ

�
E −

Wðr; π=2Þ
K2ðr; π=2Þ

L
r

�
2

−
L2

r2K2ðr; π=2Þ −m2: ð55Þ

The energy E and momentum L of a particle on a circular
orbit at radial position r can then be determined from the
requirements that

VeffðrÞ ¼ 0; V 0
effðrÞ ¼ 0; ð56Þ

where a 0 indicates a derivative in the radial direction. Once
the expressions for LðrÞ and EðrÞ have been obtained in
this way, the position of the ISCO, rISCO, is computed from
the additional condition V 00

effðrÞ ¼ 0.
Finally, we find the binding energy for a particle in the

background given by the metric (48),

BE ¼ 1 −
2

ffiffiffi
2

p

3
þ 2233ζ

131220
ffiffiffi
2

p � a

18
ffiffiffi
3

p
M

� 50659aζ

1049760
ffiffiffi
3

p
M

þ 5a2

162
ffiffiffi
2

p
M2

þ 1361569247a2ζ

34720812000
ffiffiffi
2

p
M2

þOða3; ζ2Þ;

ð57Þ

where þ and − signs correspond to the co- and counter-
rotating ISCO, respectively.
The particle’s binding energy in the background (50) is

given by,

BE ¼ 1 −
2

ffiffiffi
2

p

3
þ 2233ζ

131220
ffiffiffi
2

p � a

18
ffiffiffi
3

p
M

� 51617aζ

1049760
ffiffiffi
3

p
M

þ 5a2

162
ffiffiffi
2

p
M2

þ 1432768697a2ζ

34720812000
ffiffiffi
2

p
M2

þOða3; ζ2Þ:

ð58Þ

The difference between Eqs. (57) and (58) is practically
negligible, being approximately 2 orders smaller than the
effect expressed in the coefficients proportional to aζ
and a2ζ.

B. ISCO frequencies

We also calculate the corresponding ISCO frequencies,
which are given by the following general formula:

ΩISCO ¼ dϕ
dt

����
r¼rISCO

¼ dϕ
ds

=
dt
ds

����
r¼rISCO

: ð59Þ

For the metric (48a)–(48e) we find (cf. Ref. [18])

ΩISCOM ¼ 1

6
ffiffiffi
6

p
�
1þ 32159ζ

87480

�
� 11a
216M

� 282203aζ
4723920M

þ a2

6
ffiffiffi
6

p
M2

�
59

108
þ 3550244443ζ

3857868000

�
þOða3; ζ2Þ;

ð60Þ

while for the metric (50a)–(50d) we obtain
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ΩISCOM¼ 1

6
ffiffiffi
6

p
�
1þ32159ζ

87480

�
� 11a
216M

� 289106aζ
4723920M

þ a2

6
ffiffiffi
6

p
M2

�
59

108
þ3784470568ζ

3857868000

�
þOða3;ζ2Þ:

ð61Þ

Again the difference between Eqs. (60) and (61) is
approximately 2 orders smaller than the effect expressed in
the coefficients proportional to aζ and a2ζ. Summarizing
this section we conclude that the terms violating the
separability of variables in the Klein-Gordon equation
can be safely neglected in the Einstein-dilaton-Gauss-
Bonnet rotating black-hole metric, at least when one is
limited by estimations of such effects as the binding energy,
position and frequency of the innermost stable circular orbit
in the equatorial plane, etc.

VI. PARAMETRIZATION

In Ref. [3] the most general parametrization for an
arbitrary axially symmetric and asymptotically flat black
hole in any metric theory of gravity was suggested. In other
words any axially symmetric black-hole metric can be
expressed in terms of a number of parameters, in a similar
fashion as the post-Newtonian parametrization, but in such
a way that some of the parameters are fixed by the
spacetime behavior near the event horizon and others by
the behavior far from the black hole. Here, contrary to the
most general parametrization, we consider the more narrow
class of black-hole metrics with a guaranteed separation of
variables in the Klein-Gordon and Hamilton-Jacobi equa-
tions. This class of black holes evidently can be described
within the general parametrization as well and the require-
ment of separability must impose some constrains on the
values of some parameters in the general parametrization.
Here we shall study this issue.

A. The general parametrization for rotating black holes

Here we shall briefly relate the general parametrization
of asymptotically flat and axisymmetric black holes devel-
oped in Ref. [3]. The metric components are functions of
both the radial and the polar angular coordinates, forcing a
double expansion to obtain a generic axisymmetric metric
expression. The radial dependence is expressed in the form
of a continued-fraction expansion in terms of a compacti-
fied radial coordinate. The dependence on y has the form of
a Taylor expansion in terms of y. These choices lead to a
superior convergence in the radial direction and to an exact
limit on the equatorial plane. Thus, the expansion in y has
the following general form:

Σ ¼ 1þ a2

r2
y2 ¼ 1þ a2

r20
ð1 − xÞ2y2; ð62aÞ

N2 ¼ xA0ðxÞ þ
X∞
i¼1

AiðxÞyi; ð62bÞ

B ¼ 1þ
X∞
i¼0

BiðxÞyi; ð62cÞ

W ¼
X∞
i¼0

WiðxÞyi
Σ

; ð62dÞ

K2 ¼ 1þ aW
r

þ
X∞
i¼0

KiðxÞyi
Σ

; ð62eÞ

where we introduced the compact coordinate

x≡ 1 −
r0
r
;

and r0 is the horizon radius in the equatorial plane.
The asymptotic coefficients

BiðxÞ ¼ bi0ð1 − xÞ þ B̃iðxÞð1 − xÞ2; ð63aÞ

WiðxÞ ¼ wi0ð1 − xÞ2 þ W̃iðxÞð1 − xÞ3; ð63bÞ

KiðxÞ ¼ ki0ð1 − xÞ2 þ K̃iðxÞð1 − xÞ3; ð63cÞ

A0ðxÞ ¼ 1 − ϵ0ð1 − xÞ þ ða00 − ϵ0 þ k00Þð1 − xÞ2
þ Ã0ðxÞð1 − xÞ3; ð63dÞ

Ai>0ðxÞ ¼ KiðxÞ þ ϵið1 − xÞ2 þ ai0ð1 − xÞ3
þ ÃiðxÞð1 − xÞ4; ð63eÞ

are designed in such a way that they fit the required post-
Newtonian behavior far from the black hole and the
functions ÃiðxÞ, B̃iðxÞ, W̃iðxÞ, K̃iðxÞ are fixed by the
behavior of the spacetime near the event horizon:

ÃiðxÞ ¼
ai1

1þ ai2x
1þai3x

1þ���

; ð64aÞ

B̃iðxÞ ¼
bi1

1þ bi2x

1þbi3x
1þ���

; ð64bÞ

W̃iðxÞ ¼
wi1

1þ wi2x
1þwi3x

1þ���

; ð64cÞ

K̃iðxÞ ¼
ki1

1þ ki2x

1þki3x
1þ���

: ð64dÞ
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The radial coordinate is chosen in such a way that

k00 ¼
a2

r20
;

k01 ¼ 0: ð65Þ

Notice, that the expansion in the radial direction alone
can be effectively used to numerically represent spherically
symmetric black hole solutions in a compact analytical
form [19].

B. Constrains on the general parametrization for a
black hole allowing for the separation of variables

In order to satisfy the condition (62a), we fix the radial
coordinate as Eq. (32). Comparing the general expansion
(62) with the metric (22) we find that for our class of
metrics one has

Ai>0ðxÞ ¼ 0; ð66aÞ

Ki>2ðxÞ ¼ 0; ð66bÞ

Wi>0ðxÞ ¼ 0; ð66cÞ

Bi>0ðxÞ ¼ 0; ð66dÞ

while, taking into account the radial dependence, we find
that

RB ¼ b00ð1 − xÞ þ b01ð1 − xÞ2
1þ b02x

1þb03x
1þ���

; ð67aÞ

RM ¼ r0

�
1þ a2

r20
ð1 − xÞ2 þ ϵ0x

− ða00 − ϵ0Þð1 − xÞx − a01ð1 − xÞ2x
1þ a02x

1þa03x
1þ���

�
: ð67bÞ

Asymptotically RB and RM are given as

RB ¼ b00ð1 − xÞ þOð1 − xÞ2

¼ ðγ − 1ÞM
r0

ð1 − xÞ þOð1 − xÞ2; ð68aÞ

RM ¼ r0ð1þ ϵ0 − a00ð1 − xÞ þOð1 − xÞ2Þ

¼ 2M

�
1þ ðβ − γÞM

r0
ð1 − xÞ þOð1 − xÞ2

�
; ð68bÞ

where β and γ are the parametrized post-Newtonian
parameters and M is the asymptotic mass (by definition
of the asymptotic parameters ϵ0, a00 and b00). The
coefficients b01; b02; b03;… and a01; a02; a03;… describe
the near-horizon geometry.

All the other coefficients can be expressed in terms of ϵ0,
a00; a01; a02; a03;… and b00; b01; b02; b03;… From the
relation (22c)

W0ðxÞ ¼
aRM

r20
ð1 − xÞ2; ð69Þ

by substituting Eqs. (63b) and (68b) and comparing the
asymptotics from the left- and right-hand sides, we find that

w00 ¼
2Ma
r20

¼ að1þ ϵ0Þ
r0

: ð70Þ

By expanding Eq. (69) near the horizon (x ¼ 0), we find

w01 ¼
a
r0

�
a2

r20
− ϵ0

�
¼ a

r0
×
r20 − 2Mr0 þ a2

r20
;

w02 ¼ 1þ r20ða00 þ a01Þ
a2 − r20ϵ0

¼ 1þ r20ða00 þ a01Þ
r20 − 2Mr0 þ a2

;

w03 ¼ −1 −
r20a00

a2 − r20ϵ0

−
r40a01ða00 þ a01Þ

ða2 − r20ϵ0Þða2 þ r20ða00 þ a01 − ϵ0ÞÞ

þ r20a01a02
a2 þ r20ða00 þ a01 − ϵ0Þ

;… ð71Þ

In a similar manner, from the relation (22e)

K2ðxÞ ¼ ðA0ðxÞx − 1Þ a
2

r20
ð1 − xÞ2; ð72Þ

we find that

k20 ¼ 0; ð73Þ

and also, from the near-horizon expansion, the expressions
for k21; k22; k23…

k21 ¼ −
a2

r20
;

k22 ¼ −
a2

r20
þ 2

�
a2

r20
− ϵ0

�
þ a00 þ a01

¼ −
a2

r20
þ 2

r20 − 2Mr0 þ a2

r20
þ a00 þ a01;

k23 ¼ 1þ r20ða01 þ a01a02 þ ϵ0Þ
a2 þ r20ða00 þ a01 − 2ϵ0Þ

−
a2 þ r20ða00 þ a01 − 2ϵ0Þ

r20
;… ð74Þ
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From

A2ðxÞ ¼ 0; ð75Þ

we obtain

ϵ2 þ a20ð1 − xÞ þ Ã2ðxÞð1 − xÞ2 ¼ ð1 − A0ðxÞxÞ
a2

r20
:

Again, from the asymptotic expansion we find that

ϵ2 ¼ 0;

a20 ¼
a2ð1þ ϵ0Þ

r20
¼ 2Ma2

r30
; ð76Þ

implying that the quadrupole momentum is given as

Q ¼ −
a20r30 þMðk00 þ k20r20Þ

3
¼ −Ma2; ð77Þ

obeying the same relation as for the Kerr black hole.
Finally, from the near-horizon expansion, we find

a21 ¼ −
a2

r20
ϵ0 ¼

a2

r20
−
2Ma2

r30
;

a22 ¼ 1 −
a2 þ r20ða00 þ a01Þ

r20ϵ0
;

a23 ¼
a2 þ r20ða00 þ a01 − ϵ0Þ

r20ϵ0

þ r20a01ð1þ a02Þ
a2 þ r20ða00 þ a01 − ϵ0Þ

… ð78Þ

Summarizing this section, we can notice that the system of
expressions (70), (71), (73), (74), (76), and (78), gives us all
the constraints on the values of the parameters of the
general parametrization when one is limited to black holes
allowing for the above-discussed separation of variables.

VII. CONCLUSIONS

It is important to notice that the class of black holes
considered here is not the most general class of black holes
allowing for the separation of variables in the Klein-Gordon
and Hamilton-Jacobi equations. Instead, we were interested
in a more practical question of describing black holes with
the Kerr-like symmetry: the metrics considered here have a
spherical event horizon and the same quadrupole momen-
tum as the Kerr solution, resulting in the same spheroidal
harmonics for the angular part. This class of black holes,

however narrow it is, includes the known exact analytical
black hole solutions and many other black-hole metrics
obtained by deformations of the Kerr metric or stipulated
by some braneworld or cosmological scenarios etc. For
example, in addition to the Kerr, Kerr-Newman, Kerr-Sen
and the deformed non-Kerr spacetimes considered here, our
parametrization can be used to describe a rotating black
hole projected on a brane [20] or black holes generated by a
quintessential field [21].
Our class of metrics is different from that considered by

Johannsen [12] in two aspects. First, our metrics allow for
the separation of variables not only in the Hamilton-Jacobi,
but also in the Klein-Gordon equation. This way our
metrics form a subclass of the spacetimes considered in
Ref. [12]. Another aspect is related to the parametrization
with respect to the radial coordinate. While Johannsen’s
approach is based on the Taylor 1=r expansion, we used
the continued-fraction approach and achieved thereby
the superior convergence. Within the framework of
Johannsen’s approach there remains the problem of the
roughly equal contribution of lower and higher terms of the
expansion (treated in Refs. [3,6]), when the clear hierarchy
of parameters is absent. Finally, we have obtained a much
simpler class of axisymmetric black-hole spacetimes,
which allows for a simpler analytic treatment for a number
of problems.
In addition, we have shown that for some physical

applications the considered class of spacetimes can be
an effective approximation for black-hole metrics which do
not allow for the separation of variables. Our work can be
further improved in this direction by the analysis of the
accuracy of the proposed approximation of the EdGB black
hole outside the equatorial plane.

ACKNOWLEDGMENTS

R. K. and A. Z. acknowledge support the of the “Project
for fostering collaboration in science, research and educa-
tion” funded by the Moravian-Silesian Region, Czech
Republic and of the Research Centre for Theoretical
Physics and Astrophysics, Faculty of Philosophy and
Science of Sileasian University at Opava. The publication
has been prepared with the support of the “RUDN
University Program 5-100.” A. Z. was partially supported
by Conselho Nacional de Desenvolvimento Científico e
Tecnológico (CNPq), Brazil. Z. S. acknowledges the Albert
Einstein Centre for Gravitation and Astrophysics supported
under the Czech Science Foundation (Grant No. 14-
37086G). The authors would like to thank Eloy Ayon-
Beato for useful comments.

AXISYMMETRIC BLACK HOLES ALLOWING FOR … PHYS. REV. D 97, 084044 (2018)

084044-13



[1] B. P. Abbott et al. (LIGO Scientific and Virgo Collabora-
tions), Phys. Rev. Lett. 116, 061102 (2016); 116, 221101
(2016); 116, 241103 (2016).

[2] C. Goddi et al., Int. J. Mod. Phys. D 26, 1730001 (2017).
[3] R. Konoplya, L. Rezzolla, and A. Zhidenko, Phys. Rev. D

93, 064015 (2016).
[4] Y. Ni, J. Jiang, and C. Bambi, J. Cosmol. Astropart. Phys. 09

(2016) 014.
[5] Z. Younsi, A. Zhidenko, L. Rezzolla, R. Konoplya, and Y.

Mizuno, Phys. Rev. D 94, 084025 (2016).
[6] L. Rezzolla and A. Zhidenko, Phys. Rev. D 90, 084009

(2014).
[7] R. Konoplya andA. Zhidenko, Phys. Lett. B 756, 350 (2016);

J. Cosmol.Astropart. Phys. 12 (2016) 043;N.Yunes,K.Yagi,
and F. Pretorius, Phys. Rev. D 94, 084002 (2016).

[8] V. G. Bagrov, A. G. Meshkov, V. N. Shapovalov, and A. V.
Shapovalov, Izv. Vuz. Fiz. 6, 74 (1974).

[9] B. Carter, Commun. Math. Phys. 10, 280 (1968).
[10] N. Dadhich and Z. Y. Turakulov, Classical Quantum Gravity

19, 2765 (2002).
[11] D. Ayzenberg and N. Yunes, Phys. Rev. D 90, 044066

(2014); 91, 069905(E) (2015).
[12] T. Johannsen, Phys. Rev. D 88, 044002 (2013).

[13] K. D. Kokkotas, R. A. Konoplya, and A. Zhidenko, Phys.
Rev. D 83, 024031 (2011); 92, 064022 (2015); E. W.
Leaver, Proc. R. Soc. A 402, 285 (1985); R. A. Konoplya
and A. Zhidenko, Phys. Rev. D 76, 084018 (2007); 90,
029901(E) (2014).

[14] A. A. Starobinsky, Zh. Eksp. Teor. Fiz. 64, 48 (1973) [Sov.
Phys. JETP 37, 28 (1973)].

[15] B. Carter, Gen. Relativ. Gravit. 41, 2873 (2009).
[16] V. Frolov, P. Krtous, and D. Kubiznak, Living Rev.

Relativity 20, 6 (2017).
[17] R. A. Konoplya, Phys. Rev. D 74, 124015 (2006); R. A.

Konoplya and Y. C. Liu, Phys. Rev. D 86, 084007 (2012);
R. A. Konoplya and A. Zhidenko, Phys. Rev. D 87, 024044
(2013); E. P. Esteban and E. Ramos, Phys. Rev. D 38, 2963
(1988).

[18] P. I. Jefremov, O. Y. Tsupko, and G. S. Bisnovatyi-Kogan,
Phys. Rev. D 91, 124030 (2015).

[19] K. D. Kokkotas, R. A. Konoplya, and A. Zhidenko, Phys.
Rev. D 96, 064004 (2017); K. Kokkotas, R. A. Konoplya,
and A. Zhidenko, Phys. Rev. D 96, 064007 (2017).

[20] P. Kanti, R. A. Konoplya, and A. Zhidenko, Phys. Rev. D
74, 064008 (2006).

[21] J. Schee and Z. Stuchlik, Eur. Phys. J. C 76, 643 (2016).

R. A. KONOPLYA, Z. STUCHLÍK, and A. ZHIDENKO PHYS. REV. D 97, 084044 (2018)

084044-14

https://doi.org/10.1103/PhysRevLett.116.061102
https://doi.org/10.1103/PhysRevLett.116.221101
https://doi.org/10.1103/PhysRevLett.116.221101
https://doi.org/10.1103/PhysRevLett.116.241103
https://doi.org/10.1142/S0218271817300014
https://doi.org/10.1103/PhysRevD.93.064015
https://doi.org/10.1103/PhysRevD.93.064015
https://doi.org/10.1088/1475-7516/2016/09/014
https://doi.org/10.1088/1475-7516/2016/09/014
https://doi.org/10.1103/PhysRevD.94.084025
https://doi.org/10.1103/PhysRevD.90.084009
https://doi.org/10.1103/PhysRevD.90.084009
https://doi.org/10.1016/j.physletb.2016.03.044
https://doi.org/10.1088/1475-7516/2016/12/043
https://doi.org/10.1103/PhysRevD.94.084002
https://doi.org/10.1007/BF03399503
https://doi.org/10.1088/0264-9381/19/11/301
https://doi.org/10.1088/0264-9381/19/11/301
https://doi.org/10.1103/PhysRevD.90.044066
https://doi.org/10.1103/PhysRevD.90.044066
https://doi.org/10.1103/PhysRevD.91.069905
https://doi.org/10.1103/PhysRevD.88.044002
https://doi.org/10.1103/PhysRevD.83.024031
https://doi.org/10.1103/PhysRevD.83.024031
https://doi.org/10.1103/PhysRevD.92.064022
https://doi.org/10.1098/rspa.1985.0119
https://doi.org/10.1103/PhysRevD.76.084018
https://doi.org/10.1103/PhysRevD.90.029901
https://doi.org/10.1103/PhysRevD.90.029901
https://doi.org/10.1007/s10714-009-0888-5
https://doi.org/10.1007/s41114-017-0009-9
https://doi.org/10.1007/s41114-017-0009-9
https://doi.org/10.1103/PhysRevD.74.124015
https://doi.org/10.1103/PhysRevD.86.084007
https://doi.org/10.1103/PhysRevD.87.024044
https://doi.org/10.1103/PhysRevD.87.024044
https://doi.org/10.1103/PhysRevD.38.2963
https://doi.org/10.1103/PhysRevD.38.2963
https://doi.org/10.1103/PhysRevD.91.124030
https://doi.org/10.1103/PhysRevD.96.064004
https://doi.org/10.1103/PhysRevD.96.064004
https://doi.org/10.1103/PhysRevD.96.064007
https://doi.org/10.1103/PhysRevD.74.064008
https://doi.org/10.1103/PhysRevD.74.064008
https://doi.org/10.1140/epjc/s10052-016-4511-0

