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The description of an observer’s measurement in general relativity and the standard model of particle
physics is closely related to the spacetime metric. In order to understand and interpret measurements, which
test the metric structure of the spacetime, like the classical Michelson-Morley, Ives-Stilwell, Kennedy-
Thorndike experiments or frequency comparison experiments in general, it is necessary to describe them in
theories, which go beyond the Lorentzian metric structure. However, this requires a description of an
observer’s measurement without relying on a metric. We provide such a description of an observer’s
measurement of the fundamental quantities time and length derived from a premetric perturbation of
Maxwell’s electrodynamics and a discussion on how these measurements influence classical relativistic
observables like time dilation and length contraction. Most importantly, we find that the modification of
electrodynamics influences the measurements at two instances: the propagation of light is altered as well as
the observer’s proper time normalization. When interpreting the results of a specific experiment, both
effects cannot be disentangled, in general, and have to be taken into account.
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I. INTRODUCTION

In special and general relativity, physical measurements
of an observer are closely related to the Lorentzian
spacetime metric g. An observer propagating through
spacetime on a timelike worldline γ possesses a clock,
which shows its proper time and a set of three rulers, which
show the observer’s orthogonal spatial unit length direc-
tions. An observer employs these unit directions to interpret
physical observables with respect to its rest-frame.
Mathematically, they are modeled by an orthonormal frame
feμg3μ¼0 of the metric g, i.e. gðeμ; eνÞ ¼ ημν. The observer’s
clock, or unit time direction, is given by e0 ¼ _γ while the
spatial directions eα, α ¼ 1, 2, 3 are interpreted as the
unit space rulers of the observer. The just mentioned
physical interpretation of the frames of the metric can
be derived operationally in terms of radar signal experi-
ments, as is for example nicely demonstrated in the
textbook [1, Sec. 9].
A rarely discussed question is what happens to this

description of observers and their measurements when the
theory, whose observables one investigates is not based on
a Lorentzian spacetime metric defining the geometry of the

spacetime manifold. In physics, such theories appear for
example in the axiomatic approach to electrodynamics as
pre-metric or area metric electrodynamics [2,3], in the
standard model extension1(SME) [4–6], the Robertson-
Mansouri-Sexl2(RMS) theory [7–11], quantum gravity
phenomenology inspired κ-Poincare invariant field theories
[12] or in general field theories and models which lead to a
dispersion relation that differs from the general relativistic
one of the standard model of particle physics on curved
spacetime. The question is how are the unit length and unit
time directions of an observer identified operationally for
such theories, what are an observer’s equal time surfaces
and how do observers measure spatial lengths? In special
and general relativity all these different concepts are
directly determined by the spacetime metric. In this article
we will review, collect and construct the mathematical
objects to describe the aforementioned physical concepts
consistently starting from a general local and linear
modification of Maxwell vacuum electrodynamics on
Minkowski spacetime.
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1We will highlight in Sec. II that the photon sector of the SME
is included in the premetric approach to electrodynamics.

2The “metric" of that theory does not solely depend on the
manifold’s coordinates but also on the frame it is measured in, in
particular, its motion with respect to a preferred frame.
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A partial answer to the description of observers
without a metric was given in [13], where a generalized
notion of timelike observer worldlines and the observ-
er’s time measurements are identified from general
dispersion relations. The latter are obtained as level
sets of Hamilton functions on the cotangent bundle of
the manifold where physics takes place, which describe
the geometric optic limit of the field theories in
consideration. Passing from the Hamiltonian to the
Lagrangian description, it became clear that in general
the motion of massless (light) and massive (observer)
particles have to be described by two different Lagrange
functions. For standard model field theories on curved
spacetime and general relativity, these length functions
are closely related and are given by the metric length of
tangent vectors, respectively. However, in general
observers and their measurements need to be described
in terms of the two different Lagrange functions. An
example where the influence of the non-equal light and
massive particle/observer Lagrangian has been taken
into account explicitly is the derivation of quantum-
energy-inequalities in premetric electrodynamics inside
an uniaxial crystal [14].
What still has to be done in the analysis of observers on

the basis of nonmetric field theories is the derivation of
further observable consequences such as the most common
relativistic effects: an observer’s measurement of time
dilation and length contraction. These and other relativistic
observables rely on an observer’s measurement of spatial
lengths and time intervals. The main goal of this article is to
give an operational description of the physical spatial
length an observer measures in terms of a radar experiment.
This extends the previous analysis of the notion of spatial
length on Finsler spacetimes [15] to general dispersion
relations. We like to stress already, that the radar length we
obtain depends on both of the two different aforementioned
Lagrangians.
The influence of the observer model and of an observ-

er’s measurement of radar lengths on the prediction of
observables is particularly relevant for the classical tests
of special relativity and local Lorentz invariance [16–18]:
the Michelson-Morley experiment, the Ives-Stilwell
experiment and the Kennedy-Thorndike experiment. To
constraint deviations from special relativity and local
Lorentz invariance these experiments are often modeled
in the SME or RMS framework. The first approach
considers very general parametrized modifications of
the Lagrangian of the standard model and looks for
phenomenological consequences to constrain the param-
eters of these modifications. The second assumes that
observers are related by modified Lorentz transformations
and constraints for these modifications are deduced from
experiments. In view of proposed satellite based versions
of these experiments [19–21], the interpretation of the
measurements requires a clear theoretical background.

Here a missing link is a consistent derivation of the
notion of observers and their measurements from the
underlying field theories that describe the physics involved
in the experiment. Such a procedure connects the field
theoretical (SME-like) and the kinematical (RMS-like)
approaches to observables from non local Lorentz invariant
or nonmetric field theories. We close this gap by combining
an observer’s measurement of time, as outlined in [13],
with our new derivation of an observer’s measurement of
length both based on the geometric optic limit of the field
theories considered.
The presentation of our result is structured as follows:

We will start in Sec. II and Sec. III by considering a first
order perturbation of Maxwell vacuum electrodynamics in
a Minkowski spacetime in the framework of premetric
electrodynamics, which contains the minimal extension of
the electrodynamics sector used in the SME, where the
Lagrangian is quadratic in the field strength tensor and does
not explicitly depend on the 4-form potential. In the latter
section, we apply the general methods of [13] to the theory
in order to derive the Lagrangians, which govern the
motion of massless (light) and massive (observer) particles.
It turns out these are two different functions, the latter being
a Finsler function. This reveals a yet unobserved relation
between the minimal SME electrodynamics and Finsler
geometric structures and extends earlier connections
between Finsler geometry and the SME, see e.g. [22].
Next, we use our knowledge about the motion of light

and observers in Sec. IV to define an observer’s meas-
urement of time by employing the clock postulate. It states
that the time an observer measures between two events is
given by the length of the observer’s worldline connecting
these events. The length must be measured with the
Lagrange function that governs the motion of massive
particles and determines an observer’s equal time surfaces
which give rise to the observer’s spatial directions. The
central result of our analysis is the derivation of the radar
length from a radar experiment. This radar length assigns
physical operationally accessible numbers to distances
relative to an observer and is the basic quantity that
describes interferometric experiments. Eventually, we
briefly discuss the classical relativistic observables time
dilation and length contraction in Sec. Von the basis of the
time measuring Lagrangian and the radar length we
derived before.
The explicit calculations are done for perturbative theory

on flat spacetime, respectively infinitesimal on curved
spacetime, in order to display explicit formulas and to
give a clear impression how our derivation works. This is
also physically justified, where we expect any deviation
from our current metric theories to be small in recent
experiments. Throughout this perturbative approach
another important subtlety worth mentioning appears. To
derive first order corrections to the notion of radar length in
special and general relativity from a first order perturbation
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of Maxwell’s electrodynamics, it is necessary to derive the
geometric optic limit of the theory to second order in the
perturbation. Otherwise the desired corrections cannot be
determined.
The same analysis on curved spacetime will yield

corrections to the derived formulas in terms of the relevant
spacetime curvature similar to the curvature corrections to
the special relativistic expression in general relativity
[1, Sec 9] and is a project which builds on the results
obtained here.
An interesting aspect of our approach to the descrip-

tion of an observer’s measurement appears when one
reviews the two fundamental postulates of special rela-
tivity in the light of our results. We leave the first
postulate, the clock postulate, untouched, while the
second postulate, the constancy of the speed of light,
becomes derivable from a theory of electrodynamics,
which predicts the motion of light. The local spatial
speed of light an observer measures, can then be derived,
and, if it is constant or not, depends on the theory of
electrodynamics employed. Thus, instead of using the
second postulate of special relativity, we rather formulate
a theory of electrodynamics and derive the relativity
theory from it. In this spirit, Maxwell’s electrodynamics
implies the constancy of the speed of light and special
relativity much like in the historic derivation of special
relativity as can be nicely recognized from the original
papers collected in [23]. Similarly, deviations of the
former lead to modifications of the latter.
The notational and sign conventions in this article are:

The Minkowski metric η has signature ðþ;−;−;−Þ, sym-
metrization Tða1…:anÞ and antisymmetrization T ½a1…:an�

brackets over n indices are defined with a factor ðn!Þ−1.

II. PREMETRIC ELECTRODYNAMICS

To derive the desired relativistic observables from
electrodynamics on a nonmetric background in a
covariant way, we will use the language of general linear
or premetric electrodynamics, which we briefly recall here.
Electrodynamics is described by Maxwell’s equations in
terms of the electromagnetic field strength 2-form F,
the excitation 2-form H and a conserved source current
3-form J

dF ¼ 0; dH ¼ J: ð1Þ

On its own, these equations are not predictive but require a
so-called constitutive relation #. It defines H as a function
of F. All theories defined by the above equations and a
constitutive relation can be considered as a theory of
electrodynamics [2].
The theories of electrodynamics constructed with a local

and linear, also called premetric, constitutive relation are of
particular interest:

H ¼ #ðFÞ; Hab ¼
1

2
κab

cdFcd ¼
1

4
ϵabmnχ

mncdFcd: ð2Þ

κ is the local constitutive tensor and χ the so-called
constitutive density. In local coordinates, the dynamical
equations (1) of the theory become

1

2
∂ ½aðκbc�de∂dAeÞ ¼

1

4
∂ ½aðεbc�deχdefg∂fAgÞ ¼

1

3!
Jabc;

ð3Þ

or in terms of the field strength

Fab ¼ 2ð∂aAb−∂bAaÞ;∂bðχabcdFcdÞ¼ ja ¼ 1

3!
ϵabcdJabcd:

ð4Þ

Equation (4) is obtained from Eq. (3) by contraction with
the total antisymmetric Levi-Civita symbol ϵabcd, which is
normalized such that ϵ0123 ¼ 1. The covariant formulation
of premetric electrodynamics enables a precise study of the
propagation behaviour of light in this general setting [24]
and for the quantization of the theory [14,25,26].
General premetric electrodynamics covers a huge variety

of effects. Interesting examples are vacuum electrodynam-
ics and quantum corrections to electrodynamics from
renormalization on curved spacetimes [27], electrodynam-
ics in media [2] and area-metric electrodynamics [3,28]. In
the first case, the constitutive law is defined solely through
the spacetime metric, in the second by the metric and its
curvature, in the third by the properties of the medium in
consideration and in the fourth case by a general area
measure on the manifold.
The geometric optical limit of the theory is described by

the Fresnel polynomial [24]

GðkÞ ¼ Gabcdkakbkckd;

Gabcd ¼ 1

4!
ϵe1e2e3e4ϵe5e6e7e8χ

e2e1e6ðaχbje3e7jcχdÞe4e8e5 : ð5Þ

It determines the motion of particles via Hamilton’s
equations of motion and its level sets represent the
dispersion relation of the theory, i.e., GðkÞ ¼ m4 for
massive and GðkÞ ¼ 0 for massless particles. The Fresnel
polynomial determines the causal structure of the theory,
which can be much more involved than a metric light cone.
It may contain for example several light cones as it is the
case for birefringent crystals [29].

III. PARTICLE PROPAGATION FROM WEAK
PREMETRIC ELECTRODYNAMICS

Our aim is to derive an observer’s measurement of length
from a radar experiment in the next section. The experiment
consists of an observer, who sends out light rays which get
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reflected and propagate back to the observer. As a pre-
requisite, we derive here the motion of observers and light
rays predicted by the most general position independent
local and linear first order perturbation of Minkowski
spacetime Maxwell- or metric electrodynamics, which
can be derived from an action. We call this theory, in line
with the definition of premetric electrodynamics in the
previous section, weak premetric electrodynamics or short
WPE. It includes the theory of electrodynamics employed
in the minimal SME [5,30], and the theories of electrody-
namics from which the modified spectrum of the hydrogen
atom has been derived in [31,32].
We derive the Fresnel polynomial, which determines the

propagation of particles and the causal structure of the
spacetime manifold and translate the Hamiltonian descrip-
tion of particle propagation based on the Fresnel poly-
nomial into its corresponding Lagrangian, respectively
Finslerian formulation.

A. The geometric optics limit

The most general WPE is described by a constitutive
density of the form

χabcd ¼ j detðηÞj12ð2ηa½dηc�b þKabcdÞ; ð6Þ

where the term Kabcd parametrizes the deviations from
metric electrodynamics and has the following properties
Kabcd ¼ K½ab�½cd� ¼ K½cd�½ab� and Ka½bcd� ¼ 0, i.e., it has the
same symmetries as the Riemann curvature tensor. The
pair-symmetry excludes dissipative energy-loss effects
induced by the modified background of the theory, while
the Bianchi-Identity symmetry excludes an axion scalar in
the background which does not contribute to the electro-
magnetic energy-momentum nor influence the propagation
of light.3 Throughout this article we consider the constit-
utive density in a Cartesian coordinate system, in which the
determinant of the Minkowski metric is one and the Kabcd

are assumed to be constant. We assume the existence of
such a coordinate system over the region of spacetime,
where the radar experiment is performed, i.e., our results
hold locally on curved or globally on flat spacetime.
Evaluating the second field equation in (1) with the

constitutive law (6), we get

ðηacηbd þKabcdÞ∂bFcd ¼ 0: ð7Þ

This is exactly the equation of motion employed in the
minimal SME electrodynamics [5,30] with the difference
that there Kabcd is additionally assumed to be double trace
free Kabcdηacηbd ¼ 0.

To obtain the desired observables from the field theory to
first order in the perturbation parameters Kabcd, it is
necessary to derive the Fresnel polynomial to second-order
in these. In particular, the lightlike directions we seek to
determine to first order depend on the root of the second
order geometric optic limit as we demonstrate in (18). In the
framework of the SME, the same feature is present, see
Eq. (4) in [33]. Nonetheless, the second order Fresnel
polynomial (8) derived from (7), whose level sets define the
dispersion relation for timelike and lightlike covectors in
that theory, we display here for the first time to our
knowledge

GðkÞ ¼ η−1ðk; kÞ2 − η−1ðk; kÞKðk; kÞ

þ 1

2
ðKðk; kÞ2 − J ðk; k; k; kÞÞ þOðK3Þ; ð8Þ

where Kðk; kÞ is defined as

Kðk; kÞ ¼ Kackakc; with Kac ¼ Kabcdηbd ¼ Kabc
b:

ð9Þ

Indices are raised and lowered with the Minkowski metric η
although η is not a fundamental object in the theory we are
investigating but rather one of several building blocks. In
the second order perturbation of G, the symbol J ðk; k; k; kÞ
denotes a symmetric fourth rank tensor contracted with four
covectors k, which is build from a particular square of the
coefficients Kabcd

J ðk; k; k; kÞ ¼ J acefkakckekf ¼ KabcdKe
b
f
dkakckekf:

ð10Þ

As usual, OðKnÞ denotes terms at least of the order n
in Kabcd.
The observables we seek to derive are best described in

configuration space and not on phase space. Thus we need
to determine the directions along which light propagates
and a precise notion of directions along which observers
travel as well as their proper-time parametrization. This can
be done by deriving the point-particle action for massless
and massive trajectories, which are defined by Lagrange
functions we call L# and L�, respectively. We will find that
for the Fresnel polynomial (8) these are different functions.
In case the WPE coefficients Kabcd vanish, i.e. on the basis
of metric electrodynamics, there exists a close relation
between them, namely one is the square root of the other.
To be able to obtain the aforementioned Lagrangians, it

is necessary that the determinant of the second derivative of
the Fresnel polynomial with respect to the momentum
covectors k does not vanish, i.e., detð∂ka∂kbGðkÞÞ ≠ 0 for
all k satisfying GðkÞ ¼ 0, see [13]. Thus, our subsequent
results hold if

3For further details on the decomposition of the constitutive
density into a symmetric tracefree, antisymmetric (skewon) and
trace (axion) part, see [2].
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detð∂ka∂kbGðkÞÞ ¼ −96η−1ðk; kÞ2ð8η−1ðk; kÞ2 − σ4η−1ðk; kÞð4Kðk; kÞ þKa
aη

−1ðk; kÞÞ
þ σ2ð8Kðk; kÞ2 þ 8J ðk; k; k; kÞ þ 4η−1ðk; kÞkakbðKacKc

b − 3J c
cabÞ

− η−1ðk; kÞ2KabKab þ η−1ðk; kÞKa
að10Kðk; kÞ þ η−1ðk; kÞKb

bÞÞÞ þOðK3Þ ≠ 0: ð11Þ

To second order in K this means that, η−1ðk; kÞ ¼ 0 should
not imply GðkÞ ¼ 0. If we would have considered the
Fresnel polynomial (8) only to first order that would be
the case however. Hence, in order to be able to describe the
radar experiment in terms of configuration space wordlines
at all it is necessary to consider the second order WPE
perturbation of the Fresnel polynomial from metric
electrodynamics.

B. Propagation of light

Applying the methods developed in [13], the massless/
lightlike directions _x, corresponding to the lightlike wave
covectors k determined by the vanishing of the Fresnel
polynomial (8), are described by a Lagrange function called
L#. It is defined via the Helmholtz action for trajectories of
massless momenta

S½x; k; λ� ¼
Z

dτðka _xa − λGðkÞÞ; ð12Þ

which can be successively transformed into an action

S½x; μ� ¼ μ

Z
dτL#ðx; _xÞ; ð13Þ

where L#ðyÞ is the so called dual polynomial to GðkÞ. The
dual polynomial is a polynomial in y defined via the
relation that for ya ¼ ∂kaGðkÞ it satisfies Lð∂kaGðkÞÞ ¼
QðkÞGðkÞ for some factor QðkÞ. In particular this means
that L#ðyÞ ¼ 0 for the velocities ya ¼ ∂kaGðkÞ which are
obtained from null momenta k satisfying GðkÞ ¼ 0.
To obtain the dual polynomial we first we solve the

equations of motion obtained by variation with respect to k
for k as function of the velocities _x.
Variation of Eq. (12) with respect to k yields

yaðkÞ ¼
_xaðkÞ
λ

¼ ∂kaGðkÞ ¼ 4kaη−1ðk; kÞ
− 2ðη−1ðk; kÞkbKab þ kaKðk; kÞÞ
− 2ðkbkckdJ a

bcd − kbKabKðk; kÞÞ þOðK3Þ;
ð14Þ

which can be inverted to

kaðyÞ ¼
ya

22=3ηðy; yÞ1=3 þ
1

2
2
3

�
Kabyb

2ηðy; yÞ1=3 −
Kðy♭; y♭Þya
6ηðy; yÞ4=3

�

þ
�
ya

�
21=3Kðy♭; y♭Þ2
9ηðy; yÞ7=3 −

KbcKc
dybyd

1222=3ηðy; yÞ4=3 −
J ðk; k; k; kÞ
322=3ηðy; yÞ7=3

�

þ J abcdybycyd

222=3ηðy; yÞ4=3 −
KabybKðy♭; y♭Þ
322=3ηðy; yÞ4=3 þ KacKc

dyd

422=3ηðy; yÞ1=3
�
þOðK3Þ: ð15Þ

We introduced the musical-isomorphism notation y♭ ¼
ηðy; ·Þ for a vector mapped to a covector by pulling an
index with the inverse Minkowski metric.
Next, we find the nonpolynomial Lagrangian L̃, which

satisfies L̃ð∂kaGðkÞÞ ¼ GðkÞ

L̃ðyÞ ¼ GðkðyÞÞ

¼ 1

2
8
3ηðy; yÞ43 ðηðy; yÞ

2 þ 1

3
Kðy♭; y♭Þηðy; yÞ

þ 1

18
ð3J ðy♭; y♭; y♭; y♭Þ − 2Kðy♭; y♭Þ2

þ 3KacKc
byaybηðy; yÞÞ þOðK3ÞÞ: ð16Þ

The desired dual polynomial L# is not given by 2
8
3ηðy; yÞ43L̃

since this polynomial does not satisfy the defining equation

L#ð∂kaGðkÞÞ ¼ QðkÞGðkÞ. By simple modification of the
coefficients in front of the different terms appearing in this
polynomial, we find, however, easily that the desired dual
polynomial is given by

L#ðyÞ ¼ ηðy; yÞ2 þ 3Kðy♭; y♭Þηðy; yÞ

þ 1

2
ð3J ðy♭; y♭; y♭; y♭Þ þ 4Kðy♭; y♭Þ2

þ 5KacKc
byaybηðy; yÞÞ: ð17Þ

Using (14) one can verify by direct calculation that
L#ðyðkÞÞ ¼ QðkÞGðkÞ ¼ ð4η−1ðk; kÞÞ4GðkÞ as desired.
To determine the directions N along which light prop-

agates, we make the ansatz N ¼ N0 þ N1�, where N0

is the leading order and N1 of order K. Evaluating the

OBSERVERS’ MEASUREMENTS IN PREMETRIC … PHYS. REV. D 97, 084043 (2018)

084043-5



null-condition L#ðNÞ ¼ 0þOðK3Þ order by order the null
vectors have to satisfy

ηðN0; N0Þ ¼ 0;

ηðN0; N1�Þ ¼ −
3

4
KðN♭

0; N
♭
0Þ

� 1

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KðN♭

0; N
♭
0Þ2 − 6J ðN♭

0; N
♭
0; N

♭
0; N

♭
0Þ

q
:

ð18Þ
Thus, there exist two different sets of lightlike directions
predicted by WPE. The effect we encounter here is nothing
but birefringence, where different polarizations of light,
here distinguished by different lightlike vectors, propagate
in different null surfaces. This effect is unavoidable as soon
as one leaves the realm of metric electrodynamics [34]. In
order to obtain well-defined light propagation one neces-
sary requirement on the perturbation parameters Kabcd is

KðN♭
0; N

♭
0Þ2 − 6J ðN♭

0; N
♭
0; N

♭
0; N

♭
0Þ ≥ 0: ð19Þ

The calculation above shows again explicitly that it was
necessary to go to second order in Kabcd in GðkÞ to capture
effects of the perturbation of the propagation of light, since
this second order in (17) enters the perturbation of the light
direction N1.

C. Propagation of massive particles and observers

To determine the Lagrange function L�, which deter-
mines the motion of observers, i.e. particles with mass
m > 0, consistent with the theory of electrodynamics in
consideration, we follow again the procedure introduced in
[13] and apply the action

S½x; k; λ� ¼
Z

dτ

�
ka _xa − λ ln

�
G
�
k
m

���
: ð20Þ

Variation with respect to λ enforces the dispersion relation
GðkÞ ¼ m4. Variation with respect to x yields the equation
of motion for the time evolution of k and variation with
respect to k gives the equation, which relates massive
covectors to its corresponding velocities, where a first order
calculation suffices here,

ya ¼ _xa

λ
¼ 1

4

∂̄aGðkÞ
GðkÞ ¼ ka

η−1ðk; kÞ þ
1

2

kaKðk; kÞ
η−1ðk; kÞ2

−
1

2

Kabkb
η−1ðk; kÞ þOðK2Þ: ð21Þ

Observe that the right-hand side of (21) is homogeneous of
degree −1 with respect to k. Thus, ka must be homo-
geneous of degree −1with respect to _x. Inserting kð_xλÞ in the
action to obtain S½_x; λ� and performing variation with
respect to λ yields the dispersion relation in the form

ln

�
λ4

m4

�
¼ lnðGðkð_xÞÞÞ; ð22Þ

which we can now solve for λð_xÞ

λ ¼ m

Gðkð_xÞÞ14 : ð23Þ

Due to the homogeneity of k and G, this implies
Gðkð_xλÞÞ ¼ m4. Inserting such a solution kað_xλÞ, the solution
for λ and the dispersion relation GðkÞ ¼ m4 into the action
yields

S½x� ¼ m
Z

dτ
1

Gðkð_xÞÞ14 : ð24Þ

Note that the same reasoning can be applied for general r-
homogeneous functions GðkÞ whose level sets define
dispersion relations. In general then the action becomes

S½x� ¼ m
Z

dτ
1

Gðkð_xÞÞ1r : ð25Þ

Returning to the Fresnel polynomial of WPE by solving
Eq. (21) for kað_xλÞ explicitly, we find to first order in K

kaðyÞ ¼ ηabkbðyÞ ¼
ya

ηðy; yÞ þ
1

2

�
Kabyb
ηðy; yÞ −

yaKðy♭; y♭Þ
ηðy; yÞ2

�
þOðK2Þ; ð26Þ

which implies

GðkðyÞÞ ¼ 1

ηðy; yÞ2 −
Kðy♭; y♭Þ
ηðy; yÞ3 þOðK2Þ: ð27Þ

Following the general argument presented above, we only
need to calculate

1

Gðkð_xÞÞ14 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ηð_x; _xÞ

p �
1þ 1

4

Kð_x♭; _x♭Þ
ηð_x; _xÞ

�
þOðK2Þ ð28Þ

to obtain the action for massive particles

S½x� ¼ m
Z

dτ

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
ηð_x; _xÞ

p �
1þ 1

4

Kð_x♭; _x♭Þ
ηð_x; _xÞ

�
þOðK2Þ

�
:

ð29Þ

This defines the desired Lagrangian L�ð_xÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
ηð_x; _xÞp

×

ð1þ 1
4

Kð_x♭;_x♭Þ
ηð_x;_xÞ Þ þOðK2Þ. It determines the motion of mas-

sive particles and an observer’s measurement of time. Note
that since L� is homogeneous of degree one with respect to
its argument it is a Finsler function. Thus, WPE, cf. (7),
which contains the SME electrodynamics, predicts the
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motion of massive particles on Finslerian geodesics. To the
knowledge of the authors, this connection between the
SME and Finsler geometry has not been pointed out earlier.
Further connections between the SME and Finsler geom-
etry have been made in the literature, see e.g. [22,35,36].
In contrast to the massless particles case derived in

Sec. III B, the first order expression of L� suffices for all
upcoming applications.

IV. AN OBSERVER’S MEASUREMENT OF TIME
AND SPATIAL LENGTH

In the previous section, we derived the Lagrangians that
describe the relativistic motion of light and observers
determined by WPE:

(i) L#, defined in Eq. (17), determines the motion of
light, i.e. the motion along curves whose tangent
vector N satisfies L#ðNÞ ¼ 0.

(ii) L�, read-off from Eq. (29), determines the motion
and proper time of observers, i.e. the motion along
curveswhose tangent vectorsU satisfiesL�ðUÞ ¼ 1.4

The Lagrangian L� defines an observer’s measurement of
time and its equal time surfaces. It thus determines time
dilation effects as we will see in more detail in Sec. VA. In
contrast, an observer’s measurement of spatial length in
terms of a radar experiment is influenced by both
Lagrangians L� and L#. The resulting radar length deter-
mines length contractions, which we derive in Sec. V B.

A. The clock postulate and equal time surfaces

One of the fundamental postulates special and general
relativity are based on is the clock postulate: The time that
an observer measures between two events is the length of
its worldline γ connecting these events. In special and
general relativity, this postulate is realized by specifying the
metric length of curves, which is the zeroth order of L� in
(29), to be the relevant length measure.
We can use the clock postulate to define the time

measurement of observers in nonmetric background geom-
etries. The Lagrangian L�, which governs the motion of
massive particles defines a length functional for observer
curves γ with an arbitrary parametrization τ and respective
tangent _γ ¼ dγ

dτ. The length of the worldline between two
events p1 ¼ γðτ1Þ and p2 ¼ γðτ2Þ is given by

T½p1; p2; γ� ¼
Z

τ2

τ1

dτL�ð_γÞ: ð30Þ

It is interpreted as time the observer measures between
them. Since L� is 1-homogeneous in its vector argument the

length functional is parametrization invariant and there
exits a distinguished parametrization of the curve, its arc
length parametrization

T½p1; p2; γ� ¼
Z

τ2

τ1

dτL�ð_γÞ

¼
Z

tðτ2Þ

tðτ1Þ
dtL�ðγ0Þ ¼ tðτ2Þ − tðτ1Þ: ð31Þ

This parametrization is an observer’s proper time and the
respective tangent vector denoted by UðtÞ ¼ γ0ðtÞ ¼ dγðtÞ

dt
satisfies L�ðUðtÞÞ ¼ 1. Thus, the demand of the normali-
zation of the observer’s tangent with respect to L� fixes
the parametrization of the observer curve to arc-length
parametrization.
The equal time surfaces Σt of an observer are then

mathematically characterized by the vectors X, which are
annihilated by the momentum covector kðUðtÞÞ corre-
sponding to the observers tangent UðtÞ, see [13, Sec. 7].
More precisely the set of spatial vectors

TγðtÞΣt ¼ SETðUðtÞÞ ≔ fX ∈ TγðtÞMjkaðUðtÞÞXa ¼ 0g;
ð32Þ

is the tangent space to the equal time surface at the observer
position. With help of Eq. (26) and the normalization
condition

L�ðUÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ηðU;UÞ

p �
1þ ϵ

1

4

KðU♭; U♭Þ
ηðU;UÞ

�

¼ 1 ⇒ ηðU;UÞ ¼ 1 − ϵ
1

2
KðU♭; U♭Þ; ð33Þ

the defining relation can be expressed as

kaðUðtÞÞXa ¼ ηðUðtÞ; XÞ þ 1

2
KðUðtÞ♭; X♭Þ ¼ 0: ð34Þ

In metric spacetime geometry, the spatial vectors are given
by the orthocomplement of UðtÞ with respect to the
spacetime metric. Here, the modification to that condition
induced by the causal structure derived from WPE (7)
becomes explicitly visible.
So far we showed how WPE fixes the propagation of

light as well as an observer’s measurement of time and the
observer’s spatial directions or equal time surfaces. Next,
we use a radar experiment to determine an observers notion
of spatial length.

B. Radar length

Suppose X is an object carried by an observer on a
worldline γ with L� normalized tangent U who is located at
one endpoint of X. At the other end of X a mirror shall be
attached. The observer on γ obtains the radar length LUðXÞ

4A mathematical more precise identification of observer
directions in terms of the hyperbolicity properties of G and L#

was developed in [13, Sec. 5] and summarized in [14, Sec. 2. 2].
Observer directions are those which lie inside a hyperbolicity
cone of L#.
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of X by measuring the proper time a light pulse needs to
travel from the observer to the mirror and back as sketched
in Fig. 1. For the analysis of the radar experiment we
assume that U is constant during the time the experiment is
performed and that X is modelled by a constant vector, i.e.,
we assume that the observer is inertial and that there are no
internal changes of the object induced by WPE over the
travel time of the light pulse.
On the basis of a general Finslerian clock, the radar

length has been described in [15]. The difference in the
analysis we perform here is that we relax some assump-
tions. First, we will not assume anything about the con-
stancy or nonconstancy of the spatial speed of light an
observer measures, this quantity is determined by the
underlying theory of electrodynamics. Second, we do
not set L� ¼ L#, since this is in general not the case as
we have seen in Sec. III and third we do not assume that the
radar experiment is symmetric, since this setup does in
general not measure equal time distances, as will become
clear in Sec. IV B 4.
The key relation in the infinitesimal or flat spacetime

description of the radar experiment is that the sum and the
difference of certain multiples of an observer’s normalized
tangent U and the direction X must yield a lightlike
direction, cf. Fig. 1. More precisely,

Nþ ¼ lUðXÞU þ X; and N− ¼ l̃UðXÞU − X ð35Þ

have to satisfy

L#ðNþÞ ¼ 0 ¼ L#ðN−Þ; ð36Þ

and U is normalized with respect to L�

L�ðUÞ ¼ 1: ð37Þ

The null conditions (36) determine the factors lUðXÞ and
l̃UðXÞ and their sum gives the radar length

LUðXÞ ¼ lUðXÞ þ l̃UðXÞ: ð38Þ

Observe that the units of the radar length here are units
of time. Since we do not assume a constant speed of light
there is no natural conversion factor between units of
length and units of time available. We will derive the
explicit expressions for lUðXÞ and l̃UðXÞ and discuss
different choices of X along which a radar experiment
may be performed.
As sketched in Fig. 1, the same radar time measure-

ment belongs to different choices of X, i.e. the radar
experiment does not determine X. The description of the
radar experiment depends on additional conditions which
prescribe the relation between the X and U. In fact, the
ambiguity is in choosing the starting point of X along the
worldline of the observer. One well-motivated way,
depicted in Fig. 1(b), would be to consider only those
X that are spatial with respect to U, i.e., that are in its
equal time surface and satisfy (34), see Sec. IVA.
Another possibility, depicted in Fig. 1(c), is to choose
X such that the radar experiment is symmetric, i.e.
lUðXÞ ¼ l̃UðXÞ. On the basis of metric electrodynamics
both of these choices are identical, however for general
WPE this is no longer the case.

1. The setup and the zeroth order result

To present the results in a structured way, we consider a
general light Lagrangian L# as a power series in a
perturbation parameter ϵ, which parametrizes the deviation
from metric light propagation. It can be used for various
applications depending on the source of the deviation.
Here, it corresponds to the powers of the perturbation K of
metric electrodynamics discussed in Sec. III. Thus, we use
the light Lagrangian

L#ðyÞ ¼ Gðy; y; y; yÞ ¼ Gabcdyaybycyd ¼ ηðy; yÞ2
þ ϵηðy; yÞh1ðy; yÞ þ ϵ2h2ðy; y; y; yÞ; ð39Þ

FIG. 1. Sketch of a radar experiments: An observer on its worldline (solid) with tangent U emits light (dotted) ðNþÞ along an object X
(dashed) which propagates back ðN−Þ to the observer.
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where the perturbation tensors h1 and h2 can be read off
Eq. (17) and G is the totally symmetric light Lagrangian
tensor. A short calculation determines its components in a
coordinate basis

Gabcd ¼
1

4!
∂ya∂yb∂yc∂ydL

# ¼ 1

3
ðηabηcd þ ηacηbd þ ηadηbcÞ

þ ϵ

6
ðηadh1bc þ ηach1bd þ ηabh1cd þ ηbch1ad

þ ηbdh1ac þ ηcdh1abÞ þ ϵ2h2abcd; ð40Þ

with

h1ab ¼ 3Kab;

h2abcd ¼
1

2
ð3Kðarb

sKcjsjdÞr þ 4KðabKcdÞ þ 5ηðabKc
rKdÞrÞ:

ð41Þ

In the same language, the normalization of the observer
tangent U reads, c.f. Eq. (33),

L�ðUÞ ¼ 1 ⇒ ηðU;UÞ ¼ 1 − ϵ
1

6
h1ðU;UÞ: ð42Þ

To solve the null conditions (36) to first order in ϵ, we
write

lUðXÞ ¼ lð0Þ
U ðXÞ þ ϵlð1Þ

U ðXÞ; ð43aÞ

l̃UðXÞ ¼ l̃ð0Þ
U ðXÞ þ ϵl̃ð1Þ

U ðXÞ: ð43bÞ

In addition, we decompose the scalar product between U
and X:

ηðX;UÞ ¼ fð0ÞðX;UÞ þ ϵfð1ÞðX;UÞ: ð44Þ

Specifying the functions fð0ÞðX;UÞ and fð1ÞðX;UÞ fixes
relations between X and U, i.e. singles out special direction
along which the radar experiment can be performed. Some
specific choices will discussed below.
To zeroth order the Eq. (36) are solved by

lð0Þ
U ðXÞ ¼ −fð0ÞðX;UÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fð0ÞðX;UÞ2 − ηðX;XÞ

q
ð45aÞ

l̃ð0Þ
U ðXÞ ¼ fð0ÞðX;UÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fð0ÞðX;UÞ2 − ηðX;XÞ

q
ð45bÞ

whose sum is

LUðXÞ ¼ lð0Þ
U ðXÞ þ l̃ð0Þ

U ðXÞ ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fð0ÞðX;UÞ2 − ηðX;XÞ

q
:

ð46Þ

Hence, for an observer’s spatial distances satisfying
fð0ÞðX;UÞ ¼ 0, i.e. those vectors orthogonal to U with
respect to the Minkowski metric η, see Eq. (34), the usual
spatial length expression known from special relativity

lUðXÞ ¼ l̃UðXÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ηðX;XÞ

p
ð47Þ

is obtained, derived here from metric electrodynamics.
Important to mention is that this zero order solutions also

solve the first order of the null condition Eq. (36). This
demonstrates once more explicitly why we had to go to
second order in perturbation theory when we derived the
geometric optics limit, cf. Eq. (8).

2. The first order weak premetric perturbation

The second order of the null conditions (36) determine
the first order corrections of lUðXÞ and l̃UðXÞ from WPE.5

We find the four solutions

lð1Þ
U ðXÞσ ¼

1

ðlð0Þ
U ðXÞ þ fð0ÞðX;UÞÞ

�
AðX;UÞ þ σ

1

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
BðX;UÞ

p �
ð48aÞ

l̃ð1Þ
U ðXÞσ̃ ¼

1

ðl̃ð0Þ
U ðXÞ − fð0ÞðX;UÞÞ

�
ÃðX;UÞ þ σ̃

1

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B̃ðX;UÞ

q �
; ð48bÞ

where σ and σ̃ can assume the values 1 or −1 and we introduced the abbreviations

AðX;UÞ ¼ −
1

4
h1ðX;XÞ −

1

6
lð0Þ
U ðXÞð3lð0Þ

U ðXÞh1ðU;UÞ þ h1ðX;UÞ þ 6fð1ÞðX;UÞÞ; ð49aÞ

ÃðX;UÞ ¼ −
1

4
h1ðX;XÞ −

1

6
l̃ð0Þ
U ðXÞð3l̃ð0Þ

U ðXÞh1ðU;UÞ − h1ðX;UÞ − 6fð1ÞðX;UÞÞÞ; ð49bÞ

5The calculation was done with help of the computer algebra extension xAct for Mathematica.
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as well as

BðX;UÞ ¼ h1ðX;XÞ2 − 4h2ðX;X; X; XÞ þ 4lð0Þ
U ðXÞðh1ðX;XÞh1ðX;UÞ − 4h2ðX;X; X;UÞÞ

þ 2lð0Þ
U ðXÞ2ðh1ðX;XÞh1ðU;UÞ þ 2h1ðX;UÞ2 − 12h2ðX;X;U;UÞÞ

þ 4lð0Þ
U ðXÞ3ðh1ðX;UÞh1ðU;UÞ − 4h2ðX;U;U;UÞÞ þ ðh1ðU;UÞ2 − 4h2ðU;U;U;UÞÞlð0Þ

U ðXÞ4; ð50aÞ

B̃ðX;UÞ ¼ h1ðX;XÞ2 − 4h2ðX;X; X; XÞ − 4l̃ð0Þ
U ðXÞðh1ðX;XÞh1ðX;UÞ − 4h2ðX;X; X;UÞÞ

þ 2l̃ð0Þ
U ðXÞ2ðh1ðX;XÞh1ðU;UÞ þ 2h1ðX;UÞ2 − 12h2ðX;X;U;UÞÞ

− 4l̃ð0Þ
U ðXÞ3ðh1ðX;UÞh1ðU;UÞ − 4h2ðX;U;U;UÞÞ þ ðh1ðU;UÞ2 − 4h2ðU;U;U;UÞÞl̃ð0Þ

U ðXÞ4: ð50bÞ

Moreover we used the normalization formula (42) to
eliminate ηðU;UÞ. As the zeroth order solutions, the
expressions obtained are 1-homogeneous in X what gives
them indeed a scaling behavior of a length.
Observe that two effects influence these first order

results for the radar length:
(i) The modified propagation of light which enters

through the second order of the radar conditions
defined by the light Lagrangian L# (36).

(ii) The modified observer proper time normalization
which manifests itself in the normalization ofU with
respect to the Lagrangian L� (42).

Both needed to be taken into account when studying obser-
vable effects from perturbations of metric electrodynamics.

3. Interpretation

Following Eqs. (38) and (48), there are four possible radar
lengths an observer can measure depending on the setup of
the experiment. In general, the light Lagrangian (39) predicts
the propagation of light along trajectories with tangents N
which span two different null surfaces characterized by

ηðN;NÞ� ¼ −
1

2
ϵh1ðN;NÞ

� ϵ
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h1ðN;NÞ2 − 4h2ðN;N;N;NÞ

q
: ð51Þ

We call the null trajectories with tangents satisfying
the condition ηðN;NÞ� elements of the null-surface
N �. The outcome of the radar experiment depends
on the kind of light propagating in its different parts,
cf. Fig. 1.
The null vectors we found from the radar conditions have

the following properties

(i) Nþ
I ¼ ðlð0Þ

U ðXÞ þ ϵlð1Þ
U ðXÞþÞU þ X ∈ N þ,

(ii) Nþ
II ¼ ðlð0Þ

U ðXÞ þ ϵlð1Þ
U ðXÞ−ÞU þ X ∈ N −,

(iii) N−
I ¼ ðl̃ð0Þ

U ðXÞ þ ϵl̃ð1Þ
U ðXÞþÞU − X ∈ N þ,

(iv) N−
II ¼ ðl̃ð0Þ

U ðXÞ þ ϵl̃ð1Þ
U ðXÞ−ÞU − X ∈ N −,

and so four different combinations A ¼ ðNþ
I ; N

−
I Þ,

B ¼ ðNþ
II; N

−
I Þ, C ¼ ðNþ

I ; N
−
IIÞ and D ¼ ðNþ

II; N
−
IIÞ are

possible to realize a radar experiment. These four choices
differ in the chosen polarization of the light used. Hence, in
interferometry experiments or in frequency comparison
experiment based on cavities, in which basically the radar
length of different distances is compared, it is important to
specify with which kind of light the experiment was
performed.
For all four possible radar experiment outcomes based on

WPE the predicted radar lengths are

LUðXÞσσ̃ ¼ lUðXÞσ þ l̃UðXÞσ̃
¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fð0ÞðX;UÞ2 − ηðX;XÞ

q
þ ϵðlð1Þ

U ðXÞσ þ l̃ð1Þ
U ðXÞσ̃Þ

¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fð0ÞðX;UÞ2 − ηðX;XÞ

q
þ ϵ

4

σ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
BðX;UÞp þ σ̃

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B̃ðX;UÞ

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fð0ÞðX;UÞ2 − ηðX;XÞ

q

þ ϵ

2

2fð0ÞðX;UÞðfð1ÞðX;UÞ − 1
6
h1ðX;UÞÞ − 2h1ðU;UÞð2fð0ÞðX;UÞ2 − ηðX;XÞÞ − h1ðX;XÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

fð0ÞðX;UÞ2 − ηðX;XÞ
q ; ð52Þ

where LUðXÞþþ is the travel time measured in the radar experiment A, LUðXÞ−þ in B, LUðXÞþ− in C and LUðXÞ−− in D.
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The radar experiment based on WPE allows an observer
to associate four different operationally accessible num-
bers, the radar lengths LUðXÞσσ̃, to the vector X which
models an object here. Thus, the numbersLUðXÞσσ̃ can also
be interpreted as lengths an observer associates to vectors
X, at least for all vectors for which these numbers are real.6

In special and general relativity, which correspond
to the zeroth order solution we found, the different radar

lengths are all identical. Moreover considering the length
of spatial vectors, i.e. those satisfying ηðX;UÞ ¼
fð0ÞðX;UÞ ¼ 0, is equivalent to a symmetric radar experi-

ment setup lð0Þ
U ðXÞ ¼ l̃ð0Þ

U ðXÞ. For perturbations around
this setup the radar signal measured is independent of fð1Þ

due to the vanishing of the zeroth order fð0Þ and always of
the form

LUðXÞσσ̃ ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ηðX;XÞ

p

þ ϵ

4

�
σ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
BðX;UÞp þ σ̃

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B̃ðX;UÞ

p �			
lð0ÞU ðXÞ¼l̃ð0ÞU ðXÞ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
−ηðX;XÞ

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ηðX;XÞp −

ϵ

2

h1ðX;XÞ − 2h1ðU;UÞηðX;XÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ηðX;XÞp : ð53Þ

An interesting question we address now, is if there exist
any weak premetric theories of electrodynamics for which
the symmetric radar experiment lUðXÞ ¼ l̃UðXÞ measures
spatial X with respect to U or if this is a unique feature of
special and general relativity.

4. Equal time surface and symmetry
of the radar experiment

To zeroth order the radar experiment for spatial direction
is symmetric, as previously discussed. Assuming this
zeroth order setup the difference in the factors lUðXÞ
and l̃UðXÞ derived from (48) and (49) is

lUðXÞ − l̃UðXÞ
¼ lð1Þ

U ðXÞ − l̃ð1Þ
U ðXÞ

¼ −
1

3
h1ðX;UÞ − 2fð1ÞðX;UÞ þ 1

4

1

lð0Þ
U ðXÞ

×
�
σ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
BðX;UÞ

p
− σ̃

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B̃ðX;UÞ

q �			
lð0ÞU ðXÞ¼l̃ð0ÞU ðXÞ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
−ηðX;XÞ

p

ð54Þ
The radar experiment is symmetric if and only if lUðXÞ −
l̃UðXÞ ¼ 0 which thus implies

fð1ÞðX;UÞ ¼ −
1

6
h1ðX;UÞ þ 1

8

1

lð0Þ
U ðXÞ

�
σ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
BðX;UÞ

p

− σ̃
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B̃ðX;UÞ

q �			
lð0ÞU ðXÞ¼l̃ð0ÞU ðXÞ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
−ηðX;XÞ

p :

ð55Þ

The question is if the distances which are measured with a
symmetric radar experiment, correspond to spatial distan-
ces for which fð1ÞðX;UÞ ¼ − 1

6
h1ðX;UÞ, see (34). In order

that both conditions on fð1Þ can be satisfied simultaneously
the perturbations tensors h1 and h2 of the light Lagrangian
(39) must be related such that

0 ¼
�
σ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
BðX;UÞ

p
− σ̃

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B̃ðX;UÞ

q �			
l0UðXÞ¼l̃ð0ÞU ðXÞ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
−ηðX;XÞ

p :

ð56Þ
for all U and X ∈ SETðUÞ for one combination of signs
σ; σ̃. Thus, an observer can measure distances in its equal
time surfaces with a symmetric radar experiment if and
only if

σ ¼ σ̃ BðX;UÞ ¼ B̃ðX;UÞ: ð57Þ
Depending on the properties of the WEP perturbation

parametersKabcd, this equation may either be satisfied for all
observer tangents U and their spatial directions X or it might
be satisfied only for certain observersU, who then perform a
symmetric radar experiment along certain spatial directions
X. An example, and maybe the only one, for the first case is
Kabcd ¼ 0, i.e. metric electrodynamics, while the example
Kabcd ¼ 4ðZ½aYb�V ½cWd� þ Z½cYd�V ½aWb�Þ, where V, W, Y,
Z are mutually orthogonal vector fields with respect to the
Minkowski metric, represents an example of the second
case, where (56) is not identically satisfied. Nonetheless,
assuming that Y is the observer’s direction, i.e. U ¼ Y,
Eq. (56) is still satisfied for all of the observer’s spatial
directions X. It stands to reason that even in the general case,
one can always find at least one observers U that admits an
spatial direction X so that Eq. (56) is satisfied.

V. CLASSICAL RELATIVISTIC OBSERVABLES

The notion of time, equal time surfaces, spatial directions
and radar length are the building blocks for classical

6If these radar length are really norms, or seminorms of vectors
in the mathematical sense is an open questions and needs to be
investigated in the future. They are 1-homogeneous with respect
to X. For being a proper mathematical (semi)norm a proof of
satisfying the triangle inequality is missing and beyond the scope
of this article.
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relativistic observables like time dilation and length con-
tractions, which we will briefly discuss subsequently. On the
basis of metric electrodynamics, these notions are all
connected to the norm of vectors measured with the
spacetime metric and metric orthogonality of vectors. For
WPE, these concepts manifest themselves in different
mathematical expressions, as we just derived in the previous
section. Detailed descriptions of the Michelson-Morley,
Ives-Stilwell and Kennedy-Thorndike experiment, which
measure the relativistic effects and their deviation from
predictions based on metric electrodynamics, on the basis of
the notions introduced here are work in preparation.

A. Time dilation

Consider two observers on worldlines γ1ðt1Þ and γ2ðt2Þ,
where each is parametrized with their proper time. The
tangentsU1 ¼ dγ1

dt1
and U2 ¼ dγ2

dt2
are assumed to be constant,

respectively, i.e. the observers are inertial and follow
geodesics on the flat background manifold we are consid-
ering. According to the clock postulate, proper time para-
metrization implies L�ðU1Þ ¼ L�ðU2Þ ¼ 1, see Sec. IVA.
The observers meet at a certain point p ¼ γ1ð0Þ ¼ γ2ð0Þ,
on which they synchronize their clocks to a fixed value,
here chosen to be t1 ¼ t2 ¼ 0.
After proper time t1, the first observer decomposes the

tangent of the second observer into a displacement vector
X1 ¼ t1V1 expressed in terms of the relative velocity V1 of
γ2 relative to γ1 and its own tangent

t2U2 ¼ t1U1 þ X1 ¼ t1ðU1 þ V1Þ: ð58Þ

Note that we did not yet constrain ourselves to a specific
way to construct the displacement vector and hence the
relative velocity, except the restriction that U1 and U2 are
both observer tangents.
The time t2 is now easily obtained as function of t1, U1

and V1 by taking the norm of the equation with L� using the
normalization of U1 and U2, cf. Eq. (42), as well as the
expansion of ηðV1; U1Þ, c.f. Eq. (44) with X set to t1V1,

t2 ¼L�ðt1U1þX1Þ

¼ t1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ2fð0ÞðV1;U1ÞþηðV1;V1Þ

q

×

�
1þ ϵ

2ðh1ðV1;U1Þþ6fð1ÞðV1;U1ÞÞþh1ðV1;V1Þ
12ð1þ2fð0ÞðV1;U1ÞþηðV1;V1ÞÞ

�
:

ð59Þ
The only additional assumption we used here is that
fð0ÞðV1; U1Þ and fð1ÞðV1; U1Þ are homogeneous of degree
one with respect to their first argument as they are for the
two choices of interest we discuss now.
So far the separation vector X1, respectively the relative

velocity, could be chosen arbitrarily as long as it represents
the difference between the two observer wordlines.

Between all possible choices there are two classes of
separations, maybe the most physical ones, which demon-
strate the difference to the special relativistic case:

(i) The separations built from V1 which are spatial with
respect to γ1, c.f. Eq. (34)

fð0ÞðV1; U1Þ ¼ 0; fð1ÞðV1; U1Þ ¼ −
1

6
h1ðV1; U1Þ:

ð60Þ
For these, the time dilation becomes

t2 ¼ t1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ηðV1; V1Þ

p �
1þ ϵ

1

12

h1ðV1; V1Þ
ð1þ ηðV1; V1ÞÞ

�
:

ð61Þ
(ii) The separations built from V1 which make the

radar experiment symmetric for the observer γ1,
c.f. Eq. (55),

fð0ÞðV1;U1Þ ¼ 0;

fð1ÞðV1;U1Þ ¼ −
1

6
h1ðV1;U1Þþ

1

8

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ηðV1;V1Þ

p
×
�
σ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
BðV1;U1Þ

p
− σ̃

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B̃ðV1;U1Þ

q �
;

ð62Þ
where in the expansion of the B and B̃ terms

lð0Þ
U ðV1Þ ¼ l̃ð0Þ

U ðV1Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ηðV1; V1Þ

p
. For these

the time dilation becomes

t2 ¼ t1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ηðV1; V1Þ

p �
1þ ϵ

1

12

h1ðV1; V1Þ
ð1þ ηðV1; V1ÞÞ

þ ϵ
σ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
BðV1; U1Þ

p
− σ̃

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B̃ðV1; U1Þ

p
8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ηðV1; V1Þ

p ð1þ ηðV1; V1ÞÞ

�
: ð63Þ

The zeroth order result yields the special relativistic time
dilation with the transformation factor

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ηðV1; V1Þ

p
The correction due to WPE then depends on how the
relative velocity between the two observers, whose time
dilation we calculate, is determined. In metric electrody-
namics the two conditions, having a symmetric radar
experiment and a spatial relative velocity coincide, for a
general WPE this is not the case. Note that the two different
possibilities described in the Eqs. (61) and (63) are not
different experiments but rather as discussed in Sec. IV B
different evaluations of the same experiment, where differ-
ent X are associated with the measured radar length,
cf. Fig. 1. Which one is chosen depends solely on the
operational accessibility of the underlying conditions.
Note that there is one further subtlety, when interpreting

the Eqs. (61) and (63). The metric norm of the relative
velocity ηðV1; V1Þ may in general not be an experimentally
accessible number, since the radar experiment, with which
one may determine the relative velocity, is described by the
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radar length, which is not given by the Minkowski metric
norm. A physical accessible number, we may associate to
V1 is one of its radar lengths LU1

ðV1Þσσ̃ , which we can
introduce in the time dilation formulae using Eq. (52):

ηðV1; V1Þ ¼ −
LUðV1Þ2

4
þ ϵ

4

��
σ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
BðV1; U1Þ

p
þ σ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B̃ðV1; U1Þ

q �
− 2h1ðV1; V1Þ

− h1ðU1; U1ÞLUðV1Þ2
�
: ð64Þ

Using this, both formulas, Eqs. (61) and (63), depend on
the second order of the Fresnel polynomial as well as on the
polarizations of the light used to perform the radar experi-
ment, i.e. σ and σ̃.
Experiments searching for corrections of the time dilation

are the Ives-Stillwell and—in combination with corrections
to the length contraction—the Kennedy-Thorndike type of
experiments, which we will describe with the methods
developed in this article in an upcoming publication.

B. Length contraction

Consider an object, i.e. a separation vector X2, whose
endpoints travel on the observer worldlines γ2 and γ3 with
the L� normalized constant tangents U2 and U3, respec-
tively. This means X2 is at rest and spatial with respect to
U2 and U3. We could relax this assumption and calculate
the length contraction for different relations between U2

and X2, for example the symmetric radar length relation.

However, the calculation of the length contraction of a
spatial distance is most compact and most convenient for
the comparison of the result with special relativity.
Now consider an observer on a worldline γ1 with L�

normalized tangent U1 crossing γ2. At this moment, the
observer U1 can determine its equal time surface and its
spatial directions. They do in general not coincide with the
ones determined by γ2. The separation vector X2 can then
be decomposed into a spatial vector X1 of U1, which
represents the separation between γ1 and γ3:

X2 ¼ βðX1; U2ÞU2 þ X1: ð65Þ

The aim now is to express the radar length LU2
ðX2Þ the

observer on γ2 associates to X2 in terms of U1 and X1 and
compare it to the radar length LU1

ðX1Þ the observer on γ1
associates to X1.
We start by determining β using the spatial condition

Eq. (34) between U2 and X2, expressed in the general
perturbation language of (39), together with the normali-
zation L�ðU2Þ ¼ 1, cf. Eq. (37),

βðX1; U2Þ ¼ −ηðX1; U2Þ − ϵ
1

6
h1ðX1; U2Þ: ð66Þ

To eliminate U2, we introduce, as in the previous section, a
relation between the observer worldlines γ1 and γ2 in terms
of their relative velocity t2U2 ¼ t1ðV1 þ U1Þ and eliminate
the proper time intervals by using (61) to obtain

U2ðV1; U1Þ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ηðV1; V1Þ
p �

1 − ϵ
1

12

h1ðV1; V1Þ
1þ ηðV1; V1Þ

�
ðV1 þU1Þ; ð67Þ

which implies for β

βðX1; U2ðV1; U1ÞÞ ¼ −
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ηðV1; V1Þ
p �

1 − ϵ
1

12

h1ðV1; V1Þ
1þ ηðV1; V1Þ

��
ηðX1; V1Þ þ ϵ

1

6
hðX1; X1Þ

�
: ð68Þ

Having obtained these identities, we can express X2 in terms of X1, V1 andU1 and find the result of the radar experiment in
the rest frame of X2 as function of these quantities

LU2ðV1;U1ÞðX2ðX1; V1; U1ÞÞσσ̃

¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ηðX1; V1Þ2

1þ ηðV1; V1Þ
− ηðX1; X1Þ

s �
1þ ϵ

2

CðX1; V1; U1Þσσ̃
12ð1þ ηðV1; V1ÞÞðηðX1; X1Þð1þ ηðV1; V1ÞÞ − ηðX1; V1Þ2Þ

�
; ð69Þ

with

CðX1; V1; U1Þσσ̃
¼ 3ð2h1ðX1; X1Þ − σ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
BðU2ðV1; U1Þ; X2ðX1; V1; U1ÞÞ

p
− σ̃

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B̃ðU2ðV1; U1Þ; X2ðX1; V1; U1ÞÞ

q
Þð1þ ηðV1; V1ÞÞ2

− 4ðηðX1; V1Þð2h1ðX1; U1Þ þ 3h1ðX1; V1ÞÞ þ 3ηðX1; X1Þðh1ðU1; U1Þ þ 2h1ðV1; U1Þ þ h1ðV1; V1ÞÞÞð1þ ηðV1; V1ÞÞ
þ 2ηðX1; V1Þ2ð8h1ðU1; U1Þ þ 16h1ðV1; U1Þ þ 9h1ðV1; V1ÞÞ; ð70Þ
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where B and B̃ must be evaluate at lð0Þ
U2
ðX2Þ ¼ l̃ð0Þ

U2
ðX2Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ηðX2; X2Þ

p
, since X2 is spatial with respect to U2. The above

equation is the general length contraction formula implied by WPE. It includes effects from the normaliza-
tion for the observers with respect to L� as well as the modified propagation of light determined by L# and
the possibility of performing the radar experiment with different types of light.
The equation simplifies for the case that the object and the observer are moving in the same direction, i.e. X1 ¼ λV1.

Then ηðX1; X1Þ ¼ λ2ηðV1; V1Þ and ηðX1; V1Þ ¼ ληðV1; V1Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ηðV1; V1Þ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ηðX1; X1Þ

p
yields

LU2ðV1;U1ÞðX2ðX1; V1; U1ÞÞσσ̃ ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ηðX1; X1Þ

1þ ηðV1; V1Þ

s �
1þ ϵ

2

CðX1; V1; U1Þσσ̃
12ð1þ ηðV1; V1ÞÞηðX1; X1Þ

�
: ð71Þ

The length contraction factor picks up the following modification from WPE

LU2ðV1;U1ÞðX2ðX1; V1; U1ÞÞσσ̃
LU1

ðX1Þσσ̃
¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ηðV1; V1Þ
p

×

�
1þ ϵ

8ηðV1; V1Þ
�
2h1ðV1; V1Þ − 4h1ðU1; U1ÞηðV1; V1Þ − σ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
BðV1; U1Þ

p
− σ̃

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B̃ðV1; U1Þ

q
þ CðV1; V1; U1Þσσ̃
3ð1þ ηðV1; V1ÞÞ

��
;

ð72Þ

where the reference radar length LU1
ðX1Þσσ̃ is taken from

Eq. (53). From this expression, the usual textbook length
contraction formula is easily recognized in zeroth order.
With this, we derived the two classical relativistic effects

from WPE, which included effects from a modification of
the observer’s clock as well as from modified light
propagation.

VI. DISCUSSION

The current and future highly sensitive realizations of the
Michelson-Morley, Ives-Stilwell and Kennedy-Thorndike
experiments require a clear modern theoretical description
of these classical tests of special relativity and local Lorentz
invariance. The building blocks of the experiments are the
propagation of light and the measurement of radar lengths.
Besides modeling the mentioned experiments, the radar
length also provides an operational notion of spatial lengths
for observers in general.
We demonstrated that based on recent insights of the

relation between the geometric optics limit of field theories
and the motion of massive and massless point particles
[13], the radar length can be derived from a theory of
electrodynamics employing the following constructive
algorithm:
(1) Derive the geometric optics limit of the theory of

electrodynamics in consideration.
(2) Derive the Lagrange functions L# and L�, which

define the motion of massless and massive particles
on the manifold, from the geometric optic limit of
the field theory.

(3) Use L� to realize the clock postulate, i.e. to identify
the proper time normalization of observer worldlines
γ by choosing a parametrization of γ with L�ð_γÞ ¼ 1.

(4) Model the radar experiment by demanding that for a
direction X the vectors Nþ ¼ l_γðXÞ_γ þ X andN− ¼
l̃_γðXÞ_γ þ X are the tangents of the light rays of the
radar signal, i.e. are null-vectors of L#.

(5) A solution of L#ðN�Þ ¼ 0 defines the radar length
LUðXÞ ¼ l_γðXÞ þ l̃_γðXÞ an observer on worldline γ
associates to an object represented by the vector X.

This algorithm generalizes the derivation of the radar length
in [15], where L� ¼ L# and l_γðXÞ ¼ l̃_γðXÞ was assumed.
Both assumptions are in general too strong as we saw
during the derivation of L� and L# in Sec. III and by
analyzing under which conditions the radar experiment is
symmetric in Sec. IV B 4.
Together with the definition of an observer’s equal

time surface and its spatial directions, the radar length
and proper time can then be used to derive the classical
relativistic observables like time dilation and length con-
traction, as we did in Sec. V. The only postulate involved in
the derivations is the clock postulate, everything else fol-
lows from the theory of electrodynamics in consideration.
To demonstrate this algorithm, we applied it to a general

first order modification of metric electrodynamics on
Minkowski spacetime we called weakly premetric electro-
dynamics. The theory we consider includes the electrody-
namic sector of the minimal SME, which is usually used as
test theory to describe violations of Lorentz invariance, see,
e.g., [5].
An important feature during derivation we like to high-

light is that in order to obtain all contributions to the
first order corrections to the light propagation from first
order modified electrodynamics, it is necessary to consider
the second order geometric optics limit of the theory as dis-
played in Eq. (8). Only this second order term determines

NORMAN GÜRLEBECK and CHRISTIAN PFEIFER PHYS. REV. D 97, 084043 (2018)

084043-14



the lightlike directions to first order. For the Lagrangian,
which describes the motion of massive particles and
observers, the first order in the perturbation suffices.
This Lagrangian turned out to be a Finsler function and,
thus, we showed that also minimal SME electrodynamics
leads to a propagation of particles on Finsler geodesics.
This provides one further, so far unobserved, connection
between the SME and Finsler geometry.
Our main result is the derivation of the radar length in

Sec. IV B. Here, it is most important to notice that two
effects of the WPE modify the radar length compared to the
result obtained in special and general relativity. The first
effect is due to the modified propagation of light, encoded
in the Lagrangian L#, the second, which is often not
discussed, comes from the modified proper time normali-
zation of observers encoded in the Lagrangian L�. Both
effects contribute to our radar length result (52). To include
both of these effects in the derivation is necessary for the
comparison of measurements with the theoretical predic-
tions, since the derivation of the classical relativistic effects
inherits this dependence, as we demonstrated in Sec. V.
The whole analysis we performed throughout this article

was based on the geometric optic limit of a field theory,
here the WPE. These are governed by Hamilton functions,
whose level sets represent the dispersion relation of the
theory. Thus, our description of observer’s measurements

yields a consistent description of light propagation as well
as observers and their measurements of time and length
based on dispersion relations. Hence, in the future we can
derive radar length measurements and relativistic observ-
ables from modified dispersion relations in general. They
are not only investigated in the context of electrodynamics
but for example also as effective phenomenology of
quantum gravity [12,37–39].
The precise derivation of observables for the Michelson-

Morley experiment based on the formalism developed
in this article is work in progress. In the future, the
description of the Ives-Stilwell and Kennedy-Thorndike
shall follow.
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