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In this work we discuss the polarization contents of Einstein-æther theory and the generalized tensor-
vector-scalar (TeVeS) theory, as both theories have a normalized timelike vector field. We derive the
linearized equations of motion around the flat spacetime background using the gauge-invariant variables to
easily separate physical degrees of freedom. We find the plane wave solutions and identify the polarizations
by examining the geodesic deviation equations. We find that there are five polarizations in Einstein-æther
theory and six polarizations in the generalized TeVeS theory. In particular, the transverse breathing mode is
mixed with the pure longitudinal mode. We also discuss the experimental tests of the extra polarizations in
Einstein-æther theory using pulsar timing arrays combined with the gravitational-wave speed bound
derived from the observations on GW 170817 and GRB 170817A. It turns out that it might be difficult to
use pulsar timing arrays to distinguish different polarizations in Einstein-æther theory. The same speed
bound also forces one of the propagating modes in the generalized TeVeS theory to travel much faster than
the speed of light. Since the strong coupling problem does not exist in some parameter subspaces, the
generalized TeVeS theory is excluded in these parameter subspaces.
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I. INTRODUCTION

The direct detection of gravitational waves (GWs) by
the LIGO Scientific and Virgo collaborations marks the
beginning of the era of testing general relativity (GR) in the
strong-field regime [1–6]. In particular, the detection of
GW170814 confirmed the polarization content of GWs
for the first time, and the analysis showed that the pure
tensor polarizations are favored against pure vector and
pure scalar polarizations [4]. GW170817 was the first
event of a binary neutron star merger. Together with its
electromagnetic counterpart—the gamma-ray burst GRB
170817A [5,7,8]—they not only provided a very tight
bound on the speed of GWs, but also heralded a new age
of multimessenger astrophysics. While ground-based
interferometers detect GWs in the high-frequency band
(10–104 Hz), pulsar timing arrays (PTAs) [9–12] are
sensitive to GWs in the lower-frequency band (around
10−10–10−6 Hz) [13]. The intermediate-frequency band
can be best probed by eLISA [14], TianQin [15], TaiJi,

the DECi-hertz Interferometer Gravitational wave
Observatory [16], and the recently proposed Mid-band
Atomic Gravitational Wave Interferometric Sensor
(MAGIS) [17]. So PTAs, eLISA, and MAGIS will provide
tests of GWs that are complementary to LIGO/Virgo.
In general, GWs have at most six polarizations [18].

Alternative theories of gravity to GR predict extra polar-
izations, in addition to the familiar plus and cross polar-
izations in GR [19]. These extra polarizations are usually
excited by the extra d.o.f. contained in alternative theories
of gravity. For example, in scalar-tensor theories of gravity,
the massless scalar field excites the transverse breathing
polarization, while the massive one excites the longitudinal
polarization [19–22]. More complicated alternative theories
of gravity will add more polarizations, such as Einstein-
æther theory [23,24] and the generalized tensor-vector-
scalar (TeVeS) theory [25,26], whose GW polarization
contents are the topics of the present work. Both theories
have normalized timelike vector fields, which break the
local Lorentz invariance (LLI). We will develop a gauge-
invariant formalism to calculate the polarizations of GWs in
modified gravitational theories like Einstein-æther theory
and the generalized TeVeS theory, so that the physical d.o.f.
are separated automatically, and GW solutions can be
obtained in an arbitrary gauge. We will also present bounds
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on the parameters respecting the recent observational
results on GWs [5,7,8,27].
Einstein-æther theory is a local Lorentz-violating theory

of gravity [23]. The gravitational interaction is mediated by
the metric tensor gμν and a unit timelike vector field uμ.
Since uμ never vanishes and pervades the Universe, it is
called the “æther” field. It breaks LLI, as it defines a
preferred frame everywhere in the spacetime. GW solutions
have already been obtained in Ref. [24] in the flat spacetime
background, where the æther field uμ is at rest. It was found
out that there are generally three extra polarizations, excited
by the three d.o.f. of the æther field uμ. Each polarization
propagates at a speed different from 1 in a broad range of
parameter space, although they are all massless. In the
present work, GW solutions will be derived again using the
gauge-invariant variables. The polarization contents of
GWs are then discussed. With the recent bound on GW
speed inferred from the observations of GW170817 and
GRB 170817A [27], one sets bounds on the parameters
in this theory, and thus predicts the possibility of
detecting polarizations with PTAs by calculating the
cross-correlation functions for different polarizations.
The results show that the cross-correlation functions take
very similar forms for different polarizations in some
parameter regions, so it will be difficult to use PTAs to
distinguish polarizations or to examine whether there are
extra polarizations. However, there exist other parameter
regions in which the cross-correlation functions vary a
lot with different polarizations, which makes it possible to
use PTAs to distinguish polarizations. The authors of
Ref. [28] excluded generalized Einstein-æther theories
[29] based on GW150914 [1].
TeVeS theory was originally proposed by Bekenstein to

solve the dark matter problem [30]. It reduces to Milgrom’s
modified Newtonian dynamics (MOND) [31–33] in the
nonrelativistic limit. In this theory, there are three fields
mediating gravity: the “Einstein metric” tensor gμν, a unit
timelike vector field Uμ, and a scalar field σ. Matter fields
minimally couple to the physical metric which is related to
the Einstein metric via the disformal transformation
g̃μν ¼ e−2σgμν − 2UμUν sinhð2σÞ. The action of Uμ is of
Maxwellian type, a special form included in the æther’s
action. However, TeVeS theory suffers from some prob-
lems such as instability in the spherically symmetric
solutions, and these problems could be cured by allowing
the action of Uμ to be the most general one, i.e., that of the
æther field [25]. The theory thus obtained is called the
generalized TeVeS theory. Sagi has already discussed
the GW solutions in the generalized TeVeS theory and
its polarization content [26]. In the present work, the GW
polarization content will be briefly analyzed again in a
gauge-invariant way. We will also discuss the implications
of the bound on the speed of GWs in this theory. The
cosmological constraints on these alternative theories were
discussed in Refs. [29,34,35].

This work is organized in the following way. First, in
Sec. II we discuss the GW solutions around the flat
spacetime background in Einstein-æther theory. In particu-
lar, after a brief introduction to Einstein-æther theory, we
solve the equations of motion using the gauge-invariant
variables in Sec. II A, and the polarization content of
GWs is thus obtained in Sec. II B. We discuss the
experimental constraints on Einstein-æther theory in
Sec. II C. In Sec. II D, we compute the cross-correlation
functions for different polarizations by taking into account
the speed bound on GW propagation. Second, we discuss
the GW solutions and the polarization content of the
generalized TeVeS theory in Sec. III. Again, after a brief
introduction, we obtain the GW solutions (mainly for the
scalar field σ) and analyze the polarization content in
Sec. III A. In Sec. III B we discuss the constraints on the
generalized TeVeS theory. Finally, in Sec. IV we summa-
rize our work. Throughout this work, we use units such that
the speed of light in vacuum is c ¼ 1.

II. GRAVITATIONAL WAVES IN
EINSTEIN-ÆTHER THEORY

The action of Einstein-æther theory is given by [24]

SEH-æ ¼ 1

16πG

Z
d4x

ffiffiffiffiffiffi
−g

p ½R − c1ð∇μuνÞ∇μuν

− c2ð∇μuμÞ2 − c3ð∇μuνÞ∇νuμ

þ c4ðuρ∇ρuμÞuσ∇σuμ þ λðuμuμ þ 1Þ�; ð1Þ

where λ is a Lagrange multiplier, G is the gravitational
coupling constant, and the constants ciði ¼ 1; 2; 3; 4Þ are
expected to be of the order unity. The Lagrange multiplier λ
renders uμ a normalized timelike vector field, which defines
a preferred reference frame at each spacetime point. LLI is
thus violated. Let Sm½gμν;ψm� be the matter action, where
ψm collectively represents the matter fields. The field ψm
is assumed to minimally couple with gμν, so test particles
follow geodesics in free fall. In the following section, the
GW solutions will be obtained by expressing the linearized
equations of motion in terms of the gauge-invariant
variables.

A. Equations of motion

Ignoring the matter sector of the action, the equations
of motion are obtained with the variational principle given
below:

Rμν −
1

2
gμνR ¼ Tæ

μν; ð2Þ

c1∇μ∇μuν þ c2∇ν∇μuμ þ c3∇μ∇νuμ

− c4∇μðuμaνÞ þ c4aμ∇νuμ þ λuν ¼ 0; ð3Þ
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uμuμ þ 1 ¼ 0; ð4Þ

where aμ ¼ uν∇νuμ is the 4-acceleration of uμ and the æther stress-energy tensor Tæ
μν is

Tæ
μν ¼ λ

�
uμuν −

1

2
gμνðuρuρ þ 1Þ

�
þ c1½ð∇μuρÞ∇νuρ − ð∇ρuμÞ∇ρuν þ∇ρðuðμ∇ρuνÞ

− uðμ∇νÞuρ þ uρ∇ðμuνÞÞ� þ c2gμν∇ρðuρ∇σuσÞ þ c3∇ρðuðμ∇νÞuρ − uðμ∇ρuνÞ

þ uρ∇ðμuνÞÞ þ c4½aμaν −∇ρð2uρuðμaνÞ − aρuμuνÞ�

þ 1

2
gμν½−c1ð∇ρuσÞ∇ρuσ − c2ð∇ρuρÞ2 − c3ð∇ρuσÞ∇σuρ þ c4aρaρ�: ð5Þ

Here, Eq. (4) is a constraint equation.
In the following, we will look for GW solutions around

the flat spacetime background, with the zeroth-order
solution given by

gμν ¼ ημν; uμ ¼ uμ ¼ ð1; 0; 0; 0Þ: ð6Þ

Now, we perturb the metric and the æther field in the
following way:

gμν ¼ ημν þ hμν; uμ ¼ uμ þ vμ: ð7Þ

We decompose the metric perturbation hμν and the per-
turbed æther field vμ in the following way [36]:

htt ¼ 2ϕ; ð8Þ

htj ¼ βj þ ∂jγ; ð9Þ

hjk ¼ hTTjk þ 1

3
Hδjk þ ∂ðjϵkÞ þ

�
∂j∂k −

1

3
δjk∇2

�
ρ; ð10Þ

v0 ¼ 1

2
h00 ¼ ϕ; ð11Þ

vj ¼ μj þ ∂jω: ð12Þ

In the above expressions, hTTjk is the transverse-traceless part
of hjk, satisfying ∂khTTjk ¼ 0 and ηjkhTTjk ¼ 0. βj, ϵj, and μj

are transverse vectors. Equation (11) is the consequence of
uμuμ ¼ −1. Under the infinitesimal coordinate transforma-
tion xμ → xμ þ ξμ, one has

hμν → hμν − ∂μξν − ∂νξμ; ð13Þ

uμ → uμ þ uν∂νξ
μ: ð14Þ

If an infinitesimal coordinate transformation is generated
by ξμ ¼ ðξt; ξjÞ ¼ ðA;Bj þ ∂jCÞ with ∂jBj ¼ 0, it can be
shown that [36]

ϕ → ϕ − _A; βj → βj − _Bj; γ → γ − A − _C; ð15Þ

H → H − 2∇2C; ρ → ρ − 2C; ϵj → ϵj − 2Bj; ð16Þ

hTTjk → hTTjk ; ð17Þ

where a dot denotes a partial time derivative and∇2 ¼ ∂j∂j

is the Laplacian. The gauge transformation of the æther
field is

μj → μj þ _Bj; ω → ωþ _C: ð18Þ

Therefore, gauge-invariant variables can be defined [36],
which are hTTjk and

Φ ¼ −ϕþ _γ −
1

2
ρ̈; ð19Þ

Θ ¼ 1

3
ðH −∇2ρÞ; ð20Þ

Ξj ¼ βj −
1

2
_ϵj; ð21Þ

Σj ¼ βj þ μj; ð22Þ

Ω ¼ ωþ 1

2
_ρ: ð23Þ

There are in total nine gauge-invariant variables. This is
expected, as of the original fourteen variables the general
covariance of the action (1) removes four d.o.f., and the
constraint (4) removes one more. The equations of motion
(2) and (3) will remove four more d.o.f., leaving five
physical d.o.f.
After some straightforward but tedious algebraic manip-

ulations, we get

c14
2 − c14

½c123ð1þ c2 þ c123Þ − 2ð1þ c2Þ2�Ω̈

þ c123∇2Ω ¼ 0; ð24Þ

GRAVITATIONAL WAVES IN EINSTEIN-ÆTHER AND … PHYS. REV. D 97, 084040 (2018)

084040-3



c14Σ̈j −
c1 − c21=2þ c23=2

1 − c13
∇2Σj ¼ 0; ð25Þ

1

2
ðc13 − 1ÞḧTTjk þ 1

2
∇2hTTjk ¼ 0; ð26Þ

where c13¼c1þc3, c14¼c1þc4, and c123¼c1þc2þc3.
So there are only five propagating physical d.o.f. Two of
them are tensor d.o.f. represented by hTTjk , another two are
vector d.o.f. given by Σj, and the remaining one is a scalar
d.o.f. given by Ω. The squared speeds of these modes can
be easily read off from the above equations, and they are

s2g ¼
1

1 − c13
; ð27Þ

s2v ¼
c1 − c21=2þ c23=2

c14ð1 − c13Þ
; ð28Þ

s2s ¼
c123ð2 − c14Þ

c14ð1 − c13Þð2þ 2c2 þ c123Þ
; ð29Þ

respectively. These speeds are generally different from
one another and from 1. When c13 ¼ c4 ¼ 0 and 2c1c2 ¼
c2 − c1 are satisfied, they are simultaneously one. The
remaining gauge-invariant variables are given by

Φ ¼ c14 − 2c13
2 − c14

_Ω; ð30Þ

Θ ¼ 2c14ðc13 − 1Þ
2 − c14

_Ω; ð31Þ

Ξj ¼ −
c13

1 − c13
Σj: ð32Þ

These are dependent variables. In deriving these relations,
one imposes the following conditions:

c13 ≠ 1; c14 ≠ 0; c14 ≠ 2; 3c2 ≠ −2 − c13: ð33Þ

B. Polarizations of gravitational waves

Since the matter fields are assumed to minimally couple
with the metric tensor only, the polarization content of GWs
in Einstein-æther theory is determined by examining the
linearized geodesic deviation equation

ẍj ¼ d2xj

dt2
¼ −Rtjtkxk; ð34Þ

which describes the relative acceleration between two
nearby test particles separated by the deviation vector xj.
In terms of gauge-invariant variables, the electric compo-
nents Rtjtk of the Riemann tensor are given by [36]

Rtjtk ¼ −
1

2
ḧTTjk þ _Ξðj;kÞ þΦ;jk −

1

2
Θ̈δjk: ð35Þ

To be more specific and due to the rotational symmetry of
the Minkowski spacetime, one considers a situation where
the plane GWs propagate in the þz direction. The wave
vectors of the scalar, vector, and tensor modes are

kμs ¼ ωsð1; 0; 0; 1=ssÞ; ð36Þ
kμv ¼ ωvð1; 0; 0; 1=svÞ; ð37Þ
kμg ¼ ωgð1; 0; 0; 1=sgÞ; ð38Þ

respectively, where the ω’s are the corresponding angular
frequencies. In this case, the nonvanishing components of
hTTjk are hTT11 ¼ −hTT22 ¼ hþ and hTT12 ¼ hTT21 ¼ h×. For the
vector mode, Σ3 ¼ 0 since ∂jΣj ¼ 0.
By calculating Rtjtk we find that there are five polari-

zation states. In terms of Rtjtk, the plus polarization is given
by P̂þ ¼ −Rtxtx þ Rtyty ¼ ḧþ, and the cross polarization is
P̂× ¼ Rtxty ¼ −ḧ×; the vector-x polarization is represented

by P̂xz ¼ Rtxtz ¼ −c13∂3
_Σ1=½2ð1 − c13Þ�, and the vector-y

polarization is P̂yz ¼ Rtxty ¼ −c13∂3
_Σ2=½2ð1 − c13Þ�; the

transverse breathing polarization is specified by P̂b ¼
Rtxtx þ Rtyty ¼ −2c14ðc13 − 1ÞΩ…=ð2 − c14Þ, and the longi-
tudinal polarization is

P̂l ¼ Rtztz ¼
c14 − 2c13
2 − c14

∂2
3
_Ω −

c14ðc13 − 1Þ
2 − c14

Ω
…

¼
�
c14 − 2c13
2 − c14

1

s2s
−
c14ðc13 − 1Þ

2 − c14

�
Ω
…
:

Among these polarizations, both the transverse breathing
and the longitudinal modes are excited by the scalar d.o.f.
Ω, so Ω excites a mixed state of P̂b and P̂l, as in the case of
Horndeski theory [21,22]. One can also calculate the
Newman-Penrose variables [18,37,38], and it is found that
none of them vanish in general.
In the following discussion, the gauge will be fixed so

that

h0j ¼ 0; vj;j ¼ 0; ð39Þ

which implies that Σj ¼ μj ¼ vj and _Ω ¼ 2−c14
2ðc13−1Þϕ.

Therefore, one obtains

hþ ¼ eþ cos½ωgðt − z=sgÞ�; ð40Þ

h× ¼ e× cos½ωgðt − z=sgÞ�; ð41Þ

vj ¼ μ0j cos½ωvðt − z=svÞ�; j ¼ 1; 2; ð42Þ

ϕ ¼ φ cos½ωgðt − z=ssÞ�; ð43Þ

where eþ, e×, μ0j , and φ are the amplitudes.
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C. Discussion on the constraints

As mentioned before, LLI is violated. This can be seen in
the post-Newtonian formalism developed by Foster and
Jacobson [39]. The post-Newtonian parameters α1 and α2
are given by

α1 ¼ −
8ðc23 þ c1c4Þ
2c1 − c21 þ c23

; ð44Þ

α2¼
ð2c13−c14Þ2
c123ð2−c14Þ

−
12c3c13þ2c1c14ð1−2c14Þþðc21−c23Þð4−6c13þ7c14Þ

ð2−c14Þð2c1−c21þc23Þ
:

ð45Þ
These parameters together with α3 (which vanishes in
Einstein-æther theory) measure the preferred-frame effects
at the post-Newtonian order [40]. According to Ref. [19],
jα1j ≲ 10−4 from the Lunar Laser Ranging experiments,
and jα1j ≲ 4 × 10−5 based on the observation of PSR
J1738þ 0333 [41]. In addition, jα2j≲ 2 × 10−9 was
obtained using the observations of the millisecond pulsars
B1937þ 21 and J1744-1134 [42,43].
Moreover, Newton’s constant is found to be [39,44]

GN ¼ G
1 − c14=2

; ð46Þ

and the gravitational constant appearing in the Friedman
equation is [44]

Gcosmo ¼
G

1þ ðc13 þ 3c2Þ=2
: ð47Þ

In contrast to GR, these two constants are not the same, so
the expansion rate of the Universe is different from that
predicted by GR even if the matter content is the same in
the two theories. Thus the ratio of the two constants should
be constrained, for example, by the observed primordial
4He abundance [44],����Gcosmo

GN
− 1

���� < 1

8
: ð48Þ

The energy carried away by the gravitational waves
should be positive, which leads to the following
conditions [45]:

2c1 − c21 þ c23
1 − c13

> 0; ð49Þ

c14ð2 − c14Þ > 0: ð50Þ

Finally, all of the speeds (27)–(29) should be greater than 1
so that there is no gravitational Cherenkov radiation [46].

The recent observation of GW170817 [5] determined
that photons arrived at the Earth about 1.7 s later than
the GWs, which has been used to set bounds on GWs’
speed [27],

−3 × 10−15 ≤
vGW − vEM

vEM
≤ 7 × 10−16; ð51Þ

where vGW and vEM are the speeds of the GW and the
photon, respectively. Suppose the photon speed vEM is 1;
then, the GW speed is bounded from above, i.e.,
vGW ≤ 1þ 7 × 10−16. If the detected GW signal is a tensor
wave, then one obtains

c13 ≤ 1.4 × 10−15 ð52Þ

using the speed squared for the spin-2 graviton
s2g ¼ 1=ð1 − c13Þ.
Combining all of the constraints listed above, one can set

bounds on the ci’s. Because α1 and α2 are constrained to be
small by observations, one can expand the theory in powers
of α1 and α2 [47,48]. At the leading order

c2 ¼
c13ðc3 − 2c1Þ

3c1
; ð53Þ

c4 ¼ −
c23
c1

; ð54Þ

by setting α1 and α2 to zero. Although at this order the α’s
all vanish, the preferred-frame effects will show up at
higher orders in α1 and α2. Even if the α’s vanish
identically, LLI is still violated as the α’s only parametrize
the violation of LLI at the post-Newtonian order. Now, the
parameter space reduces to two dimensions, and it is
parametrized by c� ¼ c1 � c3, with cþ ¼ c13. The param-
eters c� are constrained by the requirements that the
perturbation around the flat spacetime background is stable
and has positive energy [24], and that there is no gravi-
tational Cherenkov radiation [46]. These leads to

0 ≤ cþ ≤ 1; 0 ≤ c− ≤
cþ

3ð1 − cþÞ
ð55Þ

to the leading order in α1 and α2. These constraints lead to
the superluminal propagation of GWs in the flat spacetime
background [24].
Yagi et al. [47,48] put further constraints on c� from

binary pulsar observations. Together with the stability and
no-Cherenkov-radiation requirements, the binary pulsar
observations have pushed the available parameter space
(cþ; c−) to a small corner, as shown in Fig. 1 in Ref. [48].
Let cþ saturate the bound (52), i.e., cþ ¼ 1.4 × 10−15, so
sg ¼ 1þ 7 × 10−16. A careful examination of Fig. 1 in
Ref. [48] shows that c− ≲ 0.32cþ and cþ ≲ 0.005. For
future computations we choose the parametrization
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c− ¼ r−cþ ð56Þ

near cþ ¼ 1.4 × 10−15 with r− ≲ 0.32. Then, by using the
speeds of the vector and scalar GWs discussed in the
previous subsection, we obtain

sv ¼
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ r−Þð1þ r− − r−cþÞ

r−

s
sg; ð57Þ

ss ¼
sgffiffiffiffiffiffiffiffi
3r−

p : ð58Þ

If r− ¼ 0.1, 0.2, or 0.3, one gets three sets of speeds, which
are listed in Table I. As it shows, all speeds exceed 1 and
decrease with r−. One can also check that with the chosen
r−, all ci’s are of the order of 10−15. The smallness of these
parameters requires severe fine-tuning.
One may also let c13 ¼ 0without setting α1 ¼ α2 ¼ 0, as

done in Ref. [49]. In this case, sg ¼ 1, i.e., the tensor GW
propagates at the exact speed of light, and

s2v ¼
c1
c14

; s2s ¼
c2ð2 − c14Þ
c14ð2þ 3c2Þ

: ð59Þ

In addition, α1 and α2 reduce to

α1 ¼ −4c14; α2 ¼
c14½c2 − c14ð1þ 2c2Þ�

c2ðc14 − 2Þ : ð60Þ

Using the constraints on sv, ss, α1, and α2 together with the
inequalities (48)–(50), one concludes that

c1 ¼ −c3 > 0; 0 < c14 < 10−5: ð61Þ
The constraints on c2 are more complicated, and are
given by

c14
1 − 2c14

< c2 < cu2ðc14Þ; ð62Þ

where the upper bound is defined as

cu2ðc14Þ ¼
8<
:

2ð1−4c14Þ
21

; 0 < c14 ≲ 4 × 10−9;
c14

1−2c14−2×10−9
ð2−c14Þ
c14

; 4 × 10−9 ≲ c14 < 10−5:

ð63Þ

Figure 1 shows the constraints on c2 in the range
(0 < c14 < 8 × 10−9), and the shaded region is allowed.

As c14 increases the upper and the lower bounds approach
each other. The bounds on c2 and c14 are different from
those in Ref. [49] since they used different values for the
constraints, such as jα1j ≤ 10−4 and jα2j ≤ 10−7. Table II
shows the possible choices for the ci’s such that each
column reproduces the corresponding column in Table I.
These ci’s are of the order of 10−9, which might still require
fine-tuning, albeit less than when setting α1 ¼ α2 ¼ 0 and
cþ ¼ 1.4 × 10−15. Note that when c13 ¼ 0, the vector
polarizations disappear.

D. Pulsar timing arrays

A pulsar is a rotating neutron star or a white dwarf with a
very strong magnetic field. It emits a beam of electromag-
netic radiation at a steady rate, and millisecond pulsars can
be used as stable clocks [50]. The presence of GWs will
alter the rate, because they will affect the propagation time
of the radiation. This will lead to a change in the time of
arrival (TOA), called the timing residual RðtÞ. Timing
residuals are correlated between widely separated pulsars,
and the function CðθÞ ¼ hRaðtÞRbðtÞi is used to measure
this correlation, where θ is the angular separation of pulsars
a and b, and the brackets hi indicate the ensemble average
over the stochastic GW background. This underlies the
detection of GWs and the probe of the polarization content.

TABLE I. The speeds of the vector and scalar GWs.

r− 0.1 0.2 0.3

sv 1.74 1.34 1.19
ss 1.83 1.29 1.05

FIG. 1. The constraints on c2 in the range 0 < c14 < 8 × 10−9.
The shaded region is allowed. As c14 increases the upper and the
lower bounds approach each other. Note that the vertical axis uses
a logarithmic scale.

TABLE II. The possible choices for the ci’s to reproduce the
speeds in Table I. The last two rows are the speeds of the vector
and scalar GWs determined by the choices made in the first three
rows. The ci’s are normalized by 10−9.

c1 ¼ −c3 6.06 3.59 2.83

c2 3.66 2.58 2.10
c4 −4.06 −1.59 −0.83
sv 1.74 1.34 1.19
ss 1.83 1.29 1.05
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The authors of Refs. [51–53] considered the effects of GWs
in GR on the timing residuals for the first time. Hellings and
Downs proposed a method to detect the effects by cross-
correlating the time derivatives of the timing residuals
between pulsars [54], while Jenet et. al. directly used the
timing residuals instead of the time derivative [55]. The
generalization to massless GWs in alternative metric
theories of gravity was soon done in Ref. [56], and further
to massive GWs in Refs. [57,58]. For more work on PTAs,
please refer to Refs. [59–62] and references therein.
In order to calculate the timing residual RðtÞ caused by

the GW solution (40)–(43), one sets up a coordinate system
as shown in Fig. 2. In this coordinate system, the Earth is
at the origin and the distant pulsar is assumed to be
stationary at xp ¼ ðL cos β; 0; L sin βÞ, when there is no
GW. The GW propagates in the direction k̂ ¼ ð0; 0; 1Þ,
and n̂ is the unit vector pointing from the Earth to the
pulsar. Let l̂ ¼ k̂ ∧ ðn̂ ∧ k̂Þ=cos β ¼ ½n̂ − k̂ðn̂ · k̂Þ�=cos β
be the unit vector parallel to the y axis. At the leading
order, i.e., in the absence of GWs, the photon travels at a
4-velocity uμ ¼ γ0ð1;−cos β; 0;− sin βÞ, where γ0 ¼ dt=dλ
is a constant and λ is an arbitrary affine parameter. The
perturbed photon 4-velocity is uμ ¼ uμ þ Vμ. The photon
geodesic equation is

0 ¼ duμ

dλ
þ Γμ

ρσuρuσ ≈ γ0
dVμ

dt
þ Γμ

ρσuρuσ: ð64Þ

Solving it gives the perturbation in the photon 4-velocity,
which is too complicated and will not be reproduced here.
Next, we calculate the 4-velocities of the Earth and the

pulsar. First, we calculate the 4-velocity of the pulsar,
which is supposed to be uμp ¼ u0pð1; v⃗pÞ. The geodesic
equation for the pulsar is

0 ¼ d2xμ

dτ2
þ Γμ

ρν
dxρ

dτ
dxν

dτ

≈ ðu0pÞ2
�
d2xμ

dt2
þ Γμ

00

�
þ u0p

du0p
dt

dxμ

dt
; ð65Þ

where τ is the proper time. One sets x ¼ L cos β and
y ¼ 0. Therefore, the 4-velocity of an observer at rest at the
pulsar is

uμp ¼
�
1þ φ cosωs

�
t −

L
ss
cos β

�
; 0; 0;

−
φ

ss
cosωs

�
t −

L
ss
cos β

��
: ð66Þ

To get the 4-velocity of an observer at rest at the Earth we
simply set L ¼ 0 in the above expression, so

uμe ¼
�
1þ φ cosωst; 0; 0;−

φ

ss
cosωst

�
: ð67Þ

Note that although Einstein-æther theory contains five
d.o.f., the velocities of observers (initially at rest) only
depend on the scalar d.o.f. ϕ. In contrast, the photon’s
4-velocity also depends on the tensor and vector d.o.f.
The frequencies measured by the observer at the

Earth and by the one at the pulsar are fr ¼ −uμu
μ
e and

fe ¼ −uμu
μ
p, respectively. The relative frequency shift

is thus

fe − fr
fr

¼ ðc14 − 2c13Þðk̂ · n̂Þ2 þ s2sc14ð1 − c13Þ
2ð1 − c13Þssðss þ k̂ · n̂Þ ½ϕðt; 0Þ − ϕðt − L=ss; Ln̂Þ�

−
c13k̂ · n̂

ð1 − c13Þðsv þ k̂ · n̂Þ ½n̂ · v⃗ðt; 0Þ − n̂ · v⃗ðt − L=sv; Ln̂Þ� þ
sgn̂jn̂k

2ðsg þ k̂ · n̂Þ ½h
TT
jk ðt; 0Þ − hTTjk ðt − L=sg; Ln̂Þ�: ð68Þ

This has been put in a coordinate-free form so that this
formula always applies regardless of the direction of GW
propagation. The second and last lines both agree with the
results in Ref. [56] when sg ¼ sv ¼ 1. The contribution of

the scalar polarization (the first line) does not reduce to the
results in Refs. [21,22] in a straightforward way where
GWs in Horndeski theory are considered, as the scalar
fields interact rather differently in these two theories.

FIG. 2. The GW propagates in the direction k̂ and the photon
travels in the −n̂ direction at the leading order. l̂ is perpendicular
to k̂ and in the same plane determined by k̂ and n̂. The angle
between n̂ and l̂ is β.
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In the above discussion, each propagating mode was
taken to be monochromatic. In reality, the stochastic GW
background can be described by

ϕðt; x⃗Þ ¼
Z

∞

−∞

dω
2π

Z
d2k̂fφðω; k̂Þ exp½iðωt − kk̂ · x⃗Þ�g;

ð69Þ

v⃗ðt; x⃗Þ ¼
Z

∞

−∞

dω
2π

Z
d2k̂fμ⃗ðω; k̂Þ exp½iðωt − kk̂ · x⃗Þ�g;

ð70Þ

hTTjk ðt; x⃗Þ ¼
X

P¼þ;×

Z
∞

−∞

dω
2π

×
Z

d2k̂fϵPjkhPðω; k̂Þ exp½iðωt − kk̂ · x⃗Þ�g;

ð71Þ

where φðω; k̂Þ; μ⃗ðω; k̂Þ, and hPðω; k̂Þ are the amplitudes of
the scalar, vector, and tensor GWs oscillating at ω and
propagating in the direction k̂, respectively. ϵPjk is the

polarization matrix and P ¼ þ;×: μ⃗ðω; k̂Þ is transverse,
i.e., k̂ · μ⃗ ¼ 0. So if the unit vectors ê1̃, ê2̃, and ê3̃ ¼ k̂ form
a triad such that êj̃ · êl̃ ¼ δj̃ l̃, and ê3̃ ¼ ê1̃ × ê2̃, then

μ⃗ðω; k̂Þ has two d.o.f., which can be expressed as

μ⃗ðω; k̂Þ ¼ ê1̃μ1̃ðω; k̂Þ þ ê2̃μ2̃ðω; k̂Þ: ð72Þ

Integrating the relative frequency shift gives the timing
residual

RðTÞ ¼
Z

∞

−∞

dω
2π

Z
d2k̂

Z
T

0

dt
fe − fr

fr
; ð73Þ

where the argument T is the total observation time.
Suppose that the stochastic GW background is isotropic,
stationary, and independently polarized; then, one defines
the characteristic strains φcðωÞ, μcj̃ðωÞ, and hPc ðωÞ in the

following manner:

hφ�ðω; k̂Þφðω0; k̂0Þi ¼ δðω − ω0Þδð2Þðk̂ − k̂0Þ jφcðωÞj2
ω

;

ð74Þ

hμ�̃
j
ðω; k̂Þμl̃ðω0; k̂0Þi ¼ δðω − ω0Þδð2Þðk̂ − k̂0Þδj̃ l̃

jμc
j̃
ðωÞj2
ω

;

ð75Þ

hh�Pðω; k̂ÞhPðω0; k̂0Þi¼δðω−ω0Þδð2Þðk̂− k̂0ÞδPP0 πjhPc ðωÞj2
4ω

;

ð76Þ

where a star � indicates complex conjugation. The char-
acteristic strains are proportional to ωα, where α is the
power-law index. The cross-correlation function CðθÞ ¼
hRaðTÞRbðTÞi can thus be obtained. The detailed calcu-
lation has been relegated to the Appendix. The normalized
cross correlation ζðθÞ ¼ CðθÞ=Cð0Þ is calculated numeri-
cally, and the results are shown in Figs. 3, 4, and 5 for the
scalar, vector, and tensor polarizations, respectively.
Figure 3 shows the behavior of ζðθÞ as a function of θ at

different speeds ss, corresponding to different r− [see
Eq. (56)] for the scalar polarization. As one can see,
ζðθÞ increases with θ in the small- and large-angle ranges,
while it decreases in the intermediate-angle range. It
becomes negative in certain ranges. The inspection of
the dependence of ζðθÞ on ss or r− shows that ζðθÞ is
more sensitive to ss or r− when θ is large. As discussed in

FIG. 3. The normalized cross correlation ζðθÞ ¼ CsðθÞ=Csð0Þ
for the scalar GW. ζðθÞ is plotted for different propagation speeds
corresponding to different r− [see Eq. (56)].

FIG. 4. The normalized cross correlation ζðθÞ ¼ CvðθÞ=Cvð0Þ
for the vector GW. ζðθÞ is plotted for different propagation speeds
corresponding to different f’s [see Eq. (56)].
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the Appendix, ζðθÞ does not depend on the power-law
index α. The behavior of ζðθÞ in this work differs greatly
from that for the scalar GWs in the scalar-tensor theory
obtained in Refs. [21,22], where ζðθÞ for the scalar GWs in
Horndeski theory was obtained for different masses and
the power-law index α, and it is always positive and a
decreasing function of θ [21]. The behavior of ζðθÞ in this
work is also different from that for the transverse breathing
and longitudinal polarizations presented in Refs. [56–58],
where these two polarizations were treated as independent
of each other.
Figure 4 shows how ζðθÞ varies as a function of θ at

different sv or r− for the vector polarizations. One finds that
ζðθÞ also has similar behavior as that for the scalar GWs
and it does not depend on the power-law index α, but it is
not as sensitive to sv or r− as the one for the scalar GWs.
Comparing this figure with the bottom-left panel in Fig. 1
in Ref. [56] shows that ζðθÞ becomes flatter at large angles
in Ref. [56]. ζðθÞ for the massive GWs was considered in
Ref. [58], and the bottom-left panel in Fig. 1 in Ref. [58] is
for the vector polarizations. They show some similarities to
the one in the current work.
Figure 5 shows ζðθÞ for the tensor polarizations at

sg ¼ 1þ 7 × 10−16. Also shown is the one for GR labeled
by sg ¼ 1, which is given by [54,56]

ζðθÞ ¼ 3

4
ð1 − cos θÞ ln 1 − cos θ

2
þ 1

2
−
1 − cos θ

8
þ δðθÞ

2
:

ð77Þ

Since the difference in the speeds is extremely small, the
two curves nearly overlap with each other.
If one chooses the values for the ci’s given in Table II, the

normalized cross-correlation function ζðθÞ for the scalar

GW is modified, as shown in Fig. 6. ζðθÞ for the tensor GW
is described by the curve labeled by “sg ¼ 1” in Fig. 5.
Since when c13 ¼ 0 the vector polarizations disappear, we
do not plot the corresponding cross-correlation functions. It
is clear that ζðθÞ for the scalar GW behaves rather differ-
ently than the one for the tensor GW.
Finally, let us compare the cross-correlation functions for

the scalar, vector, and tensor polarizations in Einstein-æther
theory. If one chooses the ci’s to make α1 ¼ α2 ¼ 0, the
cross-correlation functions for the vector modes are quite
similar to those for the tensor modes with a small variation
depending on the speed sv, as shown in Figs. 3, 4, and 5.
The cross-correlation function for the scalar mode is
somewhat different than those for the vector and the tensor
modes when its speed is small, for example, ss ¼ 1.05 (the
black curve in Fig. 3), but when its speed is larger the
difference becomes smaller. Compared to the results in
Refs. [21,56–58], Figs. 3, 4, and 5 show greater similarities
among the cross-correlation functions for different polar-
izations, so it is more difficult to use PTAs to distinguish
different polarizations and thus test whether extra polar-
izations exist in Einstein-æther theory. However, if one
chooses the ci’s to make sg ¼ 1 (i.e., the values in Table II),
there is only one extra polarization state, and its cross-
correlation function differs from that of the tensor modes
greatly. So it would be easier to use PTAs to distinguish
different polarizations in Einstein-æther theory, and thus
falsify it if no extra polarization is observed.

III. GRAVITATIONAL WAVES IN THE
GENERALIZED TeVeS THEORY

The action of the generalized TeVeS theory is given by
the sum of that of Einstein-æther theory (1) and the one for
the additional scalar field σ,

FIG. 5. The normalized cross correlation ζðθÞ ¼ CgðθÞ=Cgð0Þ
for the tensor GW at sg ¼ 1þ 7 × 10−16. Also shown is ζðθÞ for
GR (sg ¼ 1). Since the difference in the speeds is extremely
small, the two curves nearly overlap with each other.

FIG. 6. The normalized cross-correlation function ζðθÞ ¼
CsðθÞ=Csð0Þ for the scalar GW when the ci’s take the values
in Table II.
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Sσ ¼ −
8π

|2l2G

Z
d4x

ffiffiffiffiffiffi
−g

p
F ð|l2jμνσ;μσ;νÞ; ð78Þ

where jμν ¼ gμν − uμuν, | is a dimensionless positive
parameter, and l is a constant with dimensions of length.
The function F is dimensionless and chosen to produce the
relativistic MOND phenomena. Here, since the action of
the vector field is that of the æther, we simply use uμ to
represent Uμ.
Because of the extra scalar field σ, the equations of

motion (2) and (3) are modified. First, on the right-hand
side of Eq. (2) one has to add the contribution τμν=2 of the
stress-energy tensor of the scalar field σ, which is

τμν ¼
16πF 0ðyÞ

|
ðσ;μσ;ν − 2uμσ;μuðμσ;νÞÞ − gμν

8πF ðyÞ
|2l2

;

ð79Þ

where y ¼ |l2jμνσ;μσ;ν and F 0ðyÞ ¼ dF ðyÞ=dy. Second,
one has to add − 8π

| F
0ðyÞuνσ;νgμρσ;ρ to the right-hand side

of Eq. (3). Finally, the equations of motion for the scalar
field σ are

∇ν½F 0ðyÞjμνσ;μ� ¼ 0: ð80Þ

Another important difference between Einstein-æther
theory and the generalized TeVeS theory is that there are
two metric tensors in the latter. The first metric gμν
appearing in the actions (1) and (78) is called the
“Einstein metric.” The second metric g̃μν ¼ e−2σgμν −
2uμuν sinhð2σÞ is the physical metric, and the matter fields
ψm minimally couple to this metric, i.e., the matter action is
symbolically given by

S0m ¼
Z

d4
ffiffiffiffiffiffi
−g̃

p
Lðg̃μν;ψm; ∇̃μψmÞ; ð81Þ

where ∇̃μ is the covariant derivative compatible with g̃μν.
Therefore, a neutral test particle travels on the geodesic
determined by g̃μν in free fall. In general, the geodesics of
gμν differ from those defined by g̃μν, unless σ ¼ 0.

A. Gravitational-wave solutions

In this work we find the GW solutions in the flat
spacetime background. The background solution

gμν ¼ ημν; uμ ¼ uμ; σ ¼ σ0 ð82Þ

(where σ0 is a constant) requires that F ð0Þ ¼ 0. Now, we
perturb gμν and uμ according to Eq. (7), and the scalar field
σ is perturbed in the following way:

σ ¼ σ0 þ ς: ð83Þ

The linearized Einstein equation and the vector equation
take the exact same forms as in Einstein-æther theory,
which have been solved in Sec. II A. The linearized scalar
equation is

∂ν½F 0ð0Þjμν0 ς;μ� ¼ 0; ð84Þ

with jμν0 ¼ ημν − uμuν ¼ diagð−2; 1; 1; 1Þ. If one chooses
the original form for F [30], F 00ð0Þ blows up. However,
there are other choices forF as given in Ref. [63], such that
F 00ð0Þ is finite [64]. Expanding the above relation (84)
gives

−ς̈þ 1

2
∇2ς ¼ 0; ð85Þ

so the scalar perturbation ς propagates at the speed
s0 ¼ 1=

ffiffiffi
2

p
. Therefore, a plane-wave solution propagating

in the positive z direction is

ς ¼ ς0 cos½ωðt − z=s0Þ�; ð86Þ

where ς0 is the amplitude and ω is the angular frequency.
The plane-wave solutions for the metric and the vector
fields have been given in Eqs. (40)–(43).
Up to the linear order, the physical metric is thus

g̃00 ¼ e2σ0ð−1þ h00 − 2ςÞ; ð87Þ

g̃0j ¼ 2vj sinhð2σ0Þ; ð88Þ

g̃jk ¼ e−2σ0 ½δjkð1 − 2ςÞ þ hjk�: ð89Þ

Note that this metric is written in coordinates determined by
the Einstein metric gμν, and the gauge conditions h0j ¼ 0

and ∂jvj ¼ 0 have been imposed. If one performs the
coordinate transformation [26]

x̃0 ¼ eσ0x0; x̃j ¼ e−σ0xj; ð90Þ

the physical metric becomes

g̃00 ¼ −1þ h00 − 2ς; ð91Þ

g̃0j ¼ 2vj sinhð2σ0Þ; ð92Þ

g̃jk ¼ δjkð1 − 2ςÞ þ hjk: ð93Þ

Note that all of the fields on the right-hand side in the above
expressions are written as functions of x̃0 and x̃j implicitly.
In this coordinate system, the speeds become

s̃2g ¼
e−4σ0

1 − c13
; ð94Þ
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s̃2v ¼ e−4σ0
c1 − c21=2þ c23=2

c14ð1 − c13Þ
; ð95Þ

s̃2s ¼
e−4σ0c123ð2 − c14Þ

c14ð1 − c13Þð2þ 2c2 þ c123Þ
; ð96Þ

s̃20 ¼
e−4σ0

2
: ð97Þ

Again, the speeds are not necessarily 1, and are generally
different from one another. When all speeds are 1, the
following conditions should be satisfied:

σ0 ¼ −
ln 2
4

; c1 ¼ c4 −
1

2
;

c3 ¼ −c4 −
1

2
; c2 ¼

1

2ð1 − 2c4Þ
: ð98Þ

However, a negative σ0 is not acceptable in this theory [66].
In total there are six d.o.f.: in addition to those that

resemble the five d.o.f. in Einstein-æther theory, there is
one more scalar d.o.f., σ. Note that there are two scalar
d.o.f., σ and Ω, in this theory. All of these d.o.f. will affect
the polarization content of GWs in the generalized TeVeS
theory. The polarization content is obtained by calculating
the linearized geodesic deviation equation ̈x̃j ¼ −R̃t̃ j̃ t̃ k̃x̃

k,

where R̃t̃ j̃ t̃ k̃ is the linearized Riemann tensor calculated
using the physical metric g̃μν. There are six polarization
states in the generalized TeVeS theory: the plus polarization
P̂þ¼−R̃t̃x̃t̃x̃þR̃t̃ỹt̃ỹ¼ ḧþ and the cross polarization
P̂×¼R̃t̃x̃t̃ỹ¼−ḧ×; the vector-x polarization P̂xz¼R̃t̃x̃t̃z̃¼
−fc13ð1þ2sinh½2σ0Þ�−2sinhð2σ0Þgv̈1=½2ð1−c13Þs̃v�, and the
vector-y polarization P̂yz¼R̃t̃x̃t̃ỹ¼−fc13½1þ2sinhð2σ0Þ�−
2sinhð2σ0Þgv̈2=½2ð1−c13Þs̃v�; the transverse breathing
polarization P̂b ¼ R̃t̃ x̃ t̃ x̃ þ R̃t̃ ỹ t̃ ỹ ¼ −c14ϕ̈þ 2 ̈ς, and the
longitudinal polarization

P̂l ¼ R̃t̃ z̃ t̃ z̃ ¼
�ðc14 − 2c13Þ
2ðc13 − 1Þs̃2s

−
c14
2

�
ϕ̈þ

�
1þ 1

s̃20

�̈
ς:

Therefore, the scalar d.o.f., ϕ and ς, excite two mixed states
of P̂b and P̂l. As in Einstein-æther theory, none of the
Newman-Penrose variables vanish in general.

B. Discussion on the constraints

Sagi calculated the post-Newtonian parameters for the
generalized TeVeS theory [66], and α1 and α2 are given
in Eqs. (46)–(48) in Ref. [66], which are too complicated to
be reproduced here. In her equations, K ¼ ðc1 − c3Þ=2,
Kþ ¼ c13=2, K2 ¼ c2, and K4 ¼ −c4. She also found that

G ¼ GN
4πð2 − c14Þ

8π þ |ð2 − c14Þ
; ð99Þ

which should be positive (where GN is Newton’s constant).
Using the expressions for α1 and α2, one can solve for | and
c2 in terms of σ0, cj (j ≠ 2), and the α’s. Note that α1 and α2
are not necessarily set to zero in the following discussion.
Next, the observations of GW170817 and GRB

170817A set bounds on the propagation speed of the
tensor mode. The above discussion shows that there are
four different speeds for different polarizations. Here, we
set s̃g ¼ 1þ δ with −3 × 10−15 < δ < 7 × 10−16. This is
the third constraint for this theory, and it relates σ0 to c13.
Therefore, the parameter space reduces to three dimen-
sions, conveniently parametrized by c1, c3, and c4.
In addition, the MOND effects should not be too large in

the Solar System, which requires that | is of the order of
0.01 [30,66]. Finally, by studying the neutron star and black
hole solutions, the authors of Refs. [67–69] set a new
bound, i.e., c14 ≲ 1. With these constraints and bounds, one
can scan the reduced parameter space to search for the
parameter ranges such that all speeds are of the order of
unity. The strategy is given below:
(1) Start with a relatively larger reduced parameter space

S0, i.e., −10 < c1; c3; c4 < 10, and search for the
subspace S1 such that s̃v and s̃s are smaller than an
upper bound v0 (say, 1013) with a common step size
Δð0Þ ¼ 20=N, where N is an integer. In this search,
all of the constraints and bounds should be taken into
account.

(2) If such a subspace S1 is found, one proceeds to the
next iteration. In this iteration, the reduced parameter
space is S1 and the step size for ci is given by

Δð1Þ
i ¼ δci=Nði ¼ 1; 3; 4Þ, where δci is the differ-

ence between the maximum and minimum values of
ci that define S1. The new speed bound v1 is also
updated, given by the minimum speed s̃v or s̃s found
in the previous iteration.

(3) If such a subspace S1 cannot be found, the iteration
terminates.

One repeats the above steps until one cannot find a subspace
Sn such that s̃v; s̃s < vn in this subspace after n iterations.
In order to avoid the influence of the step sizes on the final
result, one can vary N. It turns out that one cannot find such
a subspace in which s̃v and s̃s are both of the order of unity,
while all of the constraints and bounds are satisfied
simultaneously. This can be understood roughly by express-
ing s̃v, s̃s in terms of s̃g with α1 ¼ α2 ¼ 0,

s̃2v ¼
s̃2g
2

2c1 − c21 þ c23
c14

ð100Þ

≈
1

2

2c1 − c21 þ c23
c14

; ð101Þ
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s̃2s ¼
4s̃2g
3

�
1 −

c14
2ð1 − s̃−2g Þ

�
2 s̃2v
2 − c14

≈
4

3
ð1 − 4δ−1c14Þ2

s̃2v
2 − c14

: ð102Þ

At the same time, | can be approximated as

| ≈
4πc14
c14 − 2

þ 8πδ; ð103Þ

so c14 is of the order of 10−2. If s̃v is of the order of unity and
δ takes the largest value jδj ∼ 10−15, s̃s is of order 1013! Any
attempt to reduce s̃s to be of the order of unity while keeping
s̃v ∼ 1 fails. A more serious problem is that s̃s blows up as δ
approaches 0, as one can check from Eq. (102). On the other
hand, one may also consider simply setting δ ¼ 0 (i.e.,
s̃g ¼ 1) without requiring α1 ¼ α2 ¼ 0. In this case, one
obtains that

| ¼ 8πðα1 þ 4c14Þ
ð8þ α1Þðc14 − 2Þ ; ð104Þ

which can be solved for c14. At the same time, one finds that

s̃2s ¼
ð8þ α1Þc14
7α1ð2 − c14Þ

¼ −
ðα1 þ 8Þ|þ 4πα1

28πα1

∼ 102: ð105Þ

So the scalar field ϕ will still propagate at a large (although
not necessarily infinite) speed, which might lead to a faster
decay of the orbit of a binary system.
A very large speed might lead to the strong coupling

problem, and the scalar mode ϕ might not be excited. In
this case, one has to integrate out this mode and then apply
the experimental constraints to the resulting theory. In order
to examine whether the strong coupling problem arises, one
needs to expand the action up to the cubic order in the
scalar perturbations, and calculate all of the coefficients of
the terms in the cubic action after canonically normalizing
the scalar d.o.f. The resulting cubic Lagrangian is very
complicated and will not be presented here. It shows that
the strong coupling problem exists in some parameter
subspaces. For example, Fig. 7 shows the allowed param-
eter subspaces, which were obtained by scanning the
parameter space. The gray areas represent the parameter
subspaces in which the strong coupling problem does not
exist, while the dark gray areas represent the parameter
subspaces in which the strong coupling problem does exist.
So in these dark gray areas the above analysis on the scalar
mode cannot be applied. These allowed parameter sub-
spaces depend on δ and the αi’s. However, the changes due

to varying δ and the αi’s are very small. So the generalized
TeVeS theory is excluded due to the large or even infinite
speed s̃s, given the speed limits on the tensor GW mode, in
the parameter space where the strong coupling problem
does not exist.

IV. CONCLUSION

In this work, we discussed the linear GW solutions
around the flat spacetime background and the polarization
contents of Einstein-æther theory and the generalized
TeVeS theory. It turns out that both theories predict the
existence of tensor, vector, and scalar GWs, each propa-
gating with different speeds generally different from 1. In
obtaining the GW solutions, we used the gauge-invariant
variables to help separate the physical d.o.f. There are five
polarization states in Einstein-æther theory, while the
generalized TeVeS theory predicts the existence of six
polarization states. The transverse breathing mode is mixed
with the longitudinal mode to form a single state for the
scalar polarization in Einstein-æther theory. The two scalar
polarizations in the generalized TeVeS theory are two
mixed states of the transverse breathing and longitudinal
modes. In addition, the possible experimental tests of the
polarizations in Einstein-æther theory have been consid-
ered by using the cross-correlation functions of PTAs for
the various polarizations together with the speed bounds on

FIG. 7. Parameter subspaces (colored areas) allowed by the
experimental constraints. There are three chunks of allowed
parameter subspaces corresponding to different values of c1.
Each allowed region is divided into two pieces. The gray areas
represent the parameter subspaces in which the strong coupling
problem does not exist, while the dark gray areas represent the
parameter subspaces in which the strong coupling problem does
exist. (The jagged boundaries are due to the finite step size used
in the scanning.)
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GWs set by the observations of GW170817 and GRB
170817A. We found that the cross-correlation functions for
different polarizations look very similar to each other in
some parameter regions, and this means that it will be
difficult for PTAs to identify the polarizations. However, in
the parameter regions with c13 ¼ 0, the cross-correlation
function for the extra polarization (i.e., the scalar one) is
rather different from the tensor one, so it is possible to use
PTAs to identify the polarizations. The implication of the
speed bounds on GWs for the generalized TeVeS theory
was also considered. The very tight speed bound drives s̃s
to be much greater than 1, which is unnatural. It was also
checked that the strong coupling problem does not exist in
some parameter subspaces by taking into account all
experimental constraints. So the generalized TeVeS theory
is excluded by the speed bounds on GWs in these parameter
subspaces.
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APPENDIX: CALCULATING THE
CROSS-CORRELATION FUNCTIONS

In this appendix we present the method to calculate the
cross-correlation functions for the scalar, vector, and tensor
polarizations in Einstein-æther theory.

1. Scalar cross-correlation function

The relative frequency shift caused by the monochro-
matic scalar GW is given by the first line in Eq. (68),

fe − fr
fr

¼ ðc14 − 2c13Þðk̂ · n̂Þ2 þ s2sc14ð1 − c13Þ
2ð1 − c13Þssðss þ k̂ · n̂Þ

× ½ϕðt; 0Þ − ϕðt − L=ss; Ln̂Þ�: ðA1Þ

Let the stochastic GW background be described by
Eq. (69); thus, the timing residual is

RðTÞ ¼
Z

∞

−∞

dω
2π

Z
d2k̂

�
Isðk̂; n̂Þφðω; k̂Þ

eiωT − 1

iω

× ½1 − e−iωLð1þk̂·n̂=ssÞ�
	
; ðA2Þ

where

Isðk̂; n̂Þ ¼
ðc14 − 2c13Þðk̂ · n̂Þ2 þ s2sc14ð1 − c13Þ

2ð1 − c13Þssðss þ k̂ · n̂Þ : ðA3Þ

Now, consider the correlation between two pulsars a
and b which are at positions x⃗a ¼ L1n̂1 and x⃗b ¼ L2n̂2,
respectively. Let θ ¼ arccosðn̂1 · n̂2Þ be the angular sepa-
ration. With the help of Eq. (74), the cross-correlation
function between pulsars a and b is obtained as

CsðθÞ ¼ hRaðTÞRbðTÞi

¼
Z

∞

0

dω
2π2

Z
d2k̂

jφcðωÞj2
ω3

Isðk̂; n̂aÞIsðk̂; n̂bÞPs;

ðA4Þ

where Ps¼1−cosΔ1−cosΔ2þcosðΔ1−Δ2Þ with Δj ¼
ωLjð1þ k̂ · n̂j=ssÞ (j ¼ 1, 2). In obtaining this result,
one also averages over T, as implied by the ensemble
average [56].
If the speed ss takes the values listed in the third row of

Table I, there will be no poles in the integrand of Eq. (A4).
This is because the denominator of the integrand has a
factor ðss þ k̂ · n̂1Þðss þ k̂ · n̂2Þ, and k̂ · n̂j ≥ −1, so the
denominator never vanishes. We can approximate Ps¼1
whenever θ ≠ 0, since pulsars are located at far enough
distances so that the cosines in Ps oscillate fast enough
and they can be ignored during the integration. If θ ¼ 0,
the autocorrelation is considered by setting n̂1 ¼ n̂2 and
L1 ¼ L2, and Ps ≈ 2. In contrast, when null GWs are
considered, the integrand [see Eqs. (A36) and (A39) in
Ref. [56]] has at least one pole, so Ps cannot be simply
approximated as 1 or 2.
Now, one can carry out the integration by letting

n̂1 ¼ ð0; 0; 1Þ; ðA5Þ

n̂2 ¼ ðsin θ; 0; cos θÞ; ðA6Þ

with the assumption that the stochastic GW background is
isotropic. Take

k̂ ¼ ðsin θg cosϕg; sin θg sinϕg; cos θgÞ; ðA7Þ

and so

Δ1 ¼ ðωþ k cos θgÞL1; ðA8Þ

Δ2 ¼ ½ωþ kðsin θg cosϕg sin θ þ cos θg cos θÞ�L2: ðA9Þ

The cross correlation at θ ≠ 0 is given by
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CsðθÞ ¼
Z

dϕgdθg½Isðk̂; n̂1ÞIsðk̂; n̂2Þ sin θg�

×
Z

∞

0

dω
jφcðωÞj2
2π2ω3

; ðA10Þ

and the autocorrelation is

Csð0Þ ¼ 2

Z
dϕgdθg½Isðk̂; n̂1ÞIsðk̂; n̂1Þ sin θg�

×
Z

∞

0

dω
jφcðωÞj2
2π2ω3

: ðA11Þ

We define the so-called normalized cross correlation
ζðθÞ ¼ CsðθÞ=Csð0Þ; then, the frequency dependence is
canceled out, so ζðθÞ is independent of the power-law
index α.

2. Vector cross-correlation function

The relative frequency shift caused by a monochromatic
vector GW is

fe − fr
fr

¼ −
c13k̂ · n̂

ð1 − c13Þðsv þ k̂ · n̂Þ
× ½n̂ · v⃗ðt; 0Þ − n̂ · v⃗ðt − L=sv; Ln̂Þ�: ðA12Þ

Now, we switch off μ2̃ðω; k̂Þ, as the two modes μ1̃ðω; k̂Þ and
μ2̃ðω; k̂Þ have an equal footing. The timing residual caused
by the stochastic vector GW background is given by

RðTÞ ¼
Z

∞

−∞

dω
2π

Z
d2k̂

�
Ivðk̂; n̂Þμ1̃ðω; k̂Þ

×
eiωT − 1

iω
½1 − e−iωLð1þk̂·n̂=svÞ�

	
; ðA13Þ

where

Ivðk̂; n̂Þ ¼ −
c13ðk̂ · n̂Þðn̂ · ê1̃Þ

ð1 − c13Þðsv þ k̂ · n̂Þ : ðA14Þ

So the cross correlation is

CvðθÞ ¼
Z

∞

0

dω
2π2

Z
d2k̂

jμc
1̃
ðωÞj2
ω3

Ivðk̂; n̂1ÞIvðk̂; n̂2ÞPv;

ðA15Þ

where Pv can be obtained by replacing ss in Ps with sv.
With k̂, n̂1, and n̂2 given by Eqs. (A7), (A5), and (A6), ê1̃
and ê2̃ are

ê1̃ ¼ ðcosψ cos θg cosϕg − sinψ sinϕg; cosψ cos θg sinϕg

þ sinψ cosϕg;− cosψ sin θgÞ; ðA16Þ

ê2̃ ¼ ð− sinψ cos θg cosϕg − cosψ sinϕg; cosψ cosϕg

− sinψ cos θg sinϕg; sinψ sin θgÞ: ðA17Þ

Note that if sv takes the values in the second row in Table I,
the integrand of Eq. (A15) has no poles either. So one
approximates Pv to be 1 when θ ≠ 0, and 2 when θ ¼ 0.
The normalized cross-correlation function ζðθÞ ¼
CvðθÞ=Cvð0Þ can thus be numerically calculated, and it
is easy to see that ζðθÞ is independent of the power-law
index α.

3. Tensor cross-correlation function

For the tensor GWs, the relative frequency shift is

fe − fr
fr

¼ sgn̂jn̂k

2ðsg þ k̂ · n̂Þ ½h
TT
jk ðt; 0Þ − hTTjk ðt − L=sg; Ln̂Þ�:

ðA18Þ

As stated in Sec. II D, this expression takes exactly the
same form as in GR as long as sg ¼ 1. If sg ≠ 1, this
form resembles those for the massive GWs discussed in
Refs. [57,58], where the GW speed depends on the angular
frequency through the dispersion relation.
Let us consider the cross correlation due to the plus

polarization. The timing residual of TOA is given by

RðTÞ ¼
Z

∞

−∞

dω
2π

Z
d2k̂

�
Igðk̂; n̂Þhþðω; k̂Þ

×
eiωT − 1

iω
½1 − e−iωLð1þk̂·n̂=sgÞ�

	
; ðA19Þ

where

Igðk̂; n̂Þ ¼
sgn̂jn̂kϵ

þ
jk

2ðsg þ k̂ · n̂Þ : ðA20Þ

The cross correlation is thus

CgðθÞ ¼
Z

∞

0

dω
8π

Z
d2k̂

jhþc ðωÞj2
ω3

Igðk̂; n̂1ÞIgðk̂; n̂2ÞPg;

ðA21Þ

in whichPg takes a similar form asPs with ss replaced by sg.
Let sg ¼ 1þ 7 × 10−16, so that the integrand of Eq. (A21)
has no poles, and the integration can be easily done by setting
Pg ¼ 1 for θ ≠ 0 and setting Pg ¼ 2 for θ ¼ 0. The
normalized cross-correlation function ζðθÞ ¼ CgðθÞ=Cgð0Þ
can be calculated numerically.
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