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The requirement that both the matter and the geometry of a spacetime canonically evolve together,
starting and ending on shared Cauchy surfaces and independently of the intermediate foliation, leaves one
with little choice for diffeomorphism-invariant gravitational dynamics that can equip the coefficients of a
given system of matter field equations with causally compatible canonical dynamics. Concretely, we show
how starting from any linear local matter field equations whose principal polynomial satisfies three
physicality conditions, one may calculate coefficient functions which then enter an otherwise immutable
set of countably many linear homogeneous partial differential equations. Any solution of these so-called
gravitational closure equations then provides a Lagrangian density for any type of tensorial geometry that
features ultralocally in the initially specified matter Lagrangian density. Thus the given system of matter
field equations is indeed closed by the so obtained gravitational equations. In contrast to previous work, we
build the theory on a suitable associated bundle encoding the canonical configuration degrees of freedom,
which allows one to include necessary constraints on the geometry in practically tractable fashion. By
virtue of the presented mechanism, one thus can practically calculate, rather than having to postulate, the
gravitational theory that is required by specific matter field dynamics. For the special case of standard
model matter one obtains general relativity.
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I. INTRODUCTION

There remains an uncomfortable arbitrariness in the
construction of modified gravity models, which even
plagues the proposals that heed the currently known
theoretical and observational constraints [1–3]. Since a
finite number of experiments will not be able to discrimi-
nate against an infinity of models, bona fide physical input
must likely be injected into the construction beforehand,
instead of being left to discriminate against theories only
afterwards.
In this article, we argue that such genuine physical input,

which promises to effect a reduction of the current infinite
ambiguity toward a finite one, is provided by first pre-
scribing the matter dynamics on a spacetime. The dynamics
of the underpinning spacetime geometry are then shown to
follow from the matter dynamics, essentially by a suffi-
ciently precise requirement of common canonical evolu-
tion. Note that the thus revealed dependence of the resulting
gravitational dynamics on previously specified matter
dynamics implies that there is no one-size-fits-all gravity
theory for a given geometry, which would apply

independently of what we know or discover about matter.
This is because the matter dynamics crucially determine the
kinematical meaning of their geometric background, and it
is precisely this information that directly funnels into the
structure of the gravitational dynamics. Through this
mechanism, any new insight into the nature of matter
may yield new information about gravity. Not too bad a
perspective in the first place, in face of having detailed
knowledge of the fundamental dynamics for only 4.6% of
the matter and energy in the universe. And not a new
perspective either, considering that it was the dynamics of
matter, namely the classical electromagnetic field, that led
Einstein to the identification and kinematical interpretation
of Lorentzian geometries and finally the field equations for
their dynamics.
Precisely, we show the following. For any diffeomor-

phism invariant matter action whose integrand depends
locally on some tensorial matter field A and ultralocally on
a geometric background described by some tensor field G
of arbitrary valence,

Smatter½A;GÞ

¼
Z

d4xℒmatterðAðxÞ;∂AðxÞ;…;∂finiteAðxÞ;GðxÞÞ; ð1Þ*Corresponding author.
fps@aei.mpg.de

PHYSICAL REVIEW D 97, 084036 (2018)

2470-0010=2018=97(8)=084036(23) 084036-1 © 2018 American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.97.084036&domain=pdf&date_stamp=2018-04-23
https://doi.org/10.1103/PhysRevD.97.084036
https://doi.org/10.1103/PhysRevD.97.084036
https://doi.org/10.1103/PhysRevD.97.084036
https://doi.org/10.1103/PhysRevD.97.084036


and which satisfies the three matter conditions detailed in
Sec. II C, we show how to calculate four geometry-
dependent coefficients EA

μ, FA
μ
ν, MBμ, and pαβ that enter

the gravitational closure equations, which is the countable
set of linear homogeneous partial differential equations
displayed in the Appendix. Their solution then, in turn,
provides the closure

Sclosed½A;G�¼Smatter½A;GÞ

þ
Z

d4xℒgeometryðGðxÞ;∂GðxÞ;…;∂finiteGðxÞÞ

ð2Þ

of the given matter field dynamics by inclusion of gravi-
tational dynamics whose canonical version satisfies the two
embedding properties laid out in Sec. IV B.
Indeed, only after addition of the thus calculated, rather

than stipulated gravitational Lagrangian density Lgeometry is
there a dynamically closed theory. For now varying the
complete action (2) with respect to the matter field A still
yields the matter field equations, while variation with
respect to the previously undetermined background G
provides additional equations of motion for the previously
unspecified geometry that are sourced by the given matter.
Thus a closed system of equations that determines all
unknowns, up to only gauge ambiguities, is obtained.
While a detailed discussion of the above-mentioned

matter conditions and embedding properties needs to be
deferred to the said sections, it is probably worthwhile to
briefly hint at their contents. First, all threematter conditions
are actually conditions on the so-called principal polynomial
of the corresponding field equations. Classically they
correspond, in turn, to the following: the existence of an
initial value formulation for the matter field equations; a
one-to-one relation between momenta and velocities of
massless particles; the requirement of an observer-indepen-
dent definition of positive particle energy. It is interesting to
note that if one insists on the matter field equations being
canonically quantizable, these three properties are directly
implied; see [4] for a concrete demonstration. Second, the
two embedding properties restrict the desired gravitational
dynamics as follows: geometric data are evolved between
any two nonintersecting initial data surfaces in a way that
does not depend on the choice of intermediate leaves; the
thus generated canonical data are embedded into the
spacetime in a consistent way; the resulting theory is
invariant under spacetime diffeomorphisms.
The conceptual and technical developments presented in

this article significantly extend and improve the results
obtained in [5] in several ways, and spread over the four
technical sections of this paper.
First, in Sec. II, we show how to derive the principal

polynomial of matter field equations even in the presence of
gauge symmetries, as is often required in physics. We then

list the three matter conditions imposed on the principal
polynomial, which need to hold in order for the matter
dynamics to effect a complete kinematical interpretation of
the geometry that underlies it. Finally, we show in that
section how a choice of de-densitization of a primarily
obtained principal polynomial density gives rise to a notion
of point mass and observer frames. The crucial relevance of
this first batch of results lies in the fact that all relevant
information in the matter action, as far as the construction
of gravitational dynamics for the underlying geometry is
concerned, trickles down to the next sections exclusively in
the form of the triple ðM;G;PÞ consisting of the spacetime
manifold M, the tensorial geometry G employed in the
matter action, and the principal polynomial P of the matter
field equations that satisfies the three matter conditions.
Second, in Sec. III, we remove a theoretically inexistent,

but practically almost prohibitive problem with the appli-
cation of the results of [5] to kinematical spacetime
geometries for which the separation of lapse and shift
from true dynamical degrees of freedom imposes nonlinear
algebraic conditions on the initial data surface geometry.
For exactly as in classical mechanics, where the condition
that a particle move on a nonlinear submanifold of
Euclidean space is most effectively dealt with by the
introduction of generalized coordinates, we also employ
generalized tensor field components (corresponding to
points in a suitable associated bundle over the spacetime
frame bundle), in order to directly deal only with the true
degrees of freedom of the theory. The relevant technology,
once set up, makes things quite simple.
Third, in Sec. IV, we now convert the entire constraint

algebra for the gravitational dynamics into a countable set
of linear homogeneous partial differential equations, for
whose solution powerful methods are available [6]. Unlike
the construction in [5], this reveals one single and immu-
table set of equations for the gravitational Lagrangian. Only
the coefficient functions appearing in these partial differ-
ential equations vary with the choice of matter dynamics
and can now be constructed swiftly according to simple
rules. Finally, we show in that section how to completely
bypass the Hamiltonian formalism employed in the pre-
vious two sections in favor of a Lagrangian spacetime
formulation. In particular, we provide a gravitational action
functional that depends on the spacetime geometry only,
rather than geometric phase space variables. Addition of
this spacetime action to the initially provided matter action
and subsequent variation with respect to the tensor field G
then yields the complete gravitational field equations
coupled to matter.
How truly simple it is to set up the gravitational closure

equations for a variety of matter models on different
tensorial geometries is then illustrated by three prototypical
examples in Sec. V. In particular, we set up the gravitational
closure equations for an instance of standard model matter
on a metric manifold, for two scalar fields on a bimetric
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background and for a refinement of Maxwell theory on a
background that does not exclude birefringence a priori.
We will, however, not solve the equations for any of these
examples here.
We conclude, in Sec. VI, by spelling out the impact of

our results for both fundamental and phenomenological
questions and by pointing out several results we were able
to obtain by building on the present article, including
explicit perturbative and symmetry-reduced solutions of the
gravitational closure equations for phenomenologically
interesting or theoretically instructive matter models.

II. SPACETIME KINEMATICS

This section concisely reviews the constructive steps that
need to be performed in order to determine the kinematical
interpretation of a tensorial spacetime structure, as it is
imprinted by given matter field dynamics on it. The key
step in order to extract the kinematical interpretation of a
geometry G from specified matter dynamics on it is the
calculation of the principal polynomial density P̃ of all
matter field equations, and we present an explicit method
that works also if there is a gauge symmetry. The
subsequent imposition of three classical physicality con-
ditions, which, however, can also be understood as neces-
sary conditions for a canonical quantization of the matter
field theory, then restricts the geometry sufficiently to
identify massless momenta, observer worldlines, and an
observer-independent classification of momenta into such
of positive and negative energy. The kinematical structure
is then completed by a choice of de-densitization of the
principal polynomial density, which allows for a definition
of point particle mass and finally of observer frames. The
kinematical interpretation of the tensorial spacetime geom-
etry, obtained straight from the stipulated matter dynamics,
will flow directly into the gravitational closure equations
derived in Secs. III and IV.

A. Several fields for matter and geometry

In the interest of avoiding inessential notational clutter,
we will present all results of Secs. II, III, and IV assuming
that there is only one single tensor field A describing the
matter and only one single tensor field G encoding the
underlying geometry, as in the Introduction. But all results
of these sections straightforwardly generalize to the practi-
cally relevant case of having several, though finitely many,
tensorial matter fields A1;…; AN and finitely many tensor
fields G1;…; GM for the underlying geometry, amounting
to a matter action

Smatter½A1;…; AN ;G1;…; GNÞ ð3Þ

given by a Lagrangian density local in each matter field and
ultralocal in each tensor that describes the geometry. All

results derived in this article directly generalize to this case
of several matter and geometry fields.
There is, however, one point we wish to draw attention

to, in order for the reader to more easily understand this
generalization without us actually explicitly performing it:
Even in the presence of several matter fields, there is only
one principal polynomial P associated with all matter field
equations, so that the all-important triple ðM;G; PÞ
extracted from the matter action in the single-fields case
generalizes to

ðM; fG1;…; GMg; PÞ; ð4Þ

in the case of multiple matter fields and geometric fields.
More precisely, also in the general case, therewill be just one
single principal tensor P in terms of all G1;…; GM rather
than, as one might have erroneously surmised, one such
principal tensor for each geometric tensor field. One sees this
by formally rewriting the system of matter equations that
results for several fields A1;…; AN as one equation for a
multiplet ðA1;…; ANÞ and then calculating the principal
polynomial for this overall equation, resulting in one
principal polynomial. This paper returns to the issue of
several fields, for both matter and the geometry, only for the
theoretical example in Sec. V. With these remarks in mind,
we return,without loss of generality, to the caseM ¼ N ¼ 1.

B. Massless dispersion relation
of test matter field dynamics

We assume that local dynamics for tensorial matter fields
A on a smooth four-dimensional spacetime manifold has
been prescribed—motivated by theoretical or phenomeno-
logical reasoning—in terms of the action (1), which also
employs underived tensor fieldsG of arbitrary valence such
as to produce a scalar density L of weight one.
For the purposes of this section, it is simplest to assume

that the ensuing matter field equation

δSmatter

δAðxÞ ¼ 0; ð5Þ

being a tensor density equation of weight one, is linear in
the matter field. This assumption corresponds to the
requirement we impose for test matter, namely that any
solution A of the field equations can be scaled down to ϵA
by an arbitrarily small factor ϵ > 0, so that the source tensor
density

δSmatter

δGðxÞ ; ð6Þ

which will appear on the matter side of the final gravita-
tional field equations, scales down to correspondingly
small values. In other words, also the backreaction to
the spacetime geometry G can be made arbitrarily small, as
it behooves test matter.
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So we obtain test matter field equations (possibly after
making implicit information explicit by way of bringing the
equations into involutive form [7])

Qi1���iF
AB ðGðxÞÞð∂i1 � � � ∂iFA

BÞðxÞ
þ terms of lower derivative order in A ¼ 0; ð7Þ

where A;B ¼ 1;…; R are indices labeling a basis of some
R-dimensionalGLð4Þ-representation under which the com-
ponents of the matter tensor field transform. Note that
despite the appearance of only partial derivatives in the
highest order term, the left-hand side is a tensor density of
weight one by construction, with the relevant correction
terms being provided by the lower order terms. It follows
that Qi1���iF

AB ðGðxÞÞ is a tensor density of weight one, while
the lower order coefficients, not displayed here, generically
are not.
Any such test matter dynamics provide a dispersion

relation for modes of practically infinite frequency, which
are physically indistinguishable from massless modes.
More precisely, considering a formal Wentzel-Kramers-
Brillouin expansion

ABðxÞ ¼ RefexpðiSðxÞ=λÞ½aBðxÞ þOðλÞ�g; ð8Þ

one obtains, to lowest order λ−F in the approximation, the
equation

Qi1���iF
AB ðGðxÞÞki1 � � � kiFaB ¼ 0; ð9Þ

where the wave covector kaðxÞ ≔ −ð∂aSÞðxÞ is the gradient
of the eikonal function S. Higher orders in the expansion
contain essential information for modes of finite frequency,
but Eq. (8) precisely captures the behavior in the infinite
frequency limit.
The key question in this limit is for the conditions on k

under which there are nonvanishing amplitudes aB. The
answer depends on the dimension of any gauge orbits the
theory may feature. Indeed, if there is an s-dimensional
gauge symmetry, which in terms of the lowest order
Wentzel-Kramers-Brillouin amplitude aA reads

āA ¼ aA þ kaχ
aA
ðσÞ; ð10Þ

for s linearly independent coefficient fields χaAð1Þ ;…; χaAðsÞ ,
then there is a corresponding s-dimensional linear subspace
of solutions of (9) that are pure gauge. Using the shorthand
QABðx; kÞ for the components of the x- and k-dependent
R × R matrix Qi1���iF

AB ðGðxÞÞki1 � � � kiF , the condition of
having at least one nonvanishing solution aA for (9) that
is not purely gauge then amounts to the requirement that the
adjunct matrix of order s, defined by

Q½A1���As�½B1���Bs�
adj ðx; kÞ ≔ ∂sðdetQÞ

∂QA1B1
� � � ∂QAsBs

ðx; kÞ; ð11Þ

must vanish. For then the equations of motion have at least
sþ 1 linearly independent solutions. But since s of these
are pure gauge, this leaves at least one physical solution,
which is precisely the condition we wished to impose on
the k. Indeed, the admissible wave covectors are those that
satisfy

Q½A1���As�½B1���Bs�
adj ðx; kÞ ¼ 0 ð12Þ

for all ðRsÞ independent components of the bilinear map
defined by Qadj on the space of s-forms over the R-
dimensional representation space in which the gauge field
takes its values. Each of these independent components is a
homogeneous polynomial of degree ðR − sÞF in the wave
covector k. At this point, the dispersion relation appears to
be given by the condition that a wave covector k be a
common root of all these polynomials. Fortunately, how-
ever, all of these polynomials share a common factor
polynomial density P̃ðkÞ, since due to a straightforward
generalization of an elegant argument by Itin [8], one has

Q½A1���As�½B1���Bs�
adj ðx; kÞ ¼ ϵσ1���σsϵτ1���τsχa1A1

ðσ1Þ � � � χasAs
ðσsÞ χ

b1B1

ðτ1Þ � � �
× χbsBs

ðτsÞ ka1 � � � kaskb1 � � � kbsP̃ðkÞ
ð13Þ

for any s ≥ 0. From the known degree of the homogeneous
polynomials that present the components of Qadj, we
recognize the common factor polynomial density P̃ to be
homogeneous of order FR − ðF þ 2Þs. Most importantly,
we see that condition (12), for the existence of solutions
that are not gauge equivalent to a vanishing solution, is
satisfied if and only if

P̃ðx; kÞ ¼ 0; ð14Þ

which thus emerges as the polynomial dispersion relation
for any linear matter theory with gauge orbits of dimen-
sion s ≥ 0.
Obviously, we can expand the homogeneous polynomial

density as

P̃ðx; kÞ ¼ P̃a1���adegP̃ðxÞka1 � � � kadegP̃ ð15Þ

in terms of the components P̃a1���adegP̃ðxÞ of a totally
symmetric contravariant tensor field density. Since the
principal polynomial is defined, in the first place, only
up to a spacetime function factor, we are free to choose an
everywhere nonvanishing scalar density ρ of opposite
weight in order to obtain the principal tensor field P with
component functions
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Pa1���adegPðxÞ ≔ ρðxÞP̃a1���adegPðxÞ: ð16Þ

The choice of ρ, however, will only affect what is meant by
a massive point particle (see Sec. II D) and is to be defined
in terms of the tensor field G. Since we will finally obtain
dynamics for the geometry G, also ρ will be determined. In
any case, ρ has no influence on any field theoretic
consideration or massless point particles.
Over the next two subsections, we explain the three

matter conditions one must impose in order to start the
gravitational closure procedure and show how the kin-
ematical interpretation of the triplet ðM;G;PÞ arises
from these.

C. Matter conditions

The principal tensor field of matter field equations, on
which the developments in this paper build, is required to
satisfy two hyperbolicity conditions and one energy con-
dition. While these are simply three classical conditions on
the classical matter field equations of motion—more
precisely on their principal tensor P and thus indirectly
also on the underlying geometry G—they are found to be
indeed necessary in a canonical quantization of the classical
dynamics; see [4] for a concrete demonstration. In the
penultimate paragraph of Sec. II D, we will briefly return to
this issue and comment on how classical and quantum
considerations together seem to point at precisely the three
matter conditions below.

1. First matter condition: Predictivity

The first technical condition is the hyperbolicity of the
principal polynomial PðxÞ at every point x ∈ M, which is
directly enforced by the physical assumption that there be
an initial value formulation of the classical field equations
[6]. The polynomial PðxÞ is called hyperbolic if there exists
a covector h ∈ T�

pM such that PðxÞðhÞ ≠ 0 and the
equation PðxÞðqþ λhÞ ¼ 0 has only real solutions λ for
any further covector q ∈ T�

xM. But as soon as one such
covector h exists, there is always an open and convex cone

CxðP; hÞ that contains all hyperbolic covectors that lie
together with h in one connected set [9]. But if indeed
there is any such nonempty hyperbolicity cone, and thus
the polynomial PðxÞ is hyperbolic, then there is always an
even number of distinct hyperbolicity cones; see Figs. 1(a)
and 1(b).
It is easy to see that if the polynomial PðxÞ is reducible,

meaning that it can be written as a finite product

PðxÞ ¼ P1ðxÞP2ðxÞ � � �PfðxÞ ð17Þ

of lower degree polynomials, then PðxÞ is hyperbolic if and
only if each of the lower degree polynomials is hyperbolic,
and that the various hyperbolicity cones of PðxÞ are
obtained by the intersections

CðP; hÞ ¼ CðP1; hÞ ∩ … ∩ CðPf; hÞ ð18Þ

of the various hyperbolicity cones of the lower degree
polynomials; compare Figs. 1(b) and 1(c) for examples.
Clearly, CðP; hÞ ¼ ∅ unless h is a hyperbolic covector of
every factor polynomial. There is obviously no loss of
information incurred by removing repeated polynomial
factors if such happen to occur, but doing so is indeed
technically important [10] for the formulation of our second
condition on the polynomials PðxÞ. In the following, we
will therefore assume that repeated factors have been
removed from P.

2. Second matter condition: Momentum-velocity duality

The second technical condition is the hyperbolicity of the
dual polynomial

P#ðxÞ∶ TxM → R;

P#ðxÞ ≔ P#
1ðxÞP#

2ðxÞ � � �P#
fðxÞ; ð19Þ

where the P#
1ðxÞ;…; P#

fðxÞ are polynomial maps TxM → R
of minimal degree such that for all k in the set

(a) (b) (c)

FIG. 1. Hyperbolicity cones of various polynomials. (a) The two hyperbolicity cones of a hyperbolic second degree principal
polynomial, (b) hyperbolicity cones of a hyperbolic reducible fourth degree principal polynomial, and (c) a non-hyperbolic fourth
degree principal polynomial, obviously featuring no hyperbolicity cones.
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Nsmooth
i ðxÞ≔

�
k∈T�

xMjPiðx;kÞ¼ 0 and
∂Pi

∂k ðx;kÞ≠ 0

�
;

ð20Þ

precisely the gradients ∂Pi=∂k ∈ TxM [shown in Fig. 2(a)
as gradients to the null surfaces in cotangent space and in
Fig. 2(b) as elements of the tangent space] are the roots
of P#

i ,

P#
i

�
x;
∂Pi

∂k ðx; kÞ
�

¼ 0 for all k ∈ Nsmooth
i ðxÞ: ð21Þ

While the polynomial P#ðxÞ is thus only determined up to a
real factor function, its roots, and thus its hyperbolicity, are
unaffected by this ambiguity and thus well-defined. It is
shown in [10] that the existence of a dual P#ðxÞ hinges on
the hyperbolicity of PðxÞ, which is, however, guaranteed by
the first matter condition above.
Technically, the now additionally required hyperbolicity

of P#ðxÞ can thus be understood as a sufficient condition for
PðxÞ to be recoverable fromP# as the double dual, such that
at each x ∈ M we have the proportionality

PðxÞ ∼ P##ðxÞ: ð22Þ

The physical meaning of the dual polynomial becomes
apparent by noting that the characteristic curves x∶ R → M
of the initial matter field equations are, by definition,
stationary with respect to the Hamiltonian action

Smassless½x; k; ρ� ≔
Z

dλ½kaðλÞ_xaðλÞ − ρðλÞPðxðλÞ; kðλÞÞ�;

ð23Þ

which has been shown [10] to be equivalent to the
Lagrangian action

Smassless½x; μ� ≔
Z

dλμðλÞP#ðxðλÞ; _xðλÞÞ ð24Þ

for any hyperbolic P. Hyperbolicity of both PðxÞ and P#ðxÞ
thus ensures the free passage back and forth between the
Hamiltonian to the Lagrangian formulation in case of
characteristic curves, which physically correspond to the
trajectories of massless particles. In other words, the said
bihyperbolicity ensures that, up to scale, there is a
momentum associated with each massless particle velocity,
and vice versa.

3. Third matter condition: Energy distinction

Having established the physical reasoning behind the
condition of hyperbolicity for both the cotangent-space
polynomials PðxÞ and the tangent-space polynomials
P#ðxÞ, we are now prepared to turn to the physical meaning
one must attach to the respective hyperbolicity cones. To
this end, we recall the insight quoted above, namely that the
momenta k of massless particles satisfy the dispersion
relation

Pðx; kÞ ¼ 0: ð25Þ

In order to divide the set of all such massless momenta k, in
an observer-independent way, into momenta of either
positive or negative energy, we now wish to find the largest
possible set of local observers that can still agree on such a
division. More precisely, we wish to find the largest
possible open set Ox in each tangent space TxM of the
spacetime manifold that contains all tangent vectors U to
observer worldlines such that for any particular nonvanish-
ing massless momentum k,

either k ∈ Oþ
x or k ∈ −Oþ

x ; ð26Þ

where the closed dual cone

Oþ
x ≔ fq ∈ T�

xMjUðkÞ > 0 for all U ∈ Oxg ð27Þ

[see Fig. 3(a) for an illustration] implements the said
observer-dependent positive energy condition when inter-
sected with the set of all nonvanishing massless momenta.
Formally, we require that the cone Nx of massless momenta
at every spacetime point x decomposes into disjoint pieces

Nxnf0g ¼ Nþ
x _∪N−

x ; ð28Þ

where N�
x ≔ Nx ∩ ð�Oþ

x Þ. So what is the largest cone Ox
one can choose?
If the above conditions can be satisfied at all, it turns

out that any one of the hyperbolicity cones of P#ðxÞ [see
Fig. 3(b)] provides the required largest set one can choose
in order to satisfy the energy condition (28). This only
leaves us with a choice between the finitely many

(a) (b)

FIG. 2. Gauss map sending P-null covectors to P#-null vectors.
(a) Null surface of a hyperbolic reducible principal polynomial P
in cotangent space; with typical gradient (co-co-)vectors, and
(b) null surface of the dual polynomial P# in tangent space;
containing, by definition, the gradient vectors to theP-null surface.
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hyperbolicity cones of P#ðxÞ at each point x of the
spacetime manifold. A smooth choice throughout the
manifold is clearly provided by the choice of a smooth
vector field T that is everywhere hyperbolic with respect to
P#, such that we obtain a smooth distribution of

future-directed observer cones Ox ¼ CxðP#; TÞ: ð29Þ

Note that all three matter conditions above only employ
the roots of the principal polynomial P and its dual P# at
each spacetime point. Indeed, even the observer cones Ox
are defined entirely in terms of the roots of the dual
polynomial, although all tangent vectors they contain are
nonroots. In the following subsection, we will now com-
plete the kinematics by, first, defining the kinematics of
massive particles within the above framework and, second,
by employing a thus emerging Legendre map in order to
define local observer frames.

D. Massive dispersion relation
and local observer frames

To the smooth choice of observer cones Ox on each
tangent space, for a principal polynomial that satisfies all
three matter conditions imposed in the previous subsection,
corresponds a smooth choice of a hyperbolicity cone in
cotangent space, the so-called cone Cx of positive energy
massive momenta [10] that satisfies

Cx ⊆ O⊥
x : ð30Þ

It is a general result [9] that hyperbolicity cones are open
convex cones, whose boundary is null with respect to the
defining polynomial while the interior has a constant sign.
Since so far we have only employed the roots of the
principal polynomial, we can freely scale it by a sign such
as to conventionally achieve

Pðx; CxÞ > 0 for all x ∈ M: ð31Þ

While the hyperbolicity condition on P generalizes the
Lorentzian signature condition for an inverse metric, and

the hyperbolicity condition on the dual P# that of a metric
itself, it is the above sign convention that generalizes the
mainly minus signature convention of Lorentzian geom-
etry. With this choice made, we now define the massm > 0
of a momentum q ∈ Cx by

Pðx; qÞ ¼ mdegP; ð32Þ

see Fig. 4 for the genesis of quadric and quartic mass shells.
Note that this definition of point particle rest mass is the
first definition that depends on the choice of the scalar
density ρG in (16), which converts the tensor field density P̃
into a tensor field P.
As in the massless case, this dispersion relation is easily

implemented as a constraint in the Hamiltonian action [10]

Smassive½x; q; ρ�

≔
Z

dλ½qaðλÞ_xaðλÞ − ρðλÞ lnPðxðλÞ; m−1qðλÞÞ�; ð33Þ

from which the momentum q can be eliminated—by way of
an injective Legendre map

lx∶ Cx → TxM; lxðqÞ ≔
1

degP
∂ lnP
∂q ðx; qÞ ð34Þ

at each point x of the spacetime manifold M, for which
the inverse l−1

x ∶ lxðCxÞ → Cx is guaranteed to exist due
to the three matter conditions imposed in the previous
subsection—such that the Lagrangian action for the tra-
jectory x of a positive energy particle of mass m emerges
[10] as

Smassive½x� ≔
Z

dλm
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P�ðxðλÞ; _xðλÞÞdegP

p
ð35Þ

in terms of the decidedly nonpolynomial map

(a) (b)

FIG. 3. Positive energy cone Oþ
x as the dual of the observer

cone Ox. (a) Cone covering all momenta of positive energy as
unanimously judged by all observers, and (b) cone containing all
tangent vectors to observer worldlines through one point.

(a) (b)

FIG. 4. Examples of positive energy mass shells. (a) Quadric
mass shell of a second degree principal polynomial Px satisfying
the three matter conditions, and (b) quartic mass shell of a fourth
degree principal polynomial Px satisfying the three matter
conditions.
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P�ðxÞ∶ lxðCxÞ→R; P�ðx;vÞ≔Pðx;l−1
x ðvÞÞ−1: ð36Þ

Note that the massive point particle action (35) is invariant
under strictly monotonously increasing reparametrizations
of the trajectory. This observation also affords us the final
piece of information required for the construction of local
observer frames, namely the observation that parametriza-
tions with

P�ðxðλÞ; _xðλÞÞ ¼ 1 ð37Þ

are distinguished because they correspond to massive
particle momenta

qðλÞ ¼ m_xðλÞ ð38Þ

proportional to the particle velocity, with the proportion-
ality given by the particle rest mass. Employing such
parameters as the definition of proper time, we define an
observer worldline x by the requirements

_xðλÞ ∈ OxðλÞ and P�ðxðλÞ; _xðλÞÞ ¼ 1; ð39Þ

and identify the purely spatial directions SðλÞ ⊂ TxðλÞM
seen by an observer at xðλÞ by

lxðλÞð_xðλÞÞðSðλÞÞ ¼ 0: ð40Þ

Note that the above constructions show that the three
physicality conditions of Sec. II C are sufficient for the
formulation of observer frames that are compatible with the
causality of the original matter field equations. Together
with their being necessary for the canonical quantizability
of the same matter field dynamics, this provides one
possible circumscription of their physical motivation.
In our below derivation of the gravitational closure

equations—which take a test matter action satisfying the
three matter conditions as input and yields the underlying
gravitational dynamics as output—the key information
contained in the matter dynamics trickles down to the
gravitational side exclusively through the Legendre maps
lx, whence (34) presents the most important result of this
review section from a practical point of view.

III. CANONICAL GEOMETRY

In this section, we employ the kinematics implied by
given matter field dynamics in order to foliate the spacetime
manifold into initial data surfaces. Calculating the com-
mutation relations between normal and tangential defor-
mation operators acting on functionals of initial data
hypersurface embedding maps, we obtain the hypersurface
deformation algebra for any spacetime structure ðM;G; PÞ
that satisfies the matter conditions in II C. We then devise
an associated bundle with the frame bundle of the manifold
that serves to parametrize a canonical geometry that mimics

all possible projections of the spacetime geometry to the
leaves of the foliation. In contrast to previous work, where
possibly nonlinear constraints on the canonical geometry
had been left as almost intractable subsidiary conditions in
the solution of the gravitational closure equations, our
associated bundle technique now allows us to capture these
constraints automatically. This is the conceptual and
technical basis for the construction of the canonical phase
space for the geometry, at the beginning of the next chapter
and throughout the remainder of this paper.

A. Spacetime foliation and induced geometry

Foliating the spacetime into leaves of initial data hyper-
surfaces and inducing a canonical geometry, a standard
technique in general relativity, straightforwardly extends to
manifolds ðM;G;PÞ whose structure arises from canoni-
cally quantizable matter field actions. In order to fix the
notation and to devise a way to project spacetime geom-
etries G of arbitrary valence to initial data surfaces, we
quickly collect the relevant constructions.
Let Xt∶ Σ ↪ M be a one-real-parameter family of maps

embedding a three-dimensional manifold Σ such that M is
foliated into hypersurfaces XtðΣÞ with everywhere hyper-
bolic conormal ϵ0ðt; σÞ for σ ∈ Σ. Employing coordinates
yα on Σ, we define the one-parameter families of spacetime
vectors

e0ðt;σÞ≔ lXtðσÞðϵ0ðt;σÞÞ and eαðt;σÞ≔ Xt�ðð∂=∂yαÞσÞ
ð41Þ

for t ∈ R and σ ∈ Σ; see Fig. 5. With the normalization
condition PðXtðσÞ; ϵ0ðt; σÞÞ ¼ 1, these provide the so-
called orthogonal projection frame field along each
embedded hypersurface XtðΣÞ. The frames e0ðt; σÞ;…;
e3ðt; σÞ, together with their unique dual frames ϵ0ðt; σÞ;…;
ϵ3ðt; σÞ, allow one to project spacetime tensors of arbitrary
valence to the manifold Σ.
In the context of this article, we will perform such

projections for the spacetime tangent vector field _Xt

FIG. 5. Embedding of the immutable three-dimensional
manifold Σ by a family of embedding maps Xt into a smooth
spacetime manifold M of appropriate topology, yielding the
leaves of a foliation of that spacetime into initial data hyper-
surfaces XtðΣÞ.
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constructed from the family of embedding maps, the
spacetime tensor field G, and the principal tensor P. We
will discuss these, in turn, below. The manifold Σ thus
becomes a kind of three-dimensional cinema screen on
which the evolution of the four-dimensional spacetime
geometry is shown as a movie in the foliation parameter t.
Note that the entire construction is conceptually standard,
but that the Legendre maps lx generically are nonlinear for
the spacetime geometries ðM;G;PÞ we consider.
Now more precisely, consider first the vector field _Xt,

which is the tangent vector field to the congruence of
spacetime curves that correspond to points that do not move
on the manifold Σ as the foliation parameter increases. Its
projection to Σ (see Fig. 5) gives rise to two one-parameter
families of fields, namely the induced lapse and shift fields

nðtÞ ≔ ϵ0ðtÞð _XtÞ and nαðtÞ ≔ ϵαðtÞð _XtÞ: ð42Þ

Second, we perform the projection of the spacetime
geometry G to several one-parameter families of tensors on
Σ, which is an important intermediate step toward setting
up the gravitational closure equations for any ðM;G; PÞ.
Their components are practically obtained [11] by inserting
either the frame field e0ðt; σÞ or eαðt; σÞ into a slot ofG that
requires a vector, and correspondingly either ϵ0ðt; σÞ or
ϵαðt; σÞ into a slot that requires a covector. For instance,
considering a spacetime geometry given by a (1,2)-tensor
field G, one obtains eight tensors of various valences on the
manifold Σ, one of which is the (0,1)-tensor field

g0
0αðt; σÞ ≔ GXðt;σÞðϵ0ðt; σÞ; e0ðt; σÞ; eαðt; σÞÞ; ð43Þ

which generically differs from the correspondingly defined
g0

α0ðt; σÞ, which is why we do not suppress the 0-indices in
the notation. It is economical to define one single hyper-
index that collects all index combinations for all resulting
tensors on Σ, in some chosen order, such as

A ¼ ð 0
00; 0

0β2 ;
0
β10;

0
β1β2 ;

α
00; α

0β2 ;
α
β10;

α
β1β2Þ ð44Þ

for our example. Note that we abstain from employing
potential algebraic symmetries of the spacetime geometry
G, such as Ga

bc ¼ Ga½bc�, which of course could be used to
remove redundant information from the list gA. These are
most efficiently dealt with later, when identifying the
canonical degrees of freedom of the geometry on the
manifold Σ.
Third, we project the principal tensor field P from

spacetime M to the manifold Σ, resulting in the degPþ1
tensor fields

pα1…αiðt;σÞ
≔PXðt;σÞðϵα1ðt;σÞ;…;ϵαiðt;σÞ;ϵ0ðt;σÞ;…;ϵ0ðt;σÞÞ ð45Þ

for i ¼ 0;…; degP, where the total symmetry of P enables
the simpler index notation chosen here for the various
induced tensor fields p. Due to the definition of the dual
projection frame ϵ0;…; ϵ3, however, the first two fields of
this set are trivial,

pðt; σÞ ¼ 1 and pαðt; σÞ ¼ 0: ð46Þ

Finally, note that for any fixed value of the foliation
parameter t, all fields pðtÞ and gðtÞ present not only tensor
fields on Σ but, at the same time, are functionals of the
embedding map Xt. This will become technically relevant
in the following subsection.

B. General hypersurface deformation algebra

The kinematical information, encoded in the triple
ðM;G; PÞ in general and the therefrom derived Legendre
maps lx in particular takes its most useful form in the so-
called deformation algebra of hypersurfaces.
In order to obtain the latter, consider the functional

differential operators

HtðnÞ ≔
Z
Σ
d3znðzÞea0ðt; zÞ

δ

δXa
t ðzÞ

and

Dtðn⃗Þ ≔
Z
Σ
d3znαðzÞeaαðt; zÞ

δ

δXa
t ðzÞ

; ð47Þ

for arbitrary test functions n and n⃗ on the manifold Σ, which
act on functionals of the embedding maps Xt∶ Σ ↪ M
introduced in the previous subsection. Their geometric
meaning, namely as normal and tangential deformation
operators, is revealed by letting n ≔ n and n⃗ ≔ n⃗ for the
lapse and shift fields n and n⃗ induced by the foliation; see
[12]. The only kinematical information entering here is the
Legendre maps lx, namely implicitly through definition
(41) of the normal vector field e0 along the hypersurface
XtðΣÞ. It is useful to note that the operators HtðnÞ and
Dtðn⃗Þ are vector fields on the infinite-dimensional manifold
of embeddings EmbðΣ;MÞ, for which one can therefore
calculate the Lie brackets between vector fields,

½HtðnÞ;HtðmÞ� ¼ −DtððdegP− 1Þpαβ
t ðm∂βn− n∂βmÞ∂αÞ;

ð48Þ

½Dtðn⃗Þ;HtðmÞ� ¼ −HtðLn⃗mÞ; ð49Þ

½Dtðn⃗Þ;Dtðm⃗Þ� ¼ −DtðLn⃗m⃗Þ: ð50Þ

Note that the right-hand side of (48) depends on the
component functions pαβ of the induced principal poly-
nomial (but not any pα1���αn

t with n ≠ 2) and thus on the
initially specified matter field dynamics and their geometric
background; this is indeed the only, but all-important, trace
left in the algebra by the Legendre maps.
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The failure of these Lie brackets to close with only
structure constants, rather than structure functions, has a
number of complicating implications. Chief among those is
that one cannot simply represent the above relations—at
least not without a number of additional requirements such
as those we will make in Sec. IV B—as a Lie algebra of
functionals of some geometric phase space variables.

C. Canonical geometry

We now revert the perspective taken in the two preceding
subsections, where the spacetime geometry was considered
as primarily given and the induced geometry on the leaves
of some foliation as a derived, thus secondary, quantity.
Indeed, the canonical point of view taken here now
considers the geometry on the leaves as primary and the
spacetime geometry as only reconstructed from there by
virtue of the foliation. This change of perspective comes at
the price that four generically nonlinear conditions, which
the induced geometry satisfied by construction, must now
be reinstated explicitly for the canonical geometry.
More precisely, the transition from the induced geometry

to the canonical one proceeds as follows. If the geometry
gAðtÞ is induced from a spacetime geometry G by virtue of
a foliation Xt∶ Σ ↪ M, together with an induced lapse nðtÞ
and induced shift nαðtÞ, then we introduce

gAðtÞ; nðtÞ; nαðtÞ ð51Þ

as new, independent one-parameter families of tensor fields
on Σ, which capture precisely the tensor structure of the
fields gAðtÞ, the lapse nðtÞ, and the shift nαðtÞ. Note that
the construction of the induced tensor fields gAðtÞ auto-
matically equips them with properties that are not captured
by their mere tensor valence, while their valence is indeed
the only information left after the transition to gAðtÞ. How
to reinstate the missing information will be remedied in the
next subsection. This will lead directly to the associated
bundle techniques mentioned above. We also need to
translate any quantities that were previously defined in
terms of the induced geometry gA into corresponding
quantities of the gA. The most relevant such transition
for the purposes of this paper is the one from the pα1���αiðtÞ
to the new one-parameter families of fields pα1���αiðtÞ for
i ¼ 0;…; degP, which are defined as precisely the same
functions of gAðtÞ as the pα1���αiðtÞ were of the gAðtÞ.
The most relevant property of the induced geometry gA,

which is not automatically captured by the canonical
geometry gA, is the frame conditions (46). While these
are satisfied for the induced fields p and pα by construction,
this information is lost when the functionals g are replaced
by the fields gA that merely mimic their tensorial structure.
Thus the normalization and annihilation conditions must be
explicitly reinstated as

pðgÞðtÞ ¼ 1 and pαðgÞðtÞ ¼ 0: ð52Þ

These conditions impose four—generically nonlinear—
conditions on the canonical geometry gA and thus effec-
tively remove four of their degrees of freedom. These
nonlinear relations are captured, beginning with the next
subsection, by a suitable parametrization of the gA.
Similarly, any algebraic symmetry of the spacetime

geometry G is automatically passed on to the induced
tensor fields gA, but must again be explicitly reinstated for
the canonical geometry gA by additional, now, however,
linear and homogeneous, conditions

ðδAB − ΠA
BÞgB ¼ 0 ð53Þ

for suitable projectors Π. These additional symmetry
conditions can be implemented without extra effort along-
side the generically nonlinear frame conditions by the
method developed in the following subsection. The pos-
sibility of such a combined treatment was the conceptual
reason for withholding the implementation of symmetry
conditions before. An independent technical reason for not
reflecting algebraic symmetries already at the level of the gA

was to be able to calculate partial derivatives of functions
depending on the gA, which requires one to be able to vary
each individual entry while keeping all others fixed.

D. Parametrization of the canonical geometry

The configuration variables of the gravitational dynam-
ics, which we are about to construct, parametrize, without
further constraints, canonical geometries gA that respect the
frame and symmetry conditions identified in the previous
subsection. But because of their generic overall nonlinear-
ity, these conditions cannot be implemented by simply
cutting away some tensor field components among the gA

while keeping others. In fact, the situation is pretty much
the same as for a particle in Euclidean space that is
conditioned to move on an embedded submanifold, such
as a circle. One cannot simply cut away one of the Cartesian
coordinates, as one could if the particle was constrained to a
linear subspace instead. The conceptually and technically
best solution in classical mechanics is to introduce gener-
alized coordinates. The same idea applies here. We require
exactly as many field configuration variables φ1;…;φF as
are needed to bijectively parametrize the tensor fields gA

such that the frame conditions (52) and symmetry con-
ditions (53) are met by construction. Technically, this is
achieved by choosing a suitable F-dimensional manifoldΦ
and smooth maps ĝA∶ Φ → R such that any canonical
geometry gA generated by ĝAðφ1;…;φFÞ satisfies the
conditions
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ðδAB − ΠA
BÞĝBðφðtÞÞ ¼ 0 and pðĝðφðt; σÞÞÞ ¼ 1 and

pαðĝðφðt; σÞÞÞ ¼ 0 ð54Þ

for any σ ∈ Σ and any real t in the range of the foliation
parameter. If one single map ĝA does not suffice to cover the
required range, the usual chart transition constructions can
be invoked. The number F of configuration variables is the
total number of all gA minus the normalization condition
minus the three annihilation conditions and minus the
dimension of the eigenspace Eig1ðΠÞ of the projector Π.
For instance, when the triple ðM;Gmetric; G−1

metricÞ is
induced by a Lorentzian metric Gmetric, there are F ¼
16 − 3 − 1 − 6 ¼ 6 configuration field variables, which,
due to all constraints being linear in this case, can coinci-
dentally be written as a not further constrained metric tensor
on the three-dimensional manifold Σ.
Conversely, we require the existence of inverse maps φ̂A

that send any collection gA (even if the frame and symmetry
conditions are not met) to a real number, but which are
constructed such that

ðφ̂A∘ĝÞðφÞ ¼ φA for A ¼ 1;…; F: ð55Þ

The opposite composition ðĝA ∘ φ̂Þ projects any set of gA,
even if the latter does not yet satisfy the frame and
symmetry conditions, to a set that does. Ubiquitous
appearance throughout the theory is then made by the maps

∂φ̂A

∂gA ðĝðφÞÞ and
∂ĝA
∂φA ðφÞ; ð56Þ

as they emerge as intertwiners between the components of
the canonical geometry, labeled by A, and the components
of the configuration variables, labeled by A. The above
defining conditions for the maps ĝ and φ̂ immediately
imply the important and heavily used completeness
relations

∂φ̂A

∂gA ðĝðφÞÞ ∂ĝ
A

∂φB ðφÞ ¼ δAB and

∂ĝA
∂φA ðφÞ

∂φ̂A

∂gB ðĝðφÞÞ ¼ T A
BðφÞ; ð57Þ

where T A
BðφÞ is defined by the left-hand side and is easily

seen to be a projector.

IV. CANONICAL GRAVITATIONAL DYNAMICS

Employing the technology developed in the previous
section, we now significantly improve and extend the results
of [5]. The crucial technical advance is the identification of
the geometric phase space with the nontensorial configu-
ration variables and canonically conjugate momentum
densities, whose transformation behavior already captures
the nonlinear constraints on the canonical geometry that was

left to be implemented only afterwards in previous treat-
ments. The complete determination of the gravitational
Hamiltonian, which is required to satisfy the two properties
imposed in Sec. IV B, then finally leads to the gravitational
closure equations for any matter field dynamics that satisfy
the matter conditions from Sec. II C. This is a countably
infinite set of partial differential equations that needs to be
solved in order to obtain the gravitational Hamiltonian or,
equivalently, Lagrangian density.

A. Canonical phase space

Having identified the unconstrained geometric configu-
ration variables φA for a spacetime geometry ðM;G; PÞ in
the previous section, we are now in the position to set up the
canonical phase space on which canonical dynamics can be
formulated for precisely the geometric degrees of freedom
φA. To this end, we adjoin canonically conjugate momen-
tum fields πA with respect to the field-theoretic Poisson
bracket

fF;Gg≔
Z
Σ
d3z

�
δF

δφAðzÞ
δG

δπAðzÞ
−

δG
δφAðzÞ

δF
δπAðzÞ

�
; ð58Þ

which is to be evaluated on any two scalar functionals
F½φ; π� and G½φ; π� of the canonical configuration variables
φA and the associated canonical momenta πA. We remark in
passing that, as usual, there is an ambiguity in the choice of
the canonical momenta for some given set of configuration
variables φA. For if πA presents a possible choice, then so
does πA þ ΛA½φ� for any closed covector field ΛAδφ

A on
configuration space that satisfies the closure condition

δΛA

δφB −
δΛB

δφA ¼ 0: ð59Þ

From the obvious requirement that the bracket (58) be
well-defined under changes of the coordinate chart on the
manifold Σ, we can derive the precise mathematical nature
of the momenta. Technically, the key observation is that
the F configuration variables φA are a section of an
F-dimensional Φ-fiber bundle over Σ, which is an asso-
ciated bundle with respect to the frame bundle LΣ by
virtue of the (generically nonlinear) group action
ρ∶ GLð3Þ ×Φ → Φ that is enforced by the way the φA

transform under coordinate transformations, namely

ρA
�∂z̃
∂z ;φ

�
≔ φ̂A

�
RA

B

�∂z̃
∂z

�
ĝBðφ1;…;φFÞ

�
; ð60Þ

where RA
Bð∂z̃∂zÞ denotes the standard tensorial action of the

GLð3Þ-transformation ∂z̃=∂z on the various tensors on Σ
which we collectively labeled by B. Note that the above
transformation behavior of configuration variables is not a
postulate, but directly follows from our choice of para-
metrization map φ̂ and its inverse ĝ, on which the group
action then naturally depends. But with the transformation

GRAVITATIONAL CLOSURE OF MATTER FIELD EQUATIONS PHYS. REV. D 97, 084036 (2018)

084036-11



behavior of the configuration variables thus under control,
we can now straightforwardly read off the GLð3Þ group
action that defines a further associated Π-fiber bundle over
the manifold Σ, of which the canonical momenta πA shall
constitute a section. In order for the Poisson bracket above
to be well-defined, we then need to impose the group action
ρ�∶ GLð3Þ × Π → Π,

ρ�A

�∂z̃
∂z;π

�
≔
�
det

∂z̃
∂z

�∂φ̂B

∂gA ðR−1ÞAB

�∂z̃
∂z

� ∂ĝB
∂φA π̃B: ð61Þ

Indeed, it is easy to see that then the Poisson bracket is
well-defined, because the functional derivative δF=δφAðzÞ
has density weight one (since φA has density weight zero),
while the fact that πA already has density weight one
cancels the density weight from the functional differ-
entiation in δG=δπAðzÞ, rendering the latter of weight zero.
Thus the integrand of the Poisson bracket can be shown to
be a scalar density of weight one and thus the integral to be
well-defined.

B. Embedding properties
and gravitational Hamiltonian

In this section, we introduce two functionals on the just
constructed phase space, whose action on the configuration
variables mimics the action of the normal and tangential
deformation operators of Sec. III B on the geometry
projected to the leaves of a given spacetime foliation,
and then formulate two embedding properties concerning
the spacetime interpretation of these canonical objects.

1. First embedding property: Local phase space avatars
of deformation operators

We require that there are phase space functionals

HðnÞ ≔
Z
Σ
d3znðzÞH½φðzÞ; πðzÞ� and

Dðn⃗Þ ≔
Z
Σ
d3znαðzÞDα½φðzÞ; πðzÞ� ð62Þ

in terms of local functionals H and D of the geometric
phase space variables, which evolve the canonical data
between leaves of a given spacetime foliation Xt such that
the result agrees with what the application of the normal
and tangential deformation operators HtðnÞ and Dtðn⃗Þ
yield when they are applied to the projected geometry,

HtðnÞgA
t ¼ −fHðnÞ; gAgt and

Dtðn⃗ÞgA
t ¼ −fDðn⃗Þ; gAgt; ð63Þ

where the equal signs are to be understood in the sense that
the right-hand side is the same function of the canonical
geometry gA as the left-hand side is of the induced geometry
gA. Now in order to ensure the consistency of the spacetime

interpretation of the action of HðnÞ and Dðn⃗Þ, as it is
expressed in terms of the two requirements (63), we
additionally stipulate the Poisson algebra

fHðnÞ;HðmÞg ¼ DððdegP − 1Þpαβðm∂βn − n∂βmÞ∂αÞ;
ð64Þ

fDðn⃗Þ;HðmÞg ¼ HðLn⃗mÞ; ð65Þ

fDðn⃗Þ;Dðm⃗Þg ¼ DðLn⃗m⃗Þ; ð66Þ

which ensures that there is no inconsistency with the vector
field algebra (48)–(50) of deformation operators HðnÞ and
Dðn⃗Þ. The five Eqs. (63) and (64)–(66) will play a crucial
role in all that follows from now on, starting from the below
determination of the general form of the Hamiltonian of a
spacetime diffeomorphism invariant theory up to the
calculation of the gravitational closure equations as the
central result of this article.

2. Second embedding property: Spacetime
diffeomorphism invariance and path independence

Spacetime diffeomorphism invariance of the canonical
dynamics certainly requires that the evolution of initial data
between any two fixed Cauchy surfaces be independent of
the choice of intermediate foliation. Such path independ-
ence of the dynamics implies (see Sec. 5 of [13] for the
general line of argument that applies mutatis mutandis in
our general setting) that the pertinent Hamiltonian must be
of the totally constrained form

H½φ; π; n; n⃗Þ ¼ HðnÞ þDðn⃗Þ; ð67Þ

which is why the functionals (62) are commonly referred to
as the superhamiltonian and supermomentum constraints.
The closure of the constraint algebra (64)–(66) ensures that
the Hamiltonian density (67) does not give rise to further
constraints and thus does not pick up additional terms.
We briefly remark on a well-known subtlety with regards

to the intimate relationship between path independence and
spacetime diffeomorphism invariance of canonical dynam-
ics. Indeed, while the required path independence of the
canonical dynamics geometrically implements the idea that
the dynamics be invariant under spacetime diffeomor-
phisms, at first sight it may be somewhat disturbing to
learn that not even infinitesimal spacetime diffeomor-
phisms can be represented on our geometric phase space
constituted by the φA and πA. This can be remedied,
however, by first extending the phase space such as to
additionally include the four component fields Xa of the
foliation map and associated canonically conjugate
momenta Πa and then dressing up the Hamiltonian (67)
such as to include these new variables. Exactly along the
same lines demonstrated in [14] for parametrized dynamics
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and in [15] for the case of a metric geometric phase space,
one then constructs an action of the diffeomorphism
algebra on the extended phase space. Since these steps
do not change the physical contents of the theory, the issue
of understanding the diffeomorphism invariance of the
gravitational theories obtained by gravitational closure is
resolved in the same fashion as in standard general
relativity.

C. Functional differential reformulation
of the constraint algebra

The conditions (63) and the constraint algebra (64)–(66)
provide functional differential conditions on HðnÞ and
Dðn⃗Þ that turn out to be so strong as to determine the
gravitational superhamiltonian and supermomentum under
the matter conditions listed in II C and the embedding
properties of the Hamiltonian stipulated in IV B. The
resulting Hamiltonian (67) then generates the evolution
of phase space curves ðφAðtÞ; πAðtÞÞ with respect to what,
from a spacetime point of view, is the foliation parameter t.
The thus generated “geometry movie” on the manifold Σ
can then be embedded, frame by frame, into the spacetime
manifold by virtue of the one-parameter familyXt∶ Σ ↪ M
by letting n ≔ n and n⃗ ≔ n⃗, which results in the immutable
spacetime geometry G. This is the mechanism underlying
the dynamical closure of prescribed canonically quantiz-
able matter dynamics. In this subsection, we solve the
autonomous third constraint equation (66) for the super-
momentum Dðn⃗Þ and are thus able to reformulate the first
two constraint equations (64) and (65) as linear functional
differential equations for a suitable Lagrangian functional.
Carefully taking into account the parametrization ĝA of

the canonical geometry gA in terms of the configuration
variables φA, one finds that the second condition of (63)
together with the constraint algebra equation (66) already
completely determines the constraint functional to be

Dðn⃗Þ ¼
Z
Σ
d3zπAðzÞ

∂φ̂A

∂gA ðĝðφðzÞÞÞðLn⃗ĝðφÞÞAðzÞ; ð68Þ

with the only, but significant, improvement compared to
(4.16) of [5] being the appearance of the intertwiner map
∂φ̂A=∂gA and the parametrization map ĝA.
The first condition of (63), in contrast, is much weaker,

for it does not determine in any way the superhamiltonian's
ultralocal dependence on the momentum fields πA. But it
crucially allows one to determine the dependence on
derivatives of the momentum fields. Indeed, as is shown
in [12], it enforces

HðnÞ ¼
Z
Σ
d3znðzÞ½Hlocal½φ; πÞðzÞ − ∂γðMAγðφÞπAÞðzÞ�;

ð69Þ

for a still entirely unknown functional Hlocal½φ; πÞ that is
local in the configuration variables and ultralocal in the
momenta. The dependence on derivatives of the momenta
in Eq. (69) is controlled by the coefficient

MAγðφÞ ≔ ∂φ̂A

∂gA ðĝðφÞÞea0ðt; σÞ
∂gA

∂∂γXa ðt; σÞ; ð70Þ

whose last factor is easily calculated in practice from the
definition of the gA using the identities

∂em0
∂∂γXa ¼ −ðdegP − 1Þemσ ϵ0apσγ and

∂emμ
∂∂γXa ¼ δma δ

γ
μ ð71Þ

for the tangent frame fields, and

∂ϵ0m
∂∂γXa ¼ −ϵ0aϵ

γ
m and

∂ϵμm
∂∂γXa ¼ −ϵμaϵγm þ ðdegP − 1Þϵ0mϵ0apμγ ð72Þ

for the cotangent fields.
Thus the gravitational Hamiltonian (67) is determined so

far only up to the functionalHlocal½φ; πÞ. The determination
of this remaining piece of the superhamiltonian requires
significant work and will finally lead to the gravitational
closure equations in the next subsection.
We prepare the derivation of these closure equations by

following again [5] closely in applying a trick due to
Kuchar [16], which converts both the first two constraint
equations into linear equations. To this end, we define the
generalized velocity fields

kA½φ; πÞ ≔ ∂Hlocal

∂πA ½φ; πÞ ð73Þ

and subsequently perform a formal Legendre transforma-
tion on the πA, rewriting

Hlocal½φ; πÞ ¼ πAkA½φ; πÞ − L½φ; k½φ; πÞÞ ð74Þ

and thus trading the unknown density Hlocal½φ; πÞ for
another unknown density L½φ; kÞ. The benefit of this trade,
however, is that the quadratic condition (64) on H is
converted into a merely linear homogeneous functional
differential equation for the functional L. Indeed, using the
same idea as in [5], but now employing the parametrization
ĝA of the canonical geometry in terms of the configuration
variables φ, one picks up crucial additional terms and
finally obtains the functional differential form of (64). More
precisely, using the
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shorthand notation Q∶A
α1���αN ≔

∂Q
∂∂α1���αNφ

A ð75Þ

to denote partial derivatives with respect to partial derivatives of configuration variables over Σ, where Q is any
differentiable function of the configuration variables and their partial derivatives on Σ, this functional differential equation
equivalent to the bracket (64) reads

0 ¼ −kBðyÞ
�
δLðxÞ
δφBð·Þ

�
ðyÞ þ ð∂γδxÞðyÞkBðyÞMAγ

∶BðxÞ
∂L
∂kA ðxÞ þ ∂μ

�
δLðxÞ
δφBð·ÞM

Bμ

�
ðyÞ

þ ∂μ

�∂L
∂kA

�
ðxÞ½ðdegP − 1ÞpρμFA

ρ
ν −MB½μjMAjν�

∶B�ðxÞð∂νδxÞðyÞ

−
∂L
∂kA ðxÞ½ðdegP − 1ÞpρνðEA

ρ þ FA
ρ
γ
;γÞ þ ∂μðMB½μjMAjν�

∶BÞ�ðxÞð∂νδxÞðyÞ − ðx ↔ yÞ ð76Þ

with the new coefficients EA
μ and FA

μ
ν defined by

∂φ̂A

∂gA ðLn⃗ĝðφÞÞA ≕ nμEA
μ − ∂γnμFA

μ
γ: ð77Þ

Similarly, one rewrites the second constraint algebra relation (65) as an additional linear homogeneous functional
differential equation for the density L, namely

0 ¼
�∂L
∂kB

�
ðyÞkAðyÞ½EB

μ∶AðyÞδyðxÞ þ ðEB
μ∶A

γ þ FB
μ
γ
∶AÞðyÞð∂γδyÞðxÞ�

− kAðyÞ
�
∂γ

∂L
∂kB

�
ðyÞFB

μ
γ
∶AðyÞδyðxÞ −

�
kA

∂L
∂kA − L

�
ðyÞð∂μδyÞðxÞ þ ∂μ

�
kA

∂L
∂kA − L

�
ðyÞδyðxÞ

þ ðEA
μ þ FA

μ
γ
;γÞðxÞ

δLðyÞ
δφAðxÞ þ FA

μ
γðxÞ∂γ

�
δLðyÞ
δφAð·Þ

�
ðxÞ: ð78Þ

The coefficients EA
μ, FA

μ
ν, MBμ, and pαβ are completely

determined by the triple ðM;G; PÞ and need to be provided
as input when solving the functional differential equa-
tions (76) and (78), or the indeed equivalent closure
equations derived in the next subsection, for the only
remaining unknown functional L. We will therefore refer to
these four types of coefficients as the input coefficients
from now on. They are always directly calculated from the
initially specified matter dynamics and their background
geometry G.

D. Gravitational closure equations

The gravitational closure equations for any given field
theory satisfying the matter conditions of II C are the
countably infinite set of partial differential equations that
follow for the sequence of coefficient functionals

C½φ�; CA1
½φ�; CA1A2

½φ�; …; ð79Þ

which depend at most locally on the configuration variables
φA, upon insertion of the functional

L½φ;KÞ ¼
X∞
N¼0

CA1���AN
½φ�kA1 � � � kAN ð80Þ

into the functional differential equations (76) and (78). This
reformulation of the two functional differential equations
comes at the price of now having to solve countably many
equations which, however, makes the problem directly
accessible to the full machinery [6] that is nowadays
available for the study of systems of linear partial differ-
ential equations.
The derivation of these linear homogeneous equations,

which present the desired gravitational closure equations, is
a painstaking exercise. Despite two crucial modifications, it
proceeds technically in full analogy to the steps performed
in [5]. The first modification is presented by our now
employing a parametrization ĝA of the canonical geometry
gA in terms of the unconstrained configuration variables
φA, such that the generically nonlinear polynomial frame
conditions and any additional symmetry conditions for the
tensor fields gA are captured automatically. The second
modification is that we now convert also the second
functional differential equation for L, Eq. (78), into a set
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of partial differential equations, since the (anyhow some-
what awkward) workaround taken before is no longer
available for the generalized tensor components we now
use as configuration degrees of freedom [17]. Since it is
ultimately straightforward to adapt the calculations of [5] to
the new technical developments of this paper, we content
ourselves with displaying the resulting set of linear homo-
geneous partial differential equations in terms of the

seven individual equations ðC1Þ to ðC7Þ and

14 sequences of equations ðC8NÞ to ðC21NÞ for N ≥ 2

displayed in the Appendix. Those are the gravitational
closure equations. Set up by provision of the matter-
determined input coefficients EA

μ, FA
μ
ν, MAμ, and pαβ,

their solution yields the sequence of output coefficients
fCA1…AN

½φ�gN≥0 and thus the dynamics for the spacetime
geometry.
The explicit form of these gravitational closure equations

has already been simplified in so far as their derivation
yields that, for N ≥ 2, all output coefficients are functions

CA1A2���AN
ðφ; ∂φ; ∂∂φÞ; ð81Þ

which only depend on at most second partial derivatives of
the configuration variables φA with respect to the base
manifold Σ. A weaker result applies to the first two output
coefficients

C½φ� and CA½φ�; ð82Þ

namely that if CA depends on partial derivatives of the φ up
to theDth order, then C depends on partial derivatives up to
order maxf2; Dþ 1g. A stronger result holds if the input
coefficientMAμ vanishes identically, for then C depends on
the configuration variables φ to at most second derivative
order. Thus one of the first questions one typically wishes
to address early on, when solving the gravitational closure
equations for specific input coefficients, is the value of D.

E. Canonical equations and equivalent
spacetime action

A practically most convenient result is turned up by
translation of our results from the canonical picture back to a
spacetime formulation. Indeed, the gravitational closure
equations immediately provide a perfectly simple, ready-
to-use spacetime action that just needs to be varied, as usual,
with respect to the components of the spacetime geometry in
order to obtain the gravitational field equations.
In the canonical picture, it is the Hamiltonian (67) that

determines the evolution of our canonical configuration and
momentum degrees of freedom according to

_φA
t ðyÞ ¼ fφAðyÞ; Hðn; n⃗Þgt and

_πAðyÞ ¼ fπAðyÞ; Hðn; n⃗Þgt; ð83Þ

where the dot denotes the derivative with respect to the
foliation parameter t. The parameter t as well as the lapse nt
and shift n⃗t precisely parametrize the possible choices one
could make to embed the three-dimensional manifold Σ,
on which the canonical dynamics play out, into the four-
dimensional spacetime. The required diffeomorphism
invariance of the theory is precisely the freedom to choose
this embedding without changing the contents of the theory;
see the first and second embedding property in Sec. IV B.
Inclusion ofmatter, with aHamiltonianHmatter½A;φ; n; nαÞ

that does not depend on derivatives of the φA, n, and nα,
thus leads to the geometric evolution equations

δHmatter

δφAðxÞ ¼ −
�
∂t − nμ∂μ − ∂μnμ

� ∂L
∂kA

þ
�
ð∂γnÞ

∂MBγ

∂φA − ð∂γnμÞ
∂FB

μ
γ

∂φA

�

×
∂L
∂kB ðxÞ þ

Z
d3ynðyÞ δLðyÞ

δφAðxÞ ; ð84Þ

and the two constraint equations

δHmatter

δnðxÞ ¼ −½kA − ∂γMAγ −MAγ∂γ�
∂L
∂kA ðxÞ þ LðxÞ ð85Þ

and

δHmatter

δnμðxÞ ¼ −½∂μφ
A þ ∂γFA

μ
γ þ FA

μ
γ∂γ�

∂L
∂kA ðxÞ; ð86Þ

in all three of which the kA are to be replaced by

kAðxÞ¼ 1

nðxÞ ½∂tφ
A− ð∂γnÞMAγ −nμ∂μφ

Aþð∂γnμÞFA
μ
γ�ðxÞ

ð87Þ
after previous execution of all related derivatives. The
constraints are thus manifestly of at most first derivative
order in the foliation parameter t, and the evolution
equations of at most second derivative order in t, with
respect to any chosen foliation. So there are, in particular,
no Ostrogradsky ghosts [18]. The Helmholtz action giving
rise to these canonical equations of motion is simply

S½φ;π;n;nα�¼
Z

dt

�
−Ht½φ;π;n;nα�þ

Z
Σ
d3zðπA _φAÞðzÞ

�
;

ð88Þ

but, remarkably, can be expressed directly in terms of the
functional L that follows from a solution of the gravita-
tional closure equations. To see this, one uses the first
Hamiltonian equation of motion in (83) above to express
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the derivative of the configuration variables with respect to
the foliation parameter as

_φA¼nkA½φ;πÞþð∂γnÞMAγðφÞþ∂φ̂A

∂gA ðφÞðLn⃗ĝðφÞÞA: ð89Þ

Upon insertion of this expression and the partially deter-
mined Hamiltonian (69) into the Helmholtz action (88), one
immediately observes that all terms but the ones coming
from the local superhamiltonian drop out. Finally con-
verting the kA back to the _φA by use of the first Hamiltonian
equation, one obtains an equivalent action

S½ϕ; N; Nα� ¼
Z

dt
Z
Σ
d3zℒgeometry½ϕ; N; Nα�ðt; zÞ; ð90Þ

where the capitalized quantities

ϕðt; zÞ ≔ φtðzÞ; Nðt; zÞ ≔ ntðzÞ;
Nαðt; zÞ ≔ nαt ðzÞ ð91Þ

numerically precisely coincide with the configuration
variables, the lapse and the shift, but are now all considered
as spacetime quantities, rather than one-parameter families
on the manifold Σ. In particular, functionals of the
capitalized quantities may now include time derivatives,
such as the Lagrangian density obtained by simple multi-
plication of the lapse N with the solution L of the
gravitational closure equations,

ℒgeometry½ϕ; N; Nα� ¼ N · L
�
ϕ;

1

N
ð _ϕA − ð∂γNÞMAγðϕÞ − ∂φ̂A

∂gA ðϕÞðLN⃗ ĝðϕÞÞAÞ
�
: ð92Þ

Indeed, it is quickly checked that varying the thus obtained
total action

Sgeometry½ϕ; N; Nα� þ Smatter½A;ϕ; N; NαÞ ð93Þ

with respect to the ϕ, N, and Nα in a way that properly
includes also time derivatives in the variations yields a set
of equations equivalent to the canonical gravitational
evolution equations above.

V. EXAMPLES: MATTER ONMETRIC, BIMETRIC
AND HIGHER-RANK GEOMETRIES

How truly simple it is now—due to the new para-
metrization technology of any canonical geometry gA in
terms of nontensorial configuration variables φA—to set up
the gravitational closure equations for an admissible matter
action on any tensorial background is illustrated by the
three hopefully instructive examples presented in this last
section. The first one, in Sec. VA, is a warm-up that starts
from standard model matter, new only in that it uses
nontensorial configuration variables as the simplest illus-
tration of how the latter are employed in practice. An
illustration of how unexpectedly nontrivial the gravitational
closure can turn out to be is then provided by the second
example, which starts from an innocent-looking set of two
scalar fields on a bimetric background as the prescribed
matter theory, for which the corresponding closure equa-
tions are set up in Sec. V B. Section V C finally presents the
gravitational closure equations for a gravity theory of some
phenomenological interest, namely the one underpinning
the most general birefringent linear electrodynamics. The
seriously involved closure equations for this theory are
solved perturbatively in [19].

A. Gravitational closure of Klein-Gordon theory
on a metric geometry

The arguably simplest canonically quantizable matter
field theory on a metric background ðM;GÞ, and thus one
that necessarily satisfies the matter conditions imposed in
Sec. II C, is the Klein-Gordon action for a scalar field ϕ,

Smatter½ϕ;GÞ ¼
Z

d4x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ðdetG…ÞðxÞ

p
× ½GabðxÞ∂aϕðxÞ∂bϕðxÞ−m2ϕ2ðxÞ�; ð94Þ

whose principal tensor can be read off directly from the
highest order derivative term of the associated field
equations and has the components

Pij ¼ Gij: ð95Þ

All matter dynamics of the standard model of particle
physics are constructed such that they feature this principal
tensor. Thus the above Klein-Gordon theory, standard
Abelian and non-Abelian gauge theory, and indeed Dirac
fields (the latter precisely because the Dirac algebra
γðaγbÞ ¼ Gab recovers again the same principal tensor)
all produce the same triple

ðM;G;G−1Þ; ð96Þ

where the matter conditions (actually, in the metric case, the
first matter condition already implies the second and the
third) require the metric G to have Lorentzian signature.
We now quickly rush through the steps described in this

paper to set up the gravitational closure equations. First, the
induced geometry is calculated to be
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g00 ≔ Gðϵ0; ϵ0Þ; g0α ≔ Gðϵ0; ϵαÞ;
gα0 ≔ Gðϵα; ϵ0Þ; gαβ ≔ Gðϵα; ϵβÞ: ð97Þ

The associated frame conditions

p ¼ g00 ¼ 1 and pα ¼ gα0 ¼ 0 ð98Þ
are obviously linear. Transition from the induced geometry
to the corresponding 16 independent tensor field compo-
nents g, gα, and gαβ, and subsequent implementation of the
frame constraints (98) together with the automatically
linear symmetry constraints

g½αβ� ¼ 0 and g½α0� ¼ 0; ð99Þ
removes 1þ 3þ 3þ 3 tensor components. Thus, we are
effectively only left with a symmetric tensor field gαβ that
can be parametrized in terms of six configuration variables
φA. Of the infinity of possible parametrizations, we choose
the parametrization maps

ĝαβðφÞ ≔ Iαβ
Aφ

A and φ̂AðgÞ ≔ IA
αβgαβ; ð100Þ

where the respective constant intertwining matrices need to
satisfy the two conditions

Iαβ
AIB

αβ ¼ δAB and I γδ
AIA

αβ ¼ δðγα δ
δÞ
β ð101Þ

in order to render the above pair a valid parametrization; a
concrete choice [20] is

Iαβ
A ≔

1ffiffiffi
2

p

2
66666666666666664

ffiffiffi
2

p
0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 1 0 0 0 0

0 0 0
ffiffiffi
2

p
0 0

0 0 0 0 1 0

0 0 1 0 0 0

0 0 0 0 1 0

0 0 0 0 0
ffiffiffi
2

p

3
77777777777777775

αβ

A

and

IA
αβ ≔

1ffiffiffi
2

p

2
666666664

ffiffiffi
2

p
0 0 0 0 0 0 0 0

0 1 0 1 0 0 0 0 0

0 0 1 0 0 0 1 0 0

0 0 0 0
ffiffiffi
2

p
0 0 0 0

0 0 0 0 0 1 0 1 0

0 0 0 0 0 0 0 0
ffiffiffi
2

p

3
777777775

A

αβ

; ð102Þ

which, however, is rarely needed explicitly. With this
parametrization at hand, the input coefficients defining
the specific gravitational closure equations for this case are
quickly calculated to be given by

pαβ ¼ gαβ; EA
μ ¼ φA

;μ;

FA
μ
γ ¼ 2IA

μαI γα
Bφ

B; MAμ ¼ 0: ð103Þ
Solving the resulting gravitational closure equations yields
[16], as the only nonvanishing dynamical potentials

C½φ� ¼ −
1

2κ

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− det ĝðφÞp ðR½ĝðφÞ� − 2ΛÞ; ð104Þ

CABðφÞ¼
1

8κ

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−det ĝðφÞp Iαβ

A

×Iμν
BðĝαμðφÞĝβνðφÞ− ĝαβðφÞĝμνðφÞÞ; ð105Þ

where R½g� denotes the Ricci curvature scalar built from an
inverse three-dimensional metric g and ĝαβðφÞ denotes the
matrix inverse of ĝαβðφÞ. But this is exactly the 3þ 1
decomposition of the Einstein-Hilbert action

Sgeometry½G� ¼
1

2κ

Z
d4x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− detG���ðxÞ

p
× ½RðGðxÞ; ∂GðxÞ; ∂2GðxÞÞ − 2Λ� ð106Þ

with the gravitational constant κ and cosmological constant
Λ having emerged as undetermined constants of integration.
Since nothing in our setup has been designed to arrive at this
result, the above is a successful test of the gravitational
closure approach, as we know that the Einstein-Hilbert
action is consistent with standard model matter. As indi-
cated above, this result as such has been derived a long time
ago by Kuchar and, indeed, our parametrization of the
canonical geometry gA in terms of nontensorial configura-
tion variables φA was a sledgehammer used to crack a nut,
since the frame conditions were merely linear. But this will
change dramatically already for the next, at first sight quite
innocent-looking example of two free scalar fields coupled
to two different metrics.

B. Gravitational closure of two Klein-Gordon fields
on a bimetric geometry

Averitable surprise is in store when we consider the case
of a bimetric geometry, featuring two (a priori not
signature-restricted) metrics G and H. In order to equip
this geometry with specific kinematical meaning, we inject
the physical information contained in the matter action

Smatter½ϕ;ψ ;G;HÞ

≔
Z

d4x½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ðdetG..ÞðxÞ

p
Gab∂aϕðxÞ∂bϕðxÞ

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ðdetH..ÞðxÞ

p
HabðxÞ∂aψðxÞ∂bψðxÞ�; ð107Þ

for scalar fields ϕ and ψ , where additional terms giving rise
to first and zeroth derivative order terms at the level of the
associated equations of motion could be added at will, since
they will not influence the principal tensor, which for this
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matter theory is calculated to be the totally symmetrized
product [10] of the principal tensors of the two individual
Klein-Gordon fields,

Pijkl ¼ GðijHklÞ; ð108Þ

which neatly illustrates the point made in Sec. II A, namely
that a multitude of matter fields, and even a multitude of
geometric tensors, still results—as it must—in one and only
one principal tensor, which captures the information about
the shared initial data surfaces, and thus a triple

ðM; fG;Hg; PÞ ð109Þ

form the matter field dynamics (107). Moreover, it is
straightforward to see that the principal tensor P provided
by the above symmetrized product has the algebraic dual

P#
ijkl ¼ GðijHklÞ ð110Þ

and that P and P# are both hyperbolic, as is required by the
canonical quantizability of the matter action, if and only if
both metrics G and H have a Lorentzian signature.
The induced geometry is constructed similarly to the

case of one Lorentzian spacetime metric. However, there
are now twice as many fields as there are two Lorentzian
metrics gαβ and hαβ, yielding

g00 ≔ Gðϵ0; ϵ0Þ; g0α ≔ Gðϵ0; ϵαÞ;
gα0 ≔ Gðϵα; ϵ0Þ; gαβ ≔ Gðϵα; ϵβÞ;
h00 ≔ Hðϵ0; ϵ0Þ; h0α ≔ Hðϵ0; ϵαÞ;
hα0 ≔ Hðϵα; ϵ0Þ; hαβ ≔ Hðϵα; ϵβÞ; ð111Þ

which satisfy, as always by construction of the employed
frames, the frame conditions, which in this case read

p ¼ g00 · h00 ¼ 1 and

pα ¼ 1

2
ðh00gα0 þ g00hα0Þ ¼ 0: ð112Þ

Transition to the corresponding canonical geometry
g; gα; gαβ; h; hα; hαβ requires one to explicitly impose 12
symmetry conditions

g½αβ� ¼ 0; h½αβ� ¼ 0; g½α0� ¼ 0; h½α0� ¼ 0; ð113Þ

in addition to the frame conditions above, which reduce to
requiring that

h00 ¼ 1

g00
and hα0 ¼ −

1

ðg00Þ2 g
α0: ð114Þ

One thus finds that only 16 of the 32 components of the
canonical geometry are independent. Unlike in the

monometric case, however, the parametrization of the
canonical geometry in terms of nontensorial configuration
variables, as developed in this paper, is now seriously
needed, since the frame conditions are nonlinear. Since it
helps to group the relevant expressions, it is convenient to
introduce the card game notation

φA ≕ ðφ̄; ¯̄φ1; ¯̄φ2; ¯̄φ3; ¯̄̄φ1;…; ¯̄̄φ6;…; ¯̄̄φ̄
1
;…; ¯̄̄φ̄

6ÞA ð115Þ

for A ¼ 1;…; 16, with the various groups of configuration
variables mirroring the corresponding groups of tensors
making up the canonical geometry, which we choose to
parametrize as

ĝðφÞ ≔ φ̄; ĝαðφÞ ≔ Iα
a ¯̄φ

a;

ĝαβðφÞ ≔ Iαβ
A
¯̄̄φA; ĥαβðφÞ ≔ Iαβ

A
¯̄̄φ̄
A
; ð116Þ

where a lowercase Latin index a ranges over 1,2,3, while an
uppercase Latin index A ranges over 1;…; 6. The constant
intertwining matrices Iαβ

A and IA
αβ are as in the previous

example of a monometric geometry, while

Iα
a ≔

2
64
1 0 0

0 1 0

0 0 1

3
75
α

a

and Ia
α ≔

2
64
1 0 0

0 1 0

0 0 1

3
75
a

α

; ð117Þ

and thus satisfy Iα
bIa

α ¼ δab and Iα
aIa

β ¼ δαβ . The
input coefficients are then straightforwardly calculated.
Whenever it is convenient to keep terms and notation short
and clear, the split of the configuration variables devised
above will also be used in the expressions for the input
coefficients. The input coefficients are

pαβ ¼ 1

6φ̄
Iαβ

Að ¯̄̄φA þ φ̄2 ¯̄̄φ̄
AÞ − 2

3ðφ̄Þ2 I
α
aIβ

b ¯̄φ
a ¯̄φb;

EA
μ ¼ φA

;μ;

F·̄
μ
γ ¼ 0; F ¯̄a

μ
γ ¼ Ia

μI γ
b ¯̄φ

b;

F
¯̄̄A
μ
γ ¼ 2IA

μαI γα
B
¯̄̄φB; F

¯̄̄
Ā
μ

γ ¼ 2IA
μαI γα

B
¯̄̄φ̄
B
;

M ·̄γ ¼ −2I γ
a ¯̄φ

a;

M ¯̄aγ ¼ 1

2
Ia

αIαγ
Aððφ̄Þ2 ¯̄̄φ̄A − ¯̄̄φAÞ − 2

φ̄
I γ

b ¯̄φ
a ¯̄φb;

M
¯̄̄Aγ ¼ 1

φ̄
IA

αβIα
aIβγ

B ¯̄φ
að ¯̄̄φB þ ðφ̄Þ2 ¯̄̄φ̄BÞ

−
4

ðφ̄Þ2 I
A
αβIα

aIβ
bI γ

c ¯̄φ
a ¯̄φb ¯̄φc;

M
¯̄̄
Āγ ¼ −

1

ðφ̄Þ3 I
A
αβIα

aIβγ
B ¯̄φ

að ¯̄̄φB þ ðφ̄Þ2 ¯̄̄φ̄BÞ

þ 4

ðφ̄Þ4 I
A
αβIα

aIβ
bI γ

c ¯̄φ
a ¯̄φb ¯̄φc: ð118Þ
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With these input coefficients, the gravitational closure
equations can be set up.
It is evident that the case of a bimetric spacetime does not

decompose into two separate metric sectors, as is often
intuitively assumed, since then the fact that one shared
principal tensor is required in order to allow for a common
evolution from common initial data surfaces would not be
taken into account. Finding the most general Lagrangian
for bimetric gravity is as complicated as solving the
gravitational closure equations specialized to the input
coefficients (118). Their explicit solution is an open
problem to be solved if one proposes such a theory. The
linearized gravitational field equations, however, have
already been obtained [21].

C. Gravitational closure of general
linear electrodynamics

We finally set up the gravitational closure equations for
the refinement of Maxwell theory that equips an Abelian
gauge covector field A with the dynamics

Smatter½A;GÞ ¼
Z

d4xðϵpqrsGpqrsðxÞÞ−1GabcdðxÞFabðxÞ

× FcdðxÞ for Fab ≔ ∂aAb − ∂bAa ð119Þ

on an orientable four-dimensional area metric manifold
[22], which carries the canonical top form density ϵ with
ϵ0123 ¼ 1 and a fourth rank contravariant tensor field G
featuring the algebraic symmetries Gabcd ¼ Gcdab and
Gabcd ¼ G½ab�½cd� and satisfying ϵabcdGabcd ≠ 0 every-
where. The principal tensor of this theory has been
calculated first by Rubilar [23,24] and takes the form

Pijkl ¼ −
1

24

�
1

24
ϵabcdGabcd

�
−2

× ϵmnpqϵrstuGmnrðiGjjpsjkGlÞqtu; ð120Þ

whose nonpolynomial dependence of the geometric tensor
G presents a technically particularly involved kinematical
structure. The requirement that the above general linear
electrodynamics satisfy the three matter conditions requires
thatG lie in one of seven (out of a total 23) algebraic classes
[22]. The induced geometry features fields with antisym-
metric index pairs, which we can dualize using the volume
form density on Σ, arriving at the set

ḡαβ ≔ −Gðϵ0; ϵα; ϵ0; ϵβÞ; ð121Þ

¯̄gαβ ≔
1

4

1

det ḡ·· ϵαμνϵβρσGðϵμ; ϵν; ϵρ; ϵσÞ; ð122Þ

¯̄̄gαβ ≔ðḡ−1Þαμ
�
1

2

1ffiffiffiffiffiffiffiffiffiffiffi
det ḡ··

p ϵβκλGðϵ0;ϵμ;ϵκ;ϵλÞ−δμβ

�
: ð123Þ

The frame conditions for the employed frames, expressed
in terms of the induced fields, are

ḡαβ ¯̄̄gαβ ¼ 0 and ¯̄̄g½αβ� ¼ 0: ð124Þ

Transition to the corresponding canonical geometry
ḡαβ; ¯̄gαβ; ¯̄̄gαβ thus requires one to explicitly enforce these
four conditions, together with the remaining symmetry
conditions by requiring that

ḡαβ ¯̄̄gαβ ¼ 0; ¯̄̄g½αβ� ¼ 0; ḡ½αβ� ¼ 0; ¯̄g½αβ� ¼ 0; ð125Þ

reducing the a priori 27 independent entries of the tensor
fields that make up the canonical geometry by 10. In order
to account for these conditions, we thus need to choose 17
unconstrained configuration variables. It is convenient to
denote them by

φA ≔ ðφ̄1;…; φ̄6; ¯̄φ1;…; ¯̄φ6; ¯̄̄φ1;…; ¯̄̄φ5Þ ð126Þ

and to construct the parametrization maps (a; b; c ¼ 1 � � � 6
and m; n ¼ 1 � � � 5)

ˆ̄gαβðφÞ ≔ Iαβ
aφ̄

a; ˆ̄̄gαβðφÞ ≔ Ia
αβΔab ¯̄φ

b;

ˆ̄̄̄gαβðφÞ ≔ Ia
αβ

�
δba −

naφ̄b

ncφ̄c

�
ϵðmÞb ¯̄̄φ

m; ð127Þ

where Δab are the constant components of the standard
inner product on R6, and ta, eð1Þa;…; eð5Þa are the compo-
nents of constant orthonormal basis vectors chosen such
that Ia

αβΔabtb is a positive definite matrix. Note that na ≔
Δabtb; ϵð1Þa ≔ Δabeð1Þb;…; ϵð5Þa ≔ Δabeð5Þb is then the
dual basis. Conversely, extraction of the configuration
variables φA from the tensor fields gA constituting the
canonical geometry is achieved by the maps

ˆ̄φaðgÞ ≔ Ia
αβḡαβ; ˆ̄̄φaðgÞ ≔ ΔabIαβ

b
¯̄gαβ;

ˆ̄̄̄φ
mðgÞ ≔ Iαβ

aeðmÞa ¯̄̄gαβ; ð128Þ

which indeed recover precisely the configuration variables
employed in the parametrization, as one readily checks. It is

clear by construction that the three maps ˆ̄g, ˆ̄̄g, ˆ̄̄̄g produce
symmetric tensor fields, so that the last three conditions
above are obviously satisfied, while

ˆ̄gαβðφÞ ˆ̄̄̄gαβðφÞ ¼ Iαβ
aIb

αβ

�
δcb −

nbφ̄c

ndφ̄d

�
ϵðmÞcφ̄a ¯̄̄φm

¼ ϵðmÞaφ̄a ¯̄̄φm − ϵðmÞaφ̄a ¯̄̄φm ¼ 0 ð129Þ
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shows that also the first condition above is satisfied. The
intertwiners associated with this parametrization are then
readily calculated as

∂ ˆ̄gαβ
∂φ̄a ¼ Iαβ

a;
∂ ˆ̄̄gαβ
∂ ¯̄φa ¼ ΔabIb

αβ;

∂ ˆ̄̄̄gαβ
∂ ¯̄̄φm ¼ Ia

αβ

�
δba −

naφ̄b

ncφ̄c

�
ϵðmÞb; ð130Þ

∂ ˆ̄̄̄gαβ
∂φ̄a ¼ Ib

αβnb
naφ̄cϵðmÞc ¯̄̄φ

m

ðndφ̄dÞ2 − Ib
αβnb

ϵðmÞa ¯̄̄φ
m

ncφ̄c ; ð131Þ

∂ ˆ̄φa

∂ḡαβ ¼ Ia
αβ;

∂ ˆ̄̄φa

∂ ¯̄gαβ ¼ ΔabIαβ
b;

∂ ˆ̄̄̄φm

∂ ¯̄̄gαβ
¼ Iαβ

aeðmÞa:

ð132Þ

The input coefficients for the gravitational closure equa-
tions are therefore

pαβ ¼ 1

6
ð ˆ̄gαγ ˆ̄gβδ ˆ̄̄gγδ − ˆ̄gαβ ˆ̄gγδ ˆ̄̄gγδ

− 2 ˆ̄gαβ ˆ̄gδμ ˆ̄gγν ˆ̄̄̄gμγ
ˆ̄̄̄gνδ þ 3 ˆ̄gγδ ˆ̄gαμ ˆ̄gβν ˆ̄̄̄gμγ

ˆ̄̄̄gνδÞ;
Ēa

μ ¼ φ̄a
;μ;

¯̄Ea
μ ¼ ¯̄φa

;μ;
¯̄̄E
m
μ ¼ ¯̄̄φa

;μ;

F̄a
μ
γ ¼ 2Ia

γαIμα
bφ̄

b; ¯̄Fa
μ
γ ¼ −2ΔabΔcdI γα

bIc
μα ¯̄φ

d;

¯̄̄F
m
μ
γ ¼ −2

∂ ˆ̄̄̄φm

∂ ¯̄̄gγα
∂ ˆ̄̄̄gμα
∂ ¯̄̄φn

¯̄̄φn;

M̄aγ ¼ 2ðdet ˆ̄g··ðφÞÞ1=2Ia
αβIνðαj

bϵ
jβÞμγ ∂ ˆ̄̄̄gμν

∂ ¯̄̄φm ðφÞφ̄b ¯̄̄φm;

¯̄Maγ ¼ 6ðdet ˆ̄g··ðφÞÞ−1=2ϵαμνΔabIαβ
bI λν

cpμγðgðφÞÞ

×
∂ ˆ̄̄̄gβλ
∂ ¯̄̄φm ðφÞφ̄c ¯̄̄φm;

¯̄̄M
mγ ¼ −ðdet ˆ̄g··ðφÞÞ1=2ϵμνγð ˆ̄g−1Þμα

∂ ˆ̄̄̄φm

∂ ¯̄̄gαβ
ðφÞ

×

�
Iκλ

b
∂ ˆ̄̄̄gβλ
∂ ¯̄̄φn ðφÞ

∂ ˆ̄̄̄gκν
∂ ¯̄̄φl ðφÞφ̄b ¯̄̄φn ¯̄̄φl þ Ib

βνΔbc ¯̄φ
c

�
:

ð133Þ

The corresponding gravitational closure equations differ
significantly from those proposed for this case in [5],
because now the nonlinear frame conditions are already
taken care of by our use of nontensorial configuration

degrees of freedom, while previously they had to be added
by hand and thus made the problem of solving the
equations prohibitively difficult.
An exact solution of the gravitational closure equations

for the general linear electrodynamics (119) is hard to
obtain, due to the complicated input coefficients (133). But
even if exact solutions of the closure equations were
obtained, they would just lead to exact field equations
for an area metric, which in turn one typically would have
to solve either by imposing some symmetry assumption or
by resorting to perturbation theory—as is already the case
for the standard Einstein field equations for a Lorentzian
metric. For this reason, one may equally well aim at
ultimately linearized or symmetrized gravitational field
equations already at the level of the closure equations.
Carefully taking into account how far truncated partial
differential equations may be evaluated and under which
circumstances symmetry conditions may be inserted
already at the level of the action, meanwhile these strategies
have been implemented successfully, leading to linearized
[19] and cosmological [25] gravitational field equations for
an area metric.

VI. CONCLUSIONS

We showed how to gravitationally close a given set of
matter field equations, in the sense of providing equations
of motion for the background geometry on which the matter
dynamics have been formulated in the first place.
Practically, this is done by following the concrete calcula-
tional sequence

matter equations → input coefficients

→ output coefficients

→ gravity equations:

The first step, at its core, is a straightforward standard
calculation in the theory of partial differential equations,
namely the calculation of the principal tensor of the matter
field equations one starts from. It is then easy to identify the
canonical geometry and to parametrize the latter in terms of
nontensorial configuration variables such that generically
nonlinear frame conditions are automatically captured and
thus need not be worried about anymore in the remaining
course of the treatment. If the matter dynamics are
canonically quantizable, the previously calculated principal
tensor features all the properties needed to calculate the
input coefficients that are required to set up the gravita-
tional closure equations, although the actually required
conditions of Sec. II C on the matter dynamics are
generically weaker than their canonical quantizability.
The second step then consists in solving the gravitational
closure equations for the output coefficients, yielding a
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gravitational Hamiltonian subject to the conditions of
Sec. IV B. Depending on the complexity incurred by the
specific input coefficients at hand, one may be able to find
their general local solution, have to resort to perturbative
techniques, or employ a symmetry reduction in order
to extract physical predictions. The third step is again
straightforward, as it merely consists of employing the
output coefficients to compose the gravitational action,
whose variation with respect to the configuration variables
then yields one side of the thus defined gravitational field
equations. The other side is of course provided by the same
variation, but applied to the matter action from which the
entire construction started.
There are only a few routes by which one can escape the

gravitational closure mechanism when presented with a
matter theory coupled to some geometry. One is to
introduce, in addition to the geometry employed in the
matter dynamics, additional gravitational degrees of free-
dom to which none of the matter fields couple directly;
this allows for arbitrary modifications to the gravitational
dynamics, and thus comes at the cost of needing an
infinite number of experiments to determine the constants
of the theory before it becomes numerically predictive.
The other circumvention would be to drop matter con-
ditions for at least some of the matter that inhabits the
universe one wishes to model. This would certainly
exclude canonically quantizable matter, but also, depend-
ing on how many of the three matter conditions are
violated, would prevent a consistent classical notion of
massive particles in the best case, or additionally an
observer-independent notion of positive energy, or, in
the worst case, additionally massless particles. We believe
that this cascade of problems, incurred when dropping our
matter assumptions, underlines the physical soundness of
the latter, and thus that of the gravitational closure
procedure built on it.
Fundamentally, the ability to perform the gravitational

closure of canonically quantizable matter dynamics
allows us to inject our current and future knowledge
about matter directly into the construction of gravity
theories. Additional constraints, such as the absence of
ghosts, can and should be employed to further reduce the
linear solution space of the gravitational closure equa-
tions. However, it is typically the specific gravitational
closure equations as they follow from concrete matter
dynamics—and not sweeping theoretical constraints—
that effectively reduce the spectrum of possible gravity
theories, such that, at best, only a finite number of
constants are left to be determined by observation.
Indeed, even decisive generic requirements, such as
diffeomorphism invariance or ghost freedom, do generally
not achieve that.
Phenomenologically, one can now ask questions that

hitherto were not systematically accessible, since they
require bridging the gap between a hypothesis about

matter and the resulting gravitational implications. For
instance, a systematic exploration of the simple question
whether there is any evidence for birefringence of light
in vacuo compels one to forsake the assumption of a
metric background geometry in favor of a refinement
[26–30] that can be written by a fourth rank tensor G, such
that Maxwell’s action is refined to the general linear
electrodynamics, whose gravitational closure equations
we derived in Sec. V C. The refined Maxwell theory is
canonically quantizable [4,31,32] and thus provides valid
input coefficients for the pertinent gravitational closure
equations. The temptation to discard such a refinement
a priori is quite delusive. For even if coarse geometric
optics effects are undetectable, the above action still
predicts accumulative modifications for the way electro-
magnetic field energy is transported [12]. These result in a
potentially measurable modification of Etherington’s
distance duality relation [33] already in a weak gravita-
tional field that admits birefringence [19], and which
may also address otherwise inexplicable magnification
anomalies [34].
Based on the results of the present paper, we believe that

the construction of gravity theories must consider the
dynamics of all matter fields that will populate a spacetime
right from the start. The gravitational closure equations
enable one to put this insight to immediate practical use
either as a complete consistency check for an existing
gravity theory or for its derivation.
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APPENDIX: GRAVITATIONAL
CLOSURE EQUATIONS

For any matter dynamics that satisfy the three matter
conditions of Sec. II C, one obtains the gravitational
Lagrangian (92) in terms of

L½φ;KÞ ≔
X∞
N¼0

CA1���AN
½φ�KA1 � � �KAN ;

where the CA1���AN
½φ� are obtained as the solutions of the

following countable set of linear homogeneous partial
differential “gravitational closure equations”, whose coef-
ficient functions EA

μ, FA
μ
γ, MAγ are calculated according

to Eqs. (70) and (77).
The finite upper limit max is to be determined, indi-

vidually for each of the sums below, according to the
criteria in Sec. IV D.
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1. The seven individual equations

ðC1Þ 0 ¼ −Cδγμ þ
Xmax

K¼0

ðK þ 1ÞC∶A
γα1���αK ðEA

μ;α1���αK þ FA
μ
αKþ1

;α1���αKþ1
Þ −

Xmax

K¼0

ðK þ 1ÞC∶A
ðα1���αK jFA

μ
jγÞ

;α1���αK

ðC2Þ 0 ¼ −CAðEA
μ∶B

γ þ FA
μ
γ
∶BÞ þ

Xmax

K¼0

ðK þ 1ÞCB∶A
γα1���αK ðEA

μ;α1���αK þ FA
μ
αKþ1

;α1���αKþ1
Þ

−
Xmax

K¼0

ðK þ 1ÞCB∶A
ðα1���αK jFA

μ
jγÞ

;α1���αK

ðC3Þ 0 ¼ 2ðdegP − 1ÞpðμjρCABFA
ρ
jνÞ þ

Xmax

K¼0

ðK þ 1ÞCB∶A
α1���αKðμjMAjνÞ

;α1���αK −
Xmax

K¼0

ð−1ÞK
�
K þ 2

K

�
ð∂K

α1���αKC∶B
α1���αKμνÞ

ðC4Þ 0 ¼ 2ðdegP − 1ÞCABðpμνEA
ν − pμν

;γFA
ν
γÞ − CAMAμ

∶B −
Xmax

K¼0

CB∶A
α1���αKMAμ

;α1���αK

−
Xmax

K¼0

ð−1ÞKðK þ 1Þð∂K
α1���αKC∶B

α1���αKμÞ

ðC5Þ 0 ¼ 2∂μðCAMA½μj
∶BMBjγ�Þ − 2ðdegP − 1Þpργ½CAEA

ρ þ ∂μðCAFA
ρ
μÞ� þ

Xmax

K¼0

C∶A
α1���αKMAγ

;α1���αK

þ
Xmax

K¼0

XK
J¼0

ð−1ÞJ
�
K
J

�
ðJ þ 1Þ∂J

α1���αJðC∶A
β1���βK−Jðα1���αJ jMAjγÞ

;β1���βK−JÞ

ðC6Þ 0 ¼ 6ðdegP − 1ÞCAB1B2
ðpμνEA

ν − pμν
;γFA

ν
γÞ − 4CAðB1

MAμ
∶B2Þ − 2CB1B2∶AM

Aμ − 2CB1B2∶A
αMAμ

;α

− 2CB1B2∶A
αβMAμ

;αβ − CB2∶B1

μ −
Xmax

K¼0

ð−1ÞKðK þ 1Þð∂K
α1���αKCB1∶B2

μα1���αK Þ

ðC7Þ 0 ¼
Xmax

K¼2

XK
J¼2

ð−1ÞJ
�
K
J

�
ðJ − 1Þ∂Jþ1

γα1���αJðC∶A
β1���βK−Jðα1���αJ jMAjγÞ

;β1���βK−JÞ

2. The 14 sequences of equations for N ≥ 2

ðC8NÞ 0 ¼
Xmax

K¼0

�
K þ N
K

�
½C∶A

β1���βNα1���αK ðEA
μ;α1���αK þ FA

μ
αKþ1

;α1���αKþ1
Þ − C∶A

ðβ1���βNα1���αK−1jFA
μ
jαKÞ

;α1���αK �

ðC9NÞ 0 ¼
Xmax

K¼0

�
K þ N
K

�
½CB∶A

β1���βNα1���αK ðEA
μ;α1���αK þ FA

μ
αKþ1

;α1���αKþ1
Þ − CB∶A

ðβ1���βNα1���αK−1jFA
μ
jαKÞ

;α1���αK �

ðC10NÞ 0 ¼ −CB1���BN
δγμ − NCAðB1���BN−1

FAjμjγ∶BNÞ − CB1���BN∶AF
A
μ
γ þ CB1���BN∶A

γEA
μ − CB1���BN∶A

αFA
μ
γ
;α

þ 2CB1���BN∶A
αγEA

μ;α − CB1���BN∶A
αβFA

μ
γ
;αβ

ðC11NÞ 0 ¼ CB1���BN∶A
β1β2EA

μ − CB1���BN∶A
ðβ1jFA

μ
jβ2Þ − 2CB1���BN∶A

αðβ1jFA
μ
jβ2Þ

;α

ðC12NÞ 0 ¼ CB1���BN∶A
ðαβjFA

μ
jγÞ

ðC13NÞ 0 ¼ CB1���BN∶A
ðμνjMAjγÞ

ðC14NÞ 0 ¼ CAB1���BN−1
ðMB½μjMAjν�

∶B þ ðdegP − 1Þpρ½μjFA
ρ
jν�Þ

ðC15NÞ 0 ¼ C
B1���bBJ ���BNþ1∶BJ

μν − CB1���BN∶BNþ1

μν for J ¼ 1 � � �N þ 1
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ðC16NÞ 0 ¼ N · ðN þ 1ÞðdegP − 1ÞCAB1���BN
pρðμjFA

ρ
jνÞ þ NCB1���BN∶A

ðμjMAjνÞ þ 2NCB1���BN∶A
αðμjMAjνÞ

;α

þ ðN − 2ÞCB1���BN−1∶BN
μν

ðC17NÞ 0 ¼ ðN þ 2Þ · ðN þ 1ÞðdegP − 1ÞCAB1���BNþ1
ðpμνEA

ν − pμν
;γFA

ν
γÞ − ðN þ 1Þ2CAðB1���BN

MAμ
∶BNþ1Þ

− ðN þ 1ÞCB1���BNþ1∶AM
Aμ − ðN þ 1ÞCB1���BNþ1∶A

αMAμ
;α − ðN þ 1ÞCB1���BNþ1∶A

αβMAμ
;αβ

−
XNþ1

K¼1

C
B1��� bBK ���BNþ1∶BK

μ þ 2ð∂γCB1���BN∶BNþ1

γμÞ

ðC18NÞ 0 ¼ CA∶B
μ1���μN −

Xmax

K¼0

ð−1ÞKþN

�
K þ N
K

�
ð∂K

α1���αKCB∶A
α1���αKμ1���μN Þ

ðC19NÞ 0 ¼
Xmax

K¼0

�
K þ N
K

�
CB∶A

α1���αKðμ1���μN jMAjμNþ1Þ
;α1���αK þ

Xmax

K¼0

ð−1ÞKþN

�
K þ N þ 1

N þ 1

�
ð∂K

α1���αKC∶B
α1���αKμ1���μNþ1Þ

ðC20NevenÞ 0 ¼
Xmax

K¼N

XKþ1

J¼Nþ1

ð−1ÞJ
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