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Quasinormal modes of a massive Dirac field were calculated for various static black hole backgrounds
with the help of the WKB formula. These estimations, however, are rough and valid only for very small
values of μM, where M and μ are mass of the black hole and field respectively. Thus, no accurate
calculations of massive Dirac modes are known even for the Schwarzschild black hole and this is all the
more so for the Kerr solution. Here we calculate quasinormal modes of a massive Dirac field in the Kerr
background. We have shown that the infinitely long-lived quasinormal modes (quasiresonances), which
exist for boson fields, appear also in the fermions’ quasinormal spectrum. Two chiralities of massive
fermions lead to an additional “fine structure” in the spectrum. We discuss the effect of this fine structure
on the behavior of quasiresonances and the stability. The analysis is also extended to a charged massive
field in the Kerr-Newman background.
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I. INTRODUCTION

Recent observations of gravitational waves from, appa-
rently, a merger of two black holes [1] confirmed existence
of gravitational waves, predicted a century ago by general
relativity. Although the current large uncertainty in meas-
urement of the angular momentum and mass of the resultant
black hole does not allow discarding of alternative theories
of gravity [2], the Einstein theory is fully consistent with the
experimental data, and the Kerr solution [3] of the Einstein
equations is the most celebrated model for a rotating, axially
symmetric black hole. Observationally, the most important
phase of the radiation of gravitational waves is described in
terms of the proper oscillation frequencies of the black hole,
called quasinormal modes [4].
The literature devoted to calculations of quasinormal

modes of gravitational and test fields in the vicinity of a
Kerr black hole is enormous by now [4]. Nevertheless, there
is an obvious gap in the study of quasinormal modes of a
Dirac field in the Kerr background. Chandrasekhar studied
general properties of a massive Dirac field equation in the
Kerr background [5] a long time ago. However, since that
time the fermionic quasinormal spectra were extensively

studied either for massive fermions in the static (for
example, Schwarzschild or Reissner-Nodrström) back-
ground or for massless fermions in the Kerr(-Newman)
background [6–8], so that both factors (mass of the fermion
field and black hole rotation) have never been considered
together. Moreover, the quasinormal frequencies for static
backgrounds [6] were found with the help of the WKB
formula of [9], which is valid, and still approximate, only for
very small values of μM. Thus, such an issue, as, for
example, the existence or absence of quasiresonances1

(arbitrarily slowly damped modes) for a massive Dirac field
has not been confirmed so far even for the Schwarzschild
black hole. One of the reasons for avoiding such a
straightforward generalization to the massive case was
purely technical: the angular part of the perturbation
equations becomes much more complex [11–13], leading
to additional coupling terms between mass of the field μ and
the rotation parameter a. The bound states of a massive
Dirac field, which corresponds to decaying boundary con-
ditions at both boundaries, were studied in detail in [13,14].

*konoplya_roma@yahoo.com
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1Notice that quasiresonances should not be confused with the
“quasibound states” [10], because the latter corresponds to the
bound state boundary conditions (vanishing of the wave function
at the event horizon and infinity), while quasiresonances are part
of the spectrum of quasinormal modes.
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At the same time the compact body of mass M
interacting with a quantum mass of a mass μ is charac-
terized by a dimensionless parameter

μM
m2

Pl

¼ GMμ

ℏc
∼
rþ
λC

; ð1Þ

where rþ is the horizon radius of the compact body and λC
is the Compton wavelength of the quantum field. This way
astrophysical black holes are always within the regime
of μM ≫ 1, while μM ⪅ 1 and μM ≪ 1 may also include
primordial and miniature black holes. From now and on we
shall take G ¼ ℏ ¼ c ¼ 1.
Even though the massive fields are short ranged (so that

their quasinormal spectra are unlikely to be detected by a
distant observer), the study of massive fields in the vicinity
of rotating black holes may be intrinsically connected to a
number of other interesting problems. Thus, quasinormal
modes of a massive scalar and vector fields in the
Schwarzschild and Kerr backgrounds have modes with
arbitrarily small damping rates, which are called quasir-
esonances [15–18]. It was shown in [16,17] that for boson
fields these long-lived modes do not go over into the
growing modes (what would trigger an instability).
Another interesting aspect is related to the fact that an

effective massive term can represent self-interaction cor-
rection to the massless field or describe the influence of a
magnetic field [19]. Recently it was shown that quasinor-
mal modes play the role of a multimode squeezer that can
generate particles [20] and this effect is the stronger, the
longer lived modes are, so that the arbitrary long-lived
quasiresonances may gain now a different interesting
aspect for investigation. Finally, the dominant, massive
Kaluza-Klein modes appear in the scenarios with compact
extra dimensions [21].
In the regime of the near extremal rotation, the quasi-

normal spectrum of gravitational perturbations bifurcates
[22], leading to the so-called zero damped mode [22,23]—
another way to have a long-lived mode in the spectrum. The
quasinormal modes of the exactly extremal Kerr black holes
have been considered in [24,25]. In [25] it was shown that
the extremal state is linearly stable. However, appearing of
the zero damped mode in the limit of extremal rotation is,
possibly, a signature of “echoes” from the nonlinear regime
of perturbations when approaching the unstable extremal
state of rotation [26]. It is natural to expect that a similar
bifurcation may take place for fermion fields and it would be
interesting to understand how both types of long-lived
modes (quasiresonances and zero damped mode) interfere.
Having all the above motivations in mind, here we

calculate quasinormal modes a massive Dirac field in the
Kerr background. The techniques used here allow one to
compute also the quasinormal modes of a massive charged
Dirac field for the Kerr-Newman black hole, and we derive
the analytic formula for the modes in the limit of large

charge of the field. In addition, by comparison of the
accurate quasinormal frequencies obtained by the
Frobenius method with those found by the WKB formula
we will show that the WKB formula found in [9], even if
developed to higher orders, does not provide reliable results
for massive fields, unless μM is small enough.
The paper is organized as follows. Section II gives

the basic formulas for the Kerr-Newman background.
Section III is devoted to the general covariant equation of
motion for a massive Dirac field and to the separation of
angular and radial variables. Section IV relates the numerical
method, called Frobenius expansion, allowing us to solve the
angular and radial master equations. Section V contains a
description of the obtained numerical data for quasinormal
modes, where Schwarzschild/Reissner-Nordström, Kerr and
Kerr-Newman cases are considered separately. Finally, in
Sec. VI we discuss and summarize the obtained results.

II. KERR-NEWMAN BACKGROUND

As we shall study the quasinormal spectrum of the
Schwarzschild, Reissner-Nordström, and Kerr black holes,
it is reasonable to start the analysis of the equations of
motion from the Kerr-Newman solution and then go over to
the particular cases. In the Boyer-Lindquist coordinates the
Kerr-Newman metric has the form

ds2 ¼ ΔðrÞ
ρ2

ðdt − asin2θdφÞ2 − ρ2
�

dr2

ΔðrÞ þ dθ2
�

−
sin2θ
ρ2

ðadt − ðr2 þ a2ÞdφÞ2; ð2Þ

where

ΔðrÞ ¼ ðr2 þ a2Þ − 2MrþQ2;

ρ2 ¼ r2 þ a2 cos2 θ:

Here Q and M are black hole’s charge and mass respec-
tively, a is the angular momentum per unit mass. The
electromagnetic background of the black hole is given by
the four-vector potential

Aμdxμ ¼ −
Qr
ρ2

ðdt − a sin2 θdφÞ: ð3Þ

We shall be using the following three parameters: the
event horizon rþ, the inner horizon r−, and the rotation
parameter a,

0 ≤ a2=rþ ≤ r− ≤ rþ:

The black hole’s mass and charge are then

2M ¼ rþ þ r−; Q2 ¼ rþr− − a2:
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III. EQUATIONS OF MOTION FOR A MASSIVE
CHARGED DIRAC FIELD

A massive charged Dirac field obeys the equations [27]

ffiffiffi
2

p
ð∇A _B þ ieAA _BÞPA þ iμQ̄ _B ¼ 0;ffiffiffi
2

p
ð∇A _B − ieAA _BÞQA þ iμP̄ _B ¼ 0: ð4Þ

where e and μ are the field’s charge and mass, respectively,
AA _B ≡ Aμσ

μ
A _B
, ∇A _B ≡∇μσ

μ
A _B

is the covariant derivative,
and, conventionally, the bar over a quantity represents the
complex conjugation.
Following [8], we take

P0 ¼ 1

r − ia cos θ
e−iωtþimϕR−1

2
ðrÞS−1

2
ðθÞ;

P1 ¼ e−iωtþimϕRþ1
2
ðrÞSþ1

2
ðθÞ;

Q̄_0 ¼ −
1

rþ ia cos θ
e−iωtþimϕR−1

2
ðrÞSþ1

2
ðθÞ;

Q̄_1 ¼ e−iωtþimϕRþ1
2
ðrÞS−1

2
ðθÞ;

and obtain the following equations for the angular part:

� ∂2

∂θ2 þ ðcot θ þMðθÞÞ ∂
∂θ − 2sðMðθÞHðθÞ þH0ðθÞÞ

−
1

2sin2θ
þ cot θMðθÞ

2
−H2ðθÞ þ 1

4
cot2θ

þ λ2 − μ2a2cos2θ

�
SsðθÞ ¼ 0; ð5Þ

where λ is the separation constant, s ¼ �1=2,

HðθÞ ¼ aω sin θ −
m

sin θ
; MðθÞ ¼ aμ sin θ

aμ cos θ − 2sλ
:

For the radial part one can find [8]

�
Δ−sðrÞ d

dr
Δsþ1ðrÞ d

dr
þ 2isμΔ
λ − 2isμr

d
dr

þ 2isK0ðrÞ

þ K2ðrÞ − isKðrÞΔ0ðrÞ
ΔðrÞ −

μKðrÞ
λ − 2isμr

− μ2r2 − λ2

þ
�
sþ 1

2

��
1þ iμ

λ − 2isμr
Δ0ðrÞ
2

��
RsðrÞ ¼ 0; ð6Þ

where the eigenvalue λ depends on ω and

KðrÞ ¼ ðr2 þ a2Þω − am − eQr:

Further we can use numerical methods for finding
eigenvalues λ and ω.

IV. FROBENIUS METHOD

A. Angular part

We solve the angular equation (5) numerically, using
the Frobenius method. Following [11], we introduce a new
variable x ¼ 1þϵ cos θ

2
, where ϵ ¼ m

jmj. Then the angular parts

S�1=2 can be expanded as

S1=2ðxÞ ¼ xp=2ð1 − xÞðpþ1Þ=2X∞
n¼0

CnQþ
n ðxÞ

S−1=2ðxÞ ¼ �ð1 − xÞp=2xðpþ1Þ=2

×
X∞
n¼0

ð−1Þn nþ pþ 1

pþ 1
CnQ−

n ðxÞ; ð7Þ

where p≡ jmj − 1=2 and

Q�
n ðxÞ≡ 2F1

�
−n; nþ 2pþ 2; pþ 3 ∓ 1

2
; x

�

are the Gaussian hypergeometric functions.
The two possible signs in (7) correspond to the different

chiralities of the massive Dirac field, which we enumerate
by a half-integer number2 σ ¼ � 1

2
. This leads to a fine

structure in the quasinormal spectrum of a massive Dirac
field (see Fig. 1).
The coefficients C0; C1; C2… satisfy the three-term

recurrence relation [11]

αnCnþ1 þ βnCn þ γnCn−1 ¼ 0; C−1 ¼ 0; ð8Þ

with the coefficients

αn ¼ ϵ
nþ 1

2nþ 2pþ 3
ðνaμð−1Þn þ aωÞ; ð9Þ

βn ¼ ðnþ pþ 1Þ − νλð−1Þn

þ ϵ
ð2pþ 1Þðνaμð−1Þn − 2aωðnþ pþ 1ÞÞ

ð2nþ 2pþ 1Þð2nþ 2pþ 3Þ ; ð10Þ

γn ¼ ϵ
nþ 2pþ 1

2nþ 2pþ 1
ðνaμð−1Þn − aωÞ; ð11Þ

where ν ¼ �1, corresponding to the two possible signs
of σ.
Next, for any given ω, we can calculate λ as the most

stable root of the equation with an infinite continued
fraction [11]

2In the notations of [11], σ ¼ 1
2
ϵλ.
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βN −
αN−1γN

βN−1 −
αN−2γN−1

βN−2−αN−3γN−2=…

¼ αNγNþ1

βNþ1 −
αNþ1γNþ2

βNþ2−αNþ2γNþ3=…

:

ð12Þ

The infinite number of roots are enumerated by a non-
negative integer N ¼ 0; 1; 2; 3….
For the nonrotating case αn ¼ γn ¼ 0 and Eq. (12) is

reduced to [11]

βN ¼ ðN þ pþ 1Þ − νλð−1ÞN ¼ 0;

implying that λ is a positive or negative integer number,
such that jλj > jmj,

λ ¼ ð−1ÞNðN þ pþ 1Þ=ν ¼ ð2lþ 1Þσ; ð13Þ

where we have introduced a half-integer positive multipole
number l ¼ jmj þ N.
Finally, recalling that p ¼ jmj − 1=2, we can find the

value of ν for given l, m, and σ as follows:

ν ¼ ð−1Þl−jmj

2σ
:

For the nonzero rotation (a > 0), in order to find λ,
which corresponds to the given values of l, m, and σ, we
slowly increase a, finding for each step the closest solution
for the eigenvalue λ, starting from the exact value for the
nonrotating case (13).

B. Radial part

We solve the master equation for the radial part (6) at
the quasinormal boundary conditions. For asymptotically
flat black holes, which we consider here, these boundary
conditions correspond to the purely ingoing wave at the
event horizon and the purely outgoing wave at infinity

(see [4] for reviews). Since R�1
2
can be expressed through

R∓1
2
and its first derivative [see Eqs. (2.9) and (2.10) of [8]],

the equations for s ¼ �1=2 are isospectral. Although for
the simplicity we use s ¼ −1=2, we have checked that the
calculations for s ¼ 1=2 lead to the same quasinormal
modes within the chosen numerical precision.
We solve Eq. (6) using the Frobenius method (see [28]

for details). The solution can be written in the following
form:

RsðrÞ ¼ eiΩrðr − r−Þα
�
r − rþ
r − r−

�
−s−iKðrþÞ=Δ0ðrþÞ

×
X∞
k¼0

ak

�
r − rþ
r − r−

�
k
;

Ω ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 − μ2

q
; ð14Þ

where ReðΩÞ and ReðωÞ have the same sign,

α ¼ ieQω − ðrþ þ r−Þðω2 − μ2=2Þ
Ω

−
�
sþ 1

2

�

is fixed in such a way that the series is convergent if and
only if ω is a quasinormal mode.
Substituting (14) into (6), we find the four-term recur-

rence relation for the coefficients ak,

c0;nan þ c1;nan−1 þ c2;nan−2 þ c3;nan−3 ¼ 0: ð15Þ

By performing the Gaussian elimination, for each n from
(15) we obtain the three-term relation, which allows us to
reduce the problem of calculation of ω to solving a
nonalgebraic equation with infinite continued fraction [29].
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FIG. 1. ReðωÞ (left) and ImðωÞ (right) for the fundamental (n ¼ 0, l ¼ 1=2) quasinormal mode of the neutral, massive Dirac field in
the Schwarzschild background: σ ¼ 1=2 (blue) and σ ¼ −1=2 (cyan). Positive value of the chirality corresponds to higher oscillation
frequency and slower decay.
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V. QUASINORMAL MODES

A. Symmetries

Solutions to the master wave equation possess a number
of symmetries which must be mentioned here in order to
avoid repeated calculations of the same modes. For given
parameters of the black hole (M, a, Q) and the Dirac field
(μ, e) the quasinormal frequencies are enumerated by the
half-integer positive multipole number,

l ¼ 1

2
;
3

2
;
5

2
;…;

azimuthal number,

m ¼ −l;−lþ 1;…;l − 1;l;

chirality,

σ ¼ � 1

2
;

and the overtone number,

n ¼ 0; 1; 2; 3…:

From the radial equation (6) it is easy to see that the
simultaneous changing of signs of μ and σ (the latter
changes sign of λ)

μ → −μ; σ → −σ; ð16Þ

leads to the same wave equation (6) for the nonrotating
case. The symmetry (16) takes place also for the rotating
case, though it is less straightforward to show.
In addition, as in the massless case, for a massive field

there is the following symmetry:

m → −m; e → −e; ReðωÞ → −ReðωÞ: ð17Þ

That is why here we will present the data only for μ ≥ 0
and ReðωÞ ≥ 0.

B. Massive neutral Dirac field in the Schwarzschild
and Reissner-Nordström backgrounds

While quasinormal modes of a massless Dirac field were
accurately calculated with different converging procedures,
the massive case was considered only with the WKB
method [6] developed in [9]. Strictly speaking, the WKB
method [9] cannot be applied to the massive case, as the
effective potential allows for another local minimum far
from black hole, so that the problem has now three turning
points. Moreover, if for tiny values of the mass μ the
subscattering around the second minimum could be
neglected, at sufficiently large μ even the main peak of
the effective potential is absent. This made some authors
claim that the quasinormal modes are absent for large
values of μ [6].
Such a WKB approach evidently cannot detect quasir-

esonances accurately, so that the question whether quasir-
esonances exist also for the Dirac field remained open.
Here, using the Frobenius method, we present accurate
values for the quasinormal modes of a massive Dirac field
in the Schwarzschild and Reissner-Nordström backgrounds
and show that quasiresonances do exist for the spinor field
as well. Indeed, from Figs. 1 and 2 one can see that when μ
grows, the damping rate decreases, and dependence on
the field mass is roughly linear in the regime of small
ImðωÞ. From Fig. 1 one can see that the spectrum of the
Schwarzschild black hole gets an additional splitting
according to the couple of chiralities σ ¼ �1=2, so that
the positive chirality is characterized by a higher real
oscillation frequency and longer lifetime.
Comparison with the WKB data, for example, ωrþ ¼

0.328 − 0.208i [from Eq. (57) of [6]] for μrþ ¼ 0.2 with

0.2 0.4 0.6 0.8
r

0.1

0.2

0.3

0.4

0.5

0.6

Re r

0.2 0.4 0.6 0.8
r

0.05

0.10

0.15

Im r

FIG. 2. ReðωÞ (left) and ImðωÞ (right) for the fundamental quasinormal mode (l ¼ 1=2, n ¼ 0) of the neutral Dirac field (σ ¼ 1=2) as
a function of the field mass (μrþ) in the Reissner-Nordström black hole background:Q ¼ 0 (top, blue),Q ¼ 0.5rþ (green),Q ¼ 0.95rþ
(bottom, red).
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our value3 ωrþ ¼ 0.344169 − 0.194476i (Table I) shows
that the WKB formula, as expected, works badly even for
relatively small masses of the field, giving a relative error
more than 5%. Thus, the WKB results for a massive Dirac
field obtained in [6] have a significant error, which is
usually of the same order as the effect and, for sufficiently
large mass μ, can produce even senseless results. The
question whether the WKB formula developed in [9] can
be applied effectively to the case of a massive field is
discussed in detail in the Appendix to this paper and our
conclusion is that it gives reasonable accuracy only for
sufficiently large multipole numbers, small overtones and
far from the quasiresonant state.
Extrapolating the modes with the vanishing damping

rates, we find the asymptotic value of mass of the field (for
l ¼ 1=2, σ ¼ 1=2) at which the nondecaying state is
(asymptotically) achieved:

Q ¼ 0∶ μrþ ¼ 0.816;

Q ¼ 0.5rþ∶ μrþ ¼ 0.722;

Q ¼ 0.95rþ∶ μrþ ¼ 0.521: ð18Þ

Thus, the near extremal black hole is characterized by
relatively smaller masses (in units of the horizon radius) at
which quasiresonance regime is achieved. However, the
corresponding asymptotic value of μM ¼ 0.408 is the
smallest for the uncharged (Schwarzschild) black hole
(for l ¼ 1=2, σ ¼ 1=2).

C. Massive Dirac field in the Kerr background

For the rotating case, not only states with opposite
chirality but also states with different azimuthal numbers
m are nondegenerate. In Table I and Fig. 3 one can see that
the positive m corresponds to larger values of ReðωÞ for
both chiralities. The positive chirality has real oscillation
frequency, which is larger than that for a negative chirality
and the same azimuthal numberm. The modes with positive
m are longer lived than those with a negative one and the
same chirality. The positive chirality modes with the same
azimuthal number m are longer lived than the negative
chirality modes only for not very high rotation. At some a
which depends on the values of l and m, the curves of
σ ¼ 1=2 and σ ¼ −1=2 modes intersect and the mode for
negative chirality becomes longer lived. This phenomenon
reflects the interplay between approaching the quasireso-
nance and decreasing of the decay rate for the positive
values of m due to extraction of rotational energy from a
black hole. Rather irregular dependence of the quasinormal
frequencies on a in the regime of the near extremal rotation
(see Fig. 3) takes place also for the massless Dirac
quasinormal modes [30] and for a massive charged scalar
field in the Kerr-Newman background [31]. We have
checked all the numerical data against the convergence
of the continued fraction.

D. Massive charged Dirac field

The charged Dirac field is characterized by larger
(smaller) oscillation frequency for positive (negative) eQ
respectively (see Fig. 4). As the damping rate approaches
zero, it is highly sensitive to even small changes of any of

TABLE I. Dominant quasinormal modes (ωrþ) of a massive Dirac field in the Kerr background.

n ¼ 0 l ¼ 1=2 μ ¼ 0 μrþ ¼ 0.1 μrþ ¼ 0.2

a=rþ m σ ¼ �1=2 σ ¼ þ1=2 σ ¼ −1=2 σ ¼ þ1=2 σ ¼ −1=2

0 �1=2 0.365926 − 0.193965i 0.383713 − 0.186324i 0.352978 − 0.196821i 0.406774 − 0.174251i 0.344169 − 0.194476i
0.1 þ1=2 0.378027 − 0.190214i 0.395756 − 0.183230i 0.364925 − 0.192841i 0.416509 − 0.173010i 0.355850 − 0.190728i
0.1 −1=2 0.349639 − 0.192560i 0.367417 − 0.184361i 0.336973 − 0.195523i 0.390834 − 0.171328i 0.328596 − 0.192803i
0.2 þ1=2 0.385336 − 0.181297i 0.402891 − 0.175066i 0.372245 − 0.183586i 0.425214 − 0.165129i 0.363096 − 0.181591i
0.2 −1=2 0.329989 − 0.186557i 0.347744 − 0.177897i 0.317696 − 0.189496i 0.371595 − 0.163965i 0.309883 − 0.186242i
0.3 þ1=2 0.387525 − 0.167723i 0.404753 − 0.162332i 0.374639 − 0.169586i 0.426588 − 0.153571i 0.365630 − 0.167625i
0.3 −1=2 0.307930 − 0.176956i 0.325700 − 0.167918i 0.296060 − 0.179743i 0.350132 − 0.153127i 0.288913 − 0.175780i
0.4 þ1=2 0.384559 − 0.150381i 0.401273 − 0.145911i 0.372094 − 0.151745i 0.422491 − 0.138405i 0.363449 − 0.149771i
0.4 −1=2 0.284468 − 0.164994i 0.302335 − 0.155634i 0.273038 − 0.167513i 0.327558 − 0.139984i 0.266627 − 0.162667i
0.5 þ1=2 0.376633 − 0.130338i 0.392624 − 0.126878i 0.364824 − 0.131146i 0.413075 − 0.120727i 0.356775 − 0.129140i
0.5 −1=2 0.260595 − 0.151903i 0.278673 − 0.142237i 0.249602 − 0.154059i 0.304935 − 0.125676i 0.243962 − 0.148158i
0.6 þ1=2 0.364057 − 0.108653i 0.379091 − 0.106321i 0.353160 − 0.108844i 0.398617 − 0.101681i 0.345943 − 0.106812i
0.6 −1=2 0.237222 − 0.138683i 0.255628 − 0.128683i 0.226654 − 0.140405i 0.283189 − 0.111108i 0.221793 − 0.133295i
0.7 þ1=2 0.347055 − 0.086247i 0.360861 − 0.085247i 0.337359 − 0.085731i 0.379319 − 0.082414i 0.331224 − 0.083689i
0.7 −1=2 0.215070 − 0.125976i 0.233903 − 0.115589i 0.204922 − 0.127210i 0.263007 − 0.096867i 0.200823 − 0.118765i
0.8 þ1=2 0.325366 − 0.063890i 0.337611 − 0.064689i 0.317254 − 0.062457i 0.354989 − 0.064358i 0.312501 − 0.060393i
0.8 −1=2 0.194573 − 0.114108i 0.213913 − 0.103279i 0.184847 − 0.114806i 0.244796 − 0.083271i 0.181489 − 0.104933i
0.9 þ1=2 0.296610 − 0.042676i 0.307020 − 0.047290i 0.290891 − 0.039461i 0.325234 − 0.051511i 0.288091 − 0.037193i
0.9 −1=2 0.175908 − 0.103227i 0.195830 − 0.091903i 0.166612 − 0.103339i 0.228731 − 0.070476i 0.163979 − 0.091973i

3Note that κ > 0 in [6] corresponds to σ ¼ −1=2 in our
notations.
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the parameters of the system in the regime of quasireso-
nances. This behavior can be understood by considering
dependence of the quasinormal mode on the field mass
when all other parameters are fixed. In particular, for each
value of eQ there is some value of mass for which the
quasiresonance is reached. For larger mass the correspond-
ing mode disappears from the spectrum, and the next
overtone becomes dominant. We observe that for smaller
eQ this threshold value of mass decreases, so that if we vary
eQ for a fixed mass we can approach the quasiresonance
for a sufficiently small (negative) value of eQ. Thus, for
example, the fundamental mode for μrþ ¼ 0.49, Q ¼
0.95rþ is ωrþ ¼ 0.4014 − 0.0108i for the neutral field
and ωrþ ¼ 0.4210 − 0.0233i for the charged field with
eQ ¼ 1=20, that is, even for tiny eQ the damping rate is
increased by a factor 2. The smaller damping rate is, the

slower is the convergence of the continued fraction, making
it time consuming to find frequencies which are close to
the real axis.
As in the case of the scalar field [31], we observe that for

eQ≫1, ω¼OðeQÞ≫μ. Then we find that c1;n¼OðeQÞ2,
c2;n ¼ OðeQÞ2, c3;n ¼ OðeQÞ2, while c0;n ¼ OðeQÞ.
Therefore, the equation with the continued fraction in this
regime is reduced to

c1;n
ðeQÞ2 þO

�
1

eQ

�
¼ 0: ð19Þ

Following [31], we write down for λ when ω ≫ μ,

λ2 ¼ λ0aωþOð1Þ;
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FIG. 3. ReðωÞ (left) and ImðωÞ (right) for the fundamental quasinormal mode (l ¼ 1=2, n ¼ 0) of the neutral (e ¼ 0), massive
(μrþ ¼ 0.1) Dirac field in the Kerr (Q ¼ 0) background: σ ¼ 1=2, m ¼ 1=2 (red); σ ¼ 1=2, m ¼ −1=2 (blue); σ ¼ −1=2, m ¼ 1=2
(magenta); σ ¼ −1=2, m ¼ −1=2 (cyan). The positive value of the chirality corresponds to higher oscillation frequency and slower
decay in the nonrotating limit. The positive azimuthal value leads to higher oscillation frequency and slower decay for the rotating black
hole. Yet, for the near-extremal rotation σ ¼ −1=2, m ¼ 1=2 has the smallest, almost vanishing, decay rate.
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FIG. 4. ReðωÞ (left) and ImðωÞ (right) for the fundamental quasinormal mode (l ¼ 1=2, n ¼ 0) of the massive (μrþ ¼ 0.2) Dirac field
as a function of the field charge (eQ) for the Reissner-Nordström black hole (Q ¼ 0.95rþ): σ ¼ 1=2 (blue) and σ ¼ −1=2 (cyan). The
horizontal axis corresponds to the asymptotic value (ωrþ ¼ eQ − 0.024375i) given by formula (20).
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where λ0 is a constant. Finally, from (19) after some algebra
we obtain the asymptotic formula for the quasinormal
modes of a charged massless Dirac field,

ωða2 þ r2þÞ ¼ eQrþ þ a

�
mþ rþðrþ − r−Þ

r2þ − a2
λ0
4

�

− iðrþ − r−Þ
2nþ 1

4
þO

�
1

eQ

�
; ð20Þ

which has the same form as the one obtained in [31] for the
scalar field.
The formula (20) is obtained in the regime when charges

of the Dirac field and Kerr-Newman black hole are large
and ω ¼ OðeQÞ ≫ μ. In this regime we see that the
frequencies depend on l, σ, and μ through the constant
λ0 only. In particular, for the nonrotating (Reissner-
Nordström) black hole we observe degeneracy of the
spectrum in this limit (see Fig. 4). However, even for large
eQ one can reach quasiresonances by increasing the field
mass. The corresponding mass has to be large enough in
order to satisfy the necessary condition μ > ReðωÞ [16].

VI. FINAL REMARKS

Although the quasinormal modes of a massive Dirac
field in the Schwarzschild background were considered in a
few papers for static black holes, no such analysis for the
Kerr metric was suggested. Moreover, previous results for
the Schwarzschild spacetime used the WKB approach
and did not allow one to analyze the regime of long-lived
modes even for the Schwarzschild metric. Here with the
help of the convergent Frobenius method we computed
quasinormal modes of a massive charged Dirac field in the
background of the Schwarzschild, Reissner-Nordström,
and Kerr(-Newman) black holes. For the first time we
have shown that the infinitely long-lived modes, called
quasiresonances, exist not only for boson, but also for
fermion fields. The massive term leads to an additional fine
structure, related to the coupling between the chirality and
mass of the field.
We observed that the quasiresonances do not go over into

any kind of growing modes, what should be interpreted on
behalf of stability of a massive Dirac field in the Kerr
background under quasinormal mode boundary conditions.
However, the strict proof of stability must be done via
analysis of all the possible modes of the spectrum either
analytically or numerically. The latter could be fulfilled,
for example, by the time-domain integration of the wave
equation, which would take into consideration contribu-
tions of all overtones.
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Note added.—Recently, there appeared the work [32]
devoted to quasinormal modes of a massive neutral Dirac
field in theD-dimensional Schwarzschild background. Their
results coincide in the four-dimensional casewith ours, when
the mass of the field is relatively small. Note that signðκÞ ¼
�1 in [32] corresponds to σ ¼∓ 1=2 in our notations.

APPENDIX: CAN THE WILL-SCHUTZ-IYER
FORMULA BE APPLIED TO MASSIVE FIELDS?

The WKB approach is based on WKB expansion of the
effective potential at both infinities (the event horizon and
spacial infinity) which are matched with the Taylor expan-
sion near the peak of the effective potential. Therefore, the
WKB approach in this form implies existence of the two
turning points and monotonic decay of the effective
potentials along both

iQ0ffiffiffiffiffiffiffiffiffi
2Q00

0

p −
Xi¼p

i¼2

Λi ¼ nþ 1

2
; n ¼ 0; 1; 2…;

where the correction terms Λi were obtained in [9] for
different orders. HereQi

0 means the ith derivative ofQ at its
maximum with respect to the tortoise coordinate r⋆, and n
labels the overtones.
Here, we shall answer the following question: can the

Will-Schutz-Iyer WKB formula [9], deduced under
assumption of the two turning points, be applied for
calculating quasinormal frequencies of massive fields,
which imply three turning points. In order to avoid the
problem connected to the dependence of the effective
potential on ω (which takes place for massive fermions),
we shall consider the simplest massive scalar field for
illustration. The WKB method works well for l > n, so
that it is evident that for the lowest multipole number l ¼ 0
the WKB formula of [9] should not produce reliable results,
which is also confirmed by our comparison with the
accurate data. Therefore, we shall consider the case of
moderate l and n < l for which the WKB data of massless
fields are known to be reasonably accurate. Comparison
of quasinormal frequencies found by the third and sixth
order WKB formula with the accurate data obtained via the
Frobenius method [16] are shown in Table II. There, one
can see that for small and moderate values of μ the results
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found by the WKB formula are in a very good agreement
with the accurate values, while for sufficiently large μ,
when the effective potential approaches to the transition
from the potential barrier to monotonic behavior, the WKB
formula produces an error which is bigger than the effect of
nonzero mass μ. This cannot be treated by adding more
WKB orders, as can be noticed from the comparison of
third and sixth WKB orders in the last two rows in Table II.
While for small and moderate μ adding more WKB orders
gives better accuracy, starting from μrþ ≈ 1.3 higher WKB

orders give a bigger error than the lower ones. That is not
unexpected as the convergence of the WKB is guaranteed
only asymptotically, but not in each order. Thus, we
conclude that although the WKB formula of [9] can be
applied to the case of massive fields [33], it should be used
with great care in the regime of not small masses μ and it
definitely cannot be effectively used for detecting long-
lived modes. Probably, a method which takes into consid-
eration all the three turning points, similar to the one
suggested in [34], could provide better accuracy.
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