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We report the explicit form of the general static, spherically symmetric, and asymptotically
flat solution of vacuum Brans-Dicke gravity in the Jordan frame, assuming that the Brans-Dicke
scalar field has no singularities or zeros (except possibly for a central singularity). This general solution
is conformal to the Fisher-Wyman geometry of Einstein theory and its nature depends on a scalar
charge parameter. Apart from the Schwarzschild black hole, only wormhole throats and central naked
singularities are possible.
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I. INTRODUCTION

In general relativity (GR), there is a unique spherical
and asymptotically flat solution of the vacuum Einstein
equations (with zero cosmological constant): the static
Schwarzschild geometry. This fact, known as the Jebsen-
Birkhoff theorem [1], generalized in Ref. [2] to higher-
dimensional GR, is extremely important because it
makes GR black holes simple; there is no need to single
out the “physical” black hole solutions of GR, and the
end point of gravitational collapse is completely deter-
mined. The Jebsen-Birkhoff theorem breaks down in
theories of gravity alternative to GR, which are moti-
vated by the need to explain the present acceleration of
the Universe without an ad hoc dark energy, and by
unavoidable corrections to GR arising from any attempt
to quantize gravity. The prototypical alternative to GR is
Brans-Dickegravity [3],which adds to themetric tensor gab a
scalar degree of freedom ϕ, approximately corresponding to
the inverse of the effective gravitational coupling strength,
which becomes dynamical [3]. Brans-Dicke theory was
generalized by promoting the constant Brans-Dicke param-
eter to a function of ϕ and/or by including a potential VðϕÞ
[4]. More modern versions of scalar-tensor gravity include
galileons, generalized galileons, and Horndeski theory,

which are the subject of intensive research [5]. The vacuum
Brans-Dicke action1

SBD ¼
Z

d4x
ffiffiffiffiffiffi−gp

16π

�
ϕR −

ω

ϕ
∇cϕ∇cϕ

�
ð1Þ

(where R is the Ricci scalar and ω is the constant Brans-
Dicke coupling) gives rise to the field equations

Rab −
1

2
gabR ¼ ω

ϕ2

�
∇aϕ∇bϕ −

1

2
gab∇cϕ∇cϕ

�

þ 1

ϕ
ð∇a∇bϕ − gab□ϕÞ; ð2Þ

□ϕ ¼ 0: ð3Þ

Black holes in scalar-tensor gravity are not arbitrary: an
important no-hair theorem due to Hawking states that all
vacuum, stationary, and asymptotically flat black holes of
Brans-Dicke gravity must reduce to Kerr black holes [7].
Hawking’s no-hair theorem has been generalized to include
more general scalar-tensor theories and a potential VðϕÞ,
provided that the latter has a minimumwhich allows for ϕ to
sit in a state of equilibrium [8–10]. An essential feature in the
proof of no-hair theorems is that ϕ becomes constant outside
the horizon, reducing the theory to GR and any black hole to*vfaraoni@ubishops.ca
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1We use units in which the speed of light and Newton’s
constant are unity, and the notation of Ref. [6].

PHYSICAL REVIEW D 97, 084033 (2018)

2470-0010=2018=97(8)=084033(6) 084033-1 © 2018 American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.97.084033&domain=pdf&date_stamp=2018-04-17
https://doi.org/10.1103/PhysRevD.97.084033
https://doi.org/10.1103/PhysRevD.97.084033
https://doi.org/10.1103/PhysRevD.97.084033
https://doi.org/10.1103/PhysRevD.97.084033


Kerr. A few maverick solutions are known which evade the
no-hair theorems, but only at the price of physical pathol-
ogies such as the divergence ofϕ on the horizon (the solution
of [11] is one example, but it is linearly unstable [12]). No-
hair theorems for Horndeski and galileon theories, and ways
to evade them, are the subject of a large literature ([13] and
references therein).
InBrans-Dicke theory, things becomemore tricky. In fact,

a theorem due to Agnese and La Camera [14] states that in
Brans-Dicke gravity the possible solutions describe only
wormholes or naked singularities. Its proof is incorrect, as
shown below. In any case, it is clear that this theorem
contradicts Hawking’s no-hair result and its generalizations
[7–10,15] because it excludes the Schwarzschild black hole
which is indeed a solution, as is easy to verify. This article
aims at presenting a comprehensive report that clarifies the
issue by linking it to the most general solution of vacuum
Brans-Dicke theory [16], which constitutes an analogue of
the Jebsen-Birkhoff theorem of GR in Brans-Dicke theory,
reworked here under the following physically reasonable
assumptions:
(1) the vacuum Brans-Dicke equations in the Jordan

frame hold with ω ≠ −3=2;
(2) the spacetime metric is spherically symmetric, static,

and asymptotically flat (staticity reflects a state of
equilibrium, while asymptotic flatness characterizes
isolated objects);

(3) the Brans-Dicke scalar ϕ depends only on the radial
coordinate r; it does not have poles or zeros (except
possibly for a central singularity), and ϕðrÞ becomes
constant as r → þ∞.

II. THE GENERAL JORDAN FRAME SOLUTION

Let us investigate the general solution under the assump-
tions above.

A. The Agnese-La Camera theorem

The Agnese-La Camera theorem [14] states that, under
the assumptions (1)–(3), the only possible solutions describe
wormholes or naked singularities. The proof of this theorem
begins by writing the line element and scalar field as

ds2ALC ¼ −
�
1 −

2η

r

�
A
dt2 þ

�
1 −

2η

r

�
B
dr2

þ
�
1 −

2η

r

�
1þB

r2dΩ2
ð2Þ; ð4Þ

ϕALCðrÞ ¼ ϕ0

�
1 −

2η

r

�−ðAþBÞ
2

; ð5Þ

with dΩ2
ð2Þ ¼ dθ2 þ sin2θdφ2 and

1 −
ωþ 1

ωþ 2
¼ ðAþ BÞ2

2ð1þ ABÞ ; ð6Þ

where A, B, and η are real constants. In [14], this is assumed
to be a gauge choice valid for any solution satisfying (1)–(3),
but at this stage this is instead a choice of a special solution,
the Campanelli-Lousto one. The general form of the
Campanelli-Lousto solution of Eqs. (2) and (3) is [17]

ds2CL ¼ −
�
1 −

2η

r

�
b0þ1

dt2 þ
�
1 −

2η

r

�
−a0−1

dr2

þ
�
1 −

2η

r

�
−a0

r2dΩ2
ð2Þ; ð7Þ

ϕCLðrÞ ¼ ϕ0

�
1 −

2η

r

�a0−b0
2

; ð8Þ

where a0 and b0 are two parameters satisfying

ω ¼ −2ða20 þ b20 − a0b0 þ a0 þ b0Þ
ða0 − b0Þ2

: ð9Þ

It is clear that the Agnese-La Camera choice is reproduced
for a0 ¼ −B − 1 and b0 ¼ A − 1. Therefore, the results of
[14] are true only for this particular solution (in spite of being
advertised as black holes, the Campanelli-Lousto family
contains only wormhole throats and naked singularities
[18]). The conflict with the no-hair theorems is then
resolved. But what are the solutions satisfying (1)–(3) which
are not Schwarzschild?

B. The general solution

Let ðgab;ϕÞ be a solution under the assumptions (1)–(3).
By performing the standard conformal transformation to
the Einstein frame representation of Brans-Dicke gravity

gab → g̃ab ¼ Ω2gab ¼ ϕgab; ð10Þ

ϕ → ϕ̃ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j2ωþ 3j
16π

r
ln

�
ϕ

ϕ0

�
ð11Þ

(where ϕ0 is a constant), the Brans-Dicke action (1) is
recast in the form

SBD ¼
Z

d4x
ffiffiffiffiffiffi
−g̃

p �
R̃
16π

−
1

2
g̃ab∇̃aϕ̃∇̃bϕ̃

�
: ð12Þ

Since the conformal factor is Ω ¼ ffiffiffiffiffiffiffiffiffi
ϕðrÞp

, the Einstein
frame geometry is also spherical, static, and asymptotically
flat. Formally, the action (12) describes GR with a free,
minimally coupled scalar field and the most general
spherical, static, asymptotically flat solution is known to
be the Fisher-Janis-Newman-Winicour-Buchdahl-Wyman
(FJNWBW) solution of GR [19,20],
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ds̃2 ¼ −eα=rdt2 þ e−α=r
�

γ=r
sinhðγ=rÞ

�
4

dr2

þ e−α=r
�

γ=r
sinhðγ=rÞ

�
2

r2dΩ2
ð2Þ ð13Þ

(where α and γ are constants) with scalar field [19,20]

ϕ̃ ¼ ϕ�
r
; ϕ� ¼

−σ
4

ffiffiffi
π

p ; ð14Þ

where σ is a scalar charge and one can take γ ≥ 0 without
loss of generality. These three constants are related by [20]

4γ2 ¼ α2 þ 2σ2: ð15Þ

If σ ¼ 0, the Einstein frame scalar vanishes, the Jordan
frame scalar reduces to a constant, the theory reduces to
GR, and the solution reduces to Minkowski in both
conformal frames, which then coincide. In fact, the con-
stants α and γ both vanish whenever σ does, thus turning
(13) into the Minkowski metric. However, as the notation
followed here is that of Ref. [20], the relation (15) between
the constants α, γ and σ does not allow one to see this fact as
it only implies 4γ2 ¼ α2 when σ ¼ 0. The vanishing of α
and γ could be seen only when tracing back the steps that
led to expression (13) as presented in Ref. [20], for then one
clearly sees that whenever σ vanishes, so does the constant
α, which, in turn, makes γ vanish as well.
Consider now the case σ ≠ 0. Mapping the FJNWBW

solution back to the Jordan frame, one obtains the most
general solution of the Brans-Dicke equations under the
assumptions (1)–(3) (a remark to this regard was made in
passing in [21]). Equation (11) yields the scalar field

ϕðrÞ ¼ ϕ0e−β=r; β ¼ σffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffij2ωþ 3jp ; ð16Þ

while Eq. (10) gives

ds2 ¼ −eðαþβÞ=rdt2 þ eðβ−αÞ=r
�

γ=r
sinhðγ=rÞ

�
4

dr2

þ eðβ−αÞ=r
�

γ=r
sinhðγ=rÞ

�
2

r2dΩ2
ð2Þ: ð17Þ

This is the most general solution of Brans-Dicke theory
under the assumptions (1)–(3). It is related to a Campanelli-
Lousto solution. The special case γ ¼ 0 is discussed later.
It should be noted here that in Ref. [16], the most general

solution of the generalized Brans-Dicke scalar-tensor
theory has also been found by Bronnikov for the case of
electrovacuum. For the case of vacuum, explicit forms
of the solution corresponding to imaginary γ, for which
the sinh function in the metric (17) is replaced by the
sine function, were given there. The latter possibility,

corresponding to what has been called in Refs. [22] a
“cold black hole,” arises for the anomalous case,
2ωþ 3 < 0. This case, which we avoided in this paper
by taking care of using the absolute value of 2ωþ 3 in our
field redefinition (11), is anomalous for it makes the
Einstein frame field ϕ̃ imaginary which, in turn, makes
the kinetic term in the Einstein frame action (12) acquire
the wrong sign. This case gives the ghost counterpart of the
solution (13) and (14) due to Bergman and Leipnik [19].
Indeed, when an imaginary field ϕ̃ is allowed, the scalar
charge σ becomes imaginary and the Wyman relation
between the various constants becomes [16]

−4γ2 ¼ α2 − 2σ2: ð18Þ

The negative signs can be absorbed by letting both σ and γ
be imaginary. This then turns the sinh function into a sine
function in (17).2 In Ref. [23], the special cases α ¼ β,
α ¼ ð2ωþ 3Þβ, and α ¼ −ðωþ 1Þβ in (17) were found
explicitly. Much later, a more exhaustive investigation of
the general solutions of the Bergmann-Wagoner class of
scalar-tensor theories, in which Brans-Dicke gravity is a
special case, was made in Ref. [24]. It was shown there that
among these solutions black hole geometries arise for the
anomalous versions of these theories. The thermodynamics
of such black holes, also dubbed cold black holes, were
investigated.
Let us now come back to our general solution. When

γ ≠ 0 in (17), by performing the two consecutive coor-
dinate transformations

eγ=r ¼ 1þ B=ρ
1 − B=ρ

; r̄ ¼ ρ

�
1þ B

ρ

�
2

; ð19Þ

and setting η ¼ 2B ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ σ2

p
, m=η ¼ −α=ð2γÞ,

σ=η ¼ β
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffij2ωþ 3jp

=ð2γÞ, and rescaling the time co-
ordinate by a factor jγ=ð2BÞj, the solution (17), (16)
becomes

ds2 ¼ −
�
1 −

2η

r̄

�1
ηðm− σffiffiffiffiffiffiffiffi

j2ωþ3j
p Þ

dt2 þ
�
1 −

2η

r̄

�−1
η ðmþ σffiffiffiffiffiffiffiffi

j2ωþ3j
p Þ

dr̄2

þ
�
1 −

2η

r̄

�
1−1

ηðmþ σffiffiffiffiffiffiffiffi
j2ωþ3j

p Þ
r̄2dΩ2

ð2Þ; ð20Þ

ϕ ¼ ϕ0

�
1 −

2η

r̄

� σ

η
ffiffiffiffiffiffiffiffi
j2ωþ3j

p
; ð21Þ

which is a Campanelli-Lousto solution with

2For completeness, we give here the general solution
of Brans-Dicke theory in the anomalous case. It reads
ds2 ¼ −e

αþβ
r dt2 þ e

β−α
r ð γ=r

sinðγ=rÞÞ2½ð γ=r
sinðγ=rÞÞ2dr2 þ r2dΩ2

ð2Þ�.
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a0 ¼ −1þ 1

η

�
mþ σffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffij2ωþ 3jp

�
; ð22Þ

b0 ¼ −1þ 1

η

�
m −

σffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffij2ωþ 3jp
�
: ð23Þ

It must be noted here that although this form contains
only the absolute value of the term 2ωþ 3, the anomalous
case 2ωþ 3 < 0 discussed above does not apply here as
the coordinate redefinitions (19) would not be real valued
anymore since γ is imaginary in this case. Therefore, the
Campanelli-Lousto metric (7), as well as its other version
(4) used in Ref. [14], is only valid for the normal
case 2ωþ 3 > 0.

C. Generality of the solution

It seems that, given a solution ðgab;ϕÞ of the form (20),
(21), one could still change the scalar field according to
ϕ → Φ ¼ ϕeψðrÞ in such a way that ðgab;ΦÞ is still a
solution, which would mean that (17), (16) do not give all
the possible solutions, and hence do not constitute the most
general solution. We show here that this is not the case. In
fact, the Ricci tensor component

Rrr ¼ ω

�∇rϕ

ϕ

�
2

þ∇r∇rϕ

ϕ
ð24Þ

does not change when ðgab;ϕÞ is changed into ðgab;ΦÞ
provided that

ðωþ1Þð∇rψÞ2þ2ðωþ1Þ∇rϕ

ϕ
∇rψþ∇r∇rψ ¼ 0; ð25Þ

while it must be □ðϕeψ Þ ¼ 0 in order for Φ to still be a
solution. Using this equation to eliminate ∇r∇rψ in
Eq. (25), one finds

�
∇rψ þ 2∇rϕ

ϕ

�
∇rψ ¼ 0; ð26Þ

which (apart from the irrelevant possibility ψ ¼ const)
integrates to ψðrÞ ¼ −2 lnϕþ const and Φ ¼ C0=ϕ.
However, replacing ðgab;ϕÞ with ðgab; C0=ϕÞ amounts to
changing the exponent β in Eq. (16) into −β, or to changing
the sign of the scalar charge σ, a possibility already
included in the form of the general solution (17), (16).
It must be noted, however, that what makes the con-

formal transformation one to one and protects (17) and (16)
against such redefinitions as ϕ ⟶ ϕeψðrÞ, that could have
prevented them from being the most general solution, is the
homogeneous wave equation□ϕ ¼ 0. The latter, in turn, is
always guaranteed to hold in vacuo and electrovacuo for
which the matter energy-momentum tensor is traceless.
Therefore, we conclude that (17) and (16) constitute indeed

the most general solution with the assumptions (1)–(3)
above. Moreover, this analysis also applies, and therefore
reinforces, Bronnikov’s general solutions for vacuum and
electrovacuum scalar-tensor theories found in Ref. [16].

D. Nature of the solution

In this subsection we investigate the nature of the general
solution (17) and (16). To assess whether the general
geometry (17) describes black holes, wormholes, or naked
singularities, one examines the horizons (if they exist) and
their nature. The equation we are going to use for locating
the apparent horizons is [25,26] ∇cR∇cR ¼ 0, where

RðrÞ ¼ γ
e
β−α
2r

sinhðγ=rÞ ð27Þ

is the areal radius. Horizons correspond to the roots of that
equation; a single root describes a black hole horizon while
a double root describes a wormhole throat. With (27), the
equation becomes

grr
�
dR
dr

�
2

¼ sinh2ðγ=rÞ
�
α − β

2γ
þ coth ðγ=rÞ

�
2

¼ 0: ð28Þ

It is clear that, if roots exist, they are always double
roots corresponding to wormhole throats. They exist if
ðβ − αÞ=γ > 0 and, in this case, they are given by

rH ¼ 2γ

lnðβ−αþ2γ
β−α−2γÞ

¼ γ

tanh−1ð 2γ
β−αÞ

: ð29Þ

If ðβ − αÞ=γ < 0, instead, there is a naked singularity. In
fact, the general solution (17) has a spacetime singularity at
R ¼ 0, as is deduced from the Ricci scalar

R ¼ ω

ϕ2
∇cϕ∇cϕ ¼

8>><
>>:

ωβ2

γ4
eðα−βÞ=rsinh4ðγ=rÞ if γ ≠ 0;

ωβ2

r4
eðα−βÞ=r if γ ¼ 0:

ð30Þ

If γ ≠ 0 then when r → 0 we have, depending on whether γ
is positive or negative,

R ¼ ωβ2

16γ4
eðα−β�4γÞ=r; ð31Þ

respectively. Therefore, the Ricci scalar diverges as r → 0
only for β − α < 4γ or for α − β > 4γ, respectively.
In the special case γ ¼ 0, the FJNWBW metric reduces

to the Yilmaz geometry [27] and its Jordan frame cousin
(17), (16) is the Brans Class IV solution [28]
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ds2 ¼ −e−2B=rdt2 þ e2BðCþ1Þ=rðdr2 þ r2dΩ2
ð2ÞÞ; ð32Þ

ϕ ¼ ϕ0e−BC=r; ð33Þ

where B ¼ −ðαþ βÞ=2, C ¼ −2β=ðαþ βÞ. The equation
locating the apparent horizons reduces to ð1 − β−α

2r Þ2 ¼ 0,
which has a double root rH ¼ ðβ − αÞ=2 corresponding to a
wormhole throat if β > α and to a central naked singularity
otherwise.
These results about the nature of the solutions of Brans-

Dicke theory have already been worked out in detail in
[29]. Therefore, this analysis satisfactorily shows that it is
possible to use the most general solution (17) of Brans-
Dicke theory to recover in a compact way the results
already found in Ref. [29] by going through each of the
Brans classes of solutions individually. The general sol-
ution (17) thus allows for a unified investigation of the
physics behind the four Brans classes of solutions.
It must be noted here that, just as it was done in Ref. [29],

the investigation of the nature of the solution conducted
here is based on the simple detection of possible black hole
horizons or wormhole throats. In fact, in contrast to the
analysis made in Ref. [30], no additional requirements,
such as asymptotic flatness or regularity of the spacetime
away from the throat when the latter exists, are imposed
before calling such a solution a wormhole. The wormhole
definition that is implicitly adopted here, and which was
also adopted in Ref. [29], is that of Ref. [31] which consists
of a quasilocal definition involving only the properties of
the local geometry of spacetime. Of course, extended
wormholes can also be studied, and they are related to
the cold black holes of [22]. We refer the reader to [22] for
these situations.

III. CONCLUSIONS

The key to solving the Brans-Dicke equations under the
assumptions (1)–(3) is to map the problem into the Einstein
frame and use a known result of Einstein-massless Klein-
Gordon theory [19]. By contrast, little progress is made
when analyzing directly the Jordan frame field equations.
The previous section shows that the Schwarzschild black
hole is obtained when the scalar charge σ vanishes and
that there is no other black hole solution under the
assumptions made. This result matches the no-hair theo-
rems of [7–10,15] (which are, however, more general). The
remaining solutions, corresponding to σ ≠ 0, are neces-
sarily of the Campanelli-Lousto form (7), (8) or conformal
to it. They can only describe wormhole throats or naked

singularities, according to the values of the parameters σ=m
and ω (or of α and β).
The most general solution of Jordan frame Brans-Dicke

theory under the assumptions (1)–(3) is given by Eqs. (17)
and (16) and is conformal to the FJNWBW solution of GR.
Our analysis in Sec. II C established the general character
of this solution and pointed to the homogeneous wave
equation that the scalar field obeys as being the ingredient
that renders the solution (17) really general. We also
pointed out that it is only thanks to this constraint that
the conformal transformation trick remains a one-to-one
mapping and allows one to extract the general Jordan frame
solution from the most general Einstein frame one. The
homogeneity of the wave equation, being guaranteed
by the tracelessness of the matter energy-momentum
tensor, makes the conformal trick work both in vacuum
and electrovacuum. The conformal transformation trick is
indeed what has allowed Bronnikov in Ref. [16] to extract
the general solution for the electrovacuum case as well.
We have investigated the general solution of vacuum

Brans-Dicke gravity, a result that constitutes an analogue of
the Jebsen-Birkhoff theorem of GR in Brans-Dicke theory,
which is a rarity in alternative gravities. In principle, this
result can be circumvented in the same ways already
conceived to evade the no-hair theorems for scalar-tensor
black holes: by including matter, by allowing the scalar
field to depend on time while keeping the geometry static,
or by letting the scalar field diverge or vanish on the
horizons [13].
As already noted above, generalizations of the results

presented here have already been obtained. The generali-
zation of the Jebsen-Birkhoff theorem to multidimensional
GR was given in Ref. [2], and the general spherically
symmetric solution of the Bergmann-Wagoner class of
scalar-tensor theories, of which Brans-Dicke gravity is a
special case, has been found in Ref. [24]. Generalizations to
situations in which a cosmological constant or a non-
gravitational scalar field are present and, more important, to
axial symmetry, may be possible and will be explored
elsewhere.
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