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We study strange stars in the framework of fðR; T Þ theory of gravity. To provide exact solutions of the
field equations it is considered that the gravitational Lagrangian can be expressed as the linear function of
the Ricci scalar R and the trace of the stress-energy tensor T , i.e. fðR; T Þ ¼ Rþ 2χT , where χ is a
constant. We also consider that the strange quark matter (SQM) distribution inside the stellar system is
governed by the phenomenological MIT bag model equation of state (EOS), given as pr ¼ 1

3
ðρ − 4BÞ,

where B is the bag constant. Further, for a specific value of B and observed values of mass of the strange
star candidates we obtain the exact solution of the modified Tolman-Oppenheimer-Volkoff (TOV) equation
in the framework of fðR; T Þ gravity and have studied in detail the dependence of the different physical
parameters, like the metric potentials, energy density, radial and tangential pressures and anisotropy etc.,
due to the chosen different values of χ. Likewise in GR, as have been shown in our previous work
[Deb et al., Ann. Phys. (Amsterdam) 387, 239 (2017)] in the present work also we find maximum
anisotropy at the surface which seems an inherent property of the strange stars in modified fðR; T Þ theory
of gravity. To check the physical acceptability and stability of the stellar system based on the obtained
solutions we have performed different physical tests, viz., the energy conditions, Herrera cracking concept,
adiabatic index etc. In this work, we also have explained the effects, those are arising due to the interaction
between the matter and the curvature terms in fðR; T Þ gravity, on the anisotropic compact stellar system. It
is interesting to note that as the values of χ increase the strange stars become more massive and their radius
increase gradually so that eventually they gradually turn into less dense compact objects. The present study
reveals that the modified fðR; T Þ gravity is a suitable theory to explain massive stellar systems like recent
magnetars, massive pulsars and super-Chandrasekhar stars, which cannot be explained in the framework of
GR. However, for χ ¼ 0 the standard results of Einsteinian gravity are retrieved.
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I. INTRODUCTION

We are living in the age of the accelerated expansion of
the universe which is well supported by the evidences of
recent observations, like CMB, LSS, supernovae-Ia and
BAO [1–4]. Thus the modern cosmology is mainly depen-
dent on the recent observational evidences of the accel-
erated expansion of the universe. However, Einstein’s
general theory of relativity failed to answer the satisfactory

reason behind this accelerated expansion of the universe.
Although in this connection many researchers [5–10]
predicted that the sole reason behind this phenomenon
is the presence of an unknown form of exotic energy
dominated by the negative pressure which is widely known
as the dark energy. The gravitational interaction is the most
fundamental but least understood force of the nature.
According to the strings/M-theory (also known as theory
of everything) general relativity is an approximation and
consistent to the small curvature. Though in the early days
some unknown gravitational theory described the evolution
of the universe but now it is well accepted that the modified
gravity which is a classical generalization of the general
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relativity, can explain the early-time inflation and the late-
time acceleration without introducing any form of the dark
component. Also, some of the modified gravity theories
with the gravitational term are well valid in the high energy
realm which produced inflationary epoch. The curvature
decreases during the evolution of the universe and in the
intermediate universe general relativity provides a suffi-
cient approximation. Interestingly, the early-time as well as
the late-time acceleration happen due to the fact that some
subdominant terms of gravitational action may become
essential to the large or small curvatures. Though the
complete gravitational action should be described by some
fundamental theory which is yet to be achieved, but such
approach of the alternative theory of gravity can be
considered as a dynamical solution of the cosmological
constant problem. The modified gravity approach in the
absence of the fundamental quantum gravity showed a
promising way out as it is well consistent with the
observational data and data from local tests [11]. Few
well-known relevant alternative gravity theories are fðRÞ
gravity [12–16], Brans-Dicke (BD), fðGÞ [17–19] gravity,
fðTÞ gravity [20,21], scalar tensor theories of gravity
and fðR;GÞ gravity, etc., where R, G and T are the scalar
curvature, the Gauss-Bonnet scalar and the torsion scalar,
respectively.
In his pioneering work Capozziello [22] proposed a

new modified theory of gravity to tackle the issue of dark
energy. Later, Allemandi et al. [14] have introduced the
nonlinear scalar-gravity theories in the Palatini formulation.
In their important review article Nojiri and Odintsov [11]
have presented a detailed study on the various extended
gravity models, viz., traditional fðRÞ and Hořava-Lifshitz
fðRÞ gravity, scalar-tensor theory, string-inspired and
GaussBonnet theory, nonlocal gravity, non-minimally
coupled models, and power-counting renormalizable covar-
iant gravity. In this large volume of works they have
investigated relation between the discussed modified grav-
ity theories and their different representations. Further, the
authors also have demonstrated how these extended gravity
theories are showing well agreement with the local tests
and featuring well justified description of the inflation with
the dark energy epoch. Again, Capozziello and Laurentis
[23] presented an extended study on the different modified
theories of gravity, viz., fðRÞ gravity, scalar-tensor gravity,
Brans-Dicke gravity and fðR;ϕÞ gravity, etc., to address
the shortcomings of GR at the scale of ultraviolet and
infrared. Astashenok et al. [24] and Capozziello [25]
presented models for neutron stars under different form
of the fðRÞ gravity. In another work Astashenok et al. [26]
have studied non-perturbative models for strange quark
stars in fðRÞ gravity.
Recently Harko et al. [27] presented a more generalized

form of fðRÞ gravity theory by choosing the matter
Lagrangian consists of an arbitrary function of the Ricci
scalar (R) and the trace of the energy momentum tensor (T )

given as fðR; T Þ. This is known as fðR; T Þ theory of
gravity. Immediately it has drawn attention of many
researchers and in the framework of many cosmological
models [28–36] have been studied. Besides cosmology this
gravity has successfully been studied in the realm of
astrophysics too. Under astrophysics it is observed that
Sharif et al. [37] explored the factors that affect the stability
of a locally isotropic spherically symmetric self-gravitating
system. By employing perturbation scheme Noureen et al.
[38–40] have presented a series of works on the dynamical
instability of spherically symmetric anisotropic collapsing
stars under different conditions. Further, Zubair and
Noureen [41] studied the dynamical stability of axially
symmetric anisotropic sources whereas Zubair et al. [42]
investigated the possible formation of compact stars by
employing the Krori and Barua metric. Alhamzawi and
Alhamzawi [43] have shown the effect of fðR; T Þ gravity
on the gravitational lensing and also compared their result
with the standard results of general relativity (GR).
Furthermore, general relativity and its possible exten-

sion [44] can be distinguished due to the strong gravita-
tional field regimes of the relativistic stars. Various
developments of the new stellar structures constitute the
signature of the extended gravity model [45,46] as they
have important observational consequences. Also, in
particular some simplest extension of the general rela-
tivity, for example fðRÞ gravity do not support existence
of the stable stellar system [47–53]. On the other hand, the
stability of the stellar system in modified gravity in the
certain cases can be achieved using the so-called chame-
leon mechanism [54–56].
Although all the above-mentioned literature are studied

on the basis of the analytical solutionMoraes et al. [57] first
presented the exact solution of the Tolman-Oppenheimer-
Volkoff (TOV) equation in fðR; T Þ gravity, using Runge-
Kutta 4th-order method and studied hydrostatic equilibrium
configurations for neutron stars and strange stars. Here,
we would like to mention that unfortunately in the TOV
equation [Eq. (3.9)] a minus sign has been missed in their
paper [57]. Using the results of Moraes et al. [57] later on
Das et al. [58] presented an analytical model of compact
stars in fðR; T Þ gravity by employing the Lie algebra with
the conformal Killing vectors. However, in another work on
gravastars Das et al. [59] have corrected the form of
the TOV equation and provided an analytical model in
fðR; T Þ gravity.
Harko et al. [27] in their pioneering work mentioned that

the motivation behind considering T-dependence in the
fðR; T Þ theory of gravity is the possible existence of exotic
imperfect fluids or quantum effects, such as the particle
production [60]. The authors in their study [27] showed that
the covariant derivative of the energy-momentum tensor is
not zero and an extra acceleration will always be present
in fðR; T Þ gravity due to the coupling between the matter
and the curvature terms. Hence particles will follow
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nongeodesic path in fðR; T Þ gravity. Later, Chakraborty
[61] addressed this issue and showed that for a specific
form of the function fðR; T Þ, as fðR; T Þ ¼ Rþ hðT Þ, the
test particles follow the geodesic path. Hence the author
[61] demonstrated that the whole system would act like
non-interacting two fluid system where the second type of
fluid is originated due to the interaction between the
geometry and the matter.
Here we would like to highlight the fact that in the

framework of GR one can find a vast number of works
[62–74], where influence of the anisotropy on the static
spherically symmetric compact objects have been studied.
It is to note that when the radial component of the pressure,
prðrÞ, differs from the angular component, pθðrÞ ¼
pϕðrÞ≡ ptðrÞ the system can be said anisotropic in nature.
Clearly, the condition pθðrÞ ¼ pϕðrÞ is rising due to the
effect of the spherical symmetry. In a physical system, the
pressures are anisotropic when the associated scalar field
has a nonzero spatial gradient. The anisotropic stress in the
present case may be arising due to the presence of the
anisotropic nature of the two-fluid system.
We have arranged the present article as follows: Basic

mathematical formulation of fðR; T Þ gravity is presented
in Sec. II. In Sec. III we formulate basic stellar equations
and present the solution of the Einstein field equations in
Sec. IV. We examine physical acceptability and stability of
the stellar system in Sec. V by studying energy conditions
VA, mass-radius relation V B, stability of the stellar
model V C and compactification factor as well as redshift
V D. Finally, we conclude our study with a discussion
in Sec. VI.

II. BASIC FORMULATION OF f ðR;T Þ
THEORY OF GRAVITY

Following Harko et al. [27], the modified form of
Einstein-Hilbert (EH) action in fðR; T Þ gravity reads

S ¼ 1

16π

Z
d4xfðR; T Þ ffiffiffiffiffiffi

−g
p þ

Z
d4xLm

ffiffiffiffiffiffi
−g

p
; ð1Þ

where g and Lm are the determinant of the metric gμν and
the matter Lagrangian density, respectively. We adopt
throughout the article G ¼ 1 ¼ c.
Variation of the modified EH action (1) in fðR; T Þ

gravity with respect to gμν yields the modified field
equation as follows

Gμν ¼
1

fRðR; T Þ
�
f8π þ fT ðR; T ÞgTμν

− ρgμνfT ðR; T Þ þ 1

2
ffT ðR; T Þ − RfRðR; T Þggμν

þ ð∇μ∇ν − gμν□ÞfRðR; T Þ
�
; ð2Þ

where fRðR; T Þ ¼ ∂fðR; T Þ=∂R and fT ðR; T Þ ¼
∂fðR; T Þ=∂T whereas □≡ ∂μð ffiffiffiffiffiffi−gp

gμν∂νÞ= ffiffiffiffiffiffi−gp
is the

D’Alambert operator and Rμν is the Ricci tensor. We
assume that Lm ¼ ρ, where ρ is the energy density of
SQM distribution.
Now we define Tμν, which represents the stress-energy

tensor for the anisotropic fluid distribution, in the following
form

Tμν ¼ ðρþ ptÞuμuν − ptgμν þ ðpr − ptÞvμvν; ð3Þ

where pr and pt represent the radial and tangential
pressures of the SQM distribution, respectively whereas
uμ and vμ represent four-velocity and radial four-vector,
respectively.
The covariant divergence of the stress-energy tensor (3)

is given by

∇μTμν ¼
fT ðR; T Þ

8π − fT ðR; T Þ
�
ð−Tμν þ ρgμνÞ∇μ ln fT ðR; T Þ

− 2∇μTμν þ
1

2
gμν∇μð2ρ − T Þ

�
: ð4Þ

Following Harko et al. [27], in the present article we
consider simple linear form of the function fðR; T Þ as
fðR; T Þ ¼ fðRÞ þ 2fðT Þ, where fðRÞ ¼ R and fðT Þ ¼
2χT . This form of the function fðR; T Þ has been broadly
used by several authors [75–88].
Now substituting the assumed form of the function

fðR; T Þ into Eq. (2) we find

Gμν ¼ 8πTμν þ χT gμν þ 2χðTμν − ρgμνÞ ¼ 8πTμν;eff ; ð5Þ

where Gμν is the standard Einstein tensor and Tμν;eff ¼
Tμν þ χ

8π T gμν þ χ
4π ðTμν − ρgμνÞ. The usual general relativ-

istic results can be achieved by substituting χ ¼ 0
into Eq. (5).
Now, substituting fðR; T Þ ¼ Rþ 2χT in Eq. (4) we

have

ð4π þ χÞ∇μTμν ¼ −
1

2
χ½gμν∇μT − 2∇μðρgμνÞ�: ð6Þ

We can write Eq. (6) as follows

∇μTμν;eff ¼ 0: ð7Þ

Here also one may achieve the standard form of the
conservation of stress-energy tensor as GR by substituting
χ ¼ 0 into Eq. (6).
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III. BASIC STELLAR EQUATIONS IN
f ðR;T Þ THEORY OF GRAVITY

We consider the spherically symmetric metric in its
usual form

ds2 ¼ eνðrÞdt2 − eλðrÞdr2 − r2ðdθ2 þ sin2θdϕ2Þ; ð8Þ
where ν and λ are metric potentials and function of the
radial coordinate only.
Hence, using Eqs. (3), (5) and (8) we find the Einstein

field equations for the spherically symmetric anisotropic
stellar system given as

e−λ
�
λ0

r
−

1

r2

�
þ 1

r2
¼ ð8π þ χÞρ − χpr − 2χpt

¼ 8πρeff ; ð9Þ

e−λ
�
ν0

r
þ 1

r2

�
−

1

r2
¼ χρþ ð8π þ 3χÞpr þ 2χpt

¼ 8πpeffr; ð10Þ
e−λ

2

�
ν00 þ ν02

2
þ ν0 − λ0

r
−
ν0λ0

2

�
¼ χρþ χpr þ ð8π þ 4χÞpt

¼ 8πpefft; ð11Þ

where a 0 denotes differentiation with respect to the
radial coordinate r. Here ρeff , peffr and pefft represents
the effective energy density, radial pressure and tangential
pressure for our system and given as

ρeff ¼ ρþ χ

8π
ðρ − pr − 2ptÞ; ð12Þ

peffr ¼ pr þ
χ

8π
ðρþ 3pr þ 2ptÞ; ð13Þ

pefft ¼ pt þ
χ

8π
ðρþ pr þ 4ptÞ: ð14Þ

We assume that the SQM distribution inside the strange
stars is governed by the simple phenomenological MIT bag
model EOS [89]. In bag model, by introducing adhoc bag
function all the corrections of energy and pressure func-
tions of SQM have been maintained. We also consider that
the quarks are noninteracting and massless in a simplified
bag model. The quark pressure therefore can be defined as

pr ¼
X

f¼u;d;s

pf − B; ð15Þ

where pf is the individual pressure of the up (u), down
(d) and strange (s) quark flavors and B is the vacuum
energy density (also well known as bag constant) which
is a constant quantity within a numerical range. In the
present article we consider the value of bag constant as
B ¼ 83 MeV=fm3 [90].

Now the individual quark pressure (pf) can be defined as
pf ¼ 1

3
ρf, where ρf is the energy density of the individual

quark flavor. Hence, the energy density, ρ of the deconfined
quarks inside the bag is given by

ρ ¼
X

f¼u;d;s

ρf þ B: ð16Þ

Using Eqs. (15) and (16) we have the EOS for SQM
given as

pr ¼
1

3
ðρ − 4BÞ: ð17Þ

It is observed that ignoring critical aspects of the
quantum particle physics in the framework of GR several
authors [91–98] successfully have been introduced this
simplified form of the MIT bag EOS to study stellar
systems made of SQM.
To have nonsingular monotonically decreasing matter

density inside the spherically symmetric stellar system,
following Mak and Harko [99], we assume simplified form
of ρ given as

ρðrÞ ¼ ρc

�
1 −

�
1 −

ρ0
ρc

�
r2

R2

�
; ð18Þ

where ρc and ρ0 are constants and denote the maximum and
minimum values of ρ at the center and on the surface,
respectively.
Now following [100] we consider pt is related to ρ by a

relation given as

pt ¼ c1ρþ c2; ð19Þ

where c1 and c2 are constants.
We define the mass function of the spherically sym-

metric stellar system as

mðrÞ ¼ 4π

Z
r

0

ρeffðrÞr2dr: ð20Þ

At this juncture we consider the Schwarzschild metric to
represent the exterior spacetime of our system given as

�
1 −

2M
r

�
dt2 −

dr2

ð1 − 2M
r Þ

− r2ðdθ2 þ sin2θdϕ2Þ ¼ ds2;

ð21Þ

where M is the total mass of the stellar system.
Now, substituting Eq. (20) into Eq. (9) we find

e−λðrÞ ¼ 1 −
2m
r

: ð22Þ
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IV. SOLUTION OF THE EINSTEIN FIELD EQUATIONS

Solving Einstein field equations (9)–(11) and using the Eqs. (12)–(14), (17)–(20) we obtain expressions for the different
physical parameters, which are given as

λðrÞ ¼ − ln

�
λ3r4 − 80λ1ðBχ þ 2πρcÞr2R2 þ 60λ1R2

15ð3χc1 þ 4π þ 3χÞR2

�
; ð23Þ

νðrÞ ¼ 1

36864ν4ð−3χc1 þ 12π þ χÞ
�
ν3arctanhfð½16ν2BR5 − 32BR3r2ν2 þ 6Mr2ðπ þ χÞ�λ2 − 5λ1MπR2Þ=16ν4g

− 294912

��
3

8
c1 þ

1

2

�
χ þ π

�
ν4 ln½384R5r2λ2ν2B − 384λ2r4ν2BR3 − 120R2r2λ1Mπ þ 72Mr4ðπ þ χÞλ2 þ ν5�

− ν3arctanh

��
−λ2ν2BR5 −

5λ1MπR2

16
þ 3

8
λ2R2Mðπ þ χÞg=ν4

�

þ 442368ν4

��
2

3
π þ

�
1

4
c1 þ

1

3

�
χ

�
ln

�
24R4ν1ðR − 2MÞg þ ln

�
1 −

2M
R

�
λ2

��
; ð24Þ

ρeff ¼
12λ2ðρ0 − ρcÞr2 þ 6R2ðBχ þ 2πρcÞ

12πR2
; ð25Þ

peffr ¼ −
ð3χc1 þ 4π þ 3χÞðρc − ρ0Þr2 þ p1R2

12πR2
; ð26Þ

pefft ¼
��

3

�
c1 þ

1

3

�
ðρ0 − ρcÞr2 − 5

�
B−

2

5
ρc

�
R2

�
χ

− 8π

�
−
3

4
c1ðρ0 − ρcÞr2 þR2

�
B−

1

4
ρc

���.
6πR2;

ð27Þ
where λ1, λ2, λ3, ν1, ν2, ν3, ν4, ν5, ρc and ρ0 are constants
and their expressions are shown in Appendix.
The variation of the physical parameters, viz., eλ, eν,

ρeff , peffr and pefft with respect to the radial coordinate
(r=R) in the framework of fðR; T Þ gravity theory are
shown in Figs. 1 and 2.
The anisotropy (Δ) for our system reads as

Δ ¼ ðc1 − 1
3
Þðπ þ χ

4
Þðρ0 − ρcÞr2

πR2
: ð28Þ

The variation of anisotropy with respect to radial
coordinate r=R is featured in Fig. 3. We find here in
fðR; T Þ gravity model that the anisotropy for the strange
star is minimum at the center and maximum on the surface
as prediction by Deb et al. [101] in the case of GR.
The modified form of the energy conservation equation

for the stress-energy tensor in the framework of fðR; T Þ
can be written explicitly from Eq. (6) as

− p0
r −

1

2
ν0ðρþ prÞ þ

2

r
ðpt − prÞ

−
χ

8π þ 2χ
ðρ0 þ p0

r þ 2p0
tÞ ¼ 0: ð29Þ

Now using Eqs. (10), (19), (22) and (29) we find the
hydrostatic equation for an anisotropic spherically sym-
metric compact stars in the framework of fðR; T Þ theory of
gravity as follows

FIG. 1. Variation of (i) eνðrÞ (upper panel) and (ii) eλðrÞ (lower
panel) as a function of the radial coordinate r=R for the strange
star LMCX − 4. Here B ¼ 83 MeV=fm3 and c1 ¼ 0.2.
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p0
r ¼ −

��
4πr2pr þ

m
r
þ 1

2
χðρþ 3pr þ 2ptÞr2

�
ðρþ prÞ

− 2ðpt − prÞ
�
1 −

2m
r

��	�
r

�
1 −

2m
r

�

×

�
1þ χ

8π þ 2χ

�
1þ dρ

dpr
ð1þ 2c1Þ

���
; ð30Þ

where we assume that SQM density parameter ρ depends
on it’s radial pressure pr as ρ ¼ ρðprÞ. For χ ¼ 0 Eq. (30)
reduces to the standard form of the TOVequation as found
in GR. Now using Eqs. (17) and (18) and also considering
bag constant B ¼ 83 MeV=fm3 [90] with c1 ¼ 0.2 we
obtain exact solution of the Eq. (30). Here, using the
observed values of the mass of different strange stars as
presented in Table II we can predict radii of the
strange stars.

V. PHYSICAL PROPERTIES OF THE
ANISOTROPIC STELLAR SYSTEM IN f ðR; T Þ

THEORY OF GRAVITY

In this section we shall test physical validity of the
obtained solutions in the framework of fðR; T Þ theory of
gravity. To this end, we study the energy conditions,
Herrera cracking concept, adiabtic index, etc., in the
following subsections.

A. Energy conditions in f ðR;T Þ gravity
Our system will be consistent with the energy conditions,

viz., the null energy condition (NEC), weak energy con-
dition (WEC), strong energy condition (SEC) and domi-
nant energy condition (DEC) only if it satisfy the following
inequalities simultaneously, given as [61]

NEC∶ ρeff þ peffr ≥ 0; ρeff þ pefft ≥ 0; ð31Þ

WEC∶ ρeff þ peffr ≥ 0; ρeff ≥ 0; ρeff þ pefft ≥ 0; ð32Þ

SEC∶ ρeff þ peffr ≥ 0;

ρeff þ pefft ≥ 0; ρeff þ peffr þ 2pefft ≥ 0; ð33Þ

DEC∶ ρeff ≥ 0; ρeff − peffr ≥ 0; ρeff − pefft ≥ 0: ð34Þ

The variation of the energy conditions with respect to
the radial coordinate r=R for the parametric values of χ are

FIG. 2. Variation of (i) ρeff (upper panel), (ii) peffr (middle
panel) and (iii) pefft (lower panel) as a function of the radial
coordinate r=R for the strange star LMCX − 4.

FIG. 3. Variation of anisotropy as a function of the radial
coordinate r=R for the strange star LMCX − 4.
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presented in Fig. 4, which clearly suggests that our system
is consistent with all the energy conditions.

B. Mass-radius relation

Substituting Eqs. (13), (17) and (19) into Eq. (20) the
mass function for the present system is given as

m ¼ m̃

�
1þ χ

12π
ð1 − 3c1Þ

�
þ 2

9
χr3

�
B −

3

2
c2

�
; ð35Þ

where m̃ ¼ 4π
R
r
0 ρðrÞr2dr is the mass function of the SQM

fluid distribution. For χ ¼ 0 Eq. (35) reduce to the mass
function mðrÞ ¼ m̃ðrÞ as achieved in GR. Hence, clearly
for χ ≠ 0 the coupling between matter and curvature
terms produces a new kind of matter distribution having
mass given as mnew ¼ χf m̃

12π ð1 − 3c1Þ þ 2
9
r3ðB − 3

2
c2Þg.

We have shown variation of the total mass (M), normalized
in solar masses (M⊙), with respect to the total radius (R) in
Fig. 5 for different values of χ and for a specific value of the
bag constant as B ¼ 83 MeV=fm3 [90]. Figure 5 shows
that the mass-radius relation for the strange stars in fðR; T Þ
gravity has achieved typical behavior as in GR. Also, we
find that for the chosen increasing values of χ, i.e., χ ¼ 0,
0.4, 0.8, 1.2 and 1.6 the values of the maximum masses are
increasing gradually.
In Fig. 6 the variation of M, normalized in M⊙ and

the variation of R with respect to the central density, ρeffc
are shown in the upper and lower panel, respectively.
The upper panel of Fig. 6 features that as the values
of χ increases the maximum mass points are achieved
for the lower values of ðρeffcÞ. We find, for χ ¼ 0 the
maximum mass Mmax ¼ 2.951 M⊙ is obtained for ρeffc ¼
2.14 × 1015 gm=cm3. On the other hand, for χ ¼ 1.6 the
maximum mass increases to the value Mmax ¼ 3.464 M⊙
and the corresponding value of the central density

FIG. 4. Variation of energy conditions with the radial coor-
dinate r=R for LMCX − 4 due to different chosen values of χ.

FIG. 5. Mass ðM=M⊙Þ vs Radius (R in km) curve for the
strange stars due to the different values of χ. The solid circles are
representing the maximum mass points for the strange stars.
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decreases to ρeffc ¼ 1.78 × 1015 gm=cm3. The lower panel
of Fig. 6 presents that as the value of χ increases the value
of the radius increases gradually. We find, for χ ¼ 0 the
radius corresponding to the maximum mass point is
RMmax ¼ 10.498 km and as χ increases to the value
χ ¼ 1.6 the radius corresponding to the maximum mass
point also increases to the value RMmax ¼ 11.779 km.
Hence, as the value of χ increases both the mass and
the radius of the strange stars increase and the stars become
less compact.

C. Stability of the stellar model

To discuss stability of the stellar model we shall study
(i) Modified form of the TOV equation in fðR; T Þ gravity,
(ii) Herrera cracking concept and (iii) Adiabatic index in
the following sub-subsections.

1. Modified form of the TOV equation
in f ðR;T Þ gravity

We have presented the modified form of the energy
conservation equation for the stress-energy tensor in the
framework of fðR; T Þ theory of gravity in Eq. (6) and later
we have shown it in a more concise form in Eq. (7). Hence
the modified form of the Tolman-Oppenheimer-Volkoff
(TOV) equation as already presented in Eq. (29) is given as

− p0
r −

1

2
ν0ðρþ prÞ þ

2

r
ðpt − prÞ

−
χ

8π þ 2χ
ðρ0 þ p0

r þ 2p0
tÞ ¼ 0;

where the first term represents the hydrodynamic force
ðFhÞ, the second term denotes gravitational force Fg and
the third term indicates anisotropic force ðFaÞ. Here, the
last term is the resultant of the coupling between the matter
and the geometry and we are introducing it as the “modified
force” Fm. Hence, the modified TOVequation predicts that
in fðR; T Þ gravity also, sum of all the forces are zero, i.e.,
Fh þ Fg þ Fa þ Fm ¼ 0. So, in terms of equilibrium of the
forces our system is completely stable. Clearly, for χ ¼ 0
the extra force term Fm will be zero and the usual form of
the TOV equation as in GR will be retrieved.
In Fig. 7 we have shown variation of the different forces

against the radial coordinate r=R due to different chosen
values of χ. We find that the equilibrium of the forces is
achieved due to all the values of χ and confirms stability of
the system. Figure 7 features that the inward pull of Fg is
counterbalanced by the combined effect of Fh, Fa and Fm
which acts along the outward direction. Hence, we find that
the nature of the modified force, Fm is repulsive and acts
along the outward directions.

2. Herrera cracking concept

To establish stability of the stellar system now we shall
study the concept of Herrera’s cracking. For a physically
acceptable stellar system the causality condition must be
satisfied, which demands that square of the radial ðv2srÞ
and tangential ðv2stÞ sound speeds should lie within the
limit [0, 1], i.e., explicitly 0 ≤ v2sr ≤ 1 and 0 ≤ v2st ≤ 1.
According to Herrera [104] and Abreu [105] for a physi-
cally stable stellar system made of anisotropic fluid dis-
tribution the difference of square of the sound speeds
should maintain it’s sign inside the stellar system and
specially for a potentially stable region square of the radial
sound speed should be greater than the square of the
tangential sound speeds. Hence, according to Herrera’s
cracking concept the required condition is jv2st − v2srj ≤ 1.
For our system ðv2srÞ and ðv2stÞ are given as

v2sr ¼
3χc1 þ 4π þ 3χ

−3χc1 þ 12π þ χ
; ð36Þ

FIG. 6. Variation of (i) M=M⊙ (left panel) and (ii) R in km
(right panel) as a function of the central density ðρeffc ∈
MeV=fm3Þ due to different values of χ. The solid circles are
representing the maximum mass points for the strange stars.
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v2st ¼
2ð6πc1 þ 3χc1 þ χÞ
−3χc1 þ 12π þ χ

: ð37Þ

We have featured variation of jv2st − v2srj with respect to
the radial coordinate in Fig. 8 and as jv2st − v2srj ≤ 1, so our
system is consistent with the concept of Herrera’s cracking,
which again confirms the stability of our stellar system.

3. Adiabatic index

The stability of both the relativistic and nonrelativistic
stars can be examined by studying adiabatic index (Γ) of
the system. For a given density it also can characterize the
stiffness of the EOS. Following the pioneering work by
Chandrasekhar [106] several authors [107–112] studied the
dynamical stability of the stellar system against an infini-
tesimal radial perturbation. For a dynamically stable stellar
system Heintzmann and Hillebrandt [113] have shown
that adiabatic indices should exceed 4=3 inside the stellar
system. Now the radial ðΓrÞ and tangential ðΓtÞ adiabatic
indices can be defined as

Γr ¼
peffr þ ρeff

peffr

dpeffr

dρeff
¼ peffr þ ρeff

peffr
v2sr; ð38Þ

Γt ¼
pefft þ ρeff

pefft

dpefft

dρeff
¼ pefft þ ρeff

pefft
v2st: ð39Þ

In Fig. 8 we have shown the variation of Γr (upper panel)
and Γt (lower panel) against the radial coordinate r=R
which demonstrate that in both the cases the values of
the adiabatic indices are greater than 4=3 through out the
system. Hence, our system is completely stable against the
radial pulsations.

FIG. 8. Variation of jv2st − v2srj with the radial coordinate r=R
for LMCX − 4.

FIG. 7. Variation of the different forces with respect to the radial
coordinate r=R for LMCX − 4 due to different chosen values of χ.
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D. Compactification factor and redshift

The compactification factor (u) for our system is expressed by

uðrÞ ¼ mðrÞ
r

¼ −
1

fð3
8
c1 − 1

8
Þχ2 þ 9

4
πðc1 þ 1

9
Þχ þ π2gR5

�
8r2

�
−

1

32
BðR2 − r2Þ

�
c1 −

1

3

�
R3χ3

þ
�
−

3

16
BR3ðR2 − r2Þðc1 − 1Þπ −

ð3c1 − 1ÞMr2

64

�
χ2 −

1

4
π

�
BðR2 − r2Þ

�
c1 −

10

3

�
R3π

þ 1

16

�
15M

�
ðc1 þ 1ÞR2 þ 1

5

�
c1 −

13

3

�
r2
���

χ þ
�
ðBR5 − BR3r2Þπ −

1

16
ð5R2 − 3r2ÞM

�
π2
��

: ð40Þ

Again, expression for the redshift function in the present model is given as

Z ¼ e−νðrÞ=2 − 1

¼ exp

�
−

1

73728ν4ð−3χc1 þ 12π þ χÞ ½ν3arctanhfð½16ν2BR
5 − 32BR3r2ν2 þ 6Mr2ðπ þ χÞ�λ2 − 5λ1MπR2Þ=16ν4g

− 294912

��
3

8
c1 þ

1

2

�
χ þ π

�
ν4 ln½384R5r2λ2ν2B − 384λ2r4ν2BR3 − 120R2r2λ1Mπ þ 72Mr4ðπ þ χÞλ2 þ ν5�

− ν3arctanh

��
−λ2ν2BR5 −

5λ1MπR2

16
þ 3

8
λ2R2Mðπ þ χÞ

�	
ν4

�

þ 442368ν4

��
2

3
π þ

�
1

4
c1 þ

1

3

�
χ

�
lnf24R4ν1ðR − 2MÞg þ ln

�
1 −

2M
R

�
λ2

���
− 1: ð41Þ

We have featured the variation of the compactification
factor and the redshift function with respect to the radial
coordinate r=R in Fig. 10.

VI. DISCUSSION AND CONCLUSION

The present article serves our motivation to explore the
possibility of existence of the anisotropic ultradense strange
quark stars in the framework of the fðR; T Þ theory of
gravity. To this end, following Harko et al. [27] we have
considered simplified linear form of the arbitrary function
fðR; T Þ given as fðR; T Þ ¼ Rþ 2χT . In Eq. (5) we
present the field equation due to the modified EH action
in fðR; T Þ gravity. Equation (5) clearly indicates that our
system is not made of only the SQM but also a second kind
of unknown matter is produced as a coupling effect of the
matter and geometry. In this context, one may consult the
article by Chakraborty [61], where he studied the nature
and origin of this second kind of matter distribution which
has been produced due to the effect of fðR; T Þ gravity.
Now considering the stress-energy tensor due to the

effective matter distribution as Tμν;eff we find the standard
form of the energy conservation equation in Eq. (7). To
solve the Einstein field equations [(9)–(11)] we have
considered that the SQM matter distribution is governed
by the simplified MIT bag EOS (17) and assumed a relation
between pt and ρ, as given in Eq. (19). Throughout the
study we have been considering B ¼ 83 MeV=fm3 [90],

c1 ¼ 0.2 and the values of χ as 0, 0.4, 0.8, 1.2 and 1.6. We
have illustrated the results graphically for LMCX − 4 as
the representative of the strange quark stars.
We have presented features of the metric potentials, viz.,

eν (in the upper panel) and eλ (in the lower panel) in Fig. 1,
which indicate that our stellar model is free from the
geometrical singularity. In Fig. 2 we have shown the
variation of the energy density ðρeffÞ, radial pressure
ðpeffrÞ and tangential pressure ðpefftÞ in the upper, middle
and lower panel, respectively. We find that ρeff , peffr and
pefft are maximum at the center and decrease monotoni-
cally inside the spherical system to achieve the minimum
value on the surface. The anisotropy of the system is
featured in Fig. 3, which shows that anisotropy is mini-
mum, i.e., zero at the center and maximum on the surface in
the present fðR; T Þ gravity model as the prediction made
by Deb et al. [101] in the case of GR that maximum
anisotropy on the surface is the inherent property of the
anisotropic strange stars.
To examine the physical acceptability of the proposed

anisotropic stellar model in fðR; T Þ gravity, we have
studied the energy conditions, mass-radius relation, stabil-
ity of the stellar system, etc. Fig. 4 features that our system
is consistent with all the energy conditions. Further, in
Fig. 5 we have presented the total mass M (normalized in
M⊙) versus the total radius R relations for the chosen values
of χ and B ¼ 83 MeV=fm3. The solid circles in Fig. 5 are
representing the maximum mass points for the strange
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stars. The figure shows that as the value of χ increases
the value of M and R also gradually increases and thus
provides a proportionality relation. We find for χ ¼ 1.6 the
value of Mmax increases to 17.36% and RMmax increases to
12.2% than its corresponding value in GR and becomes
Mmax ¼ 3.464 M⊙ and RMmax ¼ 11.774 km, respectively.
In Fig. 6 we have presented variation of M (in the upper
panel) and R (in the lower panel) with respect to the central
density of the effective matter distribution, ρeffc. Fig. 6
shows that with increase of χ the value of density decreases.
For example, due to χ ¼ 1.6 the maximum mass point
Mmax ¼ 3.464 M⊙ is achieved for ρeffc ¼ 7.739ρnuclear,
which is 16.823% lower than its value in GR. So, as the
value of χ increases the strange stars become massive and
bigger and thus show a gradual decrease in its density.
To show stability of the system in terms of the equilib-

rium of forces we have studied modified TOV equation in
the framework of fðR; T Þ theory of gravity. The variation
of all the forces are featured in Fig. 7, which confirms that
our system is stable in terms of the equilibrium of forces.
Figure 7 also features an interesting fact that an extra force
Fm is produced due to the coupling effect between the
matter and geometry. We introduced this force, Fm, as the

modified force. We find that Fm is repulsive in the nature
and acts along the outward direction in the stellar system.
To examine stability we also studied the Herrera cracking
concept [104,105] and presented variation of the difference
in square of the sound speeds, jv2st − v2srj against the radial
coordinate r=R in Fig. 8. We found our system is consistent
with the causality condition and the Herrera cracking
concept. Further, in Fig. 9 we presented variation of both
the adiabatic indices Γr and Γt with respect to the radial
coordinate r=R and have concluded that as both the
adiabatic indices Γr and Γt are greater than 4=3 so our
system is stable against the radial pulsation. We also
presented the variation of the compactification factor and
the redshift in the upper and the lower panel, respectively
in Fig. 10.
In Table I we have predicted different physical param-

eters for the observed values of the mass of LMCX − 4 for
B ¼ 83 MeV=fm3 [90], c1 ¼ 0.2 and the chosen values of
χ as 0, 0.4, 0.8, 1.2 and 1.6. We find as the coupling
parameter, χ increases the mass (M) and the radius (R) of

FIG. 10. Variation of the (i) compactification factor (upper
panel) and (ii) redshift (lower panel) as a function of the radial
coordinate r=R for the strange star LMCX − 4.

FIG. 9. Variation of i) Γr (upper panel) and ii) Γt (lower panel)
with the radial coordinate r=R for LMCX − 4.
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the star also increases gradually. However, Table I shows
that with the increasing value of χ the central ðρeffcÞ
and surface density ρeff0, central pressure peffc, surface
redshift ðZsÞ and the value of 2M=R decreases gradually.
Again, in Table II we have presented above-mentioned
physical parameters for different strange star candidates
due to χ ¼ 0.8. The high surface redshift values
(0.388 − 0.222) and surface density values ð7.965 × 1014 −
6.895 × 1014 gm=cm3Þ as presented in Table II clearly
indicate that the stellar candidates are ultradense strange
stars [114–116]. It is also clear from both Tables I and II
that for all the values of χ our system is consistent with
the Buchdahl condition [117], which demands a stringent
condition 2M=R < 8=9. Now, as the compact stellar
systems become gradually massive with the increment of
χ, hence our study reveals that the modified fðR; T Þ theory
of gravity is a suitable theory to explain massive stellar
systems like recent magnetars, massive pulsars and super-
Chandrasekhar stars, which cannot be explained in the
framework of GR.
Again, by introducing fðR; T Þ ¼ Rþ 2χT to consider

the simplest minimal matter-geometry coupling, we have
presented a similar and interesting result as presented by
Astashenok et al. [26]. The authors [26] in their study
presented a nonperturbative model of strange stars in
fðRÞ ¼ Rþ αR2 theory of gravity, where α is a con-
stant. They showed that as the value of the constant
parameter α increases mass of the strange star candi-
dates increases gradually. In our present study we have
also obtained the similar result for the increasing values
of χ, i.e., as the value of χ increases the stellar system
becomes more massive gradually. It is interesting to note
that the extra gravitational mass was arising in the case

of fðRÞ [26] theory of gravity due to the extra
geometrical term αR2, whereas in our study the same
is obtained due to the extra material term 2χT . Hence, it
is difficult to distinguish the effect of both the extra
geometrical term and the material term on the ultradense
stellar configuration.
However, in the case of fðRÞ gravity Astashenok et al.

[26] have obtained the maximum mass points due to the
different values of α ð>0Þ for the higher values of central
densities as compared to GR. On the contrary, in our
study we find that for the different values of χ ð>0Þ the
maximum mass points are achieved for the lower values of
central densities as compared to GR. Also, Astashenok
et al. [26] showed that with the increasing values of α from
α ¼ 0 in fðRÞ gravity values of the surface redshift
increases gradually, whereas we find with the increasing
values of χ from χ ¼ 0 in fðR; T Þ theory of gravity the
surface redshift decreases gradually. Thus by studying the
central density and the surface redshift one may easily
distinguish the effects and predictions of fðRÞ and fðR; T Þ
theory of gravities.
We can easily discriminate modified fðR; T Þ gravity

from GR by noting at the surface redshift which has an
inverse relationship with the parameter χ. We also find
that a stellar system becomes more massive in modified
fðR; T Þ gravity compared to GR. It is worth mentioning
that likewise GR in the present extended gravity theory too
MIT bag model takes a suitable role to discuss strange star
candidates.
As a final comment, in this paper we have successfully

presented a stable and physically acceptable anisotropic
stellar model, which is suitable to study ultradense strange
stars in the framework of fðR; T Þ theory of gravity.

TABLE I. Numerical values of physical parameters for the strange star LMCX − 4 having mass 1.29� 0.05 M⊙ [102] for different χ.

Values of χ χ ¼ 0 χ ¼ 0.4 χ ¼ 0.8 χ ¼ 1.2 χ ¼ 1.6

Predicted Radius (Km) 9.678 9.821 9.926 10.001 10.054
ρeffc (gm=cm3) 7.985 × 1014 7.535 × 1014 7.213 × 1014 6.986 × 1014 6.820 × 1014

ρeff0 (gm=cm3) 5.927 × 1014 5.743 × 1014 5.619 × 1014 5.538 × 1014 5.488 × 1014

peffc (dyne=cm2) 6.166 × 1034 5.961 × 1034 5.822 × 1034 5.755 × 1034 5.724 × 1034

2M=R 0.393 0.387 0.383 0.381 0.379
Zs 0.284 0.277 0.273 0.271 0.269

TABLE II. Numerical values of physical parameters for the different strange stars for χ ¼ 0.8 and c1 ¼ 0.2.

Strange
Stars

Observed
Mass (M⊙)

Predicted
Radius (Km) ρeffc (gm=cm3) ρeff0 (gm=cm3) peffc (dyne=cm2)

Surface
Redshift 2M

R

VelaX − 1 1.77� 0.08 [102] 10.866� 0.133 7.965 × 1014 5.597 × 1014 8.646 × 1034 0.388 0.481
4U 1820 − 30 1.58� 0.06 [103] 10.529� 0.113 7.642 × 1014 5.606 × 1014 7.433 × 1034 0.340 0.443
CenX − 3 1.49� 0.08 [102] 10.354� 0.160 7.502 × 1014 5.611 × 1014 6.907 × 1034 0.319 0.425
LMCX − 4 1.29� 0.05 [102] 9.926� 0.115 7.213 × 1014 5.619 × 1014 5.822 × 1034 0.273 0.383
SMCX − 1 1.04� 0.09 [102] 9.299� 0.248 6.895 × 1014 5.628 × 1014 4.624 × 1034 0.222 0.330

DEB, GUHA, RAHAMAN, and RAY PHYS. REV. D 97, 084026 (2018)

084026-12



ACKNOWLEDGMENTS

S. R. and F. R. are thankful to the Inter-University Centre
for Astronomy and Astrophysics (IUCAA), Pune, India for
providing Visiting Associateship under which a part of this
work was carried out. S. R. is also thankful to the authority
of The Institute of Mathematical Sciences, Chennai, India
for providing all types of working facility and hospitality
under the Associateship scheme. F. R. is also grateful to
DST-SERB (EMR/2016/000193), Government of India for
providing financial support. A part of this work was
completed while D. D. was visiting IUCAA and the author
gratefully acknowledges the warm hospitality and facilities
at the library there. We all are thankful to the anonymous
referee for the pertinent comments which has helped us to
upgrade the manuscript substantially.

APPENDIX: EXPRESSIONS OF CONSTANTS

The expressions of the constants used in Eqs. (23)–(27)
are given as

λ1 ¼
�
3

4
c1 þ

3

4

�
χ þ π; ðA1Þ

λ2 ¼
�
−
1

4
c1 þ

1

12
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χ þ π; ðA2Þ

λ3 ¼ −384
��
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B −
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4
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�
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ρc

��
λ2; ðA3Þ

ν1 ¼
�
3

8
c1 −

1

8

�
χ2 þ 9

4

�
c1 þ

1

9

�
πχ þ π2; ðA4Þ
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π þ χ
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π þ χ
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; ðA5Þ
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M
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−
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Þ
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3

�
χ

−
15Mðc1 þ 1Þ
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��
; ðA6Þ

ν4 ¼ R2

�
ν2

2λ2
2B2R6 þ 1

4
ν1ν2λ2BR4 −

5

8
ν2λ1πMλ2BR3

−
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64
þ 25λ1

2π2M2

256
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; ðA7Þ

ν5 ¼ 24R5

�
9

4
χ

�
π þ χ

6

�
c1 þ

�
π þ χ

2

��
π −

χ

4

��
; ðA8Þ

p1 ¼ 16Bπ þ 10Bχ − 4πρc − 4χρc; ðA9Þ

ρc ¼ −½f−48BπR3χc1 þ 192Bπ2R3 þ 176BπR3χ

þ 40BR3χ2 − 45Mχc1 − 60Mπ − 45Mχg=
× f4R3ð18πχc1 þ 3χ2c1 þ 8π2 þ 2πχ − χ2Þg�; ðA10Þ

ρ0 ¼
3χc1ρc þ 16Bπ þ 10Bχ − χρc

3χc1 þ 4π þ 3χ
: ðA11Þ
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