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Recently, a double-copy formalism was used to calculate gravitational radiation from classical Yang-
Mills radiation solutions. This work shows that the Yang-Mills theory coupled to a biadjoint scalar field
admits a radiative double copy that agrees with solutions in the Einstein-Yang-Mills theory at the lowest

finite order. Within this context, the trace-reversed metric #** is a natural double copy of the gauge boson
A#¢_This work provides additional evidence that solutions in gauge and gravity theories are related, even
though their respective Lagrangians and nonlinear equations of motion appear to be different.
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I. INTRODUCTION

The Lagrangians and equations of motion for gauge and
gravity theories appear to be rather different. Nevertheless,
there are intriguing double-copy connections between their
solutions. This includes the Kawai-Lewellen-Tye (KLT)
tree-level relations between gauge and gravity amplitudes
in string theory [1] and the Bern-Carrasco-Johansson (BCJ)
double-copy relations between diagrams in quantum field
theory [2]. The BCJ double-copy relations are based on
color-kinematics duality, which gives particularly simple
constructions of gravity amplitudes starting from gauge-
theory amplitudes.

At tree level the BCJ amplitude relations are proven [3-7].
Numerous calculations at higher loops provide evidence for
the loop-level double-copy conjecture [8—11], and progress
has been made to understand analogous monodromy rela-
tions, extending KLT relations to loop level [12-17].
Einstein-Yang-Mills scattering amplitudes [18-21] can also
be found via the double copy [22—24] using the Cachazo-He-
Yuan (CHY) formalism [25]. Biadjoint scalar fields can be
used to find solutions in Yang-Mills [26], and solutions in a
Yang-Mills-biadjoint-scalar theory have been shown to give
scattering amplitudes in Einstein-Yang-Mills [27-29].

With the recent experimental detection of gravitational
waves by LIGO [30], precision calculational tools for
gravitational wave emission are essential. Exploiting
color-kinematics duality to relate radiation solutions
between Yang-Mills and general relativity is attractive
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because general relativity is difficult to solve and the
double copy has been shown to work for a wide variety
of gravity theories [31-33] The connection between radi-
ation solutions of gauge theory and gravity has been
described recently [34—40]. The first example of using
the radiative double copy to find nonlinear terms in general
relativity utilized perturbative Yang-Mills solutions [41].
Similarly a biadjoint scalar field can be used to find Yang-
Mills radiation [42].

This work builds off the radiative double copy for general
relativity found by Goldberger and Ridgway [41] to find
gravitational radiation in Einstein-Yang-Mills theory. By
comparing the differential equations of the sources and fields
in gauge theory and gravity, radiative diagrams are used to
represent specific algebraic terms. Solutions in gravity can be
found from Yang-Mills theory, and the diagrams with three-
point vertices can be computed by stitching lower-order
solutions together. Atleading order, the trace-reversed metric
[43], h**, is a natural double copy of the Yang-Mills potential
AHM? [44]. Motivation for a perturbative double copy can be
seen at the Lagrangian level, as the linearized gravity
Lagrangian is quite similar to the QED Lagrangian,
a linearized version of the Yang-Mills Lagrangian.
Similarly, these two theories both have an analogous linear-
ized wave equation. Remarkably, radiation solutions of
nonlinear gauge and gravity theories are related, at least
when iterated perturbatively. A double copy of Yang-Mills-
adjoint-scalar theory is also briefly mentioned, which can
recover radiation solutions in the Einstein-Maxwell theory.

While this paper focuses on classical solutions that could
be calculated with more traditional methods [45-54], the
hope is that the radiative double copy could help with
difficult calculations that may be more cumbersome to do
in general relativity alone. As more experimental data for
gravitational radiation is collected, new methods for cal-
culating complicated radiation processes are encouraged.
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Section II calculates radiation in the Yang-Mills-biad-
joint-scalar theory. Section III calculates radiation in the
Einstein-Yang-Mills theory and the double copy is con-
firmed by direct calculation. Section IV states our con-
cluding remarks. Appendix A calculates details of the
gravitational contribution to the energy momentum pseu-
dotensor and Appendix B gives radiative Feynman rules for
simple diagrams with three-point vertices.

II. RADIATION IN YANG-MILLS-
BIADJOINT-SCALAR THEORY

A. Equations of motion and initial conditions

In this section, the non-Abelian radiation field for the
Yang-Mills-biadjoint-scalar field theory is computed to first
order in the weak-field approximation. To start, the
Lagrangian associated with the Yang-Mills-biadjoint-scalar
theory is

1 1
L= Fi, P 45D, 0" DI

_gJ/mAz _sz'zaA[za’

fabcft'z b E(I)Zzaq)i)bq)i’c

(2.1)

where ¢ and f@"¢ refer to structure constants of different
groups, the biadjoint scalar ®%“ has an index associated
with each gauge group, and y = —igg/2 relates the con-
ventions of Ref. [27] with the conventions of Refs. [26,42].
In principle, there could be an O(®*) term in the
Lagrangian, but the coupling constant would have different
dimensions than y and is not needed for the double copy.
The non-Abelian field strength is given by

Fiu(x) = 8,A7(x)

- avAZ (X) -

af AL ()AL (x),  (2.2)

and the mostly minus metric will be used, such that

n" = diag(1,—1,—1,—1). The covariant derivative is
given by
D, % (x) = 0,9 (x) — gf”bCAZ(x)<I>5”(x). (2.3)

The equations of motion for the Yang-Mills field is

D, F4(x) — g™ (x) D' (x) = g (x),  (2.4)
where J#(x) is a non-Abelian vector current acting as a
source for the Yang-Mills field and is covariantly con-
served, such that D,J#* = 0. The equation of motion for

the biadjoint scalar field is
0, DF® (x) — gf”bcAZ(x)D"d)‘}c (x)
_ yf“hcff";5<l>i’b(x)d>zc(x) = yJa(x).

For N colliding charged particles, the worldline of particle
ais x(t) = bly + vt for 7 — —oo. These initial conditions

(2.5)

specify an impact parameter b}; = b — bl and a constant
initial velocity o} which satisfies v2 = 1. For arbitrary
times near and after the collision,

Xo(7) = bly + vhr + Zh(7), (2.6)
where 74 (7) is the deflection due to the Yang-Mills and
biadjoint scalar fields. The vector source for N colliding
charged particles is

Jra(x) = / drcl(t

where a is a particle number label, v4(7) = dxg(7> is the

velocity, and c4(z) is the associated adjoint color charge
[55]. The biadjoint source J%(x) for N particles is

08! (x = x,(7).  (27)

Jaa(x) = /drc (7)cé(7)8 (x — x4(7)), (2.8)
a=1

where it is assumed that the color charges cZ(z) and c%(z)

are in two different gauge groups.

The Lorenz gauge is taken by setting 9,A** = 0. In order
to simplify these equations, the explicit dependence on the
covariant derivatives is removed and gauge dependent
sources J#* and J% are defined such that

A (x) = gJ*(x), O®% = yji,  (2.9)
where [1 = 0,0". With these definitions, the pseudovector
source is
jﬂa — JHa +fabc [Af(al/AﬂL + Fyﬂc) +(I)ZlbDIM(I)l}L‘], (210)
where the pseudovector is locally conserved, 8ﬂj”“ =0.
The pseudoscalar source is given by

j&a — Jﬁa +%fabc |:aﬂ(A;4b(I)&c) +Abeﬂq)ch

+2 f&f’ﬁqﬁbq)ﬂ . (2.11)
g
Similar to the worldline x4(7), the color charges are
dynamical and are given initial conditions ¢Z(7) = ¢& and
ci(z) = ¢ for 7 — —co. For times near and after the
collision,
4(z) = ¢+ 24(2), 2.12)
where ¢4(7) and ¢%(z) are the corrections due to the Yang-

Mills and biadjoint scalar fields. The time evolution of the
momentum is
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APHE) _ g ) P, (2) 7 0

= y0" D (x, (7)) cg(7)c (7).

(2.13)
and the time evolution of the charges is

AEE) _ oo () A o))
— 3@ (x, (7)) cl(7) i (),

dcg(r) _ _yfaijZ-(Diab(xa(f))cg(f[)cg(f)-

(2.14)

These summarize all of the equations needed to iteratively
solve for radiation in Yang-Mills-biadjoint-scalar theory
within a weak-field approximation.

B. Solutions of the radiation fields

For weak fields, the lowest-order sources can be found
from the initial conditions. The pseudocurrents in momen-
tum space are

N
T () o = Y ete(22)5
a=1
N
Ko =D
a=1

a.a
k- Ua)vacav

)5(
jaa ik'h(l(zﬂ)(s(k . Ua)czcg, (2.15)

which can be utilized to find the Yang-Mills and biadjoint
scalar fields to lowest order from Eq. (2.9), giving

o—il-(x=by)
gy = =03 [ @t 1) Sk
—ll (x=by)
@ (x = —yZ/ (27)6(1 - vy) 2 ———clca,
(2.16)

The lowest-order fields can be used to find the deflec-
tions of the sources, given by

My = gcd("AY (x4(7))| oy
a7 o) 0(4)
= 0"A* (x4(7))|0(g)) Vars
d*2y )
Mg : ET) = _yaﬂq)aa( (I(T))l(? caca (217)
dT O(yZ)

Plugging in the derivatives of the lowest-order fields gives

dzzz(,[) —il-(ba,,—s-var)
myg 12 o =ig ; cach / )6(1-v4) 2
X[(Ua'vﬂ)lﬂ_(va'l)vmv
d*Z(7)
my =—iy (c4ef) CaC}/(2H)5(l'Uﬁ)
e Jog ; S
=il-(baptv,7
xel—z)m (2.18)

Note that writing the color charge contraction as ¢, - ¢4
would be ambiguous with our notation, as cfc§ and ciej

are distinct. The first correction of the color charges to
second order in g is given by

deé(z) be
= gf " veA} (xa(7)) o) chs
dz o) o
d5‘3<1’) b bb z
= —yf @ (x4(7)) oy s
dr 00?) oG
d@g(r) abe l~7 boE
= —yf¢ ‘. 2.19
dr 00%) yf ( a(1)>|(9(yl)caca ( )

Once again, plugging in the lowest-order fields gives

deé(z) ) b
== ) fchealvy - vp)
dr O() ﬂ#za b
e—il'(b(,/;+1lle)
X [(271)5(1 : ”/1)712 ,
dEg( 2 b b b/
= abe g e 27)5(1 -
I W
e—zl-(h,,/;Jrv,,‘r)
X 712 s
deg(z) ¢
0 , —yZZf cﬂc cbc’ﬂ’/(2ﬂ)6(l- vp)
oK?) P#a
e—tl‘(b(,/;+v,,1)
x (2.20)

These deflections can be utilized to find the sources to next
order, which give the lowest-order radiation fields.

Taking the Fourier transform of Eq. (2.7) and integrating
over the delta function gives

a S ik-xg () [ 4H dzl‘;(f) a ~a
JH (k) = Z dre'™*a Vg + dr (ca + Cu(T))'
a=1

(2.21)

Expanding these results perturbatively in g and y gives
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N
. dz,
ﬂW@Z}Z/“”M”mQPHk%%$+%%+;¢@+0@ﬁh (2.22)
a=1

where explicit 7 dependence has been suppressed and only terms to second order in g or y are kept. Integrating Egs. (2.18)
and (2.20) allows for the second-order current to be found, which has Yang-Mills and biadjoint scalar contributions given by

chep kly |,

Jra(k e Z/ Hap(k {lf"bc ( “0g) Ve + p” cg{—v <l” T va> +k- vavz —k- vﬁvﬁH ,

fa ¢

2 cfjcb -1y
a — 12 a H abc

Jra( =y ancﬂ/ Hap k)k o [ p (lﬂ . ) if cacﬂva], (2.23)

P#a

|
where an extra integral over [, was added with a momen-  the diagrams associated with J#¢ to second order in g and y.
tum conserving delta function such that k = [, + [ and The six diagrams are defined as
eilaba ellsbp d la ;m Z dTélk (by+v,7)
Hap(k) = | (27)0(vy - o) —5—| | (27)(vp - ) —5—| (27)
I I3
dip 1 _ dzg
x & (k= I~ Ly). (2.24) y <vzég(r)|0( | ad2(®) >
' dr 0(92)

The nonlinear field contributions to the pseudovector are
represented by j*“, which gives the following second order  (1p)e( Z / dre®batvat)jk . 7 (7 Now vaca,
contributions:

. (1) = P*Wloy
FWlog) =Y i7" ckes [ paglh)

v %: ’ laly ’ (1d)r(k) = /drelk (bata7)
X [2k - vpVa — vy vglal, dzy(7)
x (vzag<r>|o<vz> ratld )
- dT O(yZ)

N
) oy =y S ifechescic / agR)t (229
a: astp

=1
pra 1e /m Z/dre’k batv,7) [ Za( )|(9 vaca’

While J#¢ and j** were computed algebraically, they

also can be represented diagrammatically. Figure 1 depicts (1E) (k) = j*(K)loge)- (2.26)
B B p
(@) (b) (©)
¢ m ¢ m ¢ m
[ I [
Il Il Il
I I wOO0000”
Il Il Il
Il Il Il
B u B I B I

(d) (e) (f)
FIG. 1. These diagrams represent all of the contributions to J*¢ in Yang-Mills-biadjoint-scalar theory. Straight lines represent matter

fields, curly lines represent Yang-Mills fields, and double-dashed lines represent biadjoint scalar fields. Diagrams 1(a), 1(b), 1(d), and 1
(e) correspond to J#“(k), while diagrams 1(c) and 1(f) correspond to j#4(k).
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where diagrams 1(a), 1(b), 1(d), and 1(e) give J**(k) and
diagrams 1(c) and 1(f) give j*“(k), both to second order in g
and y. The source J#(k) was split into two types of
diagrams, as 1(a) represents radiation that was emitted after
the particle was deflected, while 1(b) represents radiation
that was emitted before the particle was deflected. As such,
it is anticipated that 1(b) and 1(e) should be proportional to
the undeflected quantities v4c%, while 1(a) and 1(d) are in

|

Z(z

terms of corrections such as < g and vhcd. Diagrams 1(c)
and 1(f) are computed in Appendlx B from the three-point
vertex with three vectors and the three-point vertex with
two scalars and one vector, respectively. The six diagrams
sum to give J* and satisfy the Ward identity k”j”"(k) =0.

Summing up the three diagrams 1(a)—1(c)is algebraically
equivalent to j"”(k)|0<gz), giving

N 2
b E i fabc c l”
J”a<k>|o(g2) = 92 j l /’ta,ﬂ(k) |:lf b cgcﬂ{Z(k . ’Uﬂ)’Ug -+ (l}a . U/}) <k . 'Ulé - lg) }
atp a

a=1

pta

(l‘[}l

bob 1 a
CaCy 2 k-1
(e og) e -]

(2.27)

which is the pure Yang-Mills contribution found by Ref. [41]. Summing up the three diagrams 1(d)—1(f) is equivalent to

Jra (k) lo(y2)» giving

b.b 12 a
CCﬁlC

A - a ata
Jlm( ==y Z C(lc/}/ Hap k) |: m, k- Uy

/3#(1

The radiative field must be gauge invariant and the above
expression satisfies the Ward identity kﬂj”“(k)b(gyz) =0,
as the identity must be satisfied order by order. Adding the
above contributions to Eq. (2.27) gives the total source, J#“.
To find the radiation field A’r’;d from the source J** [41,56],

(2.29)

do .
Alw i s —za)tJ;m k ,
rad ) 47”_/ 2ﬂ€ ( )

where ¥ = w(1,X/r).

III. GRAVITATIONAL RADIATION
IN EINSTEIN-YANG-MILLS THEORY

A. Equations of motion and initial conditions

The action for the Einstein-Yang-Mills-dilaton theory in
consideration is

2 1 R
S:/ddxw/—g{—ER—Zg””g”"Fjijzg

2
+5(d - 2)gﬂva,,¢ay¢] —m / dre?,  (3.1)

where ¢ is the dilaton field and dz = /g, dx"dx". By
varying the action above, the energy-momentum pseudo-
tensor contributions from the Yang-Mills field and the
dilaton are given by

k- l/f H abe lx uo_
k-v(, —l +if c(,c/, mva—la ) (2.28)
[
1
8nGT,, = R, — Eg/wR

(d- )( 0,009~ 39,0, ¢>ag¢)

+ 871G<g/’”Fﬁ,,F“ _Zgﬂygpo'g/UF/ﬁF“ )

(3.2)

According to Dirac, /|g|T* is the density and flux of
energy and momentum for matter [57] such that in the
presence of gravity, N particles contribute

g T (x

ve(1)8(x—x4(7)).  (3.3)

Zm /d’cva

A weak-field approximation is taken by introducing #** as

9w =M +Kh/4w

g —" _Kh +K n hp+
2

l91=—det(ga) = 1+xh==-(Why =)+, (34)

where h = hj, and the radiation can be calculated pertur-
batively in powers of k. Textbook presentations of gravi-
tational waves often focus on linearized gravity [43], which
introduces the trace-reversed metric,
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- 1
h;w = h;w - 577;41/

h, (3.5)

and find that OO = =57, If an effective energy-

momentum pseudotensor 7# was found to contain con-
tributions from matter, nonlinear gravitational field
contributions, and the other fields, then the following
equation of motion can be solved iteratively within the
context of the weak-field approximation

i = -2 1%, (3.6)
Because of the harmonic gauge condition, the pseudotensor
satisfies 0, 7" = 0. The field contributions to the pseudo-
tensor #* = T" — T will be found by expanding Eq. (3.2).
The pseudotensor slightly differs from the common pseu-
dotensor used by Landau and Lifshitz [43,47,58] and is
closer to ones used previously by Einstein and Dirac, giving
" =T v = \/ET’” + (3.7)
where 7 is conveniently defined to absorb (1 — \/|g]) 7.
In this section, the algebraic method of perturbing
Einstein’s field equations and iteratively solving for the
radiation field is presented, leaving some technical details
of the calculation of 7 to Appendix A. Since the three-
point graviton vertex is derived from the Lagrangian of the
full theory, diagrams can encode how to find higher order
field contributions from linearized field solutions. In
Appendix B, radiative Feynman rules are provided for
the diagrams contributing to #*.
The Christoffel symbol I}, and the Ricci tensor R, are
given by

1
Fpuu = Egpﬂ(go'v,y + Jouw — g/w,ﬁ)’

R, =17, , =17, +1°,,°, =T° 7, (3.8)

After expanding the metric perturbatively in x and applying
the gauge condition &*h,,, = n,,h*,

K . »
Fpm/ = 5 (hi/ll + hlp“/ - h/w./) - Kh/m(hm/,y + h()'/l,l/ - h/u/.o‘))

+ O, (3.9)
K 0 K2 o
R;w = _5 h;w + E h (h;w,pa + hpa,/w - ho‘l/,/lp - h/dp,zrv)
o o, 1 2
+ hﬂpﬁh’;’ - hw,,(,hvp + Ehﬂwh/ ”

+ O(x3). (3.10)

This gives the Ricci scalar R,

R= (" — lch/“’)RW
K 3 1
= _EDh +x? <h/’ Uh,e + Zh” Ry — Eh/‘p’ h,m,p)

+ O(k3). (3.11)
To lowest order, R — 1 ¢*/R ~ — £ h**, and all higher order
terms in Eq. (3.2) are subtracted to the other side of the
equation to be absorbed into the definition of #*. Splitting
these terms among #*[,,,, #*|,,, and #¥|,, gives

Y ap = 2hp6(h/4p,w | o — prere — o) 4 e
— 2n**0ht — 20 Ohy, — 207 (hY , — hy )

o, v
— W7 h,,

3
o [2hfwmhm + Iy (5 hood — hﬂw)] ,
" |pp = (d=2) 2 ’ MHPpD P —ln’”’ﬁ PO’ P
ad K 20 F ’
_ | .
| gp = —FPRFY 3 4 Znﬂquaanm (3.12)

where it is important to raise the indices on R, — %gWR
with ¢* to get all of the necessary terms.

Similar to the previous section, the position of the
particle is given by x%(7), which has deflections z4(7)
which must be calculated from the field solutions. The
matter is also assumed to have a color charge c¢Z(z), but
their corrections do not source the lowest-order gravita-
tional radiation field. The Christoffel symbol can be used to
find the force on each particle, giving

d*z4(t)

Mo 5 . = —I*,,m v} V. (3.13)
The equation of motion utilized for the dilaton is
d2 M
my, Zagf) = My O Prs,. (3.14)
dr A

While this equation differs slightly from Ref. [41], both of
our total pseudotensors agree and are the physical object
that satisfies the gauge-invariant Ward identity. The force
due to the gauge field is

= ngFIw& Vay (T)
AA

(3.15)

B. Solutions of the radiation fields

Figure 2 shows nine diagrams which contribute to
gravitational radiation for the Einstein-Yang-Mills theory.
Algebraically, the first three diagrams for the pure gravity
contributions are
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5 S

p p p
(a) (b) (c)
o I o ‘ o I
| \ |

! | AVAVAVAV,

I |
I | l
p L p ‘ p I
(d) (e) )

p p p
(9) (h) (i)

FIG. 2. These diagrams represent all of the contributions to 7% in the Einstein-Yang-Mills theory. The wavy lines represent
gravitational fields, the dashed lines represent dilaton fields, and the curly lines represent Yang-Mills fields. Diagrams 2(a), 2(b), 2(d), 2

(e), 2(g), and 2(h) correspond to +/|g|T**(k), while diagrams 2(c), 2(f), and 2(i) correspond to #* (k).

(2a) + (2b)" = /|9|T" | an.0(2)»
(2c)" = | an.00e)

= t’w|Ah,O(K2) + (1 Y, |g|)T’w|Ah,O(K2)’
(3.16)

while the diagrams with internal dilatons algebraically
represent

(2d)" + (2e)" = V/1g|T"|ap.00)
(2f)y =17

V=1 om) = apowe),  (3:17)

and the diagrams with internal gauge bosons represent

(2g)" + (20" = V/]gIT" | s 0.

(2i)w = ?”V‘AA’O(!-]z) ="|anog)-  (3.18)
Since (1—+/]g|) is purely gravitational, 7| ap = 1"|5p and
| pp = 1"|p4. Similar to Eq. (2.26), the diagrams 2(a),
2(b), 2(d), 2(e), 2(g), and 2(h) sum to give \/|g|T*; 2(c),
2(f), and 2(i) give #*; and all nine sum to give the locally
conserved pseudotensor 7, where all expressions are kept
to second order only in x or g While the diagrammatic
representation may be useful for organizing higher order

computations, it is simple enough to calculate /|g|T** as a
single algebraic expression for the purpose of confirming
the validity of the radiative double copy to leading order.

It should be noted that an oversimplification was made,
which has no physical consequences at leading order.
Technically speaking, additional diagrams that couple
two gravitons to an ingoing and an outgoing matter particle
should be included in #* for Fig. 2, as shown in Ref. [41].
However, a careful reader will note that an oversimplifi-
cation was made in the computation of T#, since [dr
contains an additional gravitational term due to the fact that
dr® = Gudx"dx”, which contains x dependence. The intro-
duction of these higher order terms in 7" were found to
cancel exactly with the additional diagrams needed in #*.
The analogous diagrams with two dilaton lines coupling to
matter were canceled similarly by our simplification of the
dilaton force law in Eq. (3.14). These oversimplifications
may not necessarily hold at higher orders.

Focusing on the energy-momentum tensor +/|g|T*,
N
. dzy(7)
THY — dret*x) [
7 =3, [ et (i 5
dzy(1)
b ), 3.19
x (v 4500) (3.19)

Solving for the appropriate field equations gives #**, ¢, and
A4 to lowest order,
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} e—il~(x—b1,) v nﬂl/
e ( Zm / 5(1- UQ)T(vava—d_z),
1 K e—iZA(x—ba)
¢(x)|(9(1<2) - d — 2 E ; My ) (277:)5(1 ’ v(l) l—zv
e—il‘(x—b,,) -
AF(x) | o) = —gZ/(2Jr)5(Z “Vy) Tc‘gva. (3.20)
Plugging the lowest-order field solutions into Egs. (3.13), (3.14), and (3.15) gives
d*zh(7) e ilp (x=by) 2k - v, 1
& ( ) > ety )= 20 v =2t (w751
d*zh(7) o—ilp(x=bp)
az? < ) 2" / o o) —p— 1y
A¢ fta lg p
dZZIé CaC e—il*(b,,/}+17af)
il ﬂ; aﬁ / (27)5(1+ vg) ———[(va - vp) " = (1 V) V- (3.21)
The corrections to the position are useful for finding +/|g|T* (k),
dzi(7) dzy(7)
T/w drek (batvat+24(1)) p a v a
|g az:m / e vy + T vy, + )
dzh, dz,
T’w d ik-(by+va7) k- # Za Y g ol 3.22
Vgl Zm / Te |:l 2o U, +d1' v+ dr} (3.22)

The lowest order term proportional to 242, may be dropped, as it was used to find the solution to #* in Eq. (3.20). Focusing

on the corrections due to gravity,

k-v 2 Iy k 1
v s s
9T (k)| an = < > ;m mﬁ/ }Iua.ﬁ(k)lg {Ugva (2% U, to 5T k-0, (( « Vp)° —m)>
1
= 204 - vy(vavh + vGVy) + oo ((va )2 — m)( aly +v l”)] (3.23)
Additionally, the dilaton contributes
v 1 K\? 2 Hov lﬂ k 1 My v K
A 0lss = 725 (5) >, | meotior (G ) o ] (29
Finally, the gauge boson contributes
N 2
T Wlas =7 > ctef [ gl
fita o “
Hov k- lﬁ H v v H
X |VaUq | Vg Vg k- —k- Vg (Uav[)’ + Uav/)’)(k vrz) (val/} + U(llﬂ)(v(l : Uﬂ) : (325)
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Appendix A works out the algebraic details of computing #*|,, and 7#*|,,. In summary, gravity contributes

(k)| an = < ) Zm mﬂ/ Hap(k) [2@’&@3((](.%)2 _dléz)

pta

+ (vavly + vh ) (g - v — k- vk - vg) = 2(valt, + V416) (vg - 4k - vy)

1 12 1
+ lgl’é((?]a . Uﬂ)z d 2) + f’l’ul/ (k Vy k /UﬁU ﬂ 5 ((Ua . Uﬂ)z —m>>:| . (326)

Similarly, Eq. (3.12) the dilaton contributes

) | l,-1
0las = 75 (3 ) mamy [ gttty + 1), (3:27)
/ (d_ 2) a=1 / laslp ﬁ / 2

P#a

When calculated algebraically from Eq. (3.12), the gauge boson contributes

1
|AA = g Z Cacﬂ/ Hap k) |:§ (UI(;UZ + Ugtvﬁ)la ' lﬂ + (”Ir;lgz + Ulallé)k “Up — lglgva v

/f#a

1
- EI’]/w(k . Uak . Uﬂ + Vg Uﬂla . lﬂ):| . (328)

In Appendix B, the three-point boson vertices of the Einstein-Yang-Mills theory are used to find the same results for #* via
radiative Feynman rules.

Summing all contributions to order x> gives the contributions from pure dilaton gravity,

. K\ 2 X Bog vy Bvg-vg)k-1
(k)| oge) = <§> > mamy /l | Hap(k) {%vi( (k- p)? + 2k -y 2 b _ o)A ﬂ)
a=1 alp

(k ’ Ua)
fia
" Lo, - Vg
— (Vo 4 vivy) (lvg - v + k- vk - v5) = (vall, 4+ v4la) (04 - vp) P + 2k - vy
Ly 2 v lgv(l ) ’U/,v
+ Lol (vy - vp)” + 1" (Vg - vp) — k-vek-vg ||, (3.29)

which agree with the results found in Ref. [41]. \/|g|T"|s4 and 7*¥|,, give the additional contributions in the Einstein-
Yang-Mills theory,

k-1 k-v
”D(k |O = g2 Z/ L ,ua,ﬁ(k) |:UZUZ( <Ua *Up (k . 1)5)2 B k- Ui) lZ 2 (Uavﬁ + Ua /})lz

2

la a’ 1
( lﬁ, + ’Ublﬂ) <:4/UU/} + k- U/}) - l/;l?lv(l . ’U/; - E?’]”D(k . U(lk . 1)/; + l(%’l]a . 1)/,') . (330)

Adding this result to Eq. (3.29) gives the total source for gravitational radiation for the Einstein-Yang-Mills theory. Next, we
show that this result agrees precisely with what is found with the radiative double-copy method.

C. The radiative double copy

In order to use the double copy to find gravitational radiation in the Einstein-Yang-Mills theory, the same replacement
rules used for general relativity [41] may be used with the radiation found in the Yang-Mills-biadjoint-scalar theory. The
replacement rules are
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a v
Ca = Pa»

K .

g - 57 y - g’

iftres - _%<’7W3(Q1 = q3)” + 1" (g2 — 1)
+ 10" (g3 — g2)"'),

Jra(k) — T (k), (3.31)

where the momenta ¢; + ¢, + g3 = 0. Similar to the
Ward identity kﬂj"“ =0, we can shift 7% by terms
|

proportional to either k* or k*, such that kﬂT/‘” =

k, 7" = 0, which shifts the gauge-dependent pseudotensor
into the harmonic gauge. Since Ref. [41] showed that
the radiative double copy could recover T"”|O(K2) and
Ref. [40] showed how to use Yang-Mills ghosts to
remove the dilaton, we focus on the additional terms
introduced in the Einstein-Yang-Mills theory. Applying
the double copy replacement rules in Eq. (3.31) to
Eq. (2.29) gives

,j_,’w k lg/l},; k- lﬂ ﬂ l’“
) =7 ;mmﬁccﬁ ,,,;Ha’ﬂ() U“'vﬁk-va k-va
p#a
1 , . la .
_E(Zk- Vg, — 2k - w05 + g - Vgl — 1)") . Ua Vo=l ). (3.32)
Shifting 17} — (Il = 1,)"/2 gives the gauge invariant ™,
N 2
A . vy (k-1 1
v __ =2 a ,a a”a P
" (K)|log) =7 Zmamﬁcacﬁ /1,1,1/, Hap(k) [Ua VBT o <k- o _E(lﬁ — ) >
Pta
1 v v v l(zz " m
-5 (2k - vpv = 2k - w0 + vy - V5l — 14)") oo Ve —1la | |. (3.33)
Symmetrizing this result gives the appropriate final expression for ™,
v AN k- Up Vo " Up k-l |2 1 2
|O Zmamﬁcacﬂ /"a,/)’( ) VaVqy k- vy - (k i Ua)z B ) e T 2 (vavﬁ + Uflvﬂ) a
/i#a
Vg 1
- Gt ) (S ke 0p) Bl o) + 3 Bl ). (3:34)

where the gauge condition allows for vhk? = %11””10 Vg
This result agrees precisely with what was found in
Eq. (3.31), demonstrating that the radiative double
copy holds for the Einstein-Yang-Mills theory to leading
order.

D. Einstein-Maxwell theory

Since it is more physically relevant to scatter massive
point particles with electric charge rather than particles with
weak-isospin or color, an Abelian U(1) gauge symmetry is
also worth studying. The action for fields in the Einstein-
Maxwell theory is

2 1
S = /ddx lg] <—pR—Zg”/’g’“"FWFM>. (3.35)

When comparing with the Einstein-Yang-Mills theory, the
Maxwell field A¥ can be recovered from a single

|
component of the Yang-Mills field A*?. In order to find
results in the Einstein-Maxwell theory from the Einstein-
Yang-Mills theory, care must be taken with the coupling
constants. For example, the Maxwell current density for
point particles is given by

where ¢, = —1 for electrons, such that eq, represents the
electric charge of particle a. In order to recover the
Einstein-Maxwell theory from FEinstein-Yang-Mills, one
must substitute § — e and ¢% — ¢,, given our conventions
for § and the normalization of the Lagrangian given in
Eq. (3.1). Applying these substitutions to Eq. (3.31) would
give gravitational radiation in Einstein-Maxwell theory. At

higher orders, f2¢ would be sent to zero as well.
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In terms of the radiative double copy, an adjoint scalar
field ®“ could also be seen as a single component of the
biadjoint scalar field ®%. Results for the Yang-Mills-
adjoint-scalar theory can easily be found from Eq. (2.29)
by properly sending ¢ — ¢, and reinterpreting y as the
coupling constant of the adjoint scalar theory. It is
straightforward to see that the double copy of Yang-
Mills-adjoint-scalar theory gives solutions in Einstein-
Maxwell theory with the replacement rules shown in
Eq. (3.31) and y — e.

IV. CONCLUSIONS

In previous work, the double copy has been applied to
gravitational radiation in general relativity with a dilaton,
which suggested that schematic radiative diagrams
may be useful for depicting sources of radiation [41].
Similarly, it was shown that the same replacement rules can
be used to find Yang-Mills radiation from biadjoint-scalar
radiation [42] and that ghosts can be used to remove the
dilaton [40].

In this work, the gravitational radiation produced by
colliding color charges was found within the context of
the Einstein-Yang-Mills theory. Our primary result dem-
onstrates that the double copy can be used to find
radiation in the Finstein-Yang-Mills theory from Yang-
Mills-biadjoint-scalar theory. These calculations provided
insight on how a radiative diagrammatic scheme closer to
Feynman diagrams used for scattering amplitudes may be
possible. Furthermore, radiation in Einstein-Maxwell
theory can be found via similar methods. This work
suggests that it may be possible to develop systematic
rules for constructing radiative diagrams that can be used
to calculate radiation to higher orders, at least for initial
conditions associated with N particle scattering. It appears
that rules for worldline propagators would be needed,
in addition to the typical rules used for scattering
amplitudes.

In future work, it would be interesting to investigate if
the radiative double copy holds for higher orders, as the
precise replacement rules are not yet known. Additional
efforts to perform the integrals are also needed. The
gravitational interactions between the quantized spin of
Dirac particles would be an interesting theoretical chal-
lenge, while considering the scattering of macroscopic
mass distributions with classical angular momentum would
be more applicable for experiments such as LIGO.
Studying the formation of bound states due to higher order
effects would also be important.
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APPENDIX A: DERIVATION OF
GRAVITATIONAL RADIATION
FROM PSEUDOTENSOR

In this section, the steps for deriving the gravitational
radiation coming from nonlinear gravitational interactions
are provided. In Sec. III, Einstein’s field equations to first
order for weak gravitational fields was found to be

- K A
O = —=TH, (A1)

2
where the energy-momentum pseudotensor 7T* =
TW + " = \/|g|T* + 1" contains the nonlinear correc-

tions to the linearized field equations, such that the purely
gravitational component of the pseudotensor #* is given by
Eq. (3.12)

o — 2hpo‘( RHEPVO - pPORP — PO — PRV 4 g ]
—2h O, — 2k O — 200 (Y, — )
3
— hPoOR Y, [Zh/"’Dh,,(, Ry <§ hpod — hfW’) } .

(A2)

In order to solve for this, the lowest-order solution of the
gravitational field is used,

il (=by)

N
K
W (x) = = 22)5(1, - 0g) S
(9 =53 m. [ Crdtle- )
"
Hov
x(vava d—2>’

which gives rise to a source for the nonlinear gravitational
interaction via **. Each term in ¥ is second order in h*,
so one is related to particle @ and another to particle S,
giving a double sum. The summation and integrals on all
terms will have the following form:

(A3)

) 2 & /
e mym Mo (k) IH A4
<2> Zl: ? i, o) (A4)

pta

where [* is the integrand containing many terms. For the
integrand, focusing on the (vhv4, —n**/(d — 2)) portion of
the solution to #** and manually plugging these pieces into
Eq. (A2) gives
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o) e ) o) el )
S A
— (U“U“ _—> [llﬁ i (vﬁ% d ”2) e <U”Uﬁ" d,f 2” el <U“” di) (U”pvﬁ”_%)
+’I”D{—21c21 (Ua% d’?_ 2) <”ﬂp”ﬂa d— 2) +ily <”ap“aa d”p62> F 1% <vﬂvﬁ dnmz) —il5 (vﬁvﬂ d”p;)] }

(AS)
Distributing these factors and reorganizing all of the terms with the same tensor index structure gives
v v 213 2l/23 413’ + 41/2)’ 41‘1 ) lﬂ v v
"= v <2<k- D R d_z) o+ (tholy + o)) QB0 1) + L Iy )
2k - v, y ) 2k - v,
_k-Uak-U/j) ( ZD—FUVZM)( 2(7’(1%) . d_2> +(U’élﬂ+1)al7j) <m>
4 4 2d 1 1 1 d
LU ————5+2(g 1) ————+—— I+ I p 2
* “( @2y ") d—2+(d—2)2)+( »t /’)< {@—ap T2 t) d—2+2(d—2)2)
2k-vp)? 2L 213 412 20,1y 3 2 d
| — - z z 28 +>1,-1 )t ———
i [ i=2 Ta—2p @ tacay tamay T \Hatgla s )\ (e )" - g5t a5y
o1y
+ va'vﬂk-vak-vﬁ+<d_2)2 . (A6)

Next, the relation k* = [2 + 21, - lg + 1/2} = 0 is used to simplify further. The identity a*[j; = a"k” — a"I,, and the gauge
condition of the gravitational field allows for the gauge-invariant shift a*/j; — %a - knt — atly, since dotting this expression
with the polarization tensor would give the same radiation amplitude. Making such changes gives

A2
" = vh, <2(k vg)? _d—2) + (vav)y + vev) (15 (va - vp) =k - vk - v5) = 2(vy - vp)k - vy(vhly + vila)
1 2k-v,)? k-l k-l
l/;lu . 2 _ s a a . 2 _ a
+ “<(”“ 2 d—2>+’7 < -2 T2 (e v) 2(d—2)>
2k-vp)? 212 215 412 21, - 1 3 2 d
| — ‘__ u L (2841, ) ——t———
+ { i—2 o2 o Tanay Tamap T Mt gl by )\ e w5 Ty
Iy 1y
+ Ua'v/jk"l}ak'l)ﬁ—Fm . (A7)

By considering that a and f are symmetric, all particle labels may be switched for any term, which allows further
simplification to give the final result

412
d=2

| 2 |
+ Ll ((va ) — . 2) + < gk - vk - vy — 5 <(va ) m)) (A8)

To more easily compare with the diagrammatic method, 7#* is found by adding the lowest-order term of (1 — +/|g|)T**,
where

" = Vo, <2(k- vg)* — > + (vavﬂ + v vﬂ)(lz( ) — k- vk - vp) = 2(vg - vp)k - vg(Valy + V4 1)
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T (x) & EN: /

a=1 Ly

h(x) ~ F) Zmﬂ

p#a

la)e—ila-(x—ba) ’l}l(; Y

a’

—il/;‘(x—bﬂ)

/1,,(2”) (lp - Uﬂ)T?
=V~ gt (5) S |

Adding this to # gives # = (§)> >_¥ | Ml I iy Ha s(k)I*, such that

117

213 Mo 2
i—a) " (vavj + vevy) (I2(v

" = v, <2(k vg)? —

1
+l’élfx<(va-vﬁ)2 - 2>+;1”< gk - vak - v5 —

As shown in the next appendix, this result agrees precisely
with a diagram involving the three-point graviton vertex.

APPENDIX B: SOME RADIATIVE
FEYNMAN RULES

1. Yang-Mills and biadjoint-scalar theory

A Feynman diagram approach can be used to find the
results for diagrams 1(c) and 1(f), shown in Fig. 1. Expanding
the kinetic term of the Lagrangian, the O(A?) term corre-
sponding to the three-point vector boson interaction is

1
_ZFZVFMW — _8ﬂAggfabcA,ubAyc 4. (Bl)
This term in the Lagrangian gives the textbook non-Abelian
three-point vector boson vertex, given by

= PR = gy + (p” = k)
+(¢" = p")n™),

Pt (k. p.g)
(B2

where A,’j 1s associated with the momentum k, Af 1s associated
with p, and Aj is associated with g.

The three-point vertex for two biadjoint scalars and one
adjoint vector field can be used to efficiently calculate a
piece radiation, which comes from the kinetic term of the
biadjoint scalar. Focusing on the terms in the Lagrangian to

O(2A),

(Dﬂq)ﬁ)a(Dﬂq)l})ab‘ﬁI;

N =

— gfabc(sfzé(aﬂq)ﬁa)Aybq)Ec R (B3)
Taking the appropriate functional derivatives and properly
symmetrizing gives the three-point vertex for two scalars
and one vector,

Ho s (K)22050%, (A9)
ml/}
vp) = k- vak - vg) = 2(v, - vp)k - (vl + v1ll)
I 1
E<wm%y_gjﬁ>. (A10)
raavhic(k p.q) = fPe52e (k¥ — g¥). (B4)

The three-point vertices above can be used to find
diagrams 1(c) and 1(f), giving

(0P 0) =5 [ Aoy irmesbe (kb l)
x A5 oy 225k~ 1, = 1),

0720 =3 ||| Oy 51y
X @ (Lg)| oy

Qn)sl(k—1,~1;),  (BS)

where a symmetry factor of 1/2 has been added.
The solutions needed for these diagrams were found in
Eq. (2.16), giving

eilaba
(27)8(ly -+ Vo) —5— Vaci,

Mz

Al ) oy =
1

[ed

(27)6(1y - vg) —5— clcl. (B6)

N
Il
-

Fﬁz
@
R
~
Q
~
SIS

(Daa(la)‘(ﬁ(y')
Plugging in these solutions gives

2
a g 7 faoc c
16yt =L S irecte [ gt
atp

a#p
X [—2k- VoVl + 2k - 00 + vy - vp(ls = 1o)M],

(pe) =5 S ipecesetes [ poplh)t -

P#a lﬂ'l/f
(B7)
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Because of the antisymmetry of f“"”cac/,, switching o <

for a term multiplied by this factor introduces a minus sign,
allowing further simplification,

(1c)a(k) = 2Zlfabccac/j/ ﬂa,ﬂ(k)
ap lasly
X [2k - vpvl — (vg - v5) 1G],
(1f) e (k _yzjzlfabccacﬂc cﬁ/l Hap(k)lz.  (B8)
fa Ly

1
Vﬂa,uﬂ,ﬂy(kl ) kZ’ k3) = sym |:_ 5 P3 (kl : k27//4(z77u/3’7(7;/) 5

+ 2P3 (klvkly’/lﬂa’/lﬁo‘)

+ 2P6(klpk2y’7ﬁ/ﬂ7a0) + 2P3(k1pk2ﬂ’7ﬁa77ya)

P6 (kluklﬁﬂﬂ(lﬂ(i}/) +

Note how this result agrees with the algebraic method
found in Eq. (2.26).

2. General relativity and Einstein-Yang-Mills theory

Next, the three-point graviton vertex will be used to
stitch together lower order gravitational field solutions to
generate a piece of the gravitational radiation field. The
three-point graviton vertex from DeWitt [59] and utilized
by Sannan [60] is

1
§P3(k1 koM Maploy) + Po(ky - kalluatluopy)

- P3<k1ﬂk2/477m/’70‘}/) + P3<klak2}/’7;4y7/laﬁ) + P6(klak1}/77/wnaﬂ)

- 2Pl’»(kl : anaunﬁonyﬂ) ’ (B9)

where P; and Py refers to a permutation of ky, k,, and k5 resulting in three or six terms, respectively, and sym applies a

symmetrization across ua, vf3, and oy. For example,

P3(k1 'k271/4v’1aﬁ716}/)
1
Sym[nyu’//alf] = Z (

Expanding P; and Pg gives

77;41/’1(1/)’ + n,uﬁ’//ya + ’11/(177/,!/3 + 71{1/3’1/41/)'

= kl : k271ﬂu’7aﬁ’/lo'y + k2 : k3’71/0"7ﬂy7]/m —+ k3 : klnﬂana}/’]t/ﬂv

(B10)

1
V’ua’bﬂ'ﬂy(kl, kz, k3) = Sym —E (kl . k2 + k2 . k3 + k3 . k1>1’lﬂai’]y/}l’[6},

1
=5 (R n” + Sk n P KERSn " ~+ KSKEpnt? + Kk + Rk “n’)

1
+5 (ki - ka0t + ky - ks onPrnt® + ks - kynton®ntP)

+ (ky - k" n*on’" + ky - kP nton™ + ky - kst on® + ky - kan® o n® + ks - ki gt n®
ks - ko) 4 2R Kt kK 4 KK )

_ (kﬂkﬂnaunay + kyku,,l/ia],]ua + kﬁkﬂnmrluﬁ)
(kak}’;,l;w af —l—kykﬁl’]ﬂo— ay +kﬂk l,lmi,lﬂy +kak7 Dﬂnya+kv

(ko'k?érl;w aff + kﬂka;,]vanﬁy + kgkfnaﬂnya)
6/4 ;,I;/a + kg kc}zﬂwnaﬂ)

- 2(kE kS0 + KK kS af¥  KSKSnPon - RSk + k§kn )
+ 2(K ks o + KSR+ Kk ) = 2(ky - kon™ 0P + ko - kot

+ ks - km”‘n"”ny")} :

(B11)

To find the radiative field contribution from this three-point vertex, two instances of the lowest-order field solution will be
stitched together with this vertex to find a higher order contribution. The lowest-order field in momentum space is given by

ll

aPa

o (ly) == Y
_EZ

(B12)
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The three-point vertex allows for a purely gravitational source to be found, which corresponds to a component of the
pseudotensor, #*. This component of the source that generates radiation is given by

1
1" (k) = —[ 1 VHowveod(—] —lﬂ,k)hﬂp(la)hw(lﬂ)éd(k— Iy, = lg).
alp

(B13)

Since the lowest-order solutions for [, and /; are symmetric, the symmetrization is only needed for indices ¢ and 4 in
yHereol Focusing on the integrand and breaking down the two lowest-order solutions into four terms gives

1
B (1) (1) o [vﬁvﬁv;vz -5 (vaven’™ + vivpn) +

Using Mathematica to perform the index contractions gives

o= (5) §Nj oy | gt ot (-

f#a

—2(vglk + vAIg) (v, - vgk - vﬂ)—f—lf,lﬁ, ((Ua . vﬂ)z -

where this result gives the integrand of diagram 2(c), as
shown in Eq. (3.26).

For calculating the additional gravitational radiation
diagrams due to Yang-Mills contributions, the Feynman
rules for scattering outlined by Rodigast’s thesis give
the necessary three-point vertex [61,62]. The Feynman
rule for the three-point vertex with two gluons and one
graviton can be found from the interaction term in the
Lagrangian,

L= \/—_gg"Pg””aﬂAﬁaLgAﬁ] 4+ .-
1 A
~K ;,];V:np/l;,]uﬁ + }7;4/);,]1/1;,]6/1 _ E’,Ir rlﬂ/)nl/o'
X ey 0,AL0,,A%. (B16)

Taking the functional derivatives, and properly symmetriz-
ing over all indices and momenta, gives

rr/l.ﬂdvl; (k, 12 q)

A 1
= -2i5"" (p“q”n"” +pqlrrt =)

1
+ont e - g"n*%p?) — p”ﬂ”“t]”) , (B17)

m (" n7) | (B14)

la
2) + (vgvf), + vévg)(léva vp — k- vk - vp)

1 2 1
o k- k- . __“ . 2__ ©
d—Z) +17 ( Vak  VpVa V5 =5 ((va vp) d—Z)H’

(B15)

where a factor of 2/k was added to have the same
conventions as DeWitt’s three-point vertex. This allows
us to use the same formula for calculating the contribution
to the radiation source. By reusing the lowest-order result
for A" ()|, and switching a — &, the solution to

diagram 2(i) is

D\uv 1 T uv.pd,ob a
(21)” (k) 25\/11 [[Hv-pa. b(—k, la, lﬂ>Ap(la)|O(gl)
a'p

x AL (15 oy (k = 1, = 1y). (B18)

Plugging in the lowest-order solution gives

N
_ |1
D\uv — %2 a.a v
i) (k) =7 E /l,,,l/; ﬂa,ﬂ(k)cacﬂ |:§ (v’;vﬂ

a=1
o

+ vgv’/‘, ="V - vg)ly - g+ vy - vﬁl((,”l;)

1
—l—inﬂ”k- vk - vp—k- vﬂv((),”l”,) —k- vavfjﬂl’;) ,
(B19)

which can be shown to agree with the algebraic result found
in Eq. (3.28).
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