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We study the local shadow of the Schwarzschild black hole with a quadrupole distortion and the
influence of the external gravitational field on the photon dynamics. The external matter sources modify the
light ring structure and lead to the appearance of multiple shadow images. In the case of negative
quadrupole moments we identify the most prominent mechanism causing multiple shadow formation.
Furthermore, we obtain a condition under which this mechanism can be realized. This condition depends
on the quadrupole moment, but also on the position of the observer and the celestial sphere.
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I. INTRODUCTION

Strong gravity tests constitute a major challenge in current
gravitational research. The experimental detection of gravi-
tational waves opened a new channel for extracting infor-
mation about the gravitational interaction in the strong-field
regime. At the same time the observational resources in the
electromagnetic spectrum are being refined reaching better
resolutions, and incorporating further revealing phenomena
[1–4]. Both observational channels provide complementary
information about strong gravity effects, contributing to the
field of multimessenger astronomy.
One of the most prominent observational projects in the

electromagnetic spectrum is the Event Horizon Telescope
[1]. It represents a global network of radio telescopes,
aiming to provide the first image of the supermassive black
hole located at the center of our Galaxy. A black hole
surrounded by a bright background appears as a dark area,
called a black hole shadow. This phenomenon is formed by
differentiating between photon trajectories that are captured
by the black holes, and those that can escape to infinity and
reach the observer. Thus, the black hole shadow represents
a gravitationally lensed image of the photon region. Its
appearance is usually associated with the presence of an
event horizon, however not exclusively, since it can be

observed by more exotic horizonless compact objects such
as wormholes and gravastars [5,6].
Black hole shadows were first studied theoretically in the

context of the Kerr-Newman family in the classical work of
Bardeen [7]. Recently, their properties were investigated
for further black hole solutions in general relativity [8–13],
and in various modified theories of gravity [14–18]. The
shape and the particular deformation of the black hole
shadow carries information about the properties of the
compact object, such as its spin and multipole moments
[19–22]. Supplemented by further information from obser-
vations in the electromagnetic spectrum, such as the pulsar
timing for example, it can be used for testing the Kerr
hypothesis, or differentiating between alternative gravita-
tional theories [23–26].
Particularly interesting are cases when the black hole does

not occur in isolation, but interacts with another gravitational
source. Such scenarios provide different approximations of
the realistic astrophysical black hole settings in the center of
galaxies, or as a part of binary systems. Simple models
include static double black hole configurations in equilib-
rium [27–29], or black holes interacting with a scalar field
condensate [30,31]. Recently, the fully dynamical black hole
merger was studied by obtaining the observable image of
two coalescent black holes [32].
Another possibility for investigating the shadow of black

holes influenced by an external gravitational field is the
class of distorted black holes [33]. They represent local
exact solutions describing the near-horizon region of black
holes interacting with a quasistationary matter distribution
such as an accretion disk, or a binary companion in the very
initial stages of the inspiral. In general the distorted black
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holes are characterized by an infinite number of parameters
connected with the interior multipole moments of the
external matter distribution. In this way they encode
information about the impact of the surrounding gravita-
tional sources on the central black hole.
As a local solution the distorted black hole solution is

valid only in a certain finite region encompassing the
horizon. Its precise extent is model specific, and depends
on the particular black hole and matter system, which is
described. A global solution is constructed by matching the
interior distorted black hole solution with an exterior
solution containing only the external matter sources, but
not the central object.
Distorted black holes allow us to study the modification

of the spacetime properties when the black hole is not
considered in isolation in terms of exact solutions. Hence,
they are particularly valuable for describing phenomena in
the strong-field regime, where approximate or perturbative
solutions do not provide an adequate description, while at
the same time giving better intuition than numerical
solutions. Experimental tests probing strong gravity phys-
ics in the black hole vicinity rely crucially on the particular
solutions to the gravitational field equations used to
describe the spacetime. In this respect distorted black holes
can provide valuable intuition for modeling and interpret-
ing observational data.
Several distorted black hole solutions were constructed

in the literature generalizing existing isolated black holes.
An early example was obtained by Doroshkevich et al.
[34], describing a Schwarzschild black hole in an external
quadrupole gravitational field. Geroch and Hartle [33]
studied the most general static vacuum distorted black
hole with a regular event horizon in classical general
relativity, while the explicit form of the corresponding
metric was obtained completely in [35]. Rotating and
charged solutions were constructed in [35–39], which were
further extended to higher dimensions [40–42]. Recently, a
class of magnetized distorted black holes was obtained,
taking into account also the influence of the magnetic field
generated by an external source [43].
In a number of works certain physical properties of

distorted black holes were investigated, such as the ergo-
region configurations for the distorted Kerr black hole [44],
the geodesic motion in the equatorial plane, and the stability
of the photon region for the distorted Schwarzschild black
hole [45,46]. The local shadow cast by the Schwarzschild
black hole in an external quadrupole and octupole gravita-
tional fields was studied in [47,48], where multiple shadow
structures were observed in the case of octupole distortion.
The purpose of our work is to study in detail the light

ring structure and shadow of the Schwarzschild black hole
with a quadrupole distortion, and shed some light on the
dynamical mechanisms leading to shadow properties. Light
rings, or equivalently planar circular photon orbits, are of
great interest for the dynamics of the geodesic motion, as

they represent fixed points of the underlying dynamical
system, and are closely related to observable features.
Unstable light rings are associated with the shape of the
shadow [49], while their orbital frequency and instability
timescale are related to the quasinormal modes spectrum of
the black hole [50]. The stable ones, on the other hand, lead
to chaotic scattering in the lensing and spacetime insta-
bilities [29,31,51,52]. In our work we classify completely
the possible light ring configurations for the Schwarzschild
black hole with a quadrupole distortion. In addition to the
circular photon orbits lying at the equatorial plane, we
discover that off-equatorial light rings exist located in two
horizontal planes, which are symmetric with respect to the
equatorial one.
The distorted Schwarzschild solution is a local solution;

hence we can consider only a local shadow, i.e. a shadow
observed at some finite distance from the black hole
within the validity of the distorted solution, and not at
asymptotic infinity. This introduces further parameters
into the problem—the radial position of the observer, as
well as that of the celestial sphere, on which we assume
all light sources to reside. The position of the celestial
sphere can be associated with the region of validity of the
local back hole solution as it defines a radial cutoff for the
lensing analysis. However, we cannot define an absolute
upper bound for its allowed values, since this region is
model dependent. In every specific case it is determined
by the particular black hole and matter system we want to
describe.
Our analysis demonstrates that a multiple shadow hier-

archy is also present in the case of quadrupole distortion,
which was not reported in previous work [47,48]. Moreover,
in the case of a negative quadrupole moment, we are able to
define a sufficient condition for the appearance of multiple
shadows. This condition depends not only on the value of the
quadrupole moment, but also on the position of the observer
and the celestial sphere, such that, for any negative value of
the quadrupole moment, there exists a distant observer who
will see multiple shadows. Hence, the appearance of multiple
shadows is a qualitative effect caused by the mere presence
of distortion by an external gravitational source, and not
by its strength. It can be switched off only by removing the
external matter distribution ending up with an isolated black
hole.
Based on this, we conjecture that in general the appear-

ance of a multiple shadow structure is a manifestation of the
interaction of the black hole with a second source of
gravitational field. In the literature we have examples where
the additional gravitational source is a second black hole
[27–29], or a compact distribution of a scalar field con-
densate in the form of a torus surrounding the black hole
[30,31]. In our work we demonstrate that the same effect
occurs due to the interaction with a rather general matter
distribution with a quadrupole symmetry.
The paper is organized as follows. In the next section we

present the metric of the distorted Schwarzschild solution,
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and discuss its relevant properties, such as regularity con-
ditions, and horizon deformation. In Sec. III we present the
Hamiltonian formulation of the geodesic motion, which we
use in our investigations, and introduce a two-dimensional
effective potential. The effective potential defines the
allowed and forbidden regions for photon motion, thus
determining its qualitative behavior. In Sec. IV we describe
the lensing setup we use to obtain our images. Section V is
devoted to the analysis of the possible light ring configu-
rations. Three types of qualitatively different light ring
configurations are identified, depending on the value of
the quadrupole moment. One of them contains a light ring
pair outside the equatorial plane. The behavior of the light
ring positions is analyzed when varying the quadrupole
moment, and their influence on the photon dynamics. In
Sec. VI we develop an argument explaining the appearance
of multiple shadows in the case of a negative quadrupole
moment. We provide a mechanism for generating multiple
images in the shadow based on scattering from a forbidden
region, which is formed due to the presence of an external
gravitational source. For its realization certain conditions are
needed, defining a threshold, which depends simultaneously
on the value of the quadrupole moment, the position of the
observer and the celestial sphere.

II. DISTORTED SCHWARZSCHILD
BLACK HOLE

The metric of the distorted Schwarzschild black hole is
given in the form [35]

ds2 ¼ −
x − 1

xþ 1
e2Udt2 þ σ2ðxþ 1Þ2ð1 − y2Þe−2Udφ2

þ σ2ðxþ 1Þ2e2γ−2U
�

dx2

x2 − 1
þ dy2

1 − y2

�
;

U ¼
X∞
n¼0

anRnPn

�
xy
R

�
;

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 − 1

q
;

γ ¼
X∞
n;k¼1

nk
nþ k

anakRnþkðPnPk − Pn−1Pk−1Þ

þ
X∞
n¼1

an
Xn−1
k¼0

½ð−1Þn−kþ1ðxþ yÞ

− xþ y�RkPk

�
xy
R

�
; ð1Þ

where PnðxyRÞ are the Legendre polynomials. The prolate
spheroidal coordinates ðx; yÞ take the ranges x ≥ 1, and
−1 ≤ y ≤ 1 in the domain of outer communication, as the
physical infinity is located at x → ∞. The solution contains a
Killing horizon located at x ¼ 1, and the symmetry axis
consists of two disconnected components at y ¼ 1 and
y ¼ −1.

The metric function U is a harmonic function in an
auxiliary nonphysical flat space, while γ is a solution to the
linear system

∂xγ ¼
1 − y2

x2 − y2
½xðx2 − 1Þð∂xUÞ2 − xð1 − y2Þð∂yUÞ2

− 2yðx2 − 1Þ∂xU∂yU þ 2x∂xU − 2y∂yU�;

∂yγ ¼
x2 − 1

x2 − y2
½yðx2 − 1Þð∂xUÞ2 − yð1 − y2Þð∂yUÞ2

þ 2xð1 − y2Þ∂xU∂yU�

þ 1

x2 − y2
½2yðx2 − 1Þ∂xU þ 2xð1 − y2Þ∂yU�: ð2Þ

These functions are determined by a discrete set of real
constants an, n ∈ N , and lead to a deviation from asymp-
totic flatness if the distorted Schwarzschild black hole is
considered as a global solution. It is physically more
relevant to regard the metric (1) as a local solution valid
in some neighborhood of the horizon. Then, U and γ are
interpreted as arising due to interaction with a gravitational
source located in the exterior of the region of validity.
The parameters an, n ∈ N characterize the external gravi-
tational potential, corresponding to the interior multipole
moments in its expansion. In the limit when all the
constants an vanish, the isolated Schwarzschild black hole
is recovered. The solution possesses a further real param-
eter σ, equal to the Komar mass on the black hole horizon.
It coincides with the Komar mass of the isolated
Schwarzschild black hole, which is not influenced by the
external field.
For balanced solutions the external matter is restricted by

the condition for absence of conical singularities on the
axis. It reduces to the following constraint on the solution
parameters:

X∞
n¼0

a2nþ1 ¼ 0: ð3Þ

Another restriction is introduced by the requirement that
the material sources, which generate the external gravita-
tional potential, should satisfy the strong energy condition.
This leads to the condition U ≤ 0 [33], implying that

u0 ¼
X∞
n¼0

a2n ≤ 0: ð4Þ

The interaction with the external potential leads to a
deformation of the horizon geometry with respect to the
spherical one. The metric on the horizon cross section is
given by

ds2H ¼ 4σ2eγ−2U
�
e−γðyÞð1 − y2Þdφ2 þ eγðyÞ

dy2

1 − y2

�
:

Since the combination of the metric functions U − 1
2
γ

reduces to a constant on the horizon, the horizon geometry
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is determined by a single function UðyÞ. It encodes the
deviation from the geometrical sphere; hence it can be
regarded as a shape function [53]. The horizon area takes
the form

AH ¼ 16πσ2e−2Ujx¼1;y¼�1 ¼ 4πR2
H;

RH ¼ 2σ exp

�
−
X∞
n¼0

a2n

�
; ð5Þ

and the scalar quantity RH, appearing also as a scale factor
in (5), is interpreted as an effective horizon radius in
analogy with the spherical case.
For the investigation of geodesic motion in the distorted

Schwarzschild spacetime it is convenient to perform a
suitable rescaling of the metric

ds2 → Ω−2ds2; Ω2 ¼ σ2e−2u0 : ð6Þ

The rescaled metric becomes

ds2 ¼ −
x − 1

xþ 1
e2Ũdt2 þ ðxþ 1Þ2ð1 − y2Þe−2Ũdφ2

þ ðxþ 1Þ2e2γ−2Ũ
�

dx2

x2 − 1
þ dy2

1 − y2

�
; ð7Þ

Ũ ¼ U − u0; ð8Þ

where we have redefined the time coordinate as

t → σ−1e2u0t: ð9Þ

It describes a solution with a unit mass, and a horizon area
AH ¼ 16π2, which is independent of the external field,
and coincides with that of the corresponding isolated
Schwarzschild black hole. We can represent the solution
in the conventional Schwarzschild coordinates ðr; θÞ by
performing the transformation

x ¼ r − 1; y ¼ cos θ: ð10Þ

Distorted black holes are most generally divided into
solutions with even and odd distortion by setting only the
even or odd multipole moments an different from 0. Each
class of solutions corresponds to different symmetries of
the external gravitational source. Physically most relevant
are the cases when only the lowest even or odd multipole
moments do not vanish. They would describe the inter-
action with an external gravitational field, which is
considerably weaker than that of the central object. The
solution with the lowest even distortion is the quadrupole
case, when a2 ≠ 0, and all the rest of the multipole
moments vanish. Due to the regularity condition (3),
the simplest solution with an odd distortion is the octupole
case, when a3 ¼ −a1 ≠ 0, and all the rest of the multipole
moments vanish.

In our work we investigate the light propagation for
spacetimes with quadrupole distortion. In this case the
metric functions are given by

Ũ ¼ a2
2
ð3x2y2 − x2 − y2 − 1Þ;

γ ¼ 2a2xðy2 − 1Þ þ 1

4
a22½ðx2 þ y2 − 1Þ

× ðx2 þ y2 − 10x2y2Þ − x2 − y2 þ 9x4y4 þ 1�: ð11Þ

III. GEODESIC EQUATIONS

We consider the Hamiltonian formulation of the geodesic
motion. Free particles are described by the Hamiltonian

H ¼ 1

2
gμνpμpν; ð12Þ

where pμ is the canonical momentum, and the Hamilton
equations are given by

_qμ ¼ ∂H
∂pμ

; _pμ ¼ −
∂H
∂qμ : ð13Þ

We denote by an overdot differentiation with respect to
an affine parameter along the geodesic, and qμ are the
spacetime coordinates. For stationary and axisymmetric
spacetimes two conserved quantities exist,

pt ¼ −E; pφ ¼ L; ð14Þ
representing the particle’s energy and its angular momen-
tum with respect to the symmetry axis. In the case of the
distorted Schwarzschild solution the canonical momentum
takes the form

pt ¼ −
x − 1

xþ 1
e2Ũ_t ¼ −E; ð15Þ

pφ ¼ ðxþ 1Þ2ð1 − y2Þe−2Ũ _φ ¼ L;

px ¼
xþ 1

x − 1
e2γ−2Ũ _x;

py ¼
ðxþ 1Þ2
1 − y2

e2γ−2Ũ _y; ð16Þ

and we can express the Hamiltonian as

Hðp; qÞ ¼ ðx − 1Þe2Ũ−2γ

2ðxþ 1Þ p2
x þ

ð1 − y2Þe2Ũ−2γ

2ðxþ 1Þ2 p2
y

þ Vðx; y; E; LÞ;

Vðx; y; E; LÞ ¼ −
ðxþ 1Þe−2ŨE2

2ðx − 1Þ þ e2ŨL2

2ðxþ 1Þ2ð1 − y2Þ :

ð17Þ
The function V depends only on the spacetime coordinates
and the constants of motion. Hence, it can be interpreted as
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a two-dimensional effective potential governing the particle
motion, while the remaining part of the Hamiltonian
corresponds to a kinetic term T ¼ 1

2
gijpipj, i; j ¼ x, y.

The Hamiltonian vanishes identically on null geodesics,
and the kinetic term is always positive. Therefore, the
allowed regions for photon motion are defined by the
condition V ≤ 0. Introducing the impact parameter
η ¼ L=E, the effective potential can be written as

V ¼ −
E2e2Ũ

2ðxþ 1Þ2ð1 − y2Þ ½hðx; yÞ þ η�½hðx; yÞ − η�;

hðx; yÞ ¼ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxþ 1Þ3ð1 − y2Þ

x − 1
e−4Ũ

r
: ð18Þ

Consequently, null geodesics with an impact parameter η
are confined to regions where hðx; yÞ ≥ jηj is satisfied.
The qualitative behavior of the effective potential V

depends on the multipole moments an of the solution, as
well as on the absolute value of a geodesic’s impact
parameter jηj, since the problem is symmetric with respect
to the shift η → −η. In the case of quadrupole distortion,
when the metric function Ũ is given by (11), the effective
potential is analyzed in detail in Sec. V. Although different
values of jηj lead to a range of qualitatively different
configurations, the behavior of the potential at large
distances is determined only by the sign of the quadrupole
moment. Analyzing the asymptotic expansion of the
potential we obtain that the following situations are
realized. For negative quadrupole moments there always
exists a forbidden region encompassing the equatorial plane
for large enough values of x. At the same time allowed
regions are present in the vicinity of the axes y ¼ �1
forming escape channels. For positive quadrupole moments
the opposite situation is observed. After a certain value of x
the region around the equatorial plane is allowed, while
forbidden regions exist in the vicinity of the axes, expand-
ing when the radial distance is increased. In both cases
photons with an impact parameter η ¼ 0 are an exception,
since then no forbidden regions exist. We further apply this
qualitative analysis in building the argument for the
observation of multiple shadows in Sec. VI.

IV. LENSING IMAGES

In our analysis we make extensive use of lensing images
as a tool to study the properties of trajectories following the
geodesic equations. To construct such an image we first
follow a ray-tracing procedure, integrating null geodesics
backwards from points on the observer’s local sky to points
on a distant celestial sphere, wherein all light sources are
assumed to reside [32]. The resulting lens map (Fig. 1) is
then projected into a planar image, Fig. 2(a).
In particular, we use an equirectangular projection,

which projects a 2-sphere parametrized by the angles φ ∈
½0; 2π� and ϑ ∈ ½0; π� into the plane by linearly mapping

each value of φ to x and each ϑ to y. We refer to the
equirectangular projection of the lens map over all possible
viewing angles for a given observer as the equirectangular
full lensing image, or just lensing image for short. For
values near ϑ ¼ π=2, this projection exhibits little distor-
tion of the resulting image. The equirectangular projection
in this region is essentially the linearization of the projec-
tion onto the cylinder tangent at the equator. For this reason,
we place the black hole in the center of the image, at φ ¼ π
and ϑ ¼ π=2. The immediate surroundings of the black
hole thus remain relatively undistorted, allowing for
uncomplicated analysis.
Note, however, that regions closer to the poles, corre-

sponding to the local observer’s up and down, become very
distorted as even small features near the poles get enlarged
[see for example the grid lines in Fig. 2(a)]. While this
trivially follows from the singularity of spherical coordi-
nates at the poles, it is important to keep this in mind when
interpreting features seen in the lensing maps. Furthermore,
in order for the image to show the black hole shadow at the
center while matching our intuitive understanding of left/
right and up/down, both axes are flipped. That is, the up
direction in the image corresponds to decreasing ϑ while
the right direction corresponds to decreasing φ.
In Fig. 2(b) the shadow image for the same spacetime

and observer as Fig. 2(a) is displayed. In this representation
only those light rays that pass behind the horizon, defining
the black hole’s shadow, are drawn. In the example shown,
there is only a single connected component corresponding
to the central shadow of the (slightly) distorted black hole.
In our shadow plots, connected components of the shadow
are colored by their size, measured in image pixels. Note
that here connectedness is determined based on the pixels

FIG. 1. Illustration of the spherical observer sky for a given
spacetime (with partial cutout). The observer is located at the
center of this sphere.
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in the image, so if the features of a shadow are finer than the
size of a single pixel, components that really are connected
can be incorrectly identified as nonconnected, and vice
versa. This representation is particularly useful when
studying the emergence of multiple shadows, as we do
in Sec. VI.

V. CIRCULAR PHOTON ORBITS

In this section we consider the circular null geodesics,
which are also called light rings in the literature, for black
holes with quadrupole distortion (a2 ≠ 0; an ¼ 0; n ≠ 2).
These solutions are characterized with reflection symmetry
with respect to the equatorial plane. Therefore, we can
distinguish between two types of light rings—those lying in
the equatorial plane y ¼ 0, and those lying in a symmetric
pattern in two other planes�y ¼ const. Geodesic motion in
the equatorial plane was also discussed previously in [45].
In the following we describe all the possible light ring
configurations, and the ranges of the quadrupole moment
a2, for which they are realized.

A. Light rings in the equatorial plane

Light rings in the equatorial plane are determined by the
equations px ¼ py ¼ 0, _px ¼ _py ¼ 0, and y ¼ 0.
Consequently, they correspond to the stationary points of
the effective potential Vðx; 0Þ, in which it vanishes, or,
equivalently, to the stationary points of the potential
h2ðx; 0Þ. For quadrupole distortion the potential h2ðx; yÞ
is given by

h2ðx; yÞ ¼ ðxþ 1Þ3ð1 − y2Þ
x − 1

e−4Ũ;

Ũ ¼ 1

2
a2ð3x2y2 − x2 − y2 − 1Þ: ð19Þ

Its stationary points in the equatorial plane satisfy the
condition ∂xh2ðx; 0Þ ¼ 0, which reduces to the equation

x − 2þ 2a2xðx2 − 1Þ ¼ 0: ð20Þ

It determines the position of the light rings as a function of
the quadrupole moment a2. Examining this equation it
follows that no stationary points exist for values of the
quadrupole moment below a critical value acrit2 ≈ −0.021.
For values in the range acrit2 < a2 < 0 two stationary points
occur, corresponding to a minimum and a maximum of
the potential h2ðx; 0Þ, while for a2 ≥ 0 only a minimum is
observed. Decreasing the quadrupole moment in the range
acrit2 < a2 < 0 causes the two stationary points to approach
each other, until at a2 ¼ acrit2 they merge into an inflection
point of h2ðx; 0Þ. The position of the inflection point is a
solution to the equation

x3 − 3x2 þ 1 ¼ 0: ð21Þ

It possesses a single real solution in the interval x ∈
ð1;þ∞Þ, which takes the approximate value xcrit ≈ 2.879.
Increasing the quadrupole moment in the range a2 ≥ 0 leads
to moving the light ring closer to the horizon.
The behavior of the potential h2ðx; 0Þ in the equatorial

plane is presented in Fig. 3. Note that maxima of the
potential h2ðx; 0Þ in the equatorial plane correspond to
minima of the effective potential Vðx; 0Þ. Therefore, light
rings, which are stable with respect to radial perturbations,
correspond to the maxima of h2ðx; 0Þ, while unstable
light rings correspond to the minima of h2ðx; 0Þ. Stable
light rings with respect to radial perturbations exist for
xcrit < x < þ∞, where xcrit ≈ 2.879. The infinitely remote
stable circular orbit corresponds to the limit, when the
quadrupole moment vanishes, and the solution approaches
the Schwarzschild black hole, while the critical value of the
quadrupole moment acrit2 ≈ −0.021 determines the location
of the marginally stable light ring xcrit ¼ xISCO. Thus, adding
a negative quadrupole moment with values in the range
−0.021 ≤ a2 < 0 leads to moving the stable light ring from
infinitely remote to the marginal location xISCO ≈ 2.879.
At the same time the coexisting unstable light ring recedes
from the horizon, changing its position from x¼2 for a2 ¼ 0
to xISCO. The domain of existence and stability of the light
rings in the equatorial plane as a function of the quadrupole

(a) (b)

FIG. 2. Illustration of the equirectangular projection for lens and shadow maps for the observer sky shown in Fig. 1.
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moment is illustrated in Fig. 4(a). We present the analysis of
the light ring stability with respect to small perturbations in
radial and vertical directions in the Appendix. The main
result is that light rings, which are stable with respect to
radial perturbations, are unstable with respect to vertical
ones, and vice versa. It is consistent with a general theorem
stating that no stable light rings can exist (with respect to
both radial and vertical perturbations) for vacuum solutions
in general relativity [51].

B. Light rings out of the equatorial plane

Light rings lying outside the equatorial plane are deter-
mined by the equations px ¼ py ¼ 0, _px ¼ _py ¼ 0, and
y ¼ const ≠ 0. They are located at the stationary points of
the two-dimensional potential Vðx; yÞ, in which it vanishes.
We can equivalently obtain the stationary points of the
potential h2ðx; yÞ, which corresponds to solving the equa-
tions ∂xh2ðx; yÞ ¼ ∂yh2ðx; yÞ ¼ 0, and excluding the trivial

solutions giving the symmetry axis y ¼ �1. Calculating the
derivatives

∂xh2ðx; yÞ ¼
2h2ðx; yÞ
x2 − 1

½x − 2 − 2a2xðx2 − 1Þð3y2 − 1Þ�;

∂yh2ðx; yÞ ¼
2h2ðx; yÞy
y2 − 1

½1þ 2a2ð1 − y2Þð3x2 − 1Þ�;

ð22Þ

we obtain that the position of the light rings outside of the
equatorial plane is determined by the system

x − 2 − 2a2xðx2 − 1Þð3y2 − 1Þ ¼ 0;

1þ 2a2ð1 − y2Þð3x2 − 1Þ ¼ 0; ð23Þ

which depends on the value of the quadrupole moment. The
system can be reduced to the form
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FIG. 3. The effective potential h2ðx; 0Þ in the equatorial plane for different values of the quadrupole moment: (a) For a2 <
acrit2 ≈ −0.021 no stationary points exist, and consequently no light rings. At acrit2 an inflection point appears, which corresponds to a
marginally stable light ring. (b) For acrit2 < a2 < 0 a maximum and a minimum exist, representing a stable and an unstable light ring with
respect to radial perturbations. (c) For a2 ≥ 0 a minimum exists corresponding to an unstable light ring.
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FIG. 4. Existence of circular null geodesics. Circular orbits are located on the red curves defined by (20) and (25), respectively, for
equatorial/off-equatorial light rings. The blue curve determines the regions of stability of the light rings with respect to radial and vertical
perturbations (see the Appendix). Light rings below the blue curve are stable with respect to radial perturbations, and unstable with
respect to vertical ones, while in the region above the opposite is true. The two curves intersect at the location of the ISCO.
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1þ 2a2xðx2 − y2Þ ¼ 0;

6a2x5 − 8a2x3 þ 3x2 þ 2a2x − x − 1 ¼ 0; ð24Þ
where we should take into account that viable solutions for
the light rings’ positions should take the ranges x > 1, and
−1 < y < 1. From the first equation it is obvious that such
solutions can exist only for negative values of the quadrupole
moment. The second equation determines the position as a
function of the quadrupole moment xða2Þ, which cannot be
found in closed form for a general a2. However, we can
conclude that a single solution exists for every a2 in the

range x ∈ ð1;þ∞Þ, by examining the function a2ðxÞ. In this
range the function a2ðxÞ is monotonically increasing, and
satisfies lima2ðxÞx→1 ¼ −∞, lim a2ðxÞx→∞ ¼ 0.
Substituting the expression for a2ðxÞ in the first equa-

tion, we obtain the relation

y2 ¼ −
ðx3 − 3x2 þ 1Þ
ð3x2 − x − 1Þ ≤ 1: ð25Þ

It defines a curve y2ðxÞ, which contains the positions of
the light rings for any quadrupole moment [see Fig. 4(b)].
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FIG. 5. Contour plots of the potential hðx; yÞ for negative quadrupole moments. In the range a2 ∈ ð−∞;−0.021Þ two saddle points are
observed, located symmetrically with respect to the equatorial plane [(a) and (b)]. Decreasing the quadrupole moment, the light rings
move away from the equatorial plane, and approach the horizon. In the range a2 ∈ ð−0.021; 0Þ the saddle points lie in the equatorial
plane [(c) and (b)]. Decreasing a2, the outer light ring moves closer to the horizon, and approaches the inner one.
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The function y2ðxÞ is monotonically decreasing and
reaches its upper limit y2 → 1 when x → 1, and its lower
limit y2 → 0 when x → xISCO ≈ 2.879. Consequently, we
obtain limits for the possible positions of the light rings;
i.e. they should satisfy x ∈ ð1; 2.879Þ. Taking into account
that the relation a2ðxÞ is monotonic, they put constraints
on the values of a2, for which solutions to the system (23)
can exist. Thus, light rings lying outside the equatorial
plane occur only for a quadrupole moment in the range
a2 ∈ ð−∞;−0.021Þ. The lower limit is determined by the
behavior of the function a2ðxÞ when x → 1, and the upper
limit when x → xISCO.
In summary, every value of a2 in the range a2 ∈

ð−∞;−0.021Þ determines a pair of light rings located
symmetrically with respect to the equatorial plane. Their
coordinates are given by ðx;�yÞ, where x is a solution to
(24), and y is obtained by (25). Increasing the quadrupole
moment, the value of x increases, while the value of jyj
decreases. Thus, the light ring pairs move away from the
horizon and simultaneously approach the equatorial plane.
In the limit x → 2.879, y2 → 0, they merge into the
marginally stable light ring in the equatorial plane. We
should also note that the regions of existence of the light
rings in and outside the equatorial plane are complimen-
tary, as light rings in the equatorial plane exist only for
quadrupole moments in the range a2 ∈ ð−0.021;þ∞Þ.
Referring to the general result for stationary and axisym-
metric vacuum spacetimes [51], all the light rings should
be unstable, and we observe that they correspond to saddle
points of the effective potential h2ðx; yÞ.

In Figs. 5 and 6 we present contour plots of the potential
hðx; yÞ for the three sets of ranges of the quadrupole
moment, which lead to qualitatively different light ring
structures. In each set we illustrate the transformation of the
potential when varying the quadrupole moment. We intro-
duce a compactified radial coordinate defined by means of
the horizon position xH,

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 − r2H

p
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 − r2H

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxþ 1Þ2 − ðxH þ 1Þ2

p
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxþ 1Þ2 − ðxH þ 1Þ2

p ; ð26Þ

which maps the domain of outer communication x ∈
½1;þ∞Þ to the finite interval R ∈ ½0; 1Þ. For giving a better
intuition we use the polar angle θ instead of the spheroidal
coordinate y ¼ cos θ.
In Figs. 5(a) and 5(b) the quadrupole moment belongs

to the range a2 ∈ ð−∞;−0.021Þ. Two saddle points are
observed, corresponding to light rings located symmetri-
cally with respect to the equatorial plane y ¼ 0. We see that
when we decrease the quadrupole moment a2, the light
rings move away from the equatorial plane, and approach
the horizon.
In both plots four representative contours of the

potential hðx; yÞ are illustrated in colour. Each of them
represents the boundary of the forbidden region for null
rays with impact parameter equal to the value of the
potential at the boundary contour, i.e. η ¼ hbound. The
particular value of η is denoted on the relevant contour.
Each contour separates regions filled in darker hues of
gray from regions filled in lighter shades. The convention
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FIG. 6. Contour plots of the potential hðx; yÞ for positive quadrupole moments. A single saddle point is observed lying in the
equatorial plane. Increasing the quadrupole moment a2, the light ring approaches the horizon.
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is that for each η the forbidden regions correspond to the
relatively darker areas.
In Figs. 5(c) and 5(d) the quadrupole moment belongs to

the range a2 ∈ ð−0.021; 0Þ, and the saddle points are
located only in the equatorial plane as expected. When
we decrease the quadrupole moment a2, we see that the
outer light ring moves closer to the horizon, while the inner
one deviates from it, so both approach each other. Certain
representative contours are depicted in color. We follow
the same convention as in the previous case in Figs. 5(a)
and 5(b). Each contour is the boundary of the forbidden
region for light rays with impact parameter η ¼ hbound, and
forbidden regions correspond to relatively darker areas.
In Fig. 6 we illustrate the effective potential for positive

quadrupole moments a2 ∈ ð0;þ∞Þ. The left panel corre-
sponds to small positive values, while the right one repre-
sents the evolution of the potential when the quadrupole

moment is increased. A single light ring in the equatorial
plane is observed, which moves closer to the horizon for
higher quadrupole moments.
In the following analysis we do not consider the case

of positive quadrupole moments, as, according to (4), it
corresponds to interaction with external material sources
that violate the strong energy condition. We concentrate on
the more realistic case of negative quadrupole moments.

C. Effective potentials for a2 < 0

The effect of the different values of the impact parameter
η on the motion is best analyzed in terms of the allowed
region defined by the effective potential. Figures 7 and 8
show a sequence of contour plots of the effective potential
for increasing values of η with acrit2 < a2 < 0 and a2 <
acrit2 < 0, respectively; in these plots dark regions are

(a)

(c)

(e) (f)

(d)

(b)

FIG. 7. Effective potentials for quadrupole moment a2 ¼ −0.015 > acrit2 and various values of impact parameter η illustrating the
effect of increasing jηj.
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forbidden and white allowed. Note that due to the sym-
metry of the problem, the plots look exactly the same for η
and −η; hence plots for negative values are omitted.
As discussed in Sec. III, for large values of x the effective

potential is always positive in the vicinity of the equatorial
plane, with the exception of photons with an impact
parameter η ¼ 0. This leads to the formation of an
equatorial forbidden region, which is absent for asymp-
totically flat solutions. We therefore interpret this forbidden
region as arising due to the influence of the external
gravitational source. The interaction with the external
gravitational field is then most straightforwardly encoded
in the photon dynamics through scattering from the vicinity
of the equatorial forbidden region. Such trajectories are
illustrated for example in Fig. 13. In our discussion we
investigate this type of interaction.
In Fig. 7 we illustrate the behavior of the effective

potential when varying the impact parameter η for quadru-
pole moments in the range acrit2 < a2 < 0. We see that
when increasing η, the throat at the inner, radially
unstable, light ring starts to close, while the external
region begins to move inwards (b). At η ¼ η1, the throat
closes at the inner light ring position x1 (c). From now on,
it is not possible for light rays from outside x1 to reach the
black hole. Increasing η further increases the width of the
barrier at x1, while bringing in the external region even
more (d). At η ¼ η2, the external region touches the barrier
at x2, the position of the outer, radially stable, light ring
(e). As evident from the effective potential plot this light

ring is only stable in the radial direction, while it is
unstable in the ϑ direction. Increasing η even further,
the barrier and external region merge into one connected
region, segmenting the allowable regions into three dis-
tinct parts (f).
For a2 < acrit2 < 0, Fig. 8 shows an even simpler

dynamic. As η increases the throat begins to form, and
the external region moves inward (b). However, in this case
the external region moves fast enough to touch the forming
throat at x1 for η ¼ η1 before it has a chance to fully close
(c); note that at x1 there are now two off-equatorial, radially
unstable, light rings. In a slight abuse of terminology we
still refer to these as inner light rings. Increasing η further
beyond this value leads to the same segmentation of the
allowable region into three distinct regions also observed in
the previous case (d).
For any fixed a2 we can find the value of the impact

parameter η1, at which the throat associated with the inner
light ring(s) closes. It coincides with the value of the
potential hðx; yÞ at the light ring position, i.e. we have
�η1 ¼ hLR. For a2 > acrit2 the inner light ring lies in the
equatorial plane. Using (20), which defines its position for
a given a2, we can derive an expression for the value of
the potential hLR at the inner light ring as a function of the
light ring position x1,

h2LR ¼ ðx1 þ 1Þ3
ðx1 − 1Þ exp

�
−
ðx1 − 2Þðx21 þ 1Þ

x1ðx21 − 1Þ
�
; ð27Þ

(b)

(d)

(a)

(c)

FIG. 8. Effective potentials for quadrupole moment a2 ¼ −0.03 < acrit2 and various values of impact parameter η illustrating the effect
of increasing jηj.
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or implicitly, by using the relation x1 ¼ x1ða2Þ, as a
function of the quadrupole moment. For acrit2 < a2 < 0,
(20) possesses two real roots in the range x ∈ ð1;∞Þ, and
x1 is associated with the lower one.
A similar expression can be derived for a2 < acrit2 , when

the inner light rings arise in a symmetric pair with respect
to the equatorial plane. Using (24)–(25) we obtain for the
potential hLR at the light rings

h2LR ¼ x1ðx1 þ 1Þ4
3x21 − x1 − 1

exp

�
3x31 − 6x21 þ x1 þ 2

x1ð1 − 3x21Þ
�
; ð28Þ

where x1 is again the inner light rings’ radial coordinate,
which depends implicitly on the quadrupole moment by
(24). In all the cases the throat of the effective potential
associated with the inner light ring is open for impact
parameters satisfying −η1 < η < η1.

VI. MULTIPLE SHADOWS

For negative values of the quadrupole moment a2 < 0

we can define a sufficient condition for multiple shadows to
appear. This is based on the observation that multiple
shadows arise principally from processes where light rays
scatter off the external forbidden region before plunging
behind the horizon; while it is not clear that this is the only
mechanism for multiple shadows, it is a sufficient one.
When the external forbidden region is cut off, by being
placed outside the celestial sphere, this dynamic is not
possible. Similarly, if the throat, which is forming at the
position of the unstable photon orbit and leading to the
black hole, is closed then shadows are not possible at all.
These conditions together constrain when multiple shad-
ows can be seen by an observer.
Let us fix the spacetime under consideration by picking

a value for a2 < 0. Then, on this background, we assume
that our observer is situated at some position ðxo; yo ¼ 0Þ
in the equatorial plane, where we assume xo > x1 is
outside the position of the inner light ring(s). We then
place the celestial sphere at a radial position behind the
observer, i.e. x1 < xo < xcs.
Our conditions for multiple shadows can then be neatly

formulated in terms of the impact parameter η. The first
condition is dictated by the spacetime itself. We require that
the black hole be accessible from the observer’s position,
i.e. the throat at the inner light ring(s) must be open. This
corresponds to trajectories satisfying

−η1 ≤ η ≤ η1; ð29Þ
where η1 is the impact parameter for the inner light ring(s)
as introduced in Sec. V.
The second condition derives from the observer’s posi-

tion. Note that for any observer, there is a maximal impact
parameter ηo > 0 associated to the observer’s position.

Any light ray seen by the observer, independent of its
direction, must satisfy η ≤ ηo. By the symmetry of the
solution, the same value also forms a lower bound, so that
the impact parameter η for any light ray that can reach the
observer satisfies

−ηo ≤ η ≤ ηo: ð30Þ
In terms of the potential, the value of ηo corresponds to the

threshold at which the observer is placed on the border of
the allowed region of the spacetime, i.e. ηo ¼ hðxo; yo ¼ 0Þ.
An example of this is depicted in Fig. 9.
Finally, we have a third condition related to the location

of the celestial sphere. Multiple shadows can form when
photon trajectories scatter off the external forbidden region
before plunging behind the horizon. Since the celestial
sphere acts, effectively, as a radial cutoff for the spacetime,
it can screen this dynamic for any trajectory with an impact
factor that does not satisfy

jηj ≥ ηcs; ð31Þ
where ηcs ¼ hðxcs; 0Þ is the impact parameter at which the
external forbidden region just intersects the celestial
sphere. To understand this condition, note that, as shown
in Figs. 7 and 8, the external forbidden region moves
radially outward with decreasing jηj. Hence if, for some
trajectory, jηj falls below the limit (31), the external
forbidden region withdraws completely behind the celestial
sphere and is inaccessible.
Multiple shadows occur for impact parameters meeting all

three conditions given in (29)–(31). Letting η̄ ¼ minðη1; ηoÞ,
they can be expressed in condensed form as

ηcs ≤ jηj ≤ η̄: ð32Þ
We remark that this condition captures all possible cases of
a2 < 0 within the setup described here, including off-
equatorial light rings. An immediate consequence of con-
dition (32) is that multiple shadows are not possible, at least
through the dynamic discussed here, on a given spacetime if
we place our celestial sphere such that ηcs > η̄. This can be

FIG. 9. The effective potential at impact parameter ηo for an
illustrative choice of observer (dot) and celestial sphere (vertical
line). At this value of the impact parameter the observer is on the
boundary of a forbidden region.
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intuitively understood by looking at the two potential plots
shown in Fig. 10. In the right panel we have an example with
ηcs > η1, in which case the throat at the inner light ring
closes before the external forbidden region is accessible. By
contrast, in the left panel we have an example with ηcs < η1,
so that for some trajectories both the external forbidden
region and the black hole are accessible, allowing for
multiple shadows.
Finally, we illustrate the lensing image and shadow

map for a spacetime with a2 ¼ −0.015 > acrit2 in Figs. 11
and 12, respectively. For these, the observer is placed at
ðxo; yoÞ ¼ ð4.5; 0Þ and the celestial sphere at xcs ¼ 14.4.
We find that additional shadows appear in Figs. 11 and

12 for 0.725 ¼ ηcs ≤ η ≤ η1 ¼ 4.784 and symmetrically,
−η1 < η < −ηcs, as predicted by (32). There are two main
classes of shadow structure, corresponding on the one hand

to trajectories that are initially directed towards the black
hole and on the other to those that are directed away. Within
each class there is a principal shadow surrounded by
smaller additional shadows, or eyebrows, in a fractal
structure; this can be seen in Fig. 12, up to the resolution
of the image.
Trajectories corresponding to the shadows are shown in

the effective potential plots Fig. 13 for selected points in the
shadow map Fig. 12. For trajectories directed towards the
black hole, the principal shadow is composed of trajectories
that plunge directly, with no radial turning points. This is
depicted in Fig. 13(a) for point 1, region A, in Fig. 12(b).
Additional shadows in this class possess an even number
of radial turning points and always scatter off the external
forbidden region before plunging. This is depicted in
Fig. 13(c) for point 3, region A, in Fig. 12(b). Note that

FIG. 11. Lensing image for quadrupole moment a2 ¼ −0.015, an equatorial observer at xo ¼ 4.5 and a celestial sphere at xcs ¼ 14.4.
Lines of constant impact parameter η are shown for �η1 ≈�4.784 (small circles) and �ηcs ≈�0.725 (large circles).

FIG. 10. Qualitative features of the potential allowing multiple shadows (left), and not allowing multiple shadows (right). The observer
position is marked by the dot, and the celestial sphere by the vertical line.
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one can discern pixel sized shadows around these eyebrows
corresponding (though not shown here) to trajectories with
a still larger number of radial turning points.
For trajectories that are initially directed away from the

black hole, the principal shadow is composed of trajectories
that scatter once off the external forbidden region before
plunging. We illustrate this in Fig. 13(b) for point 2, region
B, in Fig. 12(c). Additional shadows in this class possess an
odd number of radial turning points and we find they also
scatter off the external forbidden region before plunging.

This is depicted in Fig. 13(d) for point 4, region B, in
Fig. 12(c).
However, it is important to emphasize that (32) only

provides a sufficient condition for multiple shadows; there
are additional shadows that lie marginally outside the
bounds (32). These can be seen on the left extremity of
the secondary eyebrow (blue) in Fig. 12(b), just outside the
ηcs boundary line. A trajectory corresponding to this part of
the eyebrow is shown in the effective potential plot Fig. 14.
It can be seen to exhibit the same qualitative feature of

A

B

(a) Shadow map with indicated regions of interest

(b) Region A, points 1 and 3 marked (c) Region B, points 2 and 4 marked

FIG. 12. Shadow maps for quadrupole moment a2 ¼ −0.015, an equatorial observer at xo ¼ 4.5, and a celestial sphere at xcs ¼ 14.4.
Lines of constant impact parameter η are shown for �η1 ≈�4.784 (small circles) and �ηcs ≈�0.725 (large circles).
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scattering from the external potential in the close vicinity of
the external forbidden region.

VII. CONCLUSION

In this paper we study the local shadow of the
Schwarzschild black hole with a quadrupole distortion.

In particular we discover the appearance of multiple
shadows and provide a dynamical mechanism for their
formation. The distorted solution describes the spacetime
in the vicinity of the horizon of a static vacuum black hole
interacting with an external matter distribution with the
relevant symmetries. In this spacetime the photon motion
is not expected to be integrable. It reduces to a two-
dimensional problem, so we can study qualitatively the
dynamics by investigating a two-dimensional effective
potential, together with the properties of the light rings
admitted by the spacetime. The influence of the external
gravitational field modifies the light ring structure, and for
negative quadrupole moments leads to the formation of a
forbidden region for photon motion at large radial dis-
tances. We attribute the formation of multiple shadows to
scattering by this forbidden region. Moreover, we isolate
a sufficient condition under which this process can be
realized, depending simultaneously on the quadrupole
moment, and the position of the observer and the celestial
sphere.
For negative quadrupole moments almost all the multiple

shadow images, which we obtain numerically, result from
such a scattering process, and satisfy the condition we
propose. While we have no formal argument detailing other
mechanisms for multiple shadow formation, our studies
strongly suggest that the scattering mechanism we provide
is the most prominent one. The analysis can be extended

FIG. 14. Photon trajectory for quadrupole moment a2 ¼
−0.015, an equatorial observer (dot) at xo ¼ 4.5 and a celestial
sphere (vertical line) at xcs ¼ 14.4 for a point in the shadow just
left of the impact parameter ηcs boundary in Fig. 12 (b). The inset
shows a zoomed image demonstrating an interaction with the
external region without actually bouncing off of it.

(a) Trajectory corresponding to point 1 (b) Trajectory corresponding to point 2

(c) Trajectory corresponding to point 3 (d) Trajectory corresponding to point 4

FIG. 13. Photon trajectories for quadrupole moment a2 ¼ −0.015, an equatorial observer (dot) at xo ¼ 4.5 and a celestial sphere
(vertical line) at xcs ¼ 14.4 for different initial conditions, points 1–4, in Fig. 12. The position of the inner light ring is indicated by a red
triangle, that of the outer light ring by a green triangle (behind the observer).
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quite straightforwardly to the case of octupole distortion.
Our preliminary investigations show that a similar mecha-
nism is realized, caused by scattering from a certain
potential barrier, which arises due to the influence of the
external gravitational field. The conditions for observation
of the multiple shadows also depend not only on the
octupole moment, but also on the position of the observer
and the celestial sphere.
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APPENDIX: STABILITY OF CIRCULAR ORBITS
AND EPICYCLIC FREQUENCIES

In order to investigate the stability of the circular orbits
in the equatorial plane we consider a small deviation
from the circular motion x̃μðsÞ ¼ xμðsÞ þ ξμðsÞ, where
xμðsÞ describes the circular orbit [54]. We substitute this
expression in the geodesic equations, and considering
terms up to linear order in ξμðsÞ; we obtain the following
system, which describes the dynamics of the small
perturbation [55,56]:

d2ξμ

dt2
þ 2γμα

dξα

dt
þ ξb∂bVμ ¼ 0; b ¼ x; y

γμα ¼ ½Γμ
αβu

βðu0Þ−1�
y¼0

;

Vμ ¼ ½γμαuαðu0Þ−1�y¼0: ðA1Þ

The four-velocity vector for the circular orbits in the
equatorial plane is expressed as uμ ¼ u0ð1; 0; 0;ω0Þ by
means of the orbital frequency ω0 ¼ dφ=dt, while Γμ

αβ are
the Christoffel symbols. The equations for the t and φ
components in (A1) can be integrated leading to

dξA

dt
þ 2γAx ξ

x ¼ 0; A ¼ t;φ

d2ξx

dt2
þ ω2

xξ
x ¼ 0; ðA2Þ

d2ξy

dt2
þ ω2

yξ
y ¼ 0;

ω2
x ¼ ∂xVx − 4γxAγ

A
x ; ω2

y ¼ ∂yVy: ðA3Þ

Thus, we obtain two decoupled equations for the perturba-
tions in radial and axial direction. The dynamics of the
perturbations is determined by the sign of the quantities ω2

x

and ω2
y. For positive values Eqs. (A2) and (A3) describe a

pair of harmonic oscillators; i.e. small deviations from the
circular orbits oscillate in their vicinity with frequencies ωx
and ωy in radial and vertical direction, respectively. In this
case the circular orbit is stable in linear approximation, and
the quantities ωx and ωy are called epicyclic frequencies.
If one of the quantities ω2

x and ω2
y is negative, the circular

orbit is unstable, since small perturbations in the corre-
sponding direction deviate exponentially from it.
Performing the calculations for the distorted

Schwarzschild solution, we obtain the following expres-
sions for the epicyclic frequencies in the case of null
geodesics,

ω2
y ¼ −ω2

x ¼
ω2
0e

−2γ

1 − a2xðx2 − 1Þ ð1þ 2a2x3Þ; ðA4Þ

where ω0 is the orbital frequency. From this expression it
is obvious that the regions of stability with respect to radial
and vertical perturbations are complementary, i.e. an orbit
which is stable with respect to radial perturbations is
unstable with respect to vertical ones. The domain of
existence of circular orbits, and the regions of stability
with respect to radial and vertical perturbations are illus-
trated in Fig. 4(a). The curve ω2

y ¼ ω2
x ¼ 0 defined by

Eq. (A4) is presented in blue. The region under the blue
curve corresponds to positive values of ω2

x, and conse-
quently negative values of ω2

y, while in the region above the
blue curve ω2

x < 0 and ω2
y > 0 are satisfied. It is seen that

for positive values of the multipole moment a2 all the
circular orbits are stable with respect to vertical perturba-
tions, but unstable with respect to radial ones.
Using Eq. (20) the epicyclic and the orbital frequencies

can be further expressed as functions only of the position of
the circular orbit x1,

ω2
y ¼ −ω2

x ¼ −
2ω2

0e
−2γ

x1ðx21 − 1Þ ðx
3
1 − 3x21 þ 1Þ;

ω2
0 ¼

x1 − 1

ðx1 þ 1Þ3 exp
�ðx1 − 2Þðx21 þ 1Þ

x1ðx21 − 1Þ
�
;

γ ¼ x1 − 2

16x21ðx21 − 1Þ ðx
3
1 þ 14x21 − x1 þ 2Þ: ðA5Þ
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