
 

Spacetime symmetries and topology in bimetric relativity

Francesco Torsello,* Mikica Kocic,† Marcus Högås,‡ and Edvard Mörtsell§

Department of Physics and The Oskar Klein Centre, Stockholm University, AlbaNova University Centre,
SE-106 91 Stockholm, Sweden

(Received 7 December 2017; published 16 April 2018)

We explore spacetime symmetries and topologies of the two metric sectors in Hassan–Rosen bimetric
theory. We show that, in vacuum, the two sectors can either share or have separate spacetime symmetries. If
stress–energy tensors are present, a third case can arise, with different spacetime symmetries within the
same sector. This raises the question of the best definition of spacetime symmetry in Hassan–Rosen
bimetric theory. We emphasize the possibility of imposing ansatzes and looking for solutions having
different Killing vector fields or different isometries in the two sectors, which has gained little attention so
far. We also point out that the topology of spacetime imposes a constraint on possible metric combinations.
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I. INTRODUCTION

Symmetries are fundamental in physics. The invariance
of physical quantities under a given transformation allows
physicists to simplify their models of Nature and to better
understand them.
The first computed exact solution in general relativity

(GR) is the Schwarzschild solution [1], which was deter-
mined by assuming a static and spherically symmetric
spacetime. Schwarzschild’s approach has been widely and
fruitfully used until our days. Indeed, the standard way for
finding particular solutions of certain field equations is to
impose some symmetries to the system, and deduce the
appropriate ansatz for the dynamical fields.
In (pseudo-)Riemannian geometry, spacetime sym-

metries are characterized by Killing vector fields
(KVFs), whose integral curves define paths along which
the physical quantities can be invariant. When this happens,
the standard terminology is that the physical quantity
possesses a symmetry along that path (or that the path
defines a “collineation” for the physical quantity). In the
case of a symmetry of the metric tensor, they coincide with
its isometries. We refer the reader to [2] for a basic
treatment of spacetime symmetries and to [3] for a more
advanced approach.
In this paper we explore the relation between the KVFs

of two metrics defined on the same differentiable manifold.
The motivation for this study comes from the Hassan–
Rosen (HR) bimetric theory (introduced in Sec. II), where
this geometrical framework naturally appears. When two
metrics are concerned, the question of whether an isometry

of one metric is a spacetime symmetry for the whole system
arises. We will see that, if the two metrics share their
isometries, then the latter will be spacetime symmetries for
all other tensor fields. In this case, it is straightforward to
talk about a spacetime symmetry, since the whole system is
invariant under the transformation. If this is not the case,
however, the definition of a spacetime symmetry is
ambiguous. Solutions having different KVFs and showing
this ambiguity, in the context of the HR bimetric theory, are
presented in Sec. II B.
When finding particular solutions, the most common

ansatzes presume the same isometries in both sectors (some
exceptions can be found in [4,5]). This study investigates
when this is the most general ansatz, and if there are other
possible ansatzes which can, in principle, lead to new
solutions of the bimetric field equations. This turns out to
be the case.
We also answer to the question if there are any

constraints on the solutions of HR bimetric theory, based
on the underlying topology of the spacetime. The answer
turns out to be yes, as we will discuss in Sec. II A.
The paper is organized in two main sections. In Sec. II,

we focus on HR bimetric theory, reviewed in Sec. II A. We
start by discussing explicit examples having the described
properties in Sec. II B. These examples should be thought
of as a selection of cases showing different possible
configurations of spacetime symmetries in HR theory. In
principle, they may or may not provide any other physical
information. In Sec. II C we study spacetime symmetries
and we fit the examples into a more general framework.
We determine a conserved vector current and state two
propositions helpful for understanding the structure of
spacetime symmetries in the theory. We define the concepts
of “bimetric spacetime symmetry,” “sectoral spacetime
symmetry” and “narrow spacetime symmetry” in bimetric
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relativity, as symmetries shared by all tensors, by the
tensors in one metric sector only and by some generic
tensors, respectively. In Appendix A, we provide some
strategies for constructing bimetric ansatzes having differ-
ent KVFs. In Sec. III, we fit the results of Sec. II into a
wider perspective. In particular, we summarize the main
geometric concepts and results we have used in studying
spacetime symmetries. We explore the topic in a generic
setup, i.e., we do not assume any relation between the two
metrics, other than they are defined on the same differ-
entiable manifold. After that, we state our conclusions.
The reader specifically interested in HR bimetric theory

can find all the related results in Sec. II and Appendix A.
The paper being quite technical—especially Sec. III—the
reader interested mainly in the results and their discussion
is invited to read the brief summaries at the end of Sec. II
and the beginning of Sec. III, and the conclusions.

II. ISOMETRIES IN THE HASSAN-ROSEN
BIMETRIC THEORY

Recently, there has been a noteworthy interest in con-
structing a classical nonlinear theory of interacting spin-2
fields. This interest culminated in the discovery of two such
theories which are free from the pathological Boulware–
Deser ghost [6], thanks to the particular form of the
interaction potential between the spin-2 tensor fields.
These theories are the de Rham–Gabadadze–Tolley
(dRGT) massive gravity [7,8], which was proven to be
ghost-free in [9], and the Hassan–Rosen (HR) bimetric
theory [10,11], whose unambiguous definition and space-
time interpretation are provided in [12].
We focus on the HR bimetric theory, describing two

interacting, dynamical and symmetric spin-2 fields, gμν and
fμν. It has seven degrees of freedom propagating five
massive and two massless mode around proportional
backgrounds [13–15]. One possible interpretation of this
theory is to consider both the symmetric spin-2 fields as
metrics defined on the same differentiable manifold. Here,
we follow this interpretation and, therefore, aim to under-
stand the relations between the KVFs of the two metrics
and, consequently, between their isometries.

A. Review of the theory, and topological constraint

The action of HR bimetric theory is [10],

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p ��
1

2
M2

gRg þ Lg

�
−m4VðSÞ

þ detðSÞ
�
1

2
M2

fRf þ Lf

��
ð1Þ

where two Einstein–Hilbert actions constitute kinetic terms
for both metrics, minimally coupled to two independent
matter sources described by the Lagrangian densities Lg,
Lf (see, e.g., [16] regarding ghost-free matter couplings).

The “bimetric potential” is defined as,

VðSÞ ≔
X4
n¼0

βnenðSÞ: ð2Þ

Here, S is the square root matrix defined by,

S ≔ ðg−1fÞ12; ð3Þ

or, in index notation, SμρSρν ≔ gμρfρν. The βn parameters
are generic real numbers and the enðSÞ are the elementary
symmetric polynomials of Sμν,

e0ðSÞ ¼ 1;

e1ðSÞ ¼ λ1 þ λ2 þ λ3 þ λ4;

e2ðSÞ ¼ λ1λ2 þ λ1λ3 þ λ1λ4 þ λ2λ3 þ λ2λ4 þ λ3λ4;

e3ðSÞ ¼ λ1λ2λ3 þ λ1λ2λ4 þ λ1λ3λ4 þ λ2λ3λ4;

e4ðSÞ ¼ λ1λ2λ3λ4; ð4Þ

where the λn are the eigenvalues of Sμν.
Varying (1) with respect to gμν and fμν, we get the

bimetric field equations,

Gg
μ
ν þ

m4

M2
g
Vg

μ
ν ¼

1

M2
g
Tg

μ
ν; ð5aÞ

Gf
μ
ν þ

m4

M2
f

Vf
μ
ν ¼

1

M2
f

Tf
μ
ν; ð5bÞ

with Gg;f
μ
ν being the Einstein tensors for gμν and fμν,

Tg;f
μ
ν being the stress–energy tensors for the two inde-

pendent matter sources and Vg;f
μ
ν, here referred to as the

“tensor potentials” being equal to,

Vg
μ
ν ¼

X3
n¼0

βn
Xn
k¼0

ð−1ÞnþkekðSÞSn−k; ð6aÞ

Vf
μ
ν ¼

X3
n¼0

β4−n
Xn
k¼0

ð−1ÞnþkekðS−1ÞS−nþk: ð6bÞ

Combining (5) with their own traces we obtain,

Rg
μ
ν ¼

1

M2
g

�
m4

�
1

2
Vgδ

μ
ν − Vg

μ
ν

�
þ Tg

μ
ν −

1

2
Tgδ

μ
ν

�
;

ð7aÞ

Rf
μ
ν ¼

1

M2
f

�
m4

�
1

2
Vfδ

μ
ν − Vf

μ
ν

�
þ Tf

μ
ν −

1

2
Tfδ

μ
ν

�
;

ð7bÞ
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where Tg ¼ gαβTg
αβ, Tf ¼ fαβTf

αβ, Vg ¼ gαβVg
αβ and

Vf ¼ fαβVf
αβ.

Noting that the stress–energy tensors Tg
μ
ν and Tf

μ
ν are

divergenceless due to diffeomorphism invariance of the
matter actions

R
d4x

ffiffiffiffiffiffi−gp
Lg and

R
d4x

ffiffiffiffiffiffi−gp
detðSÞLf, the

Bianchi constraints follows from taking the divergence
of (5),

∇νVg
ν
μ ¼ 0; ∇̃νVf

ν
μ ¼ 0; ð8Þ

where ∇μ is the compatible covariant derivative of gμν and

∇̃μ is the compatible covariant derivative of fμν.
The following algebraic relation holds between the

tensor potentials and the bimetric potential [17],

Vg
μ
ν þ detðSÞVf

μ
ν ¼ VðSÞδμν; ð9Þ

which implies,

Vg þ detðSÞVf ¼ 4VðSÞ: ð10Þ

The interaction action −m4
R
d4x

ffiffiffiffiffiffi−gp
VðSÞ is invariant

under generic diffeomorphisms. This implies that the
two Bianchi constraints are not independent,

∇νVg
ν
μ ¼ − detðSÞ∇̃νVf

ν
μ: ð11Þ

This was proved in [18] for diffeomorphisms equal to the
identity at the boundary of the integration domain, and can
be generalized to generic diffeomorphisms, thanks to the
algebraic identity (9).
Topological constraint. The importance of topology

when considering particular solutions in HR bimetric
theory was briefly pointed out in [19]. Here we extend
the discussion, which is independent of any field equations
and it is applicable to every theory involving more than one
metric tensor on the same differentiable manifold.
The action (1) is defined on a differentiable manifold, on

which we have a set of smooth charts covering it (an atlas).
The interaction term in the action constrains the theory to
have only one diffeomorphism invariance (see, e.g.,
[18,20]).1 Therefore, the chosen atlas must be shared by
both metrics. Since an atlas uniquely determines the top-
ology of the manifold [22], the two metrics must be
compatible with this topology. We stress that topology is
not determined by any field equations, which, being
differential, are always local [23], [24].

We will clarify this issue in the next subsection when
discussing explicit examples.

B. Explicit examples with different KVFs

We start out by discussing some explicit examples
displaying different KVFs or different isometries, or both.
In Sec. II C, we see how they fit into the general results.
In the literature, solutions of this kind were presented in

[4,5]. In particular, [4] considers a non-bidiagonal ansatz
with a Friedmann-Lemaître-Robertson-Walker (FLRW) gμν
(homogeneous and isotropic) and an inhomogeneous fμν,
with a homogeneous perfect fluid coupled to gμν. In their
analysis, the authors of [5] discuss (i) bidiagonal cosmo-
logical solutions with an FLRW gμν (homogeneous and
isotropic) and a Lemaître fμν (only isotropic) with an
inhomogeneous perfect fluid coupled to gμν, and (ii) an
FLRW gμν and a Bianchi Type I fμν, with an anisotropic
fluid coupled to gμν. The three cases concern metrics having
different isometry groups. Note also that the solutions with
the inhomogeneous and the anisotropic perfect fluids fit in
the discussion in Sec. II C about the definition of a
spacetime symmetry in HR bimetric theory.
We remark that the topological constraints described in

the previous section should be taken into account also for
these solutions.
One way of finding solutions in GR is to put some

assumptions on ametric and then generate the corresponding
stress–energy tensor defined through Tμ

ν ≔ M2
gGμ

ν. This is
called the “Synge’smethod” [25]. It isworth to stress that one
has to be very lucky to find an “acceptable” or non-
pathological stress–energy tensorwith thismethod.A typical
example is the generalized Vaidya case where one assumes a
specific form of themass function, then trying to interpret the
resulting stress–energy tensor (an arbitrary mass function
will not work in general, but some will be “sensible”; see
Sec. 6 in [26]). In the bimetric case,we can similarly put some
assumptions on both gμν and Sμν (or alternatively gμν and hμν
so that Sμν ¼ gμρhρν) and then generate Tg

μ
ν and Tf

μ
ν using

the bimetric field equations (5). This is how the axially
symmetric solution was obtained in [27]. Moreover, one can
also require some of the tensors to vanish identically,
restricting the ansatz; for instance, Vg

μ
ν ¼ Vf

μ
ν ¼ 0 or

one can require Tg
μ
ν ¼ 0 but keeping arbitrary Tf

μ
ν ≠ 0.

Of course, in the end the solution depends on the judgment
and taste of what is physical or “sensible,” though some
consistency checks must always be satisfied, like conserva-
tion laws. Now, in general, gμν can have some collineations
where Sμν can spoil them by removing or introducing new
collineations. Hence, gμν, fμν, Sμν, T

μν
g and Tμν

f can have
different isometries.
We discuss three examples:
(i) a vacuum solution of the bimetric field equations,
(ii) a solution with two independent matter sources

coupled with gμν and fμν in a very peculiar way,

1Without the bimetric potential, the action (1) reduces to two
decoupled copies of GR. In such case, the gauge group G of the
theory would be the direct sum of two separate diffeomorphism
groups, one acting on the g-sector only and the other on the f-
sector only [21]. The bimetric potential reduces G to its diagonal
subgroup [18].
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(iii) Einstein vacuum solutions with a freely specifiable
scalar function in one metric.

We emphasize that these examples are meant to show
different possible configurations of spacetime symmetries
in HR theory, rather than being useful as descriptions of
physical systems.

1. Example I: Bi-Einstein vacuum solutions

The first example constitutes a family of non-bidiagonal
solutions including black holes (BHs) which are allowed to
have different Killing horizons. In the bidiagonal case,
corresponding to the Type I configuration in [12], this is
forbidden by the proposition in [28] and its extension in
[29]. The following solution being non-bidiagonal, is
allowed to have different Killing horizons. The same family
of solutions was found in [13], but here we stress the fact
that some of them, although satisfying the bimetric field
equations, must be excluded due to the topological con-
straint presented in Sec. II A. In addition, we discuss the
solution in a new perspective, analyzing the isometries of
the two metric sectors.
We assume a spherically symmetric ansatz for the two

metrics and work in the outgoing Eddington–Finkelstein
chart ðv; r; θ;ϕÞ,

gμν ¼

0
BBB@

−GðrÞ 1 0 0

1 0 0 0

0 0 r2 0

0 0 0 r2sin2ðθÞ

1
CCCA;

fμν ¼

0
BBB@

−e2qðrÞFðrÞ e2qðrÞ 0 0

e2qðrÞ 0 0 0

0 0 R2ðrÞr2 0

0 0 0 R2ðrÞr2sin2ðθÞ

1
CCCA;

Sμν ¼

0
BBB@

eqðrÞ 0 0 0

1
2
eqðrÞðGðrÞ−FðrÞÞ eqðrÞ 0 0

0 0 RðrÞ 0

0 0 0 RðrÞ

1
CCCA; ð12Þ

where Sμν is the principal square root of g−1f.
Assuming that G ≠ F, from the field equations (5a),

RðrÞ≡ R0 ¼
1

β3

�
−β2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β22 − β1β3

q �
;

qðrÞ ¼ logðR0Þ;

GðrÞ ¼ 1 −
rgH
r
þ ΛgðR0; fβigÞ

3
r2;

ΛgðR0; fβigÞ ¼
m2

β3
ðβ1β2 − β0β3 þ 2R0ðβ22 − β1β3ÞÞ;

ð13Þ

where i runs from 0 to 3. This solutions also satisfies the
Bianchi constraints (8). Substituting the expressions in (13)
in the field equations (5b) results in,

FðrÞ ¼ 1 −
rfH
r
þ ΛfðR0; fβigÞ

3
r2;

ΛfðR0; fβigÞ ¼ � m2

3κð2β2 þ R0β3Þ

×

�
2β1

�
β3 −

β2β4
β3

�

þR0

�
3β2β3 þ β1β4 −

4β22β4
β3

��
: ð14Þ

The scalar invariants of the square root matrix are always
finite, e.g.

TrðSÞ ¼ 4R0; detðSÞ ¼ R4
0: ð15Þ

The Ricci scalars are constants and the Kretschmann
scalars diverge as r−6 when r → 0, if rgH and rfH are
nonzero.
Both metrics can be diagonalized (not simultaneously)

to assume the usual Schwarzschild–anti-de Sitter/
Schwarzschild–de Sitter (SAdS/SdS) form, by the general
coordinate transformations, for gμν,

dv ¼ dt̃þG−1dr̃ ð16aÞ

dr ¼ dr̃; ð16bÞ

and for fμν,

dv ¼ R−1
0 ðdt̂þ F−1dr̂Þ ð17aÞ

dr ¼ R−1
0 dr̂: ð17bÞ

If we do not take into account the topological constraint
of Sec. II A, we can have many possible metric combina-
tions arising from (13) and (14). The horizon radii rgH and
rfH are integration constants of the solutions, as in GR. If
rgH ≠ 0 and rfH ¼ 0, we will have the SAdS/SdS solution in
gμν and the anti-de Sitter/de Sitter (AdS/dS) in fμν, which
do not share their isometry groups. AdS and dS are both
maximally symmetric [30], whereas SAdS and SdS are not.
For rgH ¼ rfH ¼ 0, we can still have AdS in one sector and
dS in the other, depending on the values of Λf and Λg,
again implying different isometry groups. Also, one can fix
two of the β parameters, say β0 and β4, to set Λg ¼ Λf ¼ 0.
In that case, we have two Schwarzschild solutions having
the same isometry groups, but different KVFs. The KVFs
for some of these solutions are explicitly computed in a
WolframMathematica 11 [31] notebook, which is attached
to the paper and available at [32].
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All these combinations satisfy the bimetric field equa-
tions. However, we must also take into account the
spacetime topology, as explained in Sec. II A. Since we
use the same atlas for both sectors, they must have a
common topology. To be precise, our Eddington–
Finkelstein chart ðv; r; θ;ϕÞ does not cover the whole
spacetime. However, since the Penrose diagrams of all
the possible solutions described by (13) and (14) are known
[33–35], we know their topology. Hence, we can build an
atlas covering the whole spacetime, uniquely determining
the topology. As a result, the remaining possible solutions
are written in Table I.
We now discuss the relation between the KVFs and the

isometry groups of the possible solutions. If gμν and fμν are
different, the isometry groups and the KVFs are also
different. Consider the case where gμν and fμν belong to
the same “class”—i.e., they have the same form, but
different numerical values of their parameters. First,
when 0 ≠ Λg ≠ Λf ≠ 0, the KVFs of gμν and fμν are
different, because they depend on the specific values of
the cosmological constants (see e.g. [37,38] for the explicit
expressions of the KVFs of, respectively, AdS and dS).
However, their isometry group is the same. Second, when

Λg ¼ Λf ¼ 0, we have the bi-Schwarzschild or the bi-
Minkowski solution. In this case, the isometry groups are
again the same, but the KVFs are different and related by a
diffeomorphism φ. If ξμ and ημ are KVFs of fμν and gμν,
respectively, we have

ξμðφβðxαÞÞ ¼ ðφ�ÞμνηνðxαÞ; ð18Þ

with φ being the diffeomorphism. This means that the
components of the KVFs are different in the same chart
xα ¼ ðv; r; θ;ϕÞ. We will return to (18) in Sec. III.

2. Example II: Bi-Minkowski with “screened”
matter sources

The relevance of this example resides in having metrics
with the same isometry group, but different KVFs. Also, it
shows the possibility of having nongravitational matter
screened by the “effective stress–energy tensors” Vg

μ
ν

and Vf
μ
ν.

This example again exhibits a diffeomorphism between
the g-sector and the f-sector, analogously to (18). We
consider two Minkowski metrics in a chart ðt; r; θ;ϕÞ
which constitutes the usual spherical polar chart for gμν,
but not for fμν. In particular, we use the following
bidiagonal ansatz,

gμν ¼

0
BBB@

−1 0 0 0

0 1 0 0

0 0 r2 0

0 0 0 r2sin2ðθÞ

1
CCCA;

fμν ¼

0
BBB@

−τ02ðtÞ 0 0 0

0 ρ02ðrÞ 0 0

0 0 ρ2ðrÞ 0

0 0 0 ρ2ðrÞsin2ðθÞ

1
CCCA;

Sμν ¼

0
BBB@

τ0ðtÞ 0 0 0

0 ρ0ðrÞ 0 0

0 0 ρðrÞ=r 0

0 0 0 ρðrÞ=r

1
CCCA; ð19Þ

where Sμν is the principal square root of g−1f and the prime
means “derivative with respect to the argument.”
The trace and the determinant of Sμν are,

TrðSÞ ¼ 2ρðrÞ
r

þ ρ0ðrÞ þ τ0ðtÞ;

detðSÞ ¼ ρ2ðrÞ
r2

ρ0ðrÞτ0ðtÞ; ð20Þ

so assuming τ0ðtÞ; ρ0ðrÞ > 0, the square root is invertible
and the pathologies described in Proposition 1 in [29] will
not appear.

TABLE I. Metric combinations for the solution (13) and (14),
which are allowed and forbidden by the topological constraint.

fμν

gμν M S AdS dS SAdS SdS

R4 M ✓ ✗ • ✗ ✗ ✗

R2 × S2 S ✗ ✓ ✗ ✗ • ✗

S1 × R3 AdS • ✗ ✓ ✗ ✗ ✗

R1 × S3 dS ✗ ✗ ✗ ✓ ✗ ✗

S1 × R1 × S2 SAdS ✗ • ✗ ✗ ✓ ✗

R1 × S1 × S2 SdS ✗ ✗ ✗ ✗ ✗ ✓

Topology Solution

Comments:
(i) “M” stands for Minkowski and “S” stands for

Schwarzschild.
(ii) For AdS and SAdS, one can consider the universal

covering in the timelike direction in order to avoid
violation of causality, “unwrapping” S1 into R1. This
would eliminate the closed timelike curves present in AdS
and SAdS, and would assign them the topologies,
respectively, R4 and R2 × S2 [33,35].

(iii) • stands for ✓ if we take the universal coverings of AdS
and SAdS, having topologies R4 and R2 × S2 (see next
comment), otherwise it stands for ✗.

(iv) S2 in the spatial topology of Schwarzschild, SAdS and
SdS is necessary due to the presence of an event horizon,
for stationary black holes (then, it holds also for static
black holes) in 4 dimensions [2], [36].

(v) Note that the topologies can be matched in some cases.
For example, one can have a punctured Minkowski with
R4nfr ¼ 0g rather than M in the M and S case.
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The change of coordinates which will put fμν in the
standard Minkowski form is,

dτ ¼ τ0ðtÞdt; dρ ¼ ρ0ðrÞdr: ð21Þ

With the ansatz (19), the Bianchi constraints in (8) are
satisfied for every τðtÞ and ρðrÞ. In vacuum, the field
equations (5) are reduced to,

m4

M2
g
Vg

μ
ν ¼ 0;

m4

M2
f

Vf
μ
ν ¼ 0; ð22Þ

which is true only for zero tensor potentials Vg;f
μ
ν.

However, we can couple two different generic stress–
energy tensors Tg

μ
ν and Tf

μ
ν to the metrics (see, e.g., [16]),

m4

M2
g
Vg

μ
ν ¼

1

M2
g
Tg

μ
ν;

m4

M2
f

Vf
μ
ν ¼

1

M2
f

Tf
μ
ν; ð23Þ

and solve (23) for Tg
μ
ν and Tf

μ
ν. Note that the Bianchi

constraints automatically imply that the stress–energy
tensors defined in this way are divergenceless. In addition,
the stress–energy tensors always have an energy density
Tg

0
0
ðrÞ independent of time, and a time-dependent iso-

tropic nonhomogeneous pressure, Tg
1
1
ðt; rÞ ≠ Tg

2
2
ðt; rÞ ¼

Tg
3
3
ðt; rÞ.

The field equations are thus formally satisfied, and the
two sectors share their isometry group, even if they have
different KVFs. Indeed, (18) holds with the following
Jacobian matrix,

ðφ�Þμν ¼ ðJ−1Þμν ¼

0
BBB@

τ0ðtÞ−1 0 0 0

0 ρ0ðrÞ−1 0 0

0 0 1 0

0 0 0 1

1
CCCA: ð24Þ

Two things should be remarked concerning this solution.
First, the two matter sources do not couple with the Einstein
tensors of the metrics, but rather with the tensors potentials
Vg

μ
ν and Vf

μ
ν. This does not mean that we are decoupling

gμν and fμν, retaining two copies of GR, because the
Bianchi constraint (8) is an additional requirement not
present in GR. Therefore we cannot choose any two
metrics. Second, in this peculiar set up we can have matter
gravitationally decoupled from us, since its contribution is
exactly canceled by tensor potentials.
We can require the stress–energy tensors not to diverge at

radial and time infinity or at finite values of t and r. This
can be achieved by setting, for example,

τðtÞ ¼ tþ arcsinhðtÞ; t ∈ R

ρðrÞ ¼ rþ arcsinhðrÞ; r > 0: ð25Þ

This is a valid diffeomorphism from the Minkowski
spacetime into itself, and the resulting stress–energy tensors
are always finite and satisfy,

Tg
0
0
ðr ¼ 0Þ ¼ ρg0 < ∞;

Tf
0
0
ðr ¼ 0Þ ¼ ρf0 < ∞;

lim
r→∞

Tg
0
0
ðrÞ ¼ ρg∞ < ∞;

lim
r→∞

Tf
0
0
ðrÞ ¼ ρf∞ < ∞: ð26Þ

Analogous relations are valid for the other components of
the stress–energy tensors, even if they depend on time.
The metrics gμν and fμν share the SO(3) KVFs, since

the coordinate transformation between the sectors does
not involve the angular coordinates [see (24)]. As we will
see in Proposition 2 in Sec. II C, since the Lie derivatives
of Sμν with respect to the SO(3) KVFs are zero, the
SO(3) KVFs are collineations for all the tensors in this
solution. However, the Lie derivatives of Sμν; Vg

μ
ν; Vf

μ
ν

with respect to all other KVFs of gμν and fμν are
nonzero, so these KVFs are not collineations for the
whole system.

3. Example III: Einstein solutions with algebraically
decoupled parameters

With this example we want to show that requiring a
nonsingular geometry can constrain the KVFs of the
metrics. As in the previous example, we consider the same
isometry group, but different KVFs.
If we assume gμν to be an Einstein metric, then the field

equations in the g-sector are just Vg
μ
ν ¼ 0. As explained in

[19], this equation determines the (eigenvalues of the)
square root. There is a specific set of β-parameters for
which Vg

μ
ν ¼ 0 is satisfied with some of the square root

eigenvalues λi left undetermined. We call this case “alge-
braically decoupled.”Note that, even if we assume gμν to be
Einstein, fμν is not arbitrary. This is due to the fact that, in
HR theory, f ¼ gS2 even if the metrics are dynamically
decoupled. Hence, imposing Vg

μ
ν ¼ 0 already determines

fμν (or equivalently Sμν), and makes the theory not
equivalent to two separate copies of GR.
One algebraically decoupled case is when the two

metrics are bidiagonal (Type I in [12]) and

ðβ1β2 − β0β3Þ2 ¼ 4ðβ21 − β0β3Þðβ22 − β1β3Þ;
β22 − β1β3 ≠ 0: ð27Þ

In this case, choosing the eigenvalues of the square root
matrix to be

λ1 ¼ λ2 ¼ λ3 ¼ −
β1β2 − β0β3
2ðβ22 − β1β3Þ

; ð28Þ
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solves Vg
μ
ν ¼ 0 with the last eigenvalue, λ4ðxÞ, left

unspecified. The equation Vf
μ
ν ¼ 0 becomes an equation

in the β-parameters and can be solved for β4.
Let gμν be a specific Einstein metric; for definiteness we

let gμν be the Schwarzschild metric,

gμν ¼ −Fdt2 þ F−1dr2 þ r2dΩ2; ð29Þ

where dΩ2 ¼ dθ2 þ sin2θdϕ2 and FðrÞ ≔ 1 − rH=r, ren-
dering the corresponding Einstein tensor to vanish. The
only equation left to satisfy is Gf

μ
ν ¼ 0, which becomes a

set of differential equations for λ4ðxÞ. A set of solutions can
be found through a separation of variables ansatz. In
particular, for such an ansatz, the arbitrary function λ4ðxÞ ¼
λðϕÞ solves the Einstein equation for fμν. Hence the metric
(29) together with

fμν ¼ λ21ð−Fdt2 þ F−1dr2 þ r2dθ2Þ þ λ2ðϕÞr2sin2θdϕ2

ð30Þ

solve the bimetric field equations, with λðϕÞ being an
arbitrary function and with parameters specified above.
Assuming that λðϕÞ > 0, we can make the change of
coordinates,

ϕ → Φ; dΦ ¼ λðϕÞdϕ ð31aÞ

t → T ¼ λ1t ð31bÞ

r → R ¼ λ1r ð31cÞ

θ → Θ ¼ θ ð31dÞ

where λðϕÞ ¼ Φ0ðϕÞ and ΦðϕÞ is a monotonic function
(and thus invertible). In the new chart, fμν is manifestly
Schwarzschild,

fμν ¼ −
�
1 −

RH

R

�
dT2 þ dR2

1 − RH
R

þ R2ðdΘ2 þ sin2ΘdΦ2Þ ð32Þ

where we defined RH ≔ λ1rh. Thus, fμν also being a
Schwarzschild metric, gμν and fμν exhibit the same isom-
etry group and determine the same topology (see Sec. II A).
The KVFs of gμν are

η0 ¼ ∂t; η1 ¼ ∂ϕ; ð33aÞ

η2 ¼ cosϕ∂θ − cot θ sinϕ∂ϕ; ð33bÞ

η3 ¼ − sinϕ∂θ − cot θ cosϕ∂ϕ ð33cÞ

and the related KVFs of fμν are

ξ0 ¼ ∂T ¼ 1

λ1
∂t; ξ1 ¼ ∂Φ ¼ λ1

Φ0ðϕÞ ∂ϕ ð34aÞ

ξ2 ¼ cosðΦðϕÞÞ∂θ −
λ1

Φ0ðϕÞ cot θ sinðΦðϕÞÞ∂ϕ; ð34bÞ

ξ3 ¼ − sinðΦðϕÞÞ∂θ −
λ1

Φ0ðϕÞ cot θ cosðΦðϕÞÞ∂ϕ: ð34cÞ

If λðϕÞ is nonconstant, only the KVF generating time
translations is a KVF for both metrics.
A final check reveals that the scalar invariants of the

square root S ¼ diagðλ1; λ1; λ1; λ4ðϕÞÞ are all nonzero and
finite, assuming that λ1, λ4ðϕÞ > 0, i.e., the principal square
root branch.
Contracting the KVFs (33) and (34) in different combi-

nations with the metrics yields a set of scalar fields, which
must be periodic in ϕ so that ϕ ¼ 0 and ϕ ¼ 2π give the
same value. Demanding this to be the case is equivalent to
λðϕÞ being periodic in ϕ, i.e., λðϕÞ ¼ λðϕþ 2πÞ, and
Φðϕþ 2πÞ ¼ ΦðϕÞ þ 2πn where n is an integer.
However, ΦðϕÞ is a monotonic (increasing) function of
ϕ so n must be positive. Conversely, we must demand that
if we invert the relation between the azimuth coordinates to
obtain ϕ ¼ ϕðΦÞ, the scalars must be periodic in Φ with
period 2π. This is equivalent to ϕðΦ ¼ 2πÞ ¼ ϕðΦ ¼ 0Þ þ
2πn0 where n0 is a positive integer.
Note that we imposed Φ ∈ ½0; 2πÞ since Φ is the

azimuthal coordinate in the spherical polar chart of fμν.
If Φ ∈ ½0;Φ0Þ with Φ0 < 2π, we could identify the hyper-
surfaces Φ ¼ 0 and Φ ¼ Φ0 by demanding λ to have a
period of Φ0, but this would lead to a conical singularity
in the f-sector, as explained in [2]. On the other hand, if
Φ ∈ ½0;Φ0Þ with Φ0 > 2π, we would cover twice the
region between 2π < Φ < Φ0. Then, we could restrict
Φ ∈ ½0; 2πÞ, but Φ and ϕ both being monotonic would
lead to ϕ ∈ ½0;ϕ0Þ with ϕ0 < 2π, i.e., a conical singularity
in the g-sector. Introducing the conical singularity does
not change the topology (since r ¼ 0 is already not part
of the spacetime); however, the solution would not be
Schwarzschild.
As an example, consider the functions ΦðϕÞ ¼

ϕþ 1
2
sinϕ and λ4ðϕÞ ¼ Φ0ðϕÞ ¼ 1þ 1

2
cosϕ. The function

λ4ðϕÞ is strictly positive and periodic in ϕ with period 2π.
Hence, ΦðϕÞ ∈ ½0; 2πÞ is a monotonically increasing func-
tion of ϕ, satisfying the above conditions. This function
determines different KVFs for the metrics, according to
(34). Another example is when λðϕÞ ¼ c with c being
a positive constant. In this case, λðϕÞ is clearly periodic
in ϕ and Φ ¼ cϕ. Concerning the property Φð2πÞ ¼
Φð0Þ þ 2πn, this demands that c ¼ n is a positive integer
and ϕð2πÞ ¼ ϕð0Þ þ 2πn0 implies that 1=c ¼ n0 is a
positive integer. Hence c ¼ 1, as discussed in [19].
Note that this method of generating solutions did not

rely on gμν being the Schwarzschild metric. The method
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generalizes straightforwardly to other Einstein metrics and
other sets of β-parameters which have the property of
leaving one or more of the square root eigenvalues λi
undetermined.

C. Collineations in the Hassan-Rosen bimetric theory

In this subsection we study general properties of space-
time symmetries in HR bimetric theory.
We start by reminding that the KVFs of a metric gμν are

defined to be the solutions of the Killing equation,

Lηgμν ¼ 2∇ðμηνÞ ¼ 0; ð35Þ

with Lη the Lie derivative along the vector field ημ and ∇μ

the covariant derivative compatible with gμν. The paren-
theses are understood as the symmetrization of the indices
they enclose.
The KVFs are completely specified by [2]

vρ∇ρημ ¼ vρLρμ; ð36aÞ

vρ∇ρLμν ¼ −vρRμνρ
σησ; ð36bÞ

where Lμν ≔ ∇μην is antisymmetric due to the Killing
equation Lμν ¼ −Lνμ. The nonzero vector field vμ specifies
the integration path along which the differential system is
solved. As shown in [2], one can make use of (36b) to write

∇2ημ ¼ ∇νLν
μ ¼ −Rρ

μρ
νην ¼ −Rμ

νην; ð37Þ

where ∇2 ≔ ∇ν∇ν. We can raise the index μ to obtain,

∇2ημ ¼ −Rμ
νη

ν: ð38Þ

1. Spacetime symmetries and field equations

A known result in GR is that a KVF is also a collineation
for the Einstein tensor, the Riemann tensor and the stress-
energy tensor [3],

Lηgμν ¼ 0 ⇒ LηRμνα
β ¼ 0

⇒ LηGμν ¼ 0

⇒ LηTμν ¼ 0: ð39Þ

The first two results can be straightforwardly extended to
the HR bimetric theory, whereas the third result can not
since it uses the Einstein equations.
Consider the KVF ημ of the metric gμν (analogous

computations can be performed for the f-sector). The
Lie derivative of the field equations (5a) with respect to
ημ is,

M2
gLηGg

μ
ν þm4LηVg

μ
ν ¼ LηTg

μ
ν: ð40Þ

We know that LηGg
μ
ν ¼ 0, hence,

m4LηVg
μ
ν ¼ LηTg

μ
ν: ð41Þ

Therefore, in general, a KVF of one metric is neither a
collineation of the respective stress–energy tensor nor a
collineation of its tensor potential (we showed this
explicitly in Sec. II B). Also, this opens up the possibility
of finding solutions having a given KVF for one metric
but different collineations for both Vg

μ
ν and Tg

μ
ν. As

already mentioned, some solutions having this property
were presented in [4,5]. Therefore, we notice that the
definition of a spacetime symmetry in HR bimetric theory
is nontrivial. Suppose having a static and spherically
symmetric gμν and an axially symmetric Tg

μ
ν and Vg

μ
ν.

Whether this should be considered a spherically sym-
metric system or an axially symmetric one remains an
open question. However, in “bimetric vacuum” (see [27]
for a discussion about vacuum in HR bimetric theory),
(41) becomes,

LηVg
μ
ν ¼ 0; ð42Þ

and the KVFs of the metric are also collineations for the
corresponding tensor potential.
In the following we analyze some properties of the

KVFs, useful for determining them in HR bimetric theory.
First, (36) does not make use of the Einstein equations, so it
holds for gμν and fμν separately. However, the difference
with GR is not only that we have separate differential
systems for each metric. Inserting the bimetric field
equations (7) in (37), we get,

−∇2ημ ¼ Rg
μ
νην

¼ 1

M2
g

�
m4

�
1

2
Vgδμ

ν − Vgμ
ν

�
þ Tgμ

ν −
1

2
Tgδμ

ν

�
ην;

ð43aÞ

−∇̃2ξμ ¼ Rf
μ
νξν

¼ 1

M2
f

�
m4

�
1

2
Vfδμ

ν − Vfμ
ν

�
þ Tfμ

ν −
1

2
Tfδμ

ν

�
ξd:

ð43bÞ

Therefore in vacuum, contrary to GR, the Laplacian of a
KVF is not necessarily zero because of the contributions
from the tensor potentials [see (37)]. This reflects the more
complicated structure of the theory, and makes the search
for KVFs for vacuum solutions more difficult. However, for
a generic vector field Vμ and independently of any field
equations, the “Komar identity” holds [39,40]

∇μ∇ν∇½νVμ� ≡ 0; ð44Þ
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which, for a KVF, becomes

∇μð∇2ημÞ≡ 0; ð45Þ

because ∇½νημ� ≔ ð∇νημ −∇μηνÞ=2 ¼ ∇νημ due to the
Killing equation (35). One could solve (45) for KVFs in
the same way one would use (38) in GR. An analogous
relation holds for the f-sector. An alternative proof for (44),
simpler than the one in [40], is provided in Appendix B.
So far, we have not assumed anything regarding the

KVFs. Now we assume that the two metrics share a KVF
Xμ. Then, substituting (7), (9) and (10) in (43a) and
performing some algebra one has,

M2
g∇2Xμ þM2

f detðSÞ∇̃2Xμ ¼ −m4VðSÞXμ: ð46Þ

Fulfilling (46) is then a necessary condition for Xμ to be a
KVF for both metrics. It is an additional constraint to (45)
when solving for shared KVFs.

2. Conserved currents determined by KVFs

Now consider the vector current Vμν
g ην, where ημ is a

KVF of gμν. Its divergence is zero,

∇μðVμν
g ηνÞ ¼ ην∇μV

μν
g þ Vμν

g ∇μην ¼ 0; ð47Þ

and therefore it is a conserved current. The last equality
follows from the Bianchi constraint for Vg

μν, the symmetry
of Vg

μν and the antisymmetry of Lμν ¼ ∇μην (the same
result can be stated for the f-sector). This conservation law
is the same as that for the stress–energy tensor

∇μðTμν
g ηνÞ ¼ 0; ð48Þ

which is also true in GR.2 Considering the g-sector, we can
rewrite (47) in the following way,

∂μð
ffiffiffiffiffiffi
−g

p
Vμν
g ηνÞ ¼ 0: ð49Þ

Separating the time and spatial derivatives and integrating
over a spacelike hypersurface V defined by x0 ¼ const, we
obtain,

∂0

Z
V
d3xð ffiffiffiffiffiffi

−g
p

V0ν
g ηνÞ ¼ −

Z
V
d3x∂ið

ffiffiffiffiffiffi
−g

p
Viν
g ηνÞ

¼ −
Z
∂V

dσi
ffiffiffiffiffiffi
−g

p
Viν
g ην; ð50Þ

where dσi is the two-surface element on ∂V. When Vμν
g

tend to zero at spatial infinity, e.g., in asymptotically flat

spacetimes with two Minkowski metrics, we can define the
conserved charge,3

V0 ≔
Z
V
d3xð ffiffiffiffiffiffi

−g
p

V0ν
g ηνÞ; ∂0V0 ¼ 0: ð51Þ

Regarding the meaning of V0, we can consider an asymp-
totically flat static spacetime with a stress–energy tensor.
Then, both V0 and P0 ≔

R
V d

3xð ffiffiffiffiffiffi−gp
T0νηνÞ would be

separately conserved. Therefore the total energy of the
system would be the sum of the two, i.e.

E ¼ P0 þ V0: ð52Þ

Hence, in this case m4V00
g can be interpreted as the energy

density due to the tensor potential.

3. Structure of spacetime symmetries

We now state several claims which clarify the behavior
of the isometries and can help to define a symmetric
spacetime in the HR bimetric theory.
We start by stating the following (in matrix notation)
Lemma. Let ξ be a vector field, S a (1,1)-tensor

field and F a matrix-valued function. If the Lie
derivative of S with respect to ξ vanishes, then the Lie
derivative of FðSÞ vanishes too; that is, LξS ¼ 0

implies LξFðSÞ ¼ 0.
Proof.—Locally, one can always find a chart where a

coordinate x0 is aligned along ξμ so that ξa ¼ δa0 ,

LξSμν ¼ ξρ∂ρSμν − ð∂ρξ
μÞSρν þ ð∂νξ

ρÞSμρ
¼ ∂0Sμν: ð53Þ

If LξS ¼ 0, then S is not dependent on x0, since
∂0SðxÞ ¼ 0. Consequently FðSÞðxÞ does not depend on
x0, and ∂0FðSÞðxÞ ¼ 0. □

Thanks to this Lemma, we know that

LξSμν ¼ 0 ⇒ LξVg;f
μ
ν ¼ 0: ð54Þ

Proposition 1. If F is invertible then, LξS ¼ 0 if and
only if LξFðSÞ ¼ 0.
Proof.—Since F is invertible, we can use the previous

Lemma in both directions. □

Proposition 1 does not apply to our case, because the
tensor potentials, containing traces of Sμν, are not invertible
functions of it. Therefore

LξVg=f
μ
ν ¼ 0 ⟹= LξSμν ¼ 0: ð55Þ

2Their validity is shown in the same way as for the current
Vg

μνην.

3In HR bimetric theory, asymptotically flat spacetimes do not
necessarily have two Minkowski metrics with the same compo-
nents [19].
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Therefore even in vacuum, as we saw in Sec. II B, we can
have different KVFs in the two sectors. In such a case, the
isometry of gμν are spacetime symmetries for tensors in the
g-sector and the isometries of fμν will be spacetime
symmetries for tensors in the f-sector.
If gμν and Sμν share their collineations, fμν shares them

too. This is a special case of a more general result we are
going to introduce after the following definitions.
Definition 1. Consider metric fields g and f. Let g−1f

be positive definite. We define the one-parameter set
of Lorentzian metrics Γ ¼ fhα ¼ gðg−1fÞα; α ∈ Rg,
where the matrix power function is defined through
Xα ¼ exp ðα logXÞ. Notice that g ¼ h0 and f ¼ h1.

4

Definition 2. If the vector field ξμ is a KVFs for gμν
and fμν, we define it as a “bimetric isometry.” The
definition extends to any type of spacetime symmetries
(e.g., conformal vector fields).5

Definition 3. If ξμ is a spacetime symmetry for all the
tensors in one metric sector, then we refer to it as a “sectoral
spacetime symmetry.”
Definition 4. If ξμ is a collineation for some tensors, we

call it a “narrow collineation.” The definition extends to any
spacetime symmetry, not only collineations.
We now state
Proposition 2. Consider a vector field ξ and two

arbitrary hα and hβ such that Lξhα ¼ 0 and Lξhβ ¼ 0.
Then Lξhγ ¼ 0 for any γ ∈ R.
Proof.—We define A ¼ g−1f for readability.
Our hypothesis is

Lξhα ¼ Lξhβ ¼ 0: ð56Þ

Suppose α < β (otherwise switch them). We have

0 ¼ Lξhα ¼ ðLξgÞAα þ gLξAα; ð57Þ

which is equivalent to

ðLξgÞAα ¼ −gLξAα: ð58Þ

From (56) and (58) it follows

0 ¼ Lξhβ ¼ ðLξgÞAβ þ gLξAβ

¼ ðLξgÞAαAβ−α þ gLξðAαAβ−αÞ
¼ −gðLξAαÞAβ−α þ gðLξAαÞAβ−α

þ gAαLξðAβ−αÞ
¼ hαLξðAβ−αÞ: ð59Þ

The matrix power function is invertible, so (59) and
Proposition 1 imply

LξðAβ−αÞ ¼ 0 ⟹ LξA ¼ 0; ð60Þ

which, thanks to the Lemma, implies

LξA ¼ 0 ⟹ LξðAγÞ ¼ 0; ∀ γ ∈ R: ð61Þ

Then, (58) tells us

ðLξgÞAα ¼ 0 ⟹ Lξg ¼ 0: ð62Þ

Therefore,

Lξhγ ¼ ðLξgÞAγ þ gLξðAγÞ ¼ 0; ð63Þ

∀γ ∈ R. □

Corollary. An isometry is bimetric if, and only if, it is
an isometry for any two metrics in the set Γ.
Proposition 2 tells us that, if any two of the hα share the

KVFs, then every tensor field in the theory will be invariant
under the corresponding transformation. The corollary tells
us that this is a bimetric spacetime symmetry, and the whole
spacetime is invariant under the transformation. In the
opposite case, instead, the definition of spacetime sym-
metry needs more care. Note that, when stress–energy
tensors are present, tensor fields within the same sector can
have different collineations [compare with (41) in which
the collineations of Vg

μ
ν and Tg

μ
ν are not necessarily

isometries of the metric gμν; they are narrow symmetries].
However in vacuum, thanks to (42), tensors within the same
sector share the collineations, which are then sectoral.

D. Brief summary of Sec. II

Here we summarize the main results of this section.
(1) We presented example solutions of the bimetric field

equations having different KVFs, different isometry
groups or both; other methods for finding ansatzes
with these properties are described in Appendix A.

(2) In HR bimetric theory, isometries arise in three
configurations:
(a) The two metrics share the KVFs, and the latter

define symmetries for all other tensors.
(b) The two metrics have different KVFs.

(i) In vacuum, tensors in the g-sector share
the symmetries with gμν, and those in the
f-sector share them with fμν.

(ii) In the presence of stress–energy tensors,
tensors in the g-sector need not share
the symmetries with gμν, and those in the
f-sector need not share them with fμν.

(3) Case (a) can certainly be considered as an “authen-
tic” spacetime symmetry in bimetric relativity, i.e., a
spacetime symmetry under which all the tensors in

4The geometric mean of two symmetric matrices A and B is
defined by A#B ¼ AðA−1BÞ1=2. For any two hα and hβ we have
hα#hβ ¼ hðαþβÞ=2. See [12] for more details.

5According to this definition, the conformal vector fields found
in [27] are bimetric.
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the theory are invariant. This is always the case in
GR, since an isometry of the metric is a collineation
for the Riemann, Ricci, Einstein and stress–energy
tensor. However, we also highlight the other pos-
sibilities in bimetric relativity. For example, consider
two stationary metrics with different timelike KVFs
in vacuum; in this case, it would be meaningful to
consider this as a stationary spacetime, even if the
KVFs are different. Hence, in general, one may
define an authentic spacetime symmetry in HR
bimetric theory referring to the minimal symmetry
group shared by the metrics, and not to the asso-
ciated symmetry vector fields.

(4) We proved that the two metrics share their KVFs
if, and only if, any two of the metrics in the set
Γ ¼ fhα ¼ gðg−1fÞα∶α ∈ Rg have the same KVF.

(5) If ημ and ξμ are KVFs of gμν and fμν, respectively,
then the following vector currents are covariantly
conserved,

∇μðVμν
g ημÞ≡ 0; ∇̃μðVμν

f ξνÞ≡ 0;

where Vμν
g and Vμν

f are the contributions from the
bimetric potential to the field equations [see (5)].
This is analogous to the current determined by a
stress–energy tensor,

∇μðTμν
g ημÞ≡ 0; ∇̃μðTμν

f ξνÞ≡ 0:

In asymptotically flat spacetime, this leads to defin-
ing an energy density contribution from the tensor
potentials Vμν

g and Vμν
f , see (51)–(52).

III. GEOMETRIC BACKGROUND AND
GENERAL ANALYSIS

In this section, we study spacetime symmetries on a
differentiable manifold endowed with two generic metrics,
without imposing any field equations. We only make
geometrical considerations and generalize the analysis
introduced in the first section. A short non-technical
summary of the results is provided below, for the conven-
ience of the reader not interested in the technicalities.
Wewant to understand if, starting with one metric having

some isometries, it is possible to constrain the isometries of
the second metric. The results are

(i) Consider having two metrics on the same spacetime,
and suppose one metric has some symmetries. Then,
the second metric need not to share the symmetries
with the first. Relations between the KVFs of the
two metrics can always be found, but without
additional requirements regarding the symmetries,
these relations allow for any possible symmetry
configuration.

(ii) One possible requirement is that the metrics have
KVFs with the same character (timelike, spacelike or
null). For instance, a sufficient condition for the
metrics gμν and fμν to have timelike KVFs ξμ and ημ

(i.e., to be stationary) is that they satisfy (in matrix
notation) g ¼ PTfP for some invertible P, and
η ¼ Pξ. The same is true if we require both metrics
to be axially symmetric, and in general if we require
KVFs with the same character.

(iii) Another requirement is that the metrics share some
isometries. This allows us to relate the KVFs of the
metrics. They need not to be the same, but they must
satisfy the same commutation relations; e.g., if we
require spherical symmetry for both metrics, then the
KVFs of both metrics must satisfy the angular
momentum commutation relations

½Ji; Jj� ¼ ϵijkJk: ð64Þ

We also add here the topological constraint of
Sec. II A, because it is as general as the previous
statements.

(iv) A spacetime can only have one topology, and the
two metrics must be compatible with it. This restricts
the possible metric combinations, independently on
the symmetries.

These outcomes can be applied to any modified theory of
gravity relying on (pseudo-)Riemannian geometry.
The rest of the section is quite technical; a discussion of

the results can be found in the conclusions.

A. The relation between torsion-free
covariant derivatives

On a differentiable manifold, given any two generic
torsion-free covariant derivative operators ∇μ and ∇̃μ, we
can define the tensor Cα

μν, symmetric in μ and ν, such that:

∇μων ¼ ∇̃μων − Cα
μνωα; ð65Þ

with ωα any 1-form defined on the cotangent space of the
manifold [2]. Knowing (65), one can straightforwardly
deduce how the covariant derivatives of a tensor of any rank
relate, and how the Riemann and Ricci tensors determined
by the two covariant derivatives relate,

R̃μνρ
σ ¼ Rμνρ

σ − 2Cσ ½μjαCαjν�ρ þ 2∇½μjCσ jν�ρ;

R̃μν ¼ Rμν − 2Cα½μjβCβ jα�ν þ 2∇½μjCαjα�ν; ð66Þ
where ½μj…jν� denotes the antisymmetrization of μ and ν
only. We notice that, in a coordinate basis, we can write

Cα
μν ¼ Γα

μν − Γ̃α
μν; ð67Þ

where the Γ’s are the Christoffel symbols of the covariant
derivatives ∇μ and ∇̃μ, respectively. If the two covariant
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derivative operators are compatible with two metrics gμν
and fμν, (67) can be rewritten as,

Cα
μν ¼

1

2
gαβð∇̃μgβν þ ∇̃νgμβ − ∇̃βgμνÞ

¼ −
1

2
fαβð∇μfβν þ∇νfμβ −∇βfμνÞ: ð68Þ

B. General properties of KVFs and the A-relation

Consider an open set of a differentiable manifold.
Suppose ημ and ξμ are two vector fields defined on the
spacetime and non-vanishing in the open set. Then,
suppose we can find a linear local map between them
having the following form,6

ξ̂μðxαÞ ≔ ξμðφβðxαÞÞ

¼ γμνðφβðxαÞÞ ∂φ
ν

∂xρ ðx
αÞηρðxαÞ

¼ Aμ
ρðxαÞηρðxαÞ; ð69Þ

where we have defined

Aμ
νðxαÞ ≔ γμρðφβðxαÞÞ ∂φ

ρ

∂xν ðx
αÞ; ð70Þ

to increase readability. In (69), we are applying two
separate transformations to the spacetime and its tangent
bundle. First, we apply the diffeomorphism φ to the
spacetime and we accordingly transform (push-forward)
the vector field ημ. Second, we apply a nondegenerate
bundle map γμν over the spacetime (see e.g. [41] and [42]).7

Following the terminology in [42], we refer to ξμ and ημ as
“A-related” KVFs, where A refers to the composition of the
two maps [see (70)].
We now assume ημ to be a KVF for gμν and write the

Killing equation,

Lηgμν ¼ 2∇ðμηνÞ ¼ 0; ð71Þ

with Lη being the Lie derivative along ημ, ημ ≔ gμνην, and
∇μ being the compatible covariant derivative operator for
gμν. We require ξμ to be a KVF for fμν,

Lξfμν ¼ 2∇̃ðμξνÞ ¼ 0; ð72Þ

with ξμ ≔ fμνξν and ∇̃μ being the compatible covariant
derivative operator for fμν.

8

Using (65) and (69) in (72), we can rewrite the Killing
equation for fμν as follows,

Lξfμν ¼ 2∇̃ðμξνÞ
¼ 2ð∇ðμξνÞ þ Cα

μνξαÞ
¼ 2½∇ðμðfνÞρAρ

σgσδη̂δÞ þ Cα
μνfαρAρ

σgσδη̂δ�
¼ 2½∇ðμðfνÞρAρ

σgσδÞ þ Cα
μνfαρAρ

σgσδ�η̂δ
þ 2fðνjρAρ

σgσδð∇jμÞη̂δÞ: ð73Þ

Defining the tensor,9

ϒν
δ ≔ fνρAρ

σgσδ; ð74Þ

(73) becomes,

Lξfμν ¼ 2½∇ðμϒνÞδ þ Cα
μνϒα

δ�ηδ
þ 2ϒðνjδð∇jμÞηδÞ ¼ 0: ð75Þ

Note that we have not used the hypothesis ∇ðμηνÞ ¼ 0,
because it never appears explicitly in (75). Therefore, we
can deduce that the isometries of gμν and fμν, in general, are
unrelated, as one might expect.
Now, assuming (36) defines the KVFs of gμν, we can find

the general relation between them and their A-related KVFs
of fμν by substituting (65) and (66) in the analog of (36) for
fμν. However, we have not been able to deduce any
information from the resulting equations other than that,
in the generic case, the KVFs of two metrics are unrelated,
as already shown in (73). Nonetheless, we have seen how to
make use of (36b) in the case of HR bimetric theory.
An interesting viewpoint is to consider the two metrics

related by a “generalized” vielbein. In such an approach,
the generalized vielbein Vμ

ν would transform one metric
into the other, e.g.

fμν ¼ Vμ
ρgρσVσ

ν; ð76Þ

as the standard vielbein does when one of the metric is
Minkowski. Then, a similar treatment as the one performed
in [43] is possible. There, it is shown that the standard
vielbein must satisfy some specific constraints in order for
the obtained metric to have a given set of isometries. In
principle, as a standard vielbein connect the Minkowski
metric with a completely different and generic metric, the

6The assumptions of nonvanishingness of the vector fields is
not strictly necessary. We could allow for the vector fields to
vanish the same number of times in the open set. However, if they
vanish a different number of times, the linear local map between
them will not exist (a linear map must send 0 to 0).

7Aμ
ν is a smooth automorphism of the tangent bundle onto

itself.

8The requirement of nonvanishingness for ημ and ξμ is also
motivated by their utilization as KVFs of the metrics. If a KVF
vanishes at some point, a more detailed treatment should be
carried out (see [3]).

9The tensor ϒν
δ defined in (74) is the adjoint map of Aμ

σ .
Specifically, ξν ¼ ϒν

δηδ.
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same holds in our setup for the generalized vielbein relating
gμν and fμν. Therefore, there cannot be a general relation
between the isometries of the two metrics.10

C. Constraints on the A-related KVFs
and the isometry groups

In this subsection we find the constraints on the map Aμ
ν

in (69) by requiring the KVFs of the two metrics to share
certain properties. In particular, the properties will concern
(i) the character of the KVFs and (ii) the Lie algebra that
they generate (we refer the reader to [44,45] for a rigorous
treatment of the Lie groups and Lie algebras on a (pseudo-)
Riemannian manifold).
Let us consider case (i) first. We explore the relation

between the character (timelike, spacelike, or null) of two
A-related KVFs and how it depends on the map Aμ

ν in (69).
Specifically, we discuss one condition that Aμ

ν can satisfy
in order for the A-related KVFs to have the same character
with respect to their associated metric.
This issue is of physical interest because it concerns

whether two metrics share or not some KVFs, both being
timelike, spacelike or null with respect to the pertinent
metric. For example, if the two metrics have different
timelike A-related KVFs, then they are both stationary and
could be both static (we will come back to this case later),
but have different KVFs.
ξμ and ημ having the same character with respect to fμν

and gμν means

sign½gαβηαηβ� ¼ sign½fαβξαξβ�: ð77Þ

One case in which this relation is certainly satisfied is when
(in matrix notation)

g ¼ ATfA; ð78Þ

i.e., A is a congruence between g and f. Stated differently,
the map A between A-related KVFs is a local isometry
between g and f (i.e., it is an isometry locally at each point
of the spacetime). Then,

gαβηαηβ ¼ fαβξαξβ; ð79Þ

which guarantees that ξμ and ημ always have the same
character. However, we remark that this is a sufficient, but
not necessary, condition to satisfy (77).
Next, we consider case (ii). We address the question of

when two metrics share their isometry groups, i.e., they
determine the same spacetime symmetry. Even if the two

metrics have KVFs of the same character, we are not
guaranteed that the metrics have the same isometry group.
The simplest case concerns stationarity, because it only
requires a timelike KVF [2]. Suppose that one metric, for
example gμν, possess a timelike KVF ημ. Then, if Aμ

ν is a
congruence between the metrics gμν and fμν, the A-related
KVF of ημ, i.e., ξμ, will be timelike with respect to fμν.
Therefore, both metrics will be stationary.11 However, this
does not take into account staticity. Each of the metrics can
be static (thus having a different isometry group), if, and
only if, their timelike KVFs are orthogonal to a congruence
of spacelike hypersurfaces [2]. No general relation between
the A-related KVFs is manifest in this case. Therefore, one
metric could be only stationary and the other static; i.e.,
different isometry groups, where the isometry group of a
static metric is a subgroup of the stationary isometry group,
the latter including the time reversal.
In the most general case, i.e., when considering arbitrary

isometry groups, the relation between the KVFs of two
metrics can be analyzed in terms of the Lie algebras of the
isometry groups (which are Lie groups) of the two metrics.
Let fημðnÞgn∈f1;…;δg, with δ dimension of the isometry group,
be a subset of the KVFs of gμν generating a Lie algebra
defined by the Lie bracket,

½ηðnÞ; ηðmÞ�ðFÞ ≔ ηðnÞðηðmÞðFÞÞ − ηðmÞðηðnÞðFÞÞ; ð80Þ

where m ∈ f1;…; δg and F is a C∞ scalar function
defined on the differentiable manifold. In order fμν to
have the same isometry group as gμν, a necessary condition
is that the set of A-related KVFs fAðη̂μðnÞÞgn∈f1;…;δg gen-

erates a Lie algebra which is isomorphic to the one
generated by the KVFs of gμν. This implies that the map
Aμ

ν between A-related KVFs is a Lie algebra isomorphism.
We remark that, even in the case of A-related KVFs
generating the same Lie algebra, they need not to be the
same. Indeed, a Lie algebra can have different generators
(i.e., different bases), and different choices determine
different KVFs, as we saw explicitly in the examples in
Sec. II B. Also, we recall that different Lie groups can have
the same Lie algebra, and that is why Aμ

ν being a Lie
algebra isomorphism is a necessary condition, but not
sufficient to have the same isometry group.12

D. Two particular cases

In this subsection we discuss two relevant cases allowing
us to understand more deeply our examples in Sec. II B.
The first case, concerning an isomorphism between

Lie algebras, is when γμν ¼ δμν in (69) and the map
10The “generalized vielbein” is actually determined by the map

in (69), which is not only a map between vector fields, but
actually between the two whole sectors. Indeed, we have already
introduced the adjoint map ϒν

δ relating the 1-forms; then, every
tensor can be mapped from a sector into the other.

11This result relies on the fact that all 1-dimensional Lie
algebras are isomorphic, because the Lie bracket is trivially zero.

12However, Lie groups sharing the Lie algebra have the same
universal covering [45].
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Aμ
ν ¼ ðφ�Þμν ¼ ðdφÞμν is simply the differential map

(push-forward) of a diffeomorphism φ from the spacetime
to itself.13 Indeed, the push-forward is a linear map that
preserves the Lie bracket, (see Proposition 4.3.10 in [46]),
i.e., for any two vector fields X and Y

φ�½X; Y� ¼ ½φ�X;φ�Y�; ð81Þ

i.e., φ-related KVFs. This case concerns metrics which
have the same form in different coordinate systems (i.e.,
related by a diffeomorphism). At first glance, this case may
seem trivial, but actually it is not, since the same coordinate
system can be, e.g. spherical for one metric and not for the
other. The second example and some cases within the first
example in Sec. II B, as discussed there, have φ-related
KVFs, hence belonging to this category.
The second case we consider is when no diffeomorphism

in (69) is applied and

Aμ
ν ¼ γμν ¼ fμρgρν: ð82Þ

An example belonging to this category will be treated in
Appendix A. In this case, ϒμ

ν ¼ δμ
ν and the two vector

fields ξμ and ημ have the same dual,

ξμ ¼ fμρξρ ¼ gμρηρ ¼ ημ: ð83Þ

In addition, (75) reduces to,

Lξfμν ¼ ½2∇ðμδνÞδ þ Cα
μνδα

δ�ηδ þ 2δðνjδð∇jμÞηδÞ
¼ Cα

μνηα þ 2∇ðμηνÞ ¼ Cα
μνηα

¼ ðΓ̃α
μν − Γα

μνÞηα ¼ 0; ð84Þ

where, in the second line, we have used our original
hypothesis in (71), i.e., ∇ðμηνÞ ¼ 0. With (84) we show
that, for Aμ

ν ¼ fμρgρν, ξμ is a KVF for f if, and only if, ημ is
orthogonal to Cα

μν.
14 One particular solution of (84) is

obtained when gμν and fμν share their compatible covariant
derivatives,

∇μ ¼ ∇̃μ ⇒ Γα
μν ¼ Γ̃α

μν: ð85Þ

It is well known that, given a metric on a differentiable
manifold, its compatible covariant derivative is uniquely
determined (see e.g. [2]). However, the converse is not true,
as was shown in [3,47,48]. Given a covariant derivative
operator on a differentiable manifold, there can be more

than one metric compatible with it. There are four possible
cases, one of them being when the two metrics are
proportional (the most commonly encountered, according
to [47,48]). Arguably, this is the least interesting case in
physics, because, the metrics being proportional, their null
cones (hence their causal structures) are the same.

IV. CONCLUSIONS

We study spacetime symmetries and topology in the HR
bimetric theory, where two metrics gμν and fμν are defined
on the same manifold. We determine the conditions for the
metrics to share their isometries, but we note they can
also have different isometries. In detail, we present a
proposition stating that, if any two metrics within the set
fhα ≔ gðg−1fÞα∶α ∈ Rg have the same KVF, then all other
fields in the theory must have the same KVF. Also, we find
a differential equation which determines a KVF shared by
both metrics.
We point out that many properties of spacetime sym-

metries, valid in GR, are not valid in HR bimetric theory.
For instance, an isometry of one metric is not necessarily a
collineation for the minimally coupled stress–energy ten-
sor, due to the tensor potentials Vg

μ
ν and Vf

μ
ν in the

bimetric field equations. Also, in vacuum, a KVF ξμ does
not have to satisfy ∇2ξμ ¼ 0. However, we pointed out
another geometrical property of a KVF, following from the
Komar identity, i.e., ∇μð∇2ξμÞ ¼ 0, for which we provide
an alternative proof in Appendix B.
In HR bimetric theory, concerning collineations of the

tensors in the theory, three configurations are possible:
(1) The two metrics have the same KVFs, which define

collineations for every tensor in both sectors.
(2) The two metrics do not have the same KVFs.

(a) In vacuum, tensors in the g-sector have the same
collineations as gμν, and those in the f-sector the
same as fμν.

(b) When stress–energy tensors are present, tensors
in the g-sector do not necessarily have the same
collineations as gμν, and tensors in the f-sector
do not necessarily have the same collineations
as fμν.

Therefore, contrary to GR, an isometry of the metric is
not necessarily a spacetime symmetry for all other tensors.
This raises the intriguing question of what the best
definition of a spacetime symmetry in HR bimetric theory
is. If the two metrics share the isometry, then all tensors
have the same spacetime symmetry, similar to GR. In this
case, the isometries of the metrics are spacetime sym-
metries for the whole system and we call them “bimetric
symmetries.” It seems reasonable to consider bimetric
symmetries as “authentic” spacetime symmetries in bimet-
ric relativity—i.e., symmetries for every tensors in the
theory—but we stress that there are other possibilities that
can be considered as authentic. For instance, we can have

13One can argue that this must be the case, because (active)
diffeomorphism of a manifold into itself can be thought as
(passive) change of coordinates, which cannot modify the
geometric properties of the manifold.

14Equivalently, (84) is an eigenequation for Cα
μν and ημ must

be an eigenvector of Cα
μν with eigenvalue zero.
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symmetries of one sector only, which we call “sectoral
symmetries”, and symmetries of some tensors only, named
“narrow symmetries.” Sectoral symmetries can be regarded
as authentic, in some cases. For example, we can have two
spherically symmetric metrics with different KVFs in
vacuum (as we show in Example III in Sec. II B). One
can think about this as a spherically symmetric spacetime.
Therefore, it seems reasonable to define an authentic
spacetime symmetries as the minimal symmetry group
shared by the sectors, without reference to the associated
symmetry vector fields.
We clarify that a topological constraint limits the number

of conceivable metric combinations. The unique diffeo-
morphism invariance of the theory allows us to have only a
single set of coordinate charts covering the spacetime. Such
a set is compatible with one, and only one topology, and
both metrics must be compatible with it.
We present examples showing the relations between the

spacetime symmetries, the KVFs and the topologies of the
two sectors. We provide several methods to determine
possible ansatzes with metrics having different isometry
groups, different KVFs or both in Appendix A.
Interesting open questions remain unanswered in our

analysis. First, it would be interesting to find non-GR
(analytical or numerical) solutions not sharing their KVFs
and/or their isometry groups. Second, our study does not
involve the fixed point structure of the KVFs’ flow, and it
would be desirable to understand the relations between
these structures in the two sectors. Third, we have not
considered the relationship between KVFs of the two
metrics and Lie point symmetries [49] of the bimetric field
equations.
In principle, new ansatzes can be found and used in HR

bimetric theory if we allow for different KVFs, or different
isometries of the two metrics, a fact that has gained little
attention in the literature so far. Our results clarify that this
is definitely a promising possibility to enlarge the spectrum
of (hopefully exact) solutions in bimetric relativity.
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APPENDIX A: HOW TO DETERMINE ANSATZES
HAVING DIFFERENT KVFS

In the main text, we have studied some particular
solutions of the bimetric field equations, focusing on their
isometries and on the shared spacetime topology. We
concluded that there are both solutions where the metrics
share their isometry group but not their KVFs, and

solutions where the metrics do not have the same isometry
group. In this appendix we devise three different methods
of generating infinite sets of solutions belonging to these
two categories. Hence the particular examples studied in
the main text are not unique.
In the first example, the two metrics will be Einstein

metrics with vanishing cosmological constants and vanish-
ing stress–energy tensors in both sectors, i.e.

Gg
μ
ν ¼ Gf

μ
ν ¼ 0; ðA1aÞ

Tg
μ
ν ¼ Tf

μ
ν ¼ 0: ðA1bÞ

The field equations to be solved are

Vg
μ
ν ¼ Vf

μ
ν ¼ 0: ðA2Þ

We note that, if the field equations (5) hold, the Bianchi
constraints (8) are automatically satisfied.15 In the second
example, we introduce stress–energy tensors in both sectors
to cancel the respective Einstein tensors and again we
are left to solve (A2). In the last example, we consider a
non-GR solution.

1. Method 1: Generating Minkowski solutions
with Lorentz transformations

We pick by hand the metric gμν to be the Minkowski
metric. Then there exists a coordinate chart xμ ¼ ðt; x; y; zÞ
such that the components of gμν are

gμν ¼ ημν ¼ diagð−1; 1; 1; 1Þ: ðA3Þ

Note that there are ten degrees of freedom (DOFs) in each
of the metrics and hence twenty in total. Choosing gμν as in
(A3), its DOFs are completely determined. Since f ¼ gS2,
the ten undetermined DOFs in f can be redistributed to the
square root matrix S. For Einstein metrics, the Eq. (A2)
completely determine the four eigenvalues λ1;…; λ4 of the
square root matrix in terms of the β-parameters and one of
β-parameters in terms of the others [19].16 This leaves six
undetermined DOFs in Sμν, which can be determined by
choosing its diagonalizing matrix. Here we choose a
constant Lorentz transformation Λμ

ν so that

ðΛ−1ÞμρSρσΛσ
μ ¼ diagðλ1; λ2; λ3; λ4Þ: ðA4Þ

With this choice, fμν simply becomes a Minkowski metric,

15If we solve the bimetric field equations (5) without using the
Bianchi constraints (8), the solution will satisfy the Bianchi
constraints automatically. The latter are enclosed and hidden in
the field equations. However, the explicit use of them makes
it simpler to solve the field equations.

16Unless for very a special set of the β-parameters, referred to
as algebraically decoupled in [19].
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fμν ¼ ðΛ−1;TÞμρdiagð−λ21; λ22; λ23; λ24ÞρσðΛ−1Þσν: ðA5Þ

It is easy to show that fμν is a Minkowski metric, albeit that
the Cartesian coordinates of fμν are different from those of
gμν. Defining a new set of coordinates x0μ via

∂x0μ
∂xν ¼ diagðλ1; λ2; λ3; λ4ÞΛ−1; ðA6Þ

this is a set of first-order linear partial differential equations
and always has a solution for x0μ as an (invertible) function
of xμ, so it is a valid coordinate transformation and
fμ0ν0 ¼ diagð−1; 1; 1; 1Þ. Hence 0 ¼ Gf

μ
ν ¼ Gf

μ0
ν0 . We

conclude that

gμν ¼ −dt2 þ dx2 þ dy2 þ dz2;

fμν ¼ ½ðΛ−1;TÞμρdiagð−λ21; λ22; λ23; λ24ÞρσðΛ−1Þσν�dxμdxν
¼ −dt02 þ dx02 þ dy02 þ dz02; ðA7Þ

solves the bimetric field equations. Note that Λμ
ν is an

arbitrary constant Lorentz matrix. Choosing different
Lorentz matrices (i.e., choosing different Lorentz diffeo-
morphisms between the sectors) yields different solutions.
Since g and f are related via the diffeomorphism (A6) they
must have the same symmetry group, as explained in
Sec. III D. However, the Cartesian charts of gμν and fμν do
not coincide generally and hence the KVFs of gμν and fμν
may differ; they are related by the Lorentz transforma-
tion Λμ

ν.
As an example, let β0;2;3 ¼ 1, β1 ¼ 0, β4 ¼ 2, λ1;3 ¼

ð1þ ffiffiffi
5

p Þ=2, and λ2;4 ¼ ð1 − ffiffiffi
5

p Þ=2. This choice of param-
eters satisfies Vg

μ
ν ¼ Vf

μ
ν ¼ 0. We choose the Lorentz

matrix to be a boost of velocity 1=2 in the x-direction
combined with a rotation of angle −π=4 around the x-axis.
fμν becomes

fμν ¼

0
BBBBBB@

− 1
6
ð9þ 5

ffiffiffi
5

p Þ − 2
ffiffi
5

p
3

0 0

− 2
ffiffi
5

p
3

1
6
ð9 − 5

ffiffiffi
5

p Þ 0 0

0 0 3
2

−
ffiffi
5

p
2

0 0 −
ffiffi
5

p
2

3
2

1
CCCCCCA
:

ðA8Þ

It is now straightforward to check whether or not the KVFs
of gμν and fμν coincide. The KVF generating the rotational
symmetry of gμν around the x-axis is η ¼ −z∂y þ y∂z. The
Lie derivative of fμν with respect to ημ does not vanish.
Rather, the KVF of fμν generating the rotational symmetry
around the x0-axis is ξ ¼ −z0∂y0 þ y0∂z0 , or, expressed in the
Cartesian chart xμ for gμν,

ξ ¼ ð−
ffiffiffi
5

p
yþ 3zÞ∂y þ ð−3yþ

ffiffiffi
5

p
zÞ∂z: ðA9Þ

Then, the metrics share their isometry group, but not all of
their KVFs.
Note how the assumption of a constant Λμ

ν in (A5)
insured gμν and fμν to be related via a diffeomorphism and
hence Gf

μ
ν to vanish. The method of generating solutions

could be generalized by retaining the spacetime depend-
ence of the Lorentz matrix. In that case however, Gf

μ
ν ¼ 0

does not hold automatically and becomes a differential
equation for ΛðxÞμν.
When solving the bimetric field equations it is common

to demand that a flat spacetime solution exists in the
theory. Usually this is achieved by demanding ημν ¼ gμν ¼
c2fμν to be a solution of the field equations, yielding
the conditions, sometimes called asymptotic flatness
conditions,

β0 ¼ −3β1 − 3β2 − β3;

β4 ¼ −β1 − 3β2 − 3β3: ðA10Þ

If we are minimally coupled to gμν, the trajectory of a
pointlike test particle will be a solution of the geodesic
equation defined by gμν. Hence all measurable geometrical
quantities will be contained in the metric gμν. Accordingly,
demanding gμν ¼ ημν is sufficient in order to obtain a
universe that we would measure as flat. In fact, even in the
case where both metrics are Minkowski, the solutions (A3),
(A8) shows that the β-parameters does not need to satisfy
the conditions (A10). Therefore, demanding (A10) is
unnecessarily restrictive in order for a biflat solution to
exist in the theory. On the other hand, demanding gμν ¼ ημν
does constraint fμν to have a specific form [19].

2. Method 2: Decoupled interaction terms

Let us choose a Lorentzian metric gμν and use
Synge’s method to define the stress–energy tensor mini-
mally coupled to gμν. Then, Tg

μ
ν is proportional to the

Einstein tensor of gμν, i.e.

Tg
μ
ν ≔ M2

gGg
μ
ν: ðA11Þ

For this construction to yield a physical solution it is
important to pick the metric gμν yielding the stress–energy
tensor in (A11) satisfying all the desired properties, e.g. the
null energy condition (NEC). For example, if gμν is the
FLRW metric for a homogeneous and isotropic matter
dominated universe, gμν ¼ −dt2 þ t4=3dx⃗, then the stress–
energy as defined by (A11) is physical, since we know that
its Einstein tensor is proportional to diagðt−2; 0; 0; 0Þ and so
it describes a pressure-less perfect fluid. In such a case, the
tensor potential Vg

μ
ν decouples from the field equations

and we are left with Vg
μ
ν ¼ 0.
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Now let Sμν be a rank (1,1) tensor such that gS ¼ ðgSÞT
and Vf

μ
νðSÞ ¼ 0. The first equation tells us that h ≔ gS is a

symmetric rank (0,2) tensor, implying that the f metric,
f ≔ hS, is also symmetric. To be explicit, fT ≔
SThT ¼ STh ¼ STgS ¼ ðgSÞTS ¼ f. Now, defining Tf

μ
ν

to be Tf
μ
ν ≔ M2

fGf
μ
ν, the bimetric field equations are

satisfied. Concerning the Bianchi constraints, they
are satisfied by construction since both tensor poten-
tials vanishes and the stress–energy tensors in both
sectors are defined to be the Einstein tensors of the two
metrics.
Note that the only equations that needs to be satisfied

when implementing the method are gS ¼ ðgSÞT to obtain a
symmetric fμν metric and Vg;f

μ
νðSÞ ¼ 0. The solution of

the last two equations determines in the general case the
(constant) eigenvalues of Sμν in terms of the β-parameters
and determines one of the β-parameters in terms of the
others.
To illustrate the method, let gμν be the Minkowski metric

so that the ten DOFs in gμν are completely specified. Then

the Einstein tensor for gμν vanishes and accordingly
Tg

μ
ν ≔ 0. Furthermore, assume that

ðΛ−1ðxÞÞμρSρσΛðxÞσν ¼ diagðλ1; λ2; λ3; λ4Þ; ðA12Þ
where ΛðxÞ is a nonconstant, local Lorentz matrix. Now,
the ten remaining DOFs are distributed as four in the
eigenvalues of Sμν and six in the Lorentz matrix. From
(A12) we see that gS ¼ ðgSÞT is satisfied by construction.
To satisfy Vg;f

μ
νðSÞ ¼ 0 we solve for the eigenvalues

of Sμν and for β4, so that λi ¼ λiðβ0;…; β4Þ and
β4 ¼ β4ðβ0;…; β3Þ. For definiteness, let ΛðxÞ be a rotation
around the z-axis with the rotation angle depending on z,

Λ−1;TðzÞ ¼

0
BBB@

1 0 0 0

0 cosðzÞ − sinðzÞ 0

0 sinðzÞ cosðzÞ 0

0 0 0 1

1
CCCA: ðA13Þ

fμν becomes

fμν ¼

0
BBBBB@

−λ21 0 0 0

0 λ22cos
2ðzÞ þ λ23sin

2ðzÞ 1
2
ðλ23 − λ22Þ sinð2zÞ 0

0 1
2
ðλ23 − λ22Þ sinð2zÞ λ23cos

2ðzÞ þ λ22sin
2ðzÞ 0

0 0 0 λ24

1
CCCCCA
: ðA14Þ

The Einstein tensor for fμν can then be computed and we define Tf
μ
ν ≔ M2

fGf
μ
ν. The explicit expression is not presented

here but it is important to note that if λ22 ≠ λ23, it is not vanishing. Thus, fμν is not the Minkowski metric. Interestingly
enough, the Ricci scalar of fμν is a constant depending on the square root eigenvalues λi

Rf ¼ −
ðλ22 − λ23Þ2
2λ22λ

2
3λ

2
4

: ðA15Þ

However, the Ricci tensor of fμν is not proportional to the identity matrix,

Rf
μ
ν ∝

0
BBB@

0 0 0 0

0 ðλ22 þ λ23Þ cosð2zÞ −ðλ22 þ λ23Þ sinð2zÞ 0

0 −ðλ22 þ λ23Þ sinð2zÞ −ðλ22 þ λ23Þ cosð2zÞ 0

0 0 0 −ðλ22 − λ23Þ

1
CCCA; ðA16Þ

so fμν is not an (A)dSmetric. Hence it is not maximally sym-
metric and does not have the same isometry group as gμν.
To summarize, due to screening from the stress–energy

tensors, the tensor potentials of gμν and fμν decouple from
the field equations. The interaction between the two metrics
vanishes, i.e., the metrics are effectively noninteracting.
Hence it is not surprising that gμν and fμν could have
completely different isometry groups. A note on the stress–
energy tensor of fμν might also be in place. Since Tf

μ
ν is

defined to be proportional to the Einstein tensor for Gf
μ
ν,

we are not guaranteed that such a stress-energy tensor
would satisfy, e.g., the energy conditions. In fact, as shown
in [50], in HR bimetric theory in vacuum, there is a strong
anti-correlation between the null energy conditions in the g-
and f-sector. However, it might be argued that from an
observational viewpoint, the f-sector is insignificant as
long as the gμν sector is well-behaved since only gμν and
Tg

μ
ν are measurable.
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3. Method 3: Non-GR solutions

Many works in the literature studied particular solutions
of HR bimetric theory, both in vacuum and with matter
sources (for a review, see e.g. [20] and references therein),
and the usual approach is to choose some ansatz for the two
metrics, motivated by an assumption about their isometries.
The approach that we follow here is essentially the same,
but now we allow for different KVFs in the two sectors. In
particular, we assume a specific form of the map Aμ

ν

between the KVFs, and we solve (75) for fμν (or,
equivalently, Sμν). Afterwards, we check that the obtained
ansatz satisfies the bimetric field equations (5). If so,
then the determined ansatz describes a solution of the
theory, otherwise such a configuration is not allowed in
the theory.
We have discussed the possibility of having the same

isometry group, but different KVFs. In this case, the two
metrics do not look explicitly symmetric in the same
coordinate chart. Indeed, we can only choose one set of
generators of the Lie algebra of the isometry group, and if
we choose the coordinate basis to be aligned with some of
the generators of the Lie algebra, then the components of
another set of generators will not look as simple in the same
coordinate basis.
The first potential ansatz we consider is obtained by

choosing, in (69),

φμ
ν ¼ δμν; Aμ

ν ¼ γμν ¼ fμνgμν ¼ ðS−2Þμν: ðA17Þ

In Sec. III D, we saw that in this case, the majority of the
cases (see [3,47,48]) provides two proportional metrics,
because the two metrics have to share their compatible
covariant derivative [see (84)]. In HR bimetric theory, if the
metrics are proportional, then the field equations (5) reduce
to two decoupled copies of the Einstein equations, i.e., gμν
is a solution of the Einstein equations and fμν ¼ c2gμν, with
c ∈ R; hence Sμν ¼ cδμν. We conclude that, assuming
Aμ

ν ¼ ðS−2Þμν, the ansatz having proportional metrics
and proportional KVFs is consistent.
Note that ðS−2Þμν is not a congruence between gμν and

fμν in HR bimetric theory. Therefore, in this case, we are
not guaranteed that (77) holds; however, Aμ

ν being a
congruence between gμν and fμν is a sufficient, but not
necessary condition for the KVFs of the two sectors to have
the same character. Therefore, there are solutions for which
the KVFs are not related by a congruence between the
metrics, but still have A-related KVFs with the same
character in the two sectors.
The second potential ansatz we consider is,

φμ
ν ¼ δμν; Aμ

ν ¼ γμν ¼ ðS−1Þμν: ðA18Þ

for which we are assured that paired KVFs have the same
character with respect to the corresponding metric. Indeed,
in HR bimetric theory, by definition we are guaranteed that

the square root Sμν ¼
ffiffiffiffiffiffiffi
g−1

p
fμν exists [12], and thus (in

matrix notation),

f ¼ STgS: ðA19Þ

On the other hand, in this case (75) is not as simple as the
previous case, since

ϒ ¼ fS−1g−1 ¼ f
ffiffiffiffiffiffiffiffiffiffi
f−1g

q
g−1 ¼ ST; ðA20Þ

which implies (coming back to the index notation),

Lξfμν ¼ ½2∇ðμSTνÞβ − Cα
μνSTαβ�ηβ

þ 2STðνjβð∇jμÞηβÞ ¼ 0: ðA21Þ

We report here the solution of (A21) in the case of a static
and spherically symmetric gμν in the spherical polar chart
ðt; r; θ;ϕÞ,

g ¼

0
BBB@

−eqðrÞFðrÞ 0 0 0

0 FðrÞ−1 0 0

0 0 r2 0

0 0 0 r2sin2ðθÞ

1
CCCA ðA22Þ

with the usual set of KVFs, assuming a handy expression
for Sμν. We first determine the most general expression for
Sμν, obtained by the constraint that hμν ¼ gμρSρν (the
symmetrizing quadratic form) is symmetric; the symmetr-
isation of hμν automatically implies the same for fμν. The
resulting Sμν is,

Sμν ¼

0
BBBBB@

S00 S01 S02 S03
−eqF2S01 S11 S12 S13

− eqF
r2 S02

S12
Fr2 S22 S23

− eqF
r2sin2ðθÞ S03

S13
Fr2sin2ðθÞ

S23
sin2ðθÞ S33

1
CCCCCA
; ðA23Þ

where all the functions Sij depend on all the variables
ðt; r; θ;ϕÞ. Since solving (A21) with the general ansatz
(A23) turns out to be quite involved, we assumed a simpler
form for Sμν, setting to 0 some of its components. Here we
report only one case which turns out, in the end, to have
proportional KVFs, with
Let us assume the following Sμν,

Sμν ¼

0
BBB@

S00 S01 0 0

−eqF2S01 S11 0 0

0 0 S22 0

0 0 0 S33

1
CCCA; ðA24Þ

where the functions Sij depend on all the variables. Solving
(A21) yields,
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Sμν ¼

0
BBB@

S00ðtÞ 0 0 0

0 S11ðrÞ 0 0

0 0 λ 0

0 0 0 λ

1
CCCA; ðA25Þ

with λ ¼ const. Given that ξμ ¼ ðS−1Þμνην, we con-
clude that the S−1-related KVFs are proportional in this
framework.
The field equations (5) and the Bianchi constraint (8)

require S00ðtÞ ¼ const. This ansatz only contains three field
variables, namely qðrÞ, FðrÞ and S11ðrÞ, but the field
equations and the Bianchi constraints constitute a system of
seven coupled ordinary differential equations. Therefore,
the system is overdetermined and after solving analytically
for the three fields, there are algebraic equations and
consistency relations to be satisfied. The solution of this
differential–algebraic system (analytical or numerical) is
left for future work.

APPENDIX B: ALTERNATIVE PROOF FOR (44)

The Komar identity, presented in [39] and proved in [40],
states that, for a generic vector field Vμ,

∇μ∇ν∇½νVμ� ≡ 0: ðB1Þ

This a purely geometrical identity, therefore it holds in any
modified theory of gravity relying on (pseudo)-Riemannian
geometry.
The proof in [40] is based on the variation of the

Einstein–Hilbert Lagrangian density. We now present an
alternative and simpler proof.

If ∇½νVμ� ¼ 0, then the Komar identity is trivially true,
hence we suppose it is not zero. By making use of the
commutation rule of covariant derivatives involving the
Riemann curvature tensor [2], we can rewrite (B1) as

∇μ∇ν∇½νVμ�

¼ ∇μ∇ν∇νVμ −∇μ∇ν∇μVν

¼ ∇ν∇μ∇νVμ − Rμνρ
ν∇ρVμ − Rμνσ

μ∇νVσ

−∇ν∇μ∇μVν þ Rμνρ
μ∇ρVν þ Rμνσ

ν∇μVσ

¼ ∇ν∇μ∇νVμ − Rμρ∇ρVμ þ Rνσ∇νVσ

−∇ν∇μ∇μVν − Rνσ∇σVν þ Rμρ∇μVρ

¼ ∇ν∇μ∇½νVμ� þ Rμρ∇½μVρ� þ Rνσ∇½νVσ�

¼ ∇ν∇μ∇½νVμ�; ðB2Þ

i.e.,

∇μ∇ν∇½νVμ� −∇ν∇μ∇½νVμ� ¼ 2∇½μ∇ν�∇½νVμ� ≡ 0: ðB3Þ

From (B3) it follows

∇μ∇ν∇½νVμ� ¼ ∇ðμ∇νÞ∇½νVμ� ≡ 0; ðB4Þ

since we are contracting a symmetric expression in μ, ν,
with an antisymmetric expression in μ, ν. This completes
the proof.
For a KVF, ∇½νξμ� ¼ ∇νξμ due to the Killing equa-

tion (35), therefore

∇μ∇ν∇½νξμ� ¼ ∇μð∇2ξμÞ≡ 0: ðB5Þ
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