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We study the gravitational field of static p-branes in D-dimensional Minkowski space in the framework
of linearized ghost-free (GF) gravity. The concrete models of GF gravity we consider are parametrized by
the nonlocal form factors expð−□=μ2Þ and expð□2=μ4Þ, where μ−1 is the scale of nonlocality. We show
that the singular behavior of the gravitational field of p-branes in general relativity is cured by short-range
modifications introduced by the nonlocalities, and we derive exact expressions of the regularized
gravitational fields, whose geometry can be written as a warped metric. For large distances compared
to the scale of nonlocality, μr → ∞, our solutions approach those found in linearized general relativity.
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I. INTRODUCTION

Einstein’s theory of general relativity (GR) describes
gravitational physics on the scale of our solar system
remarkably well, and it has a well-defined Newtonian limit
in the context of weak gravitational fields. However, one of
the predictions of GR is the existence of spacetime
singularities: spacetime loses geodesic completeness, and
the curvature diverges. These problematic features in the
ultraviolet (UV) regime are deemed physically unreason-
able, and hence one may ask the question: what is the
correct UV completion of gravity?
A fairly generic approach is to UV complete GR by

adding terms that are quadratic or of higher order in the
curvature, or contain more derivatives. This is a natural
procedure since these terms are generated by the effective
action during quantization anyway. For an example, see e.g.
[1,2]. As it turns out, the gravitational potential of a point
mass becomes regular for this class of theories (see [3,4] for
details). Unfortunately, the propagators of these theories
contain ghost modes, reflecting an inherent instability of
this class of theories [1,2,5,6]. Hence, the addition of other
higher derivative terms may mitigate the UV behavior but
is usually accompanied by extra unphysical ghost or
tachyon modes.
An interesting approach is to consider a theory with

infinitely many derivatives, which is equivalent to a non-
local modification of GR. Nonlocal field theories were
considered a long time ago (see, e.g., [7–11]); see also
[12,13] for a more recent approach. Also, they appear
naturally in the context of noncommutative geometry

deformation of GR [14,15] (see the review [16] and
references therein). The initial value problem in nonlocal
theories was studied in [6,17].
In some cases, with a proper choice of nonlocal form

factors, UV singularities may be avoided while no extra
propagating degrees of freedom appear. Such modifications
of GR are called ghost-free (GF) gravity (see, e.g., [18–27]
and references therein). These theories are usually charac-
terized by a mass parameter μ or a length scale l ∼ μ−1 at
which nonlocalities become important. At large scales GF
gravity is expected to reproduce GR. The theory may have
another energy scale, μ�, where quantum fluctuations of the
metric become large. We assume that μ ≪ μ� (or, equiv-
alently, l ≫ l� ¼ μ−1� ). In other words, in the approach
adopted in this paper the metric is treated as classical, that
is, its quantum fluctuations are considered to be small.
Therefore the length parameter l is chosen to be larger than
the Planck length, the string scale, or some other scale,
depending on the fundamental quantum theory of gravity.
Recently, the entropy of black holes [28], quantum

effects like one-loop renormalization [29], and the
Unruh effect [30,31] have been studied in GF gravity in
higher dimensions. The study of GF gravity as applied to
the problem of cosmological singularities can be found in
[32,33]. GF gravity applications to the problem of black
hole singularities were considered in [34–40]. It is well
known that linearized GF gravity regularizes the gravita-
tional field of pointlike sources [20,35,41], and recent
studies indicate that this may remain true even in the full
nonlinear GF theory [42]. Moreover, all four-dimensional
curvature invariants are finite everywhere, and at the
location of the point particle spacetime approaches con-
formal flatness [43]. One can expect that for black holes of
large mass and size the GF modification of gravity results
only in small corrections. In particular, the properties of
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their horizons remain practically the same. For black holes
of small masses (∼μ), GF gravity effects may become very
important. For example, dynamical solutions, like collaps-
ing matter or head-on collision of particles in four and
higher dimensions, were studied in [41,44], showing that
there exists a mass gap for black hole formation in GF
gravity.
One can expect that these properties (regularity of

solutions and mass gap effect) might be valid in the
complete GF gravity even in the strong field regime.
Before studying this rather complicated problem it is
instructive to demonstrate that linearized GR gravity
regularizes the gravitational fields of not only pointlike
particles, but also the field of other infinitely thin sources,
e.g., cosmic strings, membranes, and p-branes in arbitrary
dimensions. The aim of this paper is to demonstrate this
explicitly and to obtain explicit solutions of the linearized
GF gravity equations for such objects.
Let us first discuss the well-known example of a cosmic

string [45] in the context of GR. Expressed in Cartesian
coordinates, a straight cosmic string in Minkowski space
located along the z axis has the stress-energy tensor

Tμν ¼ ϵðδtμδtν − δzμδ
z
νÞδðxÞδðyÞ: ð1:1Þ

Defining gμν ¼ ημν þ hμν, a test-string solution in the
framework of linearized GR in the harmonic gauge is
given by

hxx ¼ hyy ¼ −8Gϵ lnðr=r0Þ; ð1:2Þ

where r2 ¼ x2 þ y2 and r0 is an integration constant.
To linear order the curvature tensor vanishes everywhere

except for the origin of the xy plane along the z axis, where
it has a δ-like singularity producing an angle deficit.
Accordingly, the geometry of a straight cosmic string
corresponds to Minkowski space with a conical deficit
angle δ ¼ 8πGϵ.
Is this curvature singularity along the z axis cured in GF

gravity? In order to answer this and similar questions in quite
some generality, in this workwe study the static gravitational
field of p-branes in D-dimensional Minkowski space,
employing the framework of linearized GF gravity. In
particular, we show that in the case of p ¼ 1 and D ¼ 4
(cosmic strings) the conical singularity is resolved.
Moreover, we derive explicitly the regular potentials for
any p-brane in any number of spacetime dimensions.
This paper is organized as follows: In Sec. II we briefly

sketch the derivation of linearized GF gravity, before
discussing the general gravitational field of p-branes in
Sec. III. In Sec. IV we list a set of explicit examples and
discuss their behavior in detail, before discussing the
obtained results in Sec. V.

II. LINEARIZED GHOST-FREE GRAVITY

Consider a weak perturbation on Minkowski space in
Cartesian coordinates,

gμν ¼ ημν þ hμν; ð2:1Þ

where ημν is the Minkowski metric, and hμν is assumed to
be small. The dynamics of hμν can be derived by variation
of the GF gravity action. In order to study the action of
linearized GF gravity, it is sufficient to consider only terms
linear and quadratic in curvature, with generic nonlocal
form factors. Using the symmetry properties of the
Riemann tensor, the Bianchi identities, and the commuta-
tivity of the covariant derivations up to linear in the
curvature terms one can show [4,46] that there are only
two independent nonlocal form factors that characterize
nonlocal linearized gravity in arbitrary dimensions. In D
dimensions, a generic action for linearized GF gravity
written in Cartesian coordinates then takes the form [28,47]

S ¼ 1

2κ

Z
dDx

�
1

2
hμνað□Þ□hμν − hμνað□Þ∂μ∂αhαν

þ hμνcð□Þ∂μ∂νh −
1

2
hcð□Þ□h

þ 1

2
hμν

að□Þ − cð□Þ
□

∂μ∂ν∂α∂βhαβ
�
; ð2:2Þ

where að□Þ and cð□Þ are arbitrary, dimensionless form
factors and κ ¼ 8πGD is the gravitational constant in D
dimensions. This general action can be employed to
describe various linearized gravitational theories [22]:

(i) GR is recovered for a ¼ c ¼ 1,
(ii) L(R) gravity for the choice a ¼ 1, c ¼ 1 − L00ð□Þ,
(iii) Weyl gravity for L¼R−μ−2CμναβCμναβ, a¼1−μ−2□,

c ¼ 1 − μ−2□=3, where μ is a parameter of dimen-
sion mass.

At any rate, in order to recover GR in the infrared (IR)
domain the form factors functions must satisfy the con-
dition að0Þ ¼ cð0Þ ¼ 1.1

Let now τμν be a stress-energy tensor of matter,

τμν ¼ 2ffiffiffiffiffiffi−gp δSmatter

δgμν
; ð2:3Þ

then the linearized field equations for hμν become

1Because the form factors að□Þ and cð□Þ are dimensionless,
the d’Alembertian □ can only enter these in combination with at
least one length scale l ∼ μ−1 via the dimensionless expression
l2□. Here, l encodes the scale of nonlocality and we understand
the expressions að0Þ and cð0Þ as the limit of l → 0.
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að□Þ½□hμν − ∂σð∂νhμσ þ ∂μhνσÞ�
þ cð□Þ½ημνð∂ρ∂σhρσ −□hÞ þ ∂μ∂νh�

þ að□Þ − cð□Þ
□

∂μ∂ν∂ρ∂σhρσ ¼ −2κτμν: ð2:4Þ

The resulting nonlocal theory of gravity is ghost-free if it is
described by form factors að□Þ and cð□Þ that are entire
functions of the operator □. Such entire functions can be
written as the exponential of any finite polynomial.
According to the classification adopted in [47], we call
the simplest example of a GF theory GF1 with the choice

að□Þ ¼ cð□Þ ¼ expð−□=μ2Þ: ð2:5Þ

This version of GF gravity has been extensively studied in
the literature [18–27], and this choice corresponds to the
absence of propagating spin zero gravitational modes. The
mass parameter μ describes the length scale l ¼ μ−1 below
which nonlocalities start become relevant and GF gravity
solutions deviate significantly from those obtained in GR.
Recently [47], more general theories of the type GFN with

að□Þ ¼ cð□Þ ¼ expðð−□=μ2ÞNÞ ð2:6Þ

have been studied. It was demonstrated that in the presence
of time-dependent sources GFN gravities for odd N suffer
from instabilities, whereas they are stable in the case of
even N.

III. P-BRANES IN D-DIMENSIONAL
MINKOWSKI SPACE

A. p-brane ansatz

Let us consider a plane (pþ 1)-dimensional timelike
surface (“p-brane”) embedded in D-dimensional
Minkowski space. We use Cartesian coordinates xμ ¼
ðt; za; yiÞ such that ðt; zaÞ are the coordinates on the
p-brane (a ¼ 1;…; p), while yi are the spatial coordinates
in the bulk directions (with i ¼ 1;…; m). Thus we have
D ¼ 1þ pþm and the p-brane is located at yi ¼ 0. From
now on, we call the number m the codimensionality of
the brane.
The stress-energy tensor of the brane is

Tμν ¼ ϵ

�
δtμδ

t
ν −

Xp
a¼1

δzaμ δ
za
ν

�Ym
i¼1

δðyiÞ; ð3:1Þ

where ϵ is the (positive) surface tension. In this approxi-
mation for the stress-energy tensor we assume that the
thickness of the matter source is much smaller than the
characteristic length parameter l.
The presence of stress energy (3.1) will lead to a

deviation from Minkowski spacetime which we shall refer

to as hμν. As an ansatz for the perturbed spacetime we
choose a warped geometry [48,49]

ds2 ¼ fðyiÞdσ2ðt; zaÞ þ dγ2ðyiÞ: ð3:2Þ

We shall assume that the above metric in Cartesian
coordinates deviates only slightly from Minkowski space.
As such, there exists a gauge where hμν has the form

ds2 ¼ ð1þ uÞð−dt2 þ dz21 þ � � � þ dz2pÞ
þ ð1þ vÞðdy21 þ � � � þ dy2mÞ: ð3:3Þ

Here, the functions u and v depend on the distance from the
brane r defined as r2 ≡P

m
i¼1ðyiÞ2. We consider these

functions as perturbations, such that juðrÞj ≪ 1 and
jvðrÞj ≪ 1.
This geometry has the following isometries:
(i) Poincaré symmetry Pð1; pÞ in the ðt; zaÞ sector,
(ii) OðmÞ rotation symmetry in the yi sector.

The full isometry group of (3.3) is hence Pð1; pÞ ×OðmÞ.
The discrete symmetries Zi∶yi → −yi further guarantee
that the surface described by yi ¼ 0 (the p-brane) is
geodesic and hence minimal.
Let us remark that the Newtonian limit can be read off

from the htt component, and we define the Newtonian
potential to be given by

ΦN ≔ −
1

2
htt ¼

1

2
u ð3:4Þ

for later convenience. Incidentally, for the cosmic string in
GR,Eq. (1.2), one hasΦN ¼ 0, implying that test particles do
not feel any forces acting on them in the Newtonian limit.

B. GF linearized equations and their solution

For the warped geometry (3.3) the linearized equa-
tions (2.4) take the following form:

½ðpþ 1Þcð△Þ − að△Þ�△uþ ðm − 1Þcð△Þ△v

¼ −2κϵ
Ym
i¼1

δðyiÞ; ð3:5Þ

½að△Þ − ðm − 1Þcð△Þ�ðδij△ − ∂i∂jÞv
− ðpþ 1Þcð△Þðδij△ − ∂i∂jÞu ¼ 0; ð3:6Þ

where we defined ∂i ≡ ∂=∂yi such that△ ≔
P

m
i¼1 ∂2

i is the
m-dimensional Laplacian, and δij is the Euclidean metric in
the yi sector. In a simple case when

cð△Þ ¼ ð1þ αÞað△Þ; α ≠ −1; ð3:7Þ

the homogeneous equation (3.6) can be solved by setting
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u ¼ 1 − ðm − 1Þð1þ αÞ
ð1þ αÞð1þ pÞ v: ð3:8Þ

The remaining equation becomes

fmpað△Þ△v ¼ −2κϵ
Ym
i¼1

δðyiÞ; ð3:9Þ

where we introduced the constant prefactor

fmp ≡ ð1þ αÞðmþ pÞ − 1

ð1þ αÞð1þ pÞ : ð3:10Þ

Equation (3.9) can be solved by using the method of Green
functions [47,50]. Given the function a ¼ að△Þ, the Green
function DmðrÞ for m ≥ 3 is

DmðrÞ ¼
1

ð2πÞm2rm−2

Z
∞

0

dζ
ζ
m−4
2

að−ζ2=r2Þ Jm
2
−1ðζÞ; ð3:11Þ

where Jn denotes the Bessel function of the first kind. The
Green functions for m < 3 can be determined via

DmðrÞ ¼ −2π
Z

dr̃Dmþ2ðr̃Þr̃

⇔ Dmþ2ðrÞ ¼ −
1

2πr
∂DmðrÞ

∂r : ð3:12Þ

The above equality follows directly from the differential
properties of Jn [47]. The exact solution for a p-brane in
ðD ¼ 1þ pþmÞ-dimensional spacetime is then given by

vðrÞ ¼ 2κϵ

fmp
DmðrÞ: ð3:13Þ

Let us notice that the radial dependence of v is universal
and does not depend on the dimensionality of the brane: it
only depends on the brane codimensionality m. The
parameter p enters only in a constant prefactor. In this
linear approximation to the full GF gravity, one can also
consider a superposition of δ-like p-branes: the obtained
Green functions can be used to generate linearized GF
gravity solutions corresponding to thick p-branes. It is clear
that such a “smeared” solution remains regular and has the
correct GR behavior at far distances. In a special case when
the thickness of the p-brane is of the order of Planck length,
the gravitational field at the brane position would be
regular, but slightly different from the GF solution.
However, at the scale l ≫ l� it will coincide with the latter.

IV. GF1 AND GF2 THEORY

Let us consider the potential (3.13) in the cases of GF1
and GF2 theory. That is, from now on we put α ¼ 0 as
required by að□Þ ¼ cð□Þ. In this case, the relation (3.8)
simplifies and takes the form

u ¼ 2 −m
1þ p

v: ð4:1Þ

One of the immediate consequences of this relation is that
for codimension 2, that is, when m ¼ 2, the Newtonian
potential ΦN vanishes. This is a generalization of the result
for the cosmic string.
In what follows, we will first derive the explicit Green

functions for GF1 and GF2 theory, and then discuss the
relation to the Green functions of linearized GR.

A. Green functions of GF1 and GF2 theory

In order to distinguish the Green functions Dm for
different versions GFN of GF gravity, we use the corre-
sponding index N as a superscript and write the Green

function in the form DðNÞ
m . The Green function for m ≥ 3 in

GF1 theory is [47]

Dð1Þ
m ðrÞ ¼ γðm

2
− 1; μ

2r2

4
Þ

4πm=2rm−2 ;

γðs; xÞ ≔
Z

x

0

zs−1e−zdz; ð4:2Þ

where γðs; xÞ denotes the lower incomplete gamma func-
tion. For m ¼ 1, 2, 3, 4 we find the following expressions:

Dð1Þ
1 ðrÞ ¼ −

r
2
erf

�
μr
2

�
−
exp ð−μ2r2=4Þ − 1ffiffiffi

π
p

μ
;

Dð1Þ
2 ðrÞ ¼ −

1

4π
Ein

�
μ2r2

4

�
;

Dð1Þ
3 ðrÞ ¼ erfðμr=2Þ

4πr
;

Dð1Þ
4 ðrÞ ¼ 1 − expð−μ2r2=4Þ

4π2r2
; ð4:3Þ

where EinðxÞ is the complementary exponential integral
and erfðxÞ is the error function:

EinðxÞ ≔
Z

x

0

1 − e−z

z
dz ¼ E1ðxÞ þ ln xþ γ;

E1ðxÞ ≔ e−x
Z

∞

0

e−z

zþ x
dz; erfðxÞ ≔ 2ffiffiffi

π
p

Z
x

0

e−z
2

dz:

ð4:4Þ

In the above, E1 denotes the exponential integral, and
γ ¼ 0.577… is the Euler–Mascheroni constant [51]. The
expressions for m ¼ 1, 2 have been calculated by using
Eq. (3.12), and the above set (4.3) is sufficient to calculate
D1

mðrÞ for any m.
In GF2 theory, the general Green function for m ≥ 3

takes the more complicated form [47]
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Dð2Þ
m ðrÞ ¼ μm−2

mðm − 2Þ23m
2
−2π

m−1
2

�
m

Γðm
4
Þ 1F3

�
m
4
−
1

2
;
1

2
;
m
4
;
m
4
þ 1

2
; y2

�
−
2ðm − 2Þy
Γðm

4
þ 1

2
Þ 1F3

�
m
4
;
3

2
;
m
4
þ 1;

m
4
þ 1

2
; y2

��
; ð4:5Þ

where we defined y≡ ðμ2r2Þ=16, Γ denotes the gamma function, and pFq corresponds to the generalized hypergeometric
function [51]. Again, the cases m ¼ 1, 2 can be obtained by making use of Eq. (3.12). We find the following expressions:

Dð2Þ
1 ðrÞ ¼ −

1

μπ

�
2Γ

�
1

4

�
y1F3

�
1

4
;
3

4
;
5

4
;
3

2
; y2

�
þ Γ

�
3

4

�
½1F3

�
−
1

4
;
1

4
;
1

2
;
3

4
; y2

�
− 1�

�
;

Dð2Þ
2 ðrÞ ¼ −

y
2π

� ffiffiffi
π

p
1F3

�
1

2
; 1;

3

2
;
3

2
; y2

�
− y2F4

�
1; 1;

3

2
;
3

2
; 2; 2; y2

��
;

Dð2Þ
3 ðrÞ ¼ μ

6π2

�
3Γ

�
5

4

�
1F3

�
1

4
;
1

2
;
3

4
;
5

4
; y2

�
− 2yΓ

�
3

4

�
1F3

�
3

4
;
5

4
;
3

2
;
7

4
; y2

��
;

Dð2Þ
4 ðrÞ ¼ μ2

64π2y

�
1 − 0F2

�
1

2
;
1

2
; y2

�
þ 2

ffiffiffi
π

p
y0F2

�
1;
3

2
; y2

��
; ð4:6Þ

where again y≡ ðμ2r2Þ=16.

FIG. 1. Dimensionless Green functions μ2−mDmðrÞ for linearized GR, GF1, and GF2 theory in the cases m ¼ 1, 2, 3, 4. The solid line
corresponds to linearized GR, the dashed line corresponds to linearized GF1 theory, and the dotted line represents linearized GF2 theory.
All three theories agree for larger values of μr, that is, when the distance r is larger than the scale of nonlocality μ−1. For short distances,
μr ≪ 1, there are significant deviations between GR (which is singular at the origin) and GF1 and GF2 (which, in turn, are perfectly well
behaved).
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Lastly, the Green functions of linearized GR can be
obtained from both the GF1 Green functionsD

ð1Þ
m ðrÞ, or the

GF2 Green functions Dð2Þ
m ðrÞ, by considering the limit

μ → ∞. Denoting the GR Green functions as DGR
m ðrÞ, we

find the expressions

DGR
1 ðrÞ ¼ −

r
2
;

DGR
2 ðrÞ ¼ −

1

4π
logðrÞ þ γ þOðlog μÞ;

DGR
3 ðrÞ ¼ 1

4πr
;

DGR
4 ðrÞ ¼ 1

4π2r2
: ð4:7Þ

For DGR
2 ðrÞ, the logarithmic dependence on log μ leads

to a divergence; however, it is of no physical relevance for
matter sources with compact support.2

Note that both the Green functions for GF1 theory (4.3)
and GF2 theory (4.6) are manifestly regular at r ¼ 0. In the
cases m ¼ 3, 4 their normalization has been chosen such
that D1

mðrÞ ¼ D2
mðrÞ ¼ 0 for r → ∞; in the cases m ¼ 1, 2

their Green functions are unbounded for large radii, which
is why we chose instead D1

mðrÞ ¼ D2
mðrÞ ¼ 0 for r → 0. In

contrast, the GR Green functions are singular at r ¼ 0.
See the plots of these Green functions in Fig. 1.

B. Linearized curvature

It is also useful to study the curvature of the p-brane
solutions. In linear approximation, the Riemann tensor, the
Ricci tensor, and the Ricci scalar are [52]

Rμ
νρσ ¼ ∂ν∂ ½ρhσ�μ − ∂μ∂ ½ρhσ�ν ð4:8Þ

Rμν ¼ ∂α∂ðμhνÞα −
1

2
ð∂μ∂νhþ□hμνÞ; ð4:9Þ

R ¼ ∂α∂βhαβ −□h: ð4:10Þ

Besides the curvature tensors and invariants, it is interesting
to consider the quantity

ρGR ≡ 1

κ
Gμνξ

μξν; ð4:11Þ

whereGμν is the linearized Einstein tensor and ξ ¼ ∂t is the
timelike Killing vector. We see that in GR, ρGR corresponds
to the energy density perceived by a static observer
tangential to ξ.

Substituting (3.3) and the interrelation of u and v, see
Eq. (3.8), into Eqs. (4.8)–(4.10), we find for the Ricci scalar
as well as for the energy density

R ¼ −△v; ρGR ¼ mþ p − 1

2ð1þ pÞ R: ð4:12Þ

The above justifies the interpretation of the Ricci scalar as a
rescaled energy density. Moreover, the quadratic curvature
invariants take the form

C2 ≡ CμνρσCμνρσ

¼ p2 −m2 þ 3mþ p − 2

ð1þ pÞðmþ pÞ ð△vÞ2

þ ðm − 2Þðmþ p − 1Þ
1þ p

ð∂i∂jvÞð∂i∂jvÞ; ð4:13Þ

R2 ≡ RμνRμν

¼ mðmþ p − 1Þ2
ð1þ pÞðmþ pþ 1Þ ð△vÞ2; ð4:14Þ

where Rμν denotes the tracefree Ricci tensor (A6). In
D ¼ 4, one may consider the Chern-Pontryagin pseudo-
scalar. It vanishes for warped geometries such as (3.3):

P ≡ 1

2
ϵμναβCαβ

ρσCμνρσ ¼ 0: ð4:15Þ

For more details of the curvature components, see
Appendix A. Due to the radial dependence of the function
v ¼ vðrÞ, one has the following identities:

△v ¼ v00 þ ðm − 1Þ v
0

r
; ð4:16Þ

ð∂i∂jvÞð∂i∂jvÞ ¼ ðv00Þ2 þ ðm − 1Þ
�
v0

r

�
2

: ð4:17Þ

Using Eqs. (3.12) and (3.13), the above invariants can be
rewritten in terms of higher-dimensional Green functions.
Moreover, by virtue of Eq. (3.13) and the above relations,
for a qualitative study of the behavior of the curvature
invariants it is sufficient to substitute DmðrÞ into the
expressions (4.16) and (4.17). Hence let us consider the
dimensionless invariants

Ið1;2Þm ≡ −μ−m△Dð1;2Þ
m ðrÞ; ð4:18Þ

Jð1;2Þm ≡ μ−2mð∂i∂jD
ð1;2Þ
m ðrÞÞð∂i∂jD1;2

m ðrÞÞ: ð4:19Þ

We may think of the invariant Ið1;2Þm as a rescaled energy
density ρGR as per Eq. (4.12). Using Eq. (3.12) as well as
Eqs. (4.16) and (4.17), the above invariants can be recast
into the form

2If Gðx; x0Þ is the Green function for the differential equation
Dϕ ¼ σ, then the solution is given by ϕ ¼ R

dx0Gðx; x0Þσðx0Þ. In
case the source σ has a compact support, one can always add a
constant c such that G → Gþ c. This shifted Green function still
yields the same solution: Dϕ ¼ R

DGðx; x0Þσðx0Þ þ R
cDσ ¼

σ þ c
R
Dσ ¼ σ, where the last equality holds via integration

by parts and the fact that σ vanishes asymptotically.
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Im ¼ 2πμ−m½mDmþ2ðrÞ − 2πr2Dmþ4ðrÞ�; ð4:20Þ

Jm ¼ 4π2μ−2m½mD2
mþ2ðrÞ − 4πr2Dmþ2ðrÞDmþ4ðrÞ

þ 4π2r4D2
mþ4ðrÞ�; ð4:21Þ

where we suppressed the superscripts “(1,2)” for sake of
clarity. In Fig. 2 we visualize these invariants for some
typical cases in GF1 and GF2 theory; for the other cases, see
the plots in Appendix B.

C. Explicit examples

Let us now discuss various examples of p-branes in D-
dimensional Minkowski space in more detail. To that end,
one may consider p-branes for different values of p, m
subject to D ¼ 1þmþ p. In D dimensions, we then have
the following special cases of p-branes:

(i) point particle: (p ¼ 0; m ¼ D − 1),
(ii) cosmic string: (p ¼ 1; m ¼ D − 2),
(iii) domain wall: (p ¼ D − 2; m ¼ 1),
(iv) angle deficit configurations: (p ¼ D − 3, m ¼ 2).

1. Point particle in any D

A point particle can be regarded as the somewhat
degenerate case of a 0-brane, and one can simply set m ¼
D − 1 such that p ¼ 0. This case has been previously
studied in [47], and as follows from Eqs. (4.3) and (4.6),
their gravitational potential is regularized. The Newtonian
potential takes the form

ΦN ¼ −κϵ
D − 3

D − 2
D1;2

D−1ðrÞ; ð4:22Þ

where ϵ has now dimensions of a mass. The above correctly
reproduces the well-known trivial Newtonian limit in
D ¼ 3 dimensions, as well as the modified Newtonian
potential in, say, GF1 theory in D ¼ 4:

ΦN ¼ −erfðμr=2ÞGϵ
r

→ −
Gϵ
r

for μ → ∞: ð4:23Þ

The limiting case μ → ∞ reproduces the 1=r potential.
As was recently shown [43], the Weyl tensor vanishes at

the location of pointlike particles in GF1 theory. Here, let us
generalize this result in two directions by considering point
particles in any dimension D for a general GFN theory.
Assuming that the gravitational field of the point particle is
regular [20,35,41], the metric function vðrÞ has the follow-
ing expansion at small distances:

vðrÞ ¼ aþ br2 þOðr3Þ; ð4:24Þ

where a and b are some constant factors. Then, to leading
order, one has

∂i∂jv ¼ 1

m
δij△vþOðrÞ: ð4:25Þ

Upon this substitution it is easy to see that the Weyl tensor
(Appendix A) vanishes identically if and only if p ¼ 0:

Cabcd ¼ 0; ð4:26Þ

Caibj ¼
ðm − 1Þp

ðmþ pÞð1þ pÞm ηabδij△v ¼ 0; ð4:27Þ

Cijkl ¼
−p

mðmþ pÞ 2δi½kδl�j△v ¼ 0: ð4:28Þ

Therefore, as long as point particles have a regular
gravitational field, the Weyl tensor vanishes at their
location in GFN theories. No such theorem holds for
p-branes with p ≠ 0, except when m ¼ 1, as we shall
see below.

FIG. 2. Curvature invariants I2 ¼ −μ−2△D2ðrÞ and J2 ¼ μ−4½∂i∂jD2ðrÞ�2 for GF1 theory (dashed lines) and GF2 theory (dotted
lines), which are relevant quantities for the cosmic string in D ¼ 4 as well as the angle deficit solutions in general D. The curvature
invariants are smooth and well behaved at r ¼ 0. Note that the invariants of type Im exhibit fluctuations to negative values at μr ∼ 5,
which might correspond to an “anti-screening” effect in GF gravity. For the plots of the other invariants, see Appendix B.
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2. Cosmic string in D= 4

A cosmic string in D ¼ 4, our example from the
Introduction, is described by p ¼ 1 and m ¼ 2 such that

v1;2ðrÞ ¼ 2κϵD1;2
2 ðrÞ; uðrÞ ¼ 0: ð4:29Þ

The fact that u vanishes corresponds to the absence of a
gravitational field of the cosmic string in the Newtonian
approximation and in linearized GR. In GF theories,
however, one may calculate that the curvature is nonzero,
even for u ¼ 0. In the case of GF1 theory, the invariants
take a simple form (ζ ≡ μr=2):

Ið1Þ2 ¼ e−ζ
2

4π
; ð4:30Þ

Jð1Þ2 ¼ e−2ζ
2

16π2

�
1þ fðζÞ þ 1

2
fðζÞ2

�
ð4:31Þ

fðζÞ≡ 1 − eζ
2

ζ2
→ −1 for ζ → 0: ð4:32Þ

Let us notice that for m ¼ 2 all expressions for the
curvature invariants can be expressed solely in terms of
△v, and J2 does not enter them.

3. Domain walls in any D, conformal flatness

Domain walls are surfaces of dimension D − 1 such that
p ¼ D − 2 and m ¼ 1. Therefore one has

vðrÞ ¼ 2κϵðD − 1Þ
D − 2

D1;2
1 ðrÞ; uðrÞ ¼ vðrÞ

D − 1
: ð4:33Þ

In this special case, the metric (3.3) is conformally flat. An
easy way to see this is to introduce the new “radial”
coordinate y0 according to

dy → dy0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ uðyÞ
1þ vðyÞ

s
dy; ð4:34Þ

upon which the metric (3.3) becomes gμν ¼ ð1þ uÞημν.
Using the relations in Appendix A, as well as the one-
dimensional identity ∂i∂j ¼ δij△, one can easily check that
the Weyl tensor vanishes for m ¼ 1, as it must.

4. Angle deficit configurations

We have seen that a cosmic string, in the GR limit
μ → ∞, does not gravitate but creates an angle deficit in the
two-dimensional surface that it pierces. This triviality of
the gravitational field is mirrored in the vanishing of the
Newtonian potential for a cosmic string.
Lastly, let us generalize these solutions to the casem ¼ 2

for any D such that p ¼ D − 3 and

ΦN ¼ 0: ð4:35Þ

The shape of the warped geometry (3.3) then guarantees
that one still has an angle deficit of δ ¼ −8πG in the y1y2
plane, regardless of the dimensionality of the p-brane.
However, as in the case of the cosmic string, the curvature
invariants within GF theory do not vanish for this case.

V. CONCLUSIONS

In this paper we obtained and studied the gravitational
field of infinitely thin objects such as point particles,
strings, and branes, in the context linearized GF gravity.
The characteristic property of these objects is that their
stress-energy tensor is described by a δ-function distribu-
tion localized at a point, straight line, or flat planes,
respectively. We considered two versions of linearized
GF gravity, GF1 and GF2, the form factors being

að□Þ ¼ cð□Þ ¼ exp ½ð−□=μ2ÞN �; N ¼ 1; 2: ð5:1Þ
In the above, the parameter μ is the energy scale at which
the GF theories start to deviate significantly from GR.
Equivalently, one may think of l ¼ μ−1 as the length scale
of nonlocalities induced by the form factors að□Þ and
cð□Þ. Consequently, for μ → ∞ one has a ¼ c → 1,
thereby recovering GR in the infrared.
In our calculations we assumed that the thickness of the

p-branes is much smaller than l, justifying the approxi-
mation of the stress energy of the p-branes by simple δ
distributions. In the linear approximation to the full GF
gravity, the obtained Green functions can be used to
generate solutions also in the case of thick p-branes.
The explicit p-brane solutions in linearized GF gravity in

arbitrary number of spacetime dimensions D possess two
common properties: First, all of them are finite and regular
at the position of the brane. Second, at far distances from the
brane the GF gravity solutions asymptotically coincide with
the solutions found in linearized GR (for the same,
δ-like stress-energy tensor). This second property is con-
nected with the assumption that a ¼ c → 1 for μ → ∞,
guaranteeing the proper infrared limit of the GF theory. The
first property is a consequence of the adopted nonlocality of
the theory. It has a rather simple interpretation. The equation

að△Þ△ ¼ J ð5:2Þ
for a static source J can be rewritten into the equivalent

△ ¼ J̃; J̃ ≡ a−1ð△ÞJ: ð5:3Þ
Given a choice of nonlocal form factors, the effective current
J̃ is smeared. This corresponds precisely to the quantity ρGR
we defined in Sec. IV B. As we have shown explicitly, this
function is smooth for δ-like sources. For pointlike particles
this effect is well known, and has been generalized in this
work to static p-branes inD-dimensional Minkowski space.
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Let us emphasize that the solutions for the gravitational
potential of the p-branes are quite similar for GF1 and GF2
models. This happens because the sources are static. In the
time-dependent case this is not true. In particular, this
difference has been illustrated in case of the radiation of a
time-dependent δ-like source in the connection with a GF
massless scalar field [50]. In general, GF1 theory is
sensitive to the difference of the spacelike and timelike
directions as a result of the Lorentz signature of the metric.
GF2, on the other hand, has a better behavior. However, as
argued above, for the static sources as considered in this
work, this difference between GF1 and GF2 is irrelevant.
It might be interesting to study the gravitational field of

p-branes in the complete, nonlinear GF gravity. One might
hope that such a problem can be treated because of the high
symmetry of the p-brane sources. It is also interesting to
consider linearized GF gravity solutions on constant
curvature backgrounds like (anti-)de Sitter and to study
how GF gravity might manifest itself in the AdS=CFT
correspondence.
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APPENDIX A: CURVATURE EXPRESSIONS

Let us calculate the curvature tensors for the metric (3.3)
subject to the substitution (4.1). We denote the flat back-
ground metric on the tza sector as ηā b̄ ¼ diagð−1; 1;…; 1Þ,
where now ā ¼ 0; 1;…; p. The flat background metric on
the yi sector is denoted by δij. Then, the Riemann tensor
takes the form

Rā b̄ c̄ d̄ ¼ 0; ðA1Þ

Rāib̄j ¼
m − 2

2ð1þ pÞ ηā b̄∂i∂jv; ðA2Þ

Rijkl ¼ 2∂ ½iδj�½k∂l�v: ðA3Þ

The Ricci tensor is

Rā b̄ ¼
m − 2

2ð1þ pÞ ηā b̄△v; Rij ¼ −
1

2
δij△v; ðA4Þ

and the Ricci scalar is simply

R ¼ −△v: ðA5Þ

We can construct the tracefree Ricci tensor:

Rμν ≡ Rμν −
1

D
Rημν ðA6Þ

Rā b̄ ¼
mðmþ p − 1Þ

2ð1þ pÞðmþ pþ 1Þ ηā b̄△v; ðA7Þ

Rij ¼
1 −m − p

2ðmþ pþ 1Þ δij△v: ðA8Þ

Let us define the Weyl tensor

Cμνρσ ¼ Rμνρσ −
2

DðD − 1ÞRημ½ρησ�ν

−
2

D − 2
ðημ½ρRσ�ν − ην½ρRσ�μÞ; ðA9Þ

¼ Rμνρσ þ
2

ðD − 1ÞðD − 2ÞRημ½ρησ�ν

−
2

D − 2
ðημ½ρRσ�ν − ην½ρRσ�μÞ: ðA10Þ

For the components we obtain

Cā b̄ c̄ d̄ ¼
1 −m

ð1þ pÞðmþ pÞ 2ηā½c̄ηd̄�b̄△v; ðA11Þ

Cāib̄j ¼
m − 2

2ð1þ pÞ ηā b̄∂i∂jvþ
2 −mþ p

2ð1þ pÞðmþ pÞ ηā b̄δij△v;

ðA12Þ

Cijkl ¼ 2∂ ½iδj�½k∂l�vþ
2

mþ p
δi½kδl�j△v: ðA13Þ

Using the above relations, the expressions in Sec. IV B can
be readily derived.

APPENDIX B: CURVATURE INVARIANTS VISUALIZED

In this appendix, we visualize the linear curvature invariants in Fig. 3 and the quadratic curvature invariants in Fig. 4,
respectively. Note that they are all finite and well-behaved.
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FIG. 3. Linear curvature invariant Im evaluated for GF1 and GF2 theory in the cases m ¼ 1, 2, 3, 4.

FIG. 4. Quadratic curvature invariant Jm evaluated for GF1 and GF2 theory in the cases m ¼ 1, 2, 3, 4.
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