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We construct special solutions of the Nambu-Goto equations for stationary strings in a general Kerr-
NUT-(A)dS spacetime in any number of dimensions. This construction is based on the existence of explicit
and hidden symmetries generated by the principal tensor which exists for these metrics. The characteristic
property of these string configurations, which we call “principal Killing strings,” is that they are stretched
out from “infinity” to the horizon of the Kerr-NUT-(A)dS black hole and remain regular at the latter. We
also demonstrate that principal Killing strings extract angular momentum from higher-dimensional rotating
black holes and interpret this as the action of an asymptotic torque.
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I. INTRODUCTION

The interaction of cosmic strings with black holes is an
interesting for several reasons. Both objects are nonlocal
and relativistic, and there are many interesting physical
effects that occur when these objects interact (see e.g.
[1]). Moreover, cosmic strings can be used for mining
energy and angular momentum from black holes [2–7].
The induced metric on the world sheet of a cosmic string
which pierces the black hole contains a two-dimensional
horizon, and thus it plays the role of a two-dimensional
black hole for the string perturbations that propagate
along the string [4]. Certainly, the status of these two
classes of objects in astrophysics is quite different. We
have strong evidence of existences of stellar mass and
supermassive black holes. They are rather common
objects that manifest their existence in observations,
including the remarkable discovery of binary black-hole
coalescence, registered by gravitational observatories
(by LIGO, and more recently by VIRGO). On the other
hand, there are no direct confirmations that topological
defects, such as cosmic strings—the existence of which
is expected in different theories with topological phase
transitions—do really exist in the Universe. Observations
of the cosmological microwave background (CMB) allow
one to restrict the abundance of heavy (GUT) cosmic
strings. Namely, their effect on the CMB is less than 10%
[8]. However, lighter cosmic strings still may be formed
in the corresponding symmetry breaking phase transi-
tions. The search of possible effects of the interaction of
such strings with black holes remains an interesting
physical and astrophysical problem.

There exists another aspect of this problem. Namely,
stationary black holes possess very rich geometrical struc-
tures, which allow one to solve many problems. The origin
of the explicit and hidden symmetries of stationary black
holes is connected with the existence of a so-called
principal tensor. This is a rank two closed conformal
Killing-Yano form. This object generates a set (tower) of
Killing vectors and tensors that is sufficient for the
complete integrability of geodesic equations and complete
separation of variables in the Kerr metric (historical
discussion and references can be found in the recent paper
[9]). A long time ago it was demonstrated that stationary
string equations can also be integrated in the Kerr metric
[10] (as well as its Kerr-(A)dS generalizations [11]). This
result was generalized to stationary strings in the general
Kerr-NUT-(A)dS metric in any number of spacetime
dimensions [12].
Among stationary string solutions there exist special

string configurations that penetrate the black hole ergo-
sphere and remain regular at the future event horizon. They
are called principal Killing strings [13]. Their characteristic
property is that their two-dimensional world sheet is
tangent to the Killing vector which is timelike at infinity,
and to the principal null geodesics of the Kerr [4] and
Myers-Perry [13] metrics. For examples of principal
Killing strings in lower dimensions, see [14–16]. These
solutions were generalized to four-dimensional Kerr-NUT-
(A)dS spacetimes in our previous work [17].
In this paper we study stationary strings in a general

spacetime that admits a principal tensor [9]. We do not
assume that its metric is a solution of the vacuum Einstein
equations. In ðD ¼ 2nþ ϵÞ dimensions, where ϵ ¼ 0, 1,
such a general metric with a principal tensor contains n
arbitrary functions of one variables. The class of Kerr-NUT-
(A)dS metrics, which form a subset of these so-called off-
shell metrics, are obtained by imposing vacuum Einstein
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equations with cosmological constant. This reduces the
arbitrary functions in the off-shell metric to polynomials.
The coefficients of these polynomials contain 2n − 1 free
parameters that are related to the mass, rotation, and NUT
parameters of the corresponding black hole. In the present
paper we construct principal Killing string solutions in a
general off-shell metric using the principal tensor. This
construction does not employ a special concrete form of
this metric. In this sense our approach is quite different
from and more general than the one adopted in [12,13].
Therein, the complete integrability of stationary string
equations in Kerr-NUT-(A)dS geometries [12] implies that
a string configuration can be found by quadratures, that is,
by a finite number of steps involving algebraic operations
and integration. However, even in four dimensions the
corresponding integrals are elliptical and in order to obtain
an explicit expression for the string configuration one needs
to invert these functions. In higher dimensions, the corre-
sponding integrals contain square roots of polynomials of
the order higher than 4. That is why in a general Kerr-NUT-
(A)dS geometry the solutions for stationary string equa-
tions cannot be written in explicit form, but rather presented
in a parametrically as a set of equations containing these
complicated integrals.
In the present work, we focus on special stationary

solutions, which are called principal Killing strings. These
solutions can be constructed by using the properties of the
principal tensor in the underlying geometry without using
the concrete form of the metric.
This paper is organized as follows. In Sec. II, we

consider a spacetime that admits a principal tensor1 and
discuss the properties of principal null congruences. Such
a congruence is formed by null geodesics generated by
null eigenvectors of the principal tensor. In Sec. III, we
demonstrate that a two-dimensional surface, tangential to
principal null geodesics and the (primary) Killing vector,
is minimal, and hence it is a solution of the Nambu-Goto
equations representing a stationary string. We also obtain
the explicit form of such a solution in the Kerr-NUT-(A)
dS spacetime with any number of dimensions. To illus-
trate the properties of principal Killing strings we discuss
these solutions explicitly in the Myers-Perry geometry
(Sec. IV). For these metrics the cosmological constant
and NUT-parameters vanish and the spacetime is asymp-
totically flat. The principal Killing string stretches out
from “infinity” to the horizon and remains regular at the
latter. We reproduce the results for the energy and angular
momentum transfer through horizon generated by the
string, see Ref. [13], demonstrate the consistency of the
calculations of these quantities at the horizon and infinity,
and prove a special version of the energy and angular
momentum conservation theorem. We also discuss the
backreaction problem, and relate (in Sec. V) the spinning

down effect (produced by the angular momentum flux) to
the torque applied to the string at infinity. In a general
case, the torque and force produced by the string not only
lead to a precession of its total angular momentum, but
also result in the change of the linear momentum of the
black hole. We show how to choose a stationary con-
figuration of several segments of the principal Killing
strings that pierce the black hole in such a way that the
induced precession and momentum vanish. In Sec. VI, we
briefly discuss the obtained results.

II. PRINCIPAL TENSOR AND PRINCIPAL
NULL CONGRUENCIES

A. Spacetime with a principal tensor

Let us consider D ¼ 2nþ ϵ dimensional spacetime
(ϵ ¼ 0, 1), which admits a principal tensor h [9]. Such
a tensor is a nondegenerate closed conformal Killing-Yano
2-form that obeys the equation

∇chab ¼ gcaξb − gcbξa; ξa ¼
1

D − 1
∇bhba: ð1Þ

For such a tensor there exists an orthonormal Darboux
frame ðlþ; l−; eμ; êμ; ê0Þ in which one has

h ¼ rlþ ∧ l− þ
Xn−1
μ¼1

xμeμ ∧ êμ; ð2Þ

g ¼ −lþl− − l−lþ þ
Xn−1
μ¼1

ðeμeμ þ êμêμÞ þ ϵê0ê0: ð3Þ

Here and later the index μ takes values 1;…; n − 1. The
condition that the principal tensor is nondegenerate means
that there are exactly n nonvanishing “eigenvalues” ðr; xμÞ
that are functionally independent in some domain. We also
assume that in this domain none of the gradients ∇ar and
∇axμ is a null vector.
One can show that ξ is a Killing vector, which is called

primary and the following relations are valid [9]

Lξg ¼ Lξh ¼ 0: ð4Þ

The elements of the Darboux basis obey the following
normalization conditions

ðlþ; l−Þ ¼ −1; ðeμ; eμÞ ¼ ðêμ; êμÞ ¼ ðê0; ê0Þ ¼ 1: ð5Þ

All other scalar products vanish. The basis vectors also
obey the following relations1For definition and properties of the principal tensor see [9].

JENS BOOS and VALERI P. FROLOV PHYS. REV. D 97, 084015 (2018)

084015-2



h · l� ¼ ∓rl�; h · eμ ¼ −xμêμ;

h · êμ ¼ xμeμ; h · ê0 ¼ 0: ð6Þ

Sometimes, instead of unit vectors eμ and êμ it is more
convenient to use their linear combinations

mμ ¼ 1ffiffiffi
2

p ðeμ þ iêμÞ; m̄μ ¼ 1ffiffiffi
2

p ðeμ − iêμÞ: ð7Þ

They satisfy the following relations:

ðmμ;mμÞ ¼ ðm̄μ; m̄μÞ ¼ 0; ðmμ; m̄μÞ ¼ 1; ð8Þ

h ·mμ ¼ ixμmμ: ð9Þ

In a spacetime with the principal tensor the following
results are valid (see [9] and references therein):

(i) hðjÞ ¼ 1
j! h

∧j is a closed conformal Killing-Yano
2j-form;

(ii) f ðjÞ ¼ �hðjÞ is a Killing-Yano ðD − 2jÞ-form;
(iii) kabðjÞ ¼ 1

ðD−2j−1Þ! f
ðjÞa

c1…cD−2j−1
fðjÞbc1…cD−2j−1 is a rank-

two Killing tensor. kð0Þ ¼ g. In odd dimensions

f ðnÞ ∼ ∂ψn
is a Killing vector;

(iv) ζðjÞ ¼ kðjÞ · ξ ðj ¼ 0;…; n − 1þ ϵ≡mÞ are com-
muting Killing vectors. For j ¼ 0 one has ζð0Þ ¼ ξ,
while for j > 0 they are called secondary Killing
vectors;

(v) One has LζðjÞh ¼ 0;
(vi) According to the Frobenius theorem, nþ ϵ commut-

ing Killing vectors are tangent to (nþ ϵ) dimen-
sional submanifolds and there exist such coordinates
ψ j on these Killing submanifolds in which
ζðjÞ ¼ ∂ψj

;
(vii) ψ0 ≡ τ is the timelike Killing coordinate while ψk

(k ¼ 1;…; n − 1þ ϵ≡m) are the spacelike azimu-
thal Killing coordinates.

(viii) The eigenvalues ðxμ; rÞ, ðμ ¼ 1;…; n − 1Þ, are con-
stant on the Killing submanifolds and together with
ψ j they form a coordinate chart on the spacetime.
xμ and r are called polar and radial coordinates,
respectively.

The last property can be easily proven by using the
relation LζðjÞh ¼ 0. Denote by v any of the eigenvectors

ðl�;mμ; m̄μ; e0Þ of the principal tensor and by y its
eigenvalue such that

h · v ¼ yv: ð10Þ

We also denote V ¼ LζðjÞv. Then (10) implies

h · V ¼ yV þ ð∂ψ j
yÞv: ð11Þ

This relation is valid only if V ¼ Cv and ∂ψ j
y ¼ 0. In other

words, xμ and r are constant on the Killing submanifolds.

B. Principal null geodesics

The null eigenvectors l� of the principal tensor h are
called principal null vectors.2 They possess a number of
remarkable properties. In this section, we collect some
of them.
First, let us demonstrate that l� are tangent vectors to

null geodesics. We denote

w� ¼ ∇l� l�; ð12Þ

where ∇l� ≡ lc�∇c. Using (1) one gets

∇l�hab ¼ l�aξb − l�bξa: ð13Þ

Applying ∇l� to the first of the relations in (6), one finds

h · w� � rw� ¼ −½ðξ; l�Þ �∇l�r�l�: ð14Þ

Let us write w� in the form

w� ¼ C�l� þ p�; ð15Þ

where p� is a linear combination of l∓, eμ, êμ and (in the
case of odd dimensions) ê0. It is easy to check that Eq. (14)
can be satisfied only when p� ¼ 0, such that

∇l� l� ¼ C�l�; ðξ; l�Þ �∇l�r ¼ 0: ð16Þ

The first of these relations demonstrates that the integral
curves of l� are null geodesics. Since (6) determines l� up
to a rescaling one can use this transformation so that the
vectors

ℓ� ≡ β�l� ð17Þ

are tangent to null geodesics in the affine parametrization.
However, the normalization condition for these null vectors
becomes

ðℓþ; ℓ−Þ ¼ −βþβ−: ð18Þ

It is easy to check that

∇l�ðξ; l�Þ ¼ ðξ;w�Þ; ð19Þ

2Such a vector satisfies the relation [9,18]

l½eCa�b½cdlf�lb ¼ 0;

and, hence, it defines a multiple Weyl aligned null direction.
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such that ðξ; ℓ�Þ is constant along the null geodesic in the
affine parametrization. We assume that ℓ� are future-
directed. If the primary Killing vector is timelike in some
domain, we choose

ðξ; ℓ�Þ ¼ −1; ð20Þ

which immediately implies

∇ℓ�r ¼ �1: ð21Þ

Using a similar method we can prove that

∇l�xμ ¼ 0: ð22Þ

For this purpose we denote Uμ ≡∇l�m
μ. Applying the

operator ∇l� to (9) one finds

h · Uμ − ixμUμ ¼ ið∇l�xμÞmμ − ðξ;mμÞl�: ð23Þ

Contracting this relation with m̄μ yields

i∇l�xμ ¼ ðm̄μ; h · UμÞ − ixμðm̄μ;UμÞ: ð24Þ

Let us write Uμ in the form

Uμ ¼ Cmμ þ q: ð25Þ

It is easy to see that the right-hand side of (24) vanishes,
and hence (22) is valid. Finally, let us note that for affinely
parametrized principal null geodesics the complete set of
integrals of motion is given by [19]

κj≡ kðjÞabℓaℓb ¼ 0; Ψj≡ ζðjÞaℓa ¼−AðjÞ
n ; Ψn ¼ 0;

ð26Þ

where we defined

AðkÞ
μ ¼

Xn
ν1 ;…;νk¼1
ν1<…<νk

νi≠μ

x2ν1…x2νk : ð27Þ

III. PRINCIPAL KILLING STRINGS

A. Principal Killing surfaces

We can now define a principal Killing string. Let us
consider a two-dimensional surface Σ� that is tangent to the
primary Killing vector ξ and the one of the principal null
vectors ℓ�. In order to prove that such a surface exists we
show first that the vectors ξ and ℓ� commute

½ξ; ℓ�� ¼ 0: ð28Þ

After this we prove that Σ� is a minimal surface, and
hence it is a solution of the string equation of motion
representing the world sheet of the special stationary string
configuration.
Let us start with the first property. Let us apply Lξ to

the relation h · ℓ� ¼∓ rℓ�. Then, since Lξh ¼ Lξr ¼ 0,
one has

h · Lξℓ� ¼∓ rLξℓ�: ð29Þ

This relation implies

Lξℓ� ¼ Cℓ�: ð30Þ

Applying Lξ to the relation ξ · ℓ� ¼ �1 one gets
ξ · Lξℓ� ¼ 0. Hence C ¼ 0 and Lξℓ� ≡ ½ξ; ℓ�� ¼ 0.
To prove that the principal Killing surface is minimal we

shall need the following result: The principal null vectors
ℓ� are eigenvectors of 2-form Fab ¼ ∇aξb:

Fa
bℓ

b
� ¼ κ�ℓa

�: ð31Þ

Multiplying relation (1) by ξc one obtains ξc∇chab ¼ 0.
Thus the equation Lξh ¼ 0, see Eq. (4), takes the form

Fa
bhbc ¼ Fc

bhba: ð32Þ

Then, denoting Va ¼ Fa
bℓ

b
�, one has

habV
b ¼ habF

b
cℓ

c
� ¼ Fa

bhbcℓc
� ¼ ∓rVa: ð33Þ

Since h is nondegenerate, all its eigenvalues have algebraic
multiplicity of 1, and hence Va ∼ ℓa

�, so that (31) is valid.
Multiplying (31) by ξ one obtains

κ� ¼ 1

2
ℓa
�ðξ2Þ;a: ð34Þ

B. Principal Killing surfaces are minimal

Equation (28) and the Frobenius theorem allow us to
define the coordinates ðzA; yiÞ in which the equation of the
Killing surface Σ� takes the form yi ¼ const, while zA ¼
ðv; λ�Þ are coordinates on Σ� such that

ξ ¼ ∂v; ℓ� ¼ ∂λ� : ð35Þ

Let us define functions YaðzA; yiÞ, A ¼ 0, 1 and
i ¼ 2;…; D − 2, such that for fixed values yi they deter-
mine the embedding of the two-surface Σ� in the bulk
spacetime and

Ya
;v ¼ ξa; Ya

;λ� ¼ ℓa
�: ð36Þ
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The induced metric and its inverse on Σ� are

γAB ¼ gabYa
;AYb

;B; ð37Þ

dγ2 ¼ γABdzAdzB ¼ ξ2dv2 − 2dvdλ�; ð38Þ

∂2
γ ¼ γAB∂zA∂zB ¼ −2∂v∂λ� − ξ2∂2

λ� : ð39Þ

One also has
ffiffiffiffiffiffi−γp ¼ 1.

Let us denote by nμðiÞ the D − 2 mutually orthogonal unit

vectors normal to Σ�. We define the extrinsic curvature
ΩðiÞAB by the relations

ΩðiÞAB ¼ gabnaðiÞY
c
;A∇cYb

;B: ð40Þ

The surface is called minimal if the trace of the extrinsic
curvature

ΩðiÞ ≡ γABΩðiÞAB ð41Þ

vanishes. This condition can be written in the form

ΩðiÞ ¼ gabnaðiÞZ
b ¼ 0; ð42Þ

Zb ¼ γABYc
;A∇cYb

;B: ð43Þ

Thus if the vector Z is orthogonal to all external vectors nðiÞ
the surface Σ� is minimal, and hence it is a solution of the
Nambu-Goto equation and defines a world sheet of a
stationary string. This happens when Z is tangent to Σ�.
Let us show that this condition is indeed satisfied. Using
(36) and (43) one gets

Zb ¼ −ðξa∇aℓ
b
� þ ℓa

�∇aξ
b þ ξ2ℓa

�∇aℓ
b
�Þ: ð44Þ

Since ℓ� is a tangent vector to affinely parametrized null
geodesic, the last term in the parentheses vanishes.
Equation (28) implies that the second term in the paren-
theses is equal to the first one. Thus,

Zb ¼ 2ℓa
�∇aξ

b ¼ −Fb
aℓ

a
� ¼ −κ�ℓb

�: ð45Þ

The last relation demonstrates that Z is tangent to Σ� and
hence the latter is a minimal surface.

C. Principal Killing strings
in Kerr-NUT-(A)dS spacetime

Let us emphasize that a principal Killing string is
uniquely defined by the principal tensor. Since Kerr-
NUT-(A)dS spacetimes admit such a tensor, our construc-
tion automatically produces special stationary solutions of
the Nambu-Goto equations in the Kerr-NUT-(A)dS metrics
in any number of dimensions. In this section, we describe
these solutions.

We denote

en ¼ 1ffiffiffi
2

p ðlþ − l−Þ; ên ¼ 1ffiffiffi
2

p ðlþ þ l−Þ; ð46Þ

ðenÞ2 ¼ 1; ðênÞ2 ¼ −1; ðen; ênÞ ¼ 0: ð47Þ

Then (3) takes the form

g ¼ −enen þ ênên þ
Xn−1
μ¼1

ðeμeμ þ êμêμÞ þ ϵê0ê0: ð48Þ

For the most general Lorentzian metric admitting a
(nondegenerate) principal tensor h in D ¼ 2nþ ϵ dimen-
sions one has [9,19,20]

en ¼ drffiffiffiffiffiffi
Qn

p ; ên ¼
ffiffiffiffiffiffi
Qn

p Xn−1
j¼0

AðjÞ
n dψ j;

eμ ¼ dxμffiffiffiffiffiffi
Qμ

p ; êμ ¼ ffiffiffiffiffiffi
Qμ

p Xn−1
j¼0

AðjÞ
μ dψ j;

ê0 ¼
ffiffiffiffiffiffi
Q0

p Xn
j¼0

AðjÞdψ j; Q0 ¼ −
c

AðnÞ : ð49Þ

In the above, we defined

AðjÞ
μ ¼

Xn
ν1 ;…;νk¼1
ν1<…<νj

νi≠μ

x2ν1…x2νj ; ð50Þ

AðjÞ ¼
X

ν1<…<νj

x2ν1…x2νj ; Qμ ¼
Xμ

Uμ
; ð51Þ

Uμ ¼ −ðr2 þ x2μÞ
Yn−1
ν¼1
ν≠μ

ðx2ν − x2μÞ; ð52Þ

Un ¼
Yn−1
ν¼1

ðr2 þ x2νÞ; x2n ¼ −r2: ð53Þ

Here, the range of Greek indices is μ; ν ¼ 1;…; n − 1while
Latin indices take values k; l ¼ 0;…; n − 1þ ϵ. τ≡ ψ0 is
the time coordinate. The constant c appearing in odd
dimensions is an undetermined parameter.
The metric (48) is called off-shell if the functions Xμ are

left unspecified. Invoking the Einstein equations with
cosmological constant yields a suitable choice for the Xμ

that reproduces the Kerr-NUT-(A)dS class of spacetimes
for any D ¼ 2nþ ϵ [9].
In the metric (48) the principal null vectors ℓ� take the

form [19] (m≡ n − 1þ ϵ)
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ℓ� ¼ �∂r þ
r2ðn−1Þ

Xn
∂τ þ

1

Xn

Xm
j¼1

r2ðn−1−jÞ∂ψj
: ð54Þ

Both null vectors ℓ� are future-directed. The radial
coordinate r increases along ℓþ and decreases along ℓ−.
We call a null geodesic generated by ℓþ an out-going null
ray, while similar curves for ℓ− are incoming null rays. By
comparing (54) with (21) one can conclude that for ℓ� one
has λ� ¼ �r. In the presence of a black hole, incoming null
rays enter the future event horizon Hþ and remain regular
at it. Similarly, the outgoing null rays are regular at the past
event horizon H−.
In what follows we consider a case when a spatially

infinite string crosses the black hole horizon. A corre-
sponding solution should be regular atHþ, and we assume
that after some relaxation processes the string becomes
stationary. In such a configuration there exist two antipodal
pieces (segments) of the string piercing the black hole. We
assume that each of them is described by the principal
Killing surface, regular at Hþ, that is, by Σ−. For this
reason, from now on we always assume that our string-
segment solution is generated by vectors ξ and ℓ− and omit
the subscript “−” in the corresponding notations.
The principal null ray equations

dxa

dλ
¼ ℓa ð55Þ

can be easily solved, yielding λ ¼ −r. Let us denote

PðjÞ
n ¼

Z
r2ðn−1−jÞdr
XnðrÞ

: ð56Þ

Then, in fτ; r; xμ;ψ jg coordinates, one finds

τ ¼ −Pð0Þ
n ðrÞ; ψ j ¼ −PðjÞ

n ðrÞ; xμ ¼ const: ð57Þ

Let us perform a following coordinate transfor-
mation fτ; r; xμ;ψkg → fv; r; xμ; ϕ̂kg with k ¼ 1;…; m ¼
n − 1þ ϵ according to

dτ ¼ dv −
r2ðn−1Þ

Xn
dr;

dψ j ¼ dϕ̂j −
1

Xn
r2ðn−1−jÞdr; ð58Þ

In these coordinates the principal Killing string equation
takes the form

ϕ̂j ¼ ϕ̂0
j ¼ const; xμ ¼ x0μ ¼ const; ð59Þ

while v and r are arbitrary. In other words, the trans-
formation (58) “straightens” the string.

D. Stress-energy tensor of the principal Killing string

The dynamics of a test string in an external gravitational
field gab is described by the Nambu-Goto action

I ¼ −μs
Z

d2ζ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− detðγABÞ

p
; γAB ¼ gabYa

;AYb
;B:

ð60Þ

μs is the string tension and ζA (A ¼ 0, 1) are coordinates on
the string world sheet. The functions YaðζAÞ determine the
string’s embedding in the bulk spacetime. The stress-
energy tensor of the string is localized on its surface and
is of the form [21]

Tab ¼ −μsffiffiffiffiffiffi−gp
Z

d2ζ
ffiffiffiffiffiffi
−γ

p
γABYa

;AYb
;Bδ

ð4Þðxc − YcðζBÞÞ:

ð61Þ

In fv; r; xμ; ϕ̂jg coordinates this tensor reads

Tab ¼ μsffiffiffiffiffiffi−gp ð2ξðaℓbÞ þ ξ2ℓaℓbÞq; ð62Þ

were we defined

q ¼ qðxμ; ϕ̂jjx0μ; ϕ̂0
jÞ≡

Yn−1
μ¼1

δðxμ − x0μÞ
Ym
j¼1

δðϕ̂j − ϕ̂0
jÞ:

ð63Þ

The expressions (62) and (63) allow one to express the
stress-energy tensor of a principal Killing string purely in
terms of geometrical quantities in the off-shell Kerr-NUT-
(A)dS metric (48). For applications, the on-shell version of
these relations is more useful. Certainly, the above formulas
work for this case as well. In particular, one can use the on-
shell version of (62) for the calculations of the energy and
angular momentum fluxes through the horizon of the Kerr-
NUT-(A)dS black hole. However, such calculations might
be quite involved. For the off-shell metrics one must first
formulate conditions when the horizon is regular.
The other problem is that the Killing coordinates ψ i

are connected to the secondary Killing vectors determined
by the principal tensor. In general, these coordinates
differ from the Boyer-Lindquist coordinates ϕi, and are
related to the latter by means of linear transformations.3 In
particular, the Killing vectors ∂ϕi

associated with these
coordinates ϕi enter the standard definition of the angular
momentum. Finally, when and if the energy and angular
momentum fluxes through the horizon are properly defined
and calculated, one would need to define how they
are connected with the change of the parameters of the

3For the discussion of these relations, see [9].
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Kerr-NUT-(A)dS solution, when the backreaction effects
are taken into account. Therefore, in this work, we shall
restrict ourselves to illustrating the properties of principal
Killing strings in Myers-Perry spacetimes.

IV. PRINCIPAL KILLING STRINGS
IN MYERS-PERRY SPACETIMES

A. Myers-Perry black holes

In this section, we illustrate the obtained results for the
special case of the D-dimensional Myers-Perry black hole
vacuum solution [22,23]. By using the Komar definition of
the mass and angular momentum we reproduce the results
of [13] for the angular momentum transfer from a string
piercing the black hole. We relate this effect to the action of
a torque produced by a stationary string at spatial infinity.
Let us begin by briefly reviewing some general proper-

ties of the Myers-Perry metric in D ¼ 2nþ ϵ spacetime
dimensions. It generalizes the Kerr solution to higher
dimensions, and as such can be expressed in terms of
the canonical coordinates fτ; r; xμ;ψ ig, see e.g. Ch. 4 in
Ref. [9]. For our purposes, however, it is more convenient
to express it in terms of the Myers-Perry coordinates
ft; r; μi;ϕig (in units where c ¼ 1 and G ¼ 1):

g ¼ −dt2 þ Udr2

V − 2M
þ 2M

U

�
dt −

Xm
i¼1

aiμ2i dϕi

�
2

þ
Xm
i¼1

ðr2 þ a2i Þðdμ2i þ μ2i dϕ
2
i Þ þ ð1 − ϵÞr2dμ20; ð64Þ

where we defined the auxiliary functions

V ¼ 1

r1þϵ

Ym
i¼1

ðr2 þ a2i Þ;

U ¼ V

�
1 −

Xm
i¼1

a2i μ
2
i

r2 þ a2i

�
: ð65Þ

As earlier, we denote m≡ n − 1þ ϵ, and the number of
spatial dimensions is D − 1 ¼ 2mþ ð1 − ϵÞ. Note that
despite of its appearance the metric (64) is not diagonal
in the coordinates μi because these “directional cosines” are
constrained via

Xm
i¼ϵ

μ2i ¼ 1: ð66Þ

The spatial coordinates in the metric (64) are r, μi, ϕi and
(in the case ϵ ¼ 0) one more coordinate μ0. Their total
number is 2mþ 1þ ð1 − ϵÞ. This counting correctly
reproduces the required number of spatial dimensions if
one takes into account the constraint (66).
The Myers-Perry solution contains the mass parameter

M as well as m angular momentum parameters ai. Its

isometries are encoded by the timelike Killing vector
ξ¼∂t as well as m mutually commuting azimuthal Killing
vectors ζðiÞ ¼ ∂ϕi

. The ingoing principal null congruence
(54) then takes the form

ℓ ¼ −∂r þ
V

V − 2M

�
∂t þ

Xm
i¼1

ai
r2 þ a2i

∂ϕi

�
: ð67Þ

The horizon of the Myers-Perry black hole is located at
VðrhÞ ¼ 2M, which corresponds to

Ym
i¼1

ðr2h þ a2i Þ ¼ 2Mr1þϵ
h : ð68Þ

Since the Myers-Perry coordinates are not regular at the
horizon, it is useful to instead work with the coordinates
fv; ϕ̂ig related to ft;ϕig via

dv ¼ dtþ V
V − 2M

dr; ð69Þ

dϕ̂i ¼ dϕi þ
V

V − 2M
ai

r2 þ a2i
dr: ð70Þ

The Myers-Perry metric then takes the form

g ¼ −dv2 þ 2dvdr − 2
Xm
i¼1

aiμ2i dϕ̂idr

þ 2M
U

�
dv −

Xm
i¼1

aiμ2i dϕ̂i

�
2

þ
Xm
i¼1

ðr2 þ a2i Þðdμ2i þ μ2i dϕ̂
2
i Þ þ ð1 − ϵÞr2dμ20; ð71Þ

which is manifestly regular at the horizon. The principal null
congruence and the Killing vectors are

ℓ ¼ −∂r; ξ ¼ ∂v; ζðiÞ ¼ ∂ϕ̂i
: ð72Þ

In the coordinates fv; r; μi; ϕ̂ig, the equation of the principal
Killing string takes the simple form fμi; ϕ̂ig ¼ const.
IntegratingEq. (70) for ϕ̂i ¼ const, one obtains the following
relations that determine the form of the principal Killing
string in the Myers-Perry coordinates:

ϕi ¼ ϕ0
i − ai

Z
Vdr

ðV − 2MÞðr2 þ a2i Þ
: ð73Þ

The integrals in these relations are logarithmically divergent
at the event horizon. This means that the string makes an
infinite number of revolutions around the black hole. Let us
emphasize that this is a pure kinematic effect connected with
the time delay near the horizon. In fv; r; μi; ϕ̂ig coordinates,
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which are regular at the horizon, the string is straightened and
enters the horizon without any turns.

B. Mass and angular momentum
of the Myers-Perry black hole

The mass M and the angular momenta JðiÞ of the
Myers-Perry black hole are given by the following
Komar integrals [22]:

−16π
D − 3

D − 2
M ¼

I
B
∇aξbdSab;

−16πJðiÞ ¼
I
B
∇aζbðiÞdSab: ð74Þ

Here we follow the conventions of Ref. [24], Ch. 3. Here B
is a spacelike (D − 2)-dimensional section of the event
horizon, and dSab is a surface element of B. ξ is the timelike
Killing vector, and ζðiÞ denotes the rotational Killing
vectors related to the axisymmetry.
For an isolated stationary vacuum black hole these

parameters do not depend on the choice of the section
B. In what follows we denote by Bv the intersection of the
null surface v ¼ const and the horizon surface. The
corresponding quantities represent the mass and compo-
nents of the angular momentum at the moment of advanced
time v.
The mass M and angular momenta JðiÞ are related to the

parameters M and ai via [23]

M ¼ ðD − 2ÞωD−2

8π
M

JðiÞ ¼
ωD−2

4π
Mai ¼

2

D − 2
Mai; ð75Þ

where ωD−2 ¼ 2πðD−1Þ=2=ΓððD − 1Þ=2Þ is the surface of
the SD−2 sphere. The normalization is chosen such that for
D ¼ 4 one recovers the usual relations M ¼ M and
J ¼ Ma.
The Komar definition of the mass and angular momen-

tum, as measured at infinity, implies

−16π
D − 3

D − 2
M∞

t ¼
I
SD−2
∞;t

∇aξbdSab;

−16πJ∞ðiÞt ¼
I
SD−2
∞;t

∇aζbðiÞdSab: ð76Þ

Here the integration is performed at the given time t over
(D − 2)-dimensional sphere of large radius r surrounding
the black hole, and dSab is a surface element on this sphere.
If the black hole exterior is empty then the mass and

angular momentum measured at infinity, (76), coincide
with (74) [22]. In order to prove this it is sufficient to use
the following integrability condition which is valid for any
Killing vector K,

∇a∇aKb ¼ −Rb
aKa: ð77Þ

By integrating this equality with Rb
a ¼ 0 over a (D − 1)-

dimensional surface crossing the horizon and extended to
infinity and using Stokes’ theorem one can show that
expressions (74) and (76) give the same value for the
mass and angular momentum. In the presence of a cosmic
string the mass at infinity differs from the black hole
mass, the difference being the contribution of the string’s
mass Ms. For a straight string of length L the mass is
Ms ¼ μsL, so that for an infinite string this mass becomes
infinitely large. In our consideration we use a test string
approximation which implies that Ms is much smaller
than the mass of the black hole. In this approximation
we assume that the string has finite size. For example,
it may have an end point equipped with a monopole
and an external force is applied to the latter in order to
keep the string in equilibrium. For a finite length L of the
string its mass Ms can be made arbitrary small by proper
choice of the string’s tension μs. In what follows we
assume that the required test string approximation is
valid. In fact, we shall study only the change of the
black hole parameters with time, and the quantity Ms
does not enter the results.

C. Energy and angular momentum fluxes

Let us introduce the new coordinate

T ¼ v − r; ð78Þ

and consider a (D − 1)-dimensional surface Σ where
T ¼ const. This surface is spacelike both outside and at
the horizon. On the horizon this new time T differs from the
advanced null time v only by an additive constant rh.
In D spacetime dimensions, the functions VðrÞ and

UðrÞ, which enter the metric, have the following asymp-
totics at r → ∞:

UðrÞ ∼ VðrÞ ∼ r2m−1−ϵ ¼ rD−3: ð79Þ

In what follows we assume that D ≥ 5. Since

dT ¼ dtþ 2M
V − 2M

dr; ð80Þ

the coordinate T coincides with the asymptotic Killing time
t at infinity up to a constant.
We denote by ΣT0

a (D − 1)-dimensional surface that
is determined by the equation T ¼ T0 ¼ const. More-
over, we assume that the time T0 is chosen such that a
possible time dependent evolution of the string has
finished before this time. In other words, in the spacetime
domain where T > T0, the string is stationary and
coincides with the principal Killing solution, which
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was described earlier.4 We shall call a one-dimensional
line obtained by the intersection of the string with the
surface T ¼ const a string configuration at time T.
As we shall demonstrate later, in the presence of a string

the parameters of the black hole, and hence its gravitational
field, will slightly change in time. Let us neglect this effect
for the moment and consider two surfaces Σ1 and Σ2,
defined by the equations T ¼ T1 ¼ v1 − rh and T ¼ T2 ¼
v2 − rh, respectively, assuming that v2 > v1 > T0 þ rh. In
other words, we chose the time interval T2 − T1 to be much
smaller than the characteristic time of the black hole
evolution. The surfaces Σ1 and Σ2 intersect the horizon
at two (D − 2)-dimensional surfaces B1 and B2. Denote by
H1;2 a part of the event horizon between B1 and B2, and by
H0 a surface determined by the equation r ¼ r0 > rh that
lies between Σ1 and Σ2. Finally, we denote by V the
D-dimensional volume restricted by the four surfaces Σ1,
Σ2, H1;2 and H0.
The background Myers-Perry metric has symmetries

generated by the Killing vectors ξ and ζðiÞ. For a given
stress-energy tensor Tab one can define conserved Killing
currents

jaξ ¼ Tabξb; jaζðiÞ ¼ TabζðiÞb; jaξ ;a ¼ jaζðiÞ ;a ¼ 0:

ð81Þ

Since the Killing currents are conserved, the integrals of
jaξ;a and jaζðiÞ ;a over the D-volume V vanish identically.

Stokes’ theorem implies that

Z
V
ja;a

ffiffiffiffiffiffi
−g

p
dDx ¼

Z
∂V

jadΣ̂a: ð82Þ

Denote by xa the coordinates in the bulk space V and by yp

the coordinates on its boundary ∂V. Then xa ¼ xaðypÞ is
the defining equation of ∂V. The volume element dΣ̂a is
defined as follows (see e.g. [25]):

dΣ̂a ¼
1

ðD − 1Þ! eab1…bD−1
det

�∂xbi
∂ypj

�
dD−1y; ð83Þ

where eab1…bD−1
denotes the completely antisymmetric

tensor. This definition is valid for any smooth boundary,
provided the orientation of the coordinates in V and at ∂V
are chosen properly (for the discussion of this point see e.g.
[24]). In the above definition, in case of spacelike and

timelike surfaces ∂V, the surface element dΣ̂a is directed
towards the exterior of V. If a piece of the boundary is null,
the definition of dΣ̂a requires additional specification,
see [24] for a detailed discussion. We shall provide the
corresponding explicit expression for dΣ̂a for a piece of the
null boundary at the horizon in the next subsection.
In what follows, it is convenient to chose surface

elements on Σ1 and Σ2 to be both future-directed. The
corresponding surface element dΣa on Σ2 coincides with
dΣ̂a, while on Σ1 it has the opposite sign. We also choose
dΣa on the external boundary H0 to be directed inwards,
and hence it also differs by sign from dΣ̂a. Using these
definitions and Stokes’ theorem for the conserved currents
one obtains the following relations:

�Z
H1;2

−
Z
H0

�
jaξdΣa ¼

�Z
Σ1

−
Z
Σ2

�
jaξdΣa; ð84Þ

�Z
H1;2

−
Z
H0

�
jaζðiÞdΣa ¼

�Z
Σ1

−
Z
Σ2

�
jaζðiÞdΣa: ð85Þ

Since the surface Σ2 is obtained by a rigid shift of Σ1,
these two surfaces are isometric and for a stationary string
the expressions in the right-hand sides of Eqs. (84) and (85)
vanish. As a result one hasZ

H1;2

jaξdΣa ¼
Z
H0

jaξdΣa; ð86Þ
Z
H1;2

jaζðiÞdΣa ¼
Z
H0

jaζðiÞdΣa: ð87Þ

Thus, the energy and momentum fluxes through the part
H1;2 of the horizon, generated by the string, are equal to the
similar fluxes through the external boundary H0.

D. Energy and momentum fluxes through the horizon

We demonstrate now that, in the presence of the string
that enters the horizon, there is angular momentum transfer
into the black hole. Let us first calculate the corresponding
fluxes of the energy and angular momentum in the adopted
test field approximation and discuss the backreaction of
these fluxes on the black hole geometry later.
The energy and angular momentum fluxes through the

horizon during the time interval ðv1; v2Þ are

ΔE ¼
Z
H1;2

jaξdΣa; ð88Þ

ΔJðiÞ ¼
Z
H1;2

jaζðiÞdΣa: ð89Þ

We shall now apply these relations to the stress-energy of
the test string, Eqs. (62)–(63), adapted to the Myers-Perry
metric.

4Strictly speaking, and in the absence of any external forces, if
the test string is exactly stationary in this time interval it would be
stationary forever. If a dynamical string pierces the black hole at
some earlier time, then just after this happens there would be
string excitations propagating along the string in both directions:
to the horizon and to infinity. Our assumption is that after T0 one
can neglect this relaxation processes and use a stationary string
approximation.
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First of all, we assume that the constraint (66) is resolved
and write μi ¼ μiðωkÞ, where k ¼ ϵ;…; m − 1. In what
follows, the explicit form of new unconstrained coordinates
ωk is not important. Moreover, for our calculations we
adopt the incoming null coordinates fv; r;ωk; ϕ̂ig. In these
coordinates, the future-directed volume element dΣa on the
horizon H1;2 can be obtained as follows: Following [24],
we define the function Φ that increases towards the future
and vanishes on the horizon,

Φ≡ rh − r: ð90Þ

Then, the following vector is null and future-directed on the
horizon

ka ≡ −∂aΦ ¼ r;a ¼ δra: ð91Þ

Equation (72) shows that the future directed principal null
vector ℓ satisfies the condition

ðk; ℓ Þ ¼ −1: ð92Þ

Using these two vectors one can write the inverse metric on
the horizon as follows:

gab ¼ −kaℓb − kbℓa þ σab; ð93Þ

where σab is the inverse of the (D − 2)-dimensional metric
induced on a spacelike slice S of the horizon which is
orthogonal to both k and ℓ. One also has on the horizonffiffiffiffiffiffi−gp ¼ ffiffiffi

σ
p

, where σ is the metric on S. Let us denote

dD−2Ω ¼
Ym−1

k¼ϵ

dωk

Ym
i¼1

dϕ̂i: ð94Þ

Then, according to [24], a properly oriented surface
element on the horizon is

dΣa ¼ kb2k½aℓb�
ffiffiffiffiffiffi
−g

p
dvdΩD−2

¼ −
ffiffiffiffiffiffi
−g

p
r;advdΩD−2 ¼ −ka

ffiffiffi
σ

p
dvdΩD−2: ð95Þ

The stress-energy of a principal Killing string in
fv; r;ωk; ϕ̂ig coordinates is

Tab ¼ μsð2ξðaℓbÞ þ ξ2ℓaℓbÞq; ð96Þ

where q is given by

q ¼ 1ffiffiffiffiffiffi−gp
Ym−1

k¼ϵ

δðωk − ω0
kÞ
Ym
j¼1

δðϕ̂i − ϕ̂0
i Þ: ð97Þ

Here ω0
k and ϕ̂0

i are the angular coordinates of the string.

We can now perform the integrals (88)–(89) over the part
of the horizon between its slices B1 and B2 to obtain

ΔE ¼ 0; ΔJðiÞ ¼ _JðiÞðv2 − v1Þ; ð98Þ

_JðiÞ ¼ −μsaiðμ0i Þ2: ð99Þ

In other words, there is no energy (mass) flux from the
string to the black hole, while the angular momentum
transfer does not vanish and its rate _JðiÞ is permanent in
time. These relations correctly reproduce the results
of Ref. [13].

E. Spatial infinity

Since the energy and angular momentum fluxes through
the external boundaryH0 do not depend on the choice of its
radius r0 one can make this radius arbitrary large. In this
domain, Σ1 and Σ2 coincide with the surfaces of constant
time t. It is instructive to repeat the calculations of
the energy and momentum fluxes at infinity, that is, in
the r0 → ∞ limit.
The asymptotic form of the Myers-Perry metric (64) is

g ¼ −dt2 þ dr2 þ
Xm
i¼1

r2ðdμ2i þ μ2i dϕ
2
i Þ

þ ð1 − ϵÞr2dμ20; ð100Þ

which corresponds to theD-dimensional Minkowski metric
in multi-polar coordinates [23]. The null congruence ℓ

simplifies to

ℓ ¼ −∂r þ ∂t þ
1

r2
Xm
i¼1

ai∂ϕi
: ð101Þ

Using relation (73), one finds that for large r the principal
Killing string configuration has the form

ϕi ¼ ϕ0
i þ

ai
r
þ…: ð102Þ

The future-directed, radially inward-pointing surface
element of H∞ at r0 ¼ ∞ is

dΣ∞
a ¼ −

ffiffiffiffiffiffi
−g

p
δradtdD−2Ω; ð103Þ

where
ffiffiffiffiffiffi−gp ¼ rD−2σD−2, and σD−2 denotes the angular part

of the determinant. The stress energy tensor of the string is
(96) with the asymptotic form of ℓ as given in Eq. (101)
such that

Tab ¼ μs

�
δat δ

b
t − δarδ

b
r −

Xm
i¼1

2ai
r2

δðar δ
bÞ
ϕi
þ � � �

�
q: ð104Þ
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Here q is the same as (97) with the only changes ϕ̂i → ϕi

and ϕ̂0
i → ϕ0

i . Calculations give

ΔE∞ ¼ 0; ΔJ∞ðiÞ ¼ _J∞ðiÞðt2 − t1Þ;
_J∞ðiÞ ¼ −μsaiðμ0i Þ2: ð105Þ

As expected, this result is consistent with the calculation
for the mass and angular momentum fluxes through the
horizon, corresponding to an extraction of angular
momentum.

F. Backreaction

Let us now give a few comments concerning the back-
reaction of the fluxes through the horizon generated by the
string. The “common sense” expectation is that—as a result
of these fluxes—the parameters of the black hole should
change. However, the demonstration of this requires the
development of the corresponding formalism. The main
problem is the following: In vacuum, in the absence of
fluxes, the event horizon coincides with the Killing
horizon, which can be defined at any moment of time.
In the presence of fluxes, however, the metric becomes
time-dependent, and strictly speaking there is no required
Killing vector that allows one to define the black hole
boundary at a given moment. Because of its teleological
nature, the standard definition of the event horizon is also
not very useful for this purpose.
Several generalizations to situations when the parameters

of the black hole are changing in time have been proposed.
A comprehensive discussion of this subject can be found in
[26]. For our purpose, the most convenient approach was
developed in [27,28], called the method of “slowly evolv-
ing horizons.” The basic idea of this method is that when
the evolution of the horizon is a slow process, controlled by
a small parameter ϵ, one can use a future outer trapping
surface as a black hole boundary. For a string with tension
μs this parameter ϵ is small when μs ≪ 1. The future outer
trapping horizon is a three-dimensional surface, which may
be foliated by two-dimensional outer trapping surfaces. In
the presence of fluxes obeying energy conditions it is a
spacelike surface, which for small ϵ is close to the null one.
It was demonstrated in [27,28] that—provided some natural
conditions are satisfied—one can define the generators on
the slowly evolving horizons and construct generators of
“approximate symmetry” transformations. Moreover, it
was also shown that in the absence of gravitational waves
the change of the energy (mass) and angular momentum of
the slowly evolving black hole agrees with the expressions
(88)–(89) obtained in the test field approximation, at least
in the leading order of the smallness parameter.
As a result of the angular momentum flux through the

horizon the rotation of the black holes is slowed down and
its angular momentum decreases according to

JðiÞ ¼ J0ðiÞe
−v=vi ; vi ¼

2M
D − 2

1

μsðμ0i Þ2
: ð106Þ

This result is in agreement with our previous work on the
special case of the four-dimensional Kerr metric [17].

V. ASYMPTOTIC TORQUE

Let us now demonstrate that the change of the black hole
parameters (105), can be explained as the result of a torque
produced by an external force that keeps the string segment
at rest at infinity.

A. Calculation of the asymptotic torque

In the four-dimensional case it is straightforward to
interpret the angular momentum extraction _J∞ as a result of
the action of a torque on the black hole via the string [17].
We prove now a similar result for the higher-dimensional
case. The main difference is that in higher dimensions both
angular momentum and torque are 2-forms, and only
in three spatial dimensions they can be identified with
3-vectors and axial 3-vectors, respectively.
At this point it is useful to introduce the Cartesian

coordinates

xi ¼ rμi sinϕ; yi ¼ rμi cosϕ; z ¼ ð1 − ϵÞrμ0;
i ¼ 1;…; m≡ n − 1þ ϵ; ð107Þ

and write the asymptotic Myers-Perry metric in the form

ds2 ¼ −dt2 þ
Xm
i¼1

ðdx2i þ dy2i Þ þ ð1 − ϵÞdz2: ð108Þ

This is of course simply D-dimensional Minkowski space.
The coordinates xi and yi are chosen such that they span the
plane of rotation corresponding to the rotation parameter ai.
The coordinate z only exists in even spacetime dimensions
with ϵ ¼ 0.
We denote by ei, êi and e0 unit vectors in the direction of

the xi, yi and z coordinate lines, respectively. For the
corresponding dual unit forms we shall use the notations
ωi, ω̂i, and ω0. Then, the angular momentum parameters
of the Myers-Perry solution can be identified with compo-
nents of the following 2-form [22]:

J ¼ 2M
D − 2

Xm
i¼1

aiωi ∧ ω̂i; ð109Þ

where M is the mass.
Let us consider a principal Killing string configuration at

time T. Such a string is specified by its asymptotic
parameters ðμ0i ;ϕ0

i ; ð1 − ϵÞμ00Þ. In Cartesian coordinates
these equations determine a straight line L0 that we shall
call fiducial. Consider a sphere SR of large radius R
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R2 ≡Xm
i¼1

ðx2i þ y2i Þ þ ð1 − ϵÞz2 ¼ const: ð110Þ

A unit vector nR which is orthogonal to SR is

n ¼ 1

R

�Xm
i¼1

ðxiei þ yiêiÞ þ ð1 − ϵÞze0
�
: ð111Þ

The fiducial line L0 crosses SR at a point A0. By a rigid
rotation it is possible to put ϕ0 ¼ 0. From now on we use
this choice of the coordinates, in which the point A0 has
coordinates ðx0i ¼ 0; y0i ; z

0Þ. The asymptotic form of the
string equation (102),

ϕi ∼
ai
r
; ð112Þ

implies that in the asymptotic domain the string coincides
with a straight line parallel to the fiducial line L0 and
separated from it by a finite distance

ℓ ¼
�Xm
i¼1

ðaiμ0i Þ2
�1

2

: ð113Þ

Thus, it crosses the sphere SR at a point slightly different
from A0. Such a principal Killing string segment with
parameters μ0i will experience a relative displacement
described by the impact vector5

δ ¼
Xm
i¼1

aiμ0i ei: ð114Þ

If one cuts the string at the point where it crosses SR, then
—in order to keep it at rest—one needs to apply the force μs
in the radial direction nR. In the vector of this force is

F ¼ μsnR ¼ μs

�Xm
i¼1

μ0i êi þ ð1 − ϵÞμ00e0
�
: ð115Þ

This force F then acts at the displacement δ from the
position A0 of the fiducial line, given by (114), and creates
the asymptotic torque 2-form τ. Let us denote by F̃ and δ̃
the 1-forms dual to the vectors F and δ. Then, the torque
2-form is given by

τ ≡ δ̃ ∧ F̃ ¼ μs

�Xm
i;j¼1

aiμ0i μ
0
jωi ∧ ω̂j

þ ð1 − ϵÞ
Xm
i¼1

aiμ0i μ
0
0ωi ∧ ω0

�
: ð116Þ

Note that the impact vector, the force, and the torque 2-form
remain finite in the limit R → ∞.
Let us remark that J encompasses the “internal” angular

momentum (spin) of the black hole. In order to describe a
complete evolution of the black hole one needs also to
describe its behavior in the surrounding bulk spacetime,
that is, one needs to specify its position and velocity: the
action of external forces on the black hole results in the
change of its momentum and the value and orientation of its
angular momentum in the bulk space.
There are two observations at this point:
(i) If only a single string segment is attached to the

black hole, the force F ≠ 0 will accelerate the
black hole.

(ii) The nonvanishing torque (116) will induce a change
of the overall angular momentum of the black hole
according to _J ¼ τ. This is because the torque
2-form has components that lie within the xiyi-
planes, which will lead to a change of the angular
momentum along these eigendirections of J (let us
call these components “in-plane”), but also off-
diagonal terms that lie in xiyj-planes and xixj-planes
(for i ≠ j). These contributions will lead to a time-
dependent precession of J outside of its eigenplanes,
hence we refer to them as “out-of-plane.”

For any mechanical system, force and torque are additive
quantities. We can therefore try to add additional string
segments with suitable parameters that will counterbalance
the force F and torque τ that is caused by just one single
string segment. We demonstrate now that by carefully
balancing all forces and torques one can obtain a quasi-
stationary system, where the only change will be adiabatic
decrease of the value of components of angular momentum
of the black hole. This somewhat resembles the construc-
tion of gearboxes in automobiles. In what follows, we will
give an explicit example how to construct such a “black
hole gearbox.”

B. Torque alignment procedure: Constructing
a black hole gearbox

It is useful to write the displacement δ and force F for a
single string segment as

δ ¼
Xm
i¼ϵ

δi; F ¼
Xm
i¼ϵ

Fi; ð117Þ

where we have chosen the notation δ0 ¼ 0 and F0 ¼
ð1 − ϵÞFz to accommodate even and odd dimensions in
one expression. Then we can write the torque of a single
string segment, call it ð1Þτ, as follows:

ð1Þτ ¼
Xm
i;j¼ϵ

δ̃i ∧ F̃j ¼
X
i¼j

δ̃i ∧ F̃i þ
X
i≠j

δ̃i ∧ F̃j: ð118Þ5This displacement is closely related to the impact parameter
of the incoming principal null geodesic.
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The first term is already in-plane, but the second term is not.
We can think of it as the following matrix:

X
i≠j

δ̃i∧ F̃j¼
�
0 0

T⃗ M

�

¼

0
BBBBBBBB@

0 0 0 … 0

δ̃1∧ F̃0 0 δ̃1∧ F̃2 … δ̃1∧ F̃m

δ̃2∧ F̃0 δ̃2∧ F̃1 0 … δ̃2∧ F̃m

..

. ..
. ..

. . .
. ..

.

δ̃m∧ F̃0 δ̃m∧ F̃1 δ̃m∧ F̃2 … 0

1
CCCCCCCCA
:

ð119Þ

The matrixM and the column vector T⃗ parametrize the out-
of-plane torque. For ϵ ¼ 1 this column vector T⃗ and the
extra row with zeros are absent, so that the out-of-plane
torque reduces to a square m ×m matrix M.
Let us now introduce the following set of discrete point

transformations:

I0∶ z → −z; Ij∶ ðxj; yjÞ → ð−xj;−yjÞ;
I∶ ðx1; y1;…; zÞ → ð−x1;−y1;…;−zÞ: ð120Þ

They correspond to an inversion along the z-axis, rotations
of π in the xjyj-planes, and a total inversion, respectively. It
is easy to see that string segments parametrized by
ðx0i ; y0i ; z0Þ and Ijðx0i ; y0i ; z0Þ (for some fixed j) have the
same in-plane torque. However, their out-of-plane torque
matrix M differs by a sign in the j-th row and j-th column
because these components only contain either x0j or y0j.
Adding up these torques hence eliminates the j-th row and
j-th column from the total torque.
One can now repeat this step for all planes j ¼ 1;…; m

and thereby set M ¼ 0, doubling the number of string
segments in each step. The vector T⃗ is nonvanishing for
even spacetime dimensions. It can be set to zero by
inserting a z-inverted copy of each string segment, thereby
doubling the number of string segments one more time. We
obtain

ð2n−1Þτ ¼
�Ym
i¼ϵ

ð1þ IiÞ
�
ð1Þτ; ð121Þ

which amounts to the net torque of 2m−ϵ ¼ 2n−1 principal
Killing string segments, which is in-plane with J such that
J will not pick up any nondiagonal terms. We can finally set
the net force to zero by doubling the number of principal
Killing string segments one last time via adding a copy of
each string segment at the totally inverted position such that

ð2nÞF ¼ ð1þ IÞð2n−1ÞF ¼ 0 ð122Þ

ð2nÞτ ¼ ð1þ IÞð2n−1Þτ: ð123Þ

In general, there is a total number of 2n principal Killing
string segments required to perform this torque align-
ment procedure. See Fig. 1 for an explicit example of
this procedure for the four-dimensional case. Since all of
these string segments extend from the black hole horizon
to spatial infinity, and all of the string segments (via the
last I-transformation) have an antipodal counterpart on
the other side of the black hole, one can equivalently
think of 2n−1 infinite strings that pierce the central
Myers-Perry black hole and extend from spatial infinity
to spatial infinity.
The above procedure has a group-theoretical interpreta-

tion. The spatial isometry group of the Myers-Perry
spacetime is (for all ai nonvanishing and ai ≠ aj)

G ¼ Z1−ϵ × SOð2Þm; ð124Þ

where Z denotes the reflection symmetry with respect to
the z-axis in even spacetime dimensions (ϵ ¼ 0), and
SOð2Þm encodes the axisymmetry in each xiyi-plane with
i ¼ 1;…; m. In the presence of a single principal Killing
string segment, G gets broken to the trivial group, and no
isometries remain.
The construction of the black hole gearbox, however,

restores the isometries somewhat. The spacetime of the
Myers-Perry black hole with 2n principal Killing string
segements attached has the discrete isometry group

G0 ¼ I0 × ðIjÞm ≅ Z1−ϵ × Zm; ð125Þ

where we used the notation of Eq. (120). Moreover, Z1−ϵ

again denotes a discrete symmetry with respect to

FIG. 1. Torque alignment procedure for the four-dimensional
case: The angular momentum 2-form J ¼ Madx ∧ dy corre-
sponds to the 3-vector ∂z pointing along the z-axis. For a string
with parameters of point 1 on S2∞, first create a second string at
point 2 to compensate the out-of-plane component of the torque.
Then, add the two strings at points 3 and 4 to cancel the net force
while keeping the net torque aligned to J.
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reflections about the z-axis in even spacetime dimensions
(ϵ ¼ 0), and Z ⊂ SOð2Þ corresponds to the reflection
symmetry under the discrete subgroup of two-dimensional
rotations. The above seems to mimic the emergence of
approximate symmetries in the context of small perturba-
tions [27,28], but further work is required to determine
whether there is a deeper connection or not.

VI. DISCUSSION

In a spacetime that admits a principal tensor h, there
exists a rich geometrical structure generated by this object
[9]. As a result of the existence of a set of explicit and
hidden symmetries (Killing tower) generated by the prin-
cipal tensor, the geodesic equations are completely inte-
grable and several physical field equations allow complete
separation of variables. A natural question is: Can these
symmetries be used to solve equations for more compli-
cated physical objects? In particular, this question is highly
interesting for the case of strings propagating in a spacetime
with the principal tensor. Unfortunately, in the general case
of dynamical strings the answer seems to be negative.
However, there exists a wide class of string configurations
for which the equations are proven to be completely
integrable [12]. The characteristic property of such strings
is that their world sheet is tangent to the primary Killing
vector of h. Within this class of strings, there exist special
solutions which we called principal Killing strings. In this
paper we studied properties of these string solutions in the
general off-shell Kerr-NUT-(A)dS spacetime with an arbi-
trary number of dimensions.
First, we demonstrated that in a spacetime with the

principal tensor h a two-dimensional surface Σ� tangent to
the primary Killing vector and the principal null vector l� is
a minimal surface. Thus, this surface is a solution of the
Nambu-Goto equations and represents a stationary string in
the Kerr-NUT-(A)dS spacetime. In particular, in the pres-
ence of the future event horizon Hþ, the surface Σ−
represents a string that is regular at Hþ in incoming null
coordinates. The strings Σþ have a similar property for the
past horizon H−.
Stationary string configurations in the class of Kerr-

NUT-(A)dS geometries have been discussed in the context
of complete integrability [12]. This is a powerful technique,
but the results are often of a parametric form which makes it
difficult to extract an explicit parametrization. Using our
approach based on the principal tensor, however, we
obtained an explicit solution for principal Killing strings
in the off-shell metric; see Sec. III, Eq. (57). Moreover, we
also found a coordinate transformation from the canonical
coordinates, connected with the principal tensor, to new
coordinates in which the string configuration is straight-
ened. This allowed us to obtain a simple expression for the
stress-energy tensor of the test string in the off-shell metric.

To illustrate these general results we discussed the
special case of the Myers-Perry metric. In Sec. IV, we
explicitly showed that for such metrics our results repro-
duce the results obtained earlier [13]. It should be empha-
sized that the paper [13] was written before the existence of
the principal tensor for Myers-Perry metric was discovered
in [29], and hence our new approach represents a signifi-
cantly streamlined calculation.
In addition, we proved a convenient version of the

energy and angular momentum conservation laws which
allow one to demonstrate the equality of the energy and
angular momentum fluxes through the horizon and similar
fluxes through special chosen surfaces of constant radius r.
We also calculated directly the energy and angular momen-
tum fluxes at infinity and demonstrated the consistency of
these results with the calculations at the horizon. Another
new result is the relation of the change of the parameters of
the rotating black hole pierced by a string to the torque
produced at infinity by forces keeping the string stationary.
To that end, we discussed special configurations of a set of
strings such that their net action on the black hole is a
reduction of its rotation parameters.
It should be emphasized that besides these “internal”

degrees of freedom such as the mass and the angular
momenta, the black hole is characterized by its “external”
degrees: its position and velocity (momentum) in space, as
well as the orientation of its spin. In general, the action of a
single string segment on the black hole does not just change
its angular momenta: the string segment’s force and torque
also have components that result in the change of the
momentum of the black hole and its spin orientation
(precession). However, as we demonstrated, these effects
can be counterbalanced by attaching several other string
segments to the black hole. First of all, the net force acting
on the black hole vanishes for two pieces of string segments
piercing the black hole in two antipodal points. Such a
configuration can naturally represent a single infinite string
captured by a black hole. Moreover, one can find a
combination of several strings for which the net torque
effect slows down the spin of the black hole, while the other
torque components, responsible for the change of the spin
orientation, vanish identically.
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