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The observations of gravitational waves from the binary neutron star merger event GW170817 and the
subsequent observation of its electromagnetic counterparts from the gamma-ray burst GRB 170817A
provide us a significant opportunity to study theories of gravity beyond general relativity. An important
outcome of these observations is that they constrain the difference between the speed of gravity and the
speed of light to less than 10−15c. Also, the time delay between the arrivals of gravitational waves at
different detectors constrains the speed of gravity at the Earth to be in the range 0.55c < vgw < 1.42c. We
use these results to constrain a widely studied modified theory of gravity: Eddington-inspired Born-Infeld
(EiBI) gravity. We show that, in EiBI theory, the speed of gravitational waves in matter deviates from c.
From the time delay in the arrival of gravitational wave signals at Earth-based detectors, we obtain the
bound on the theory parameter κ as jκj≲ 1021 m2. Similarly, from the time delay between the signals of
GW170817 and GRB 170817A, in a background Friedmann-Robertson-Walker universe, we obtain
jκj ≲ 1037 m2. Although the bounds on κ are weak compared to other earlier bounds from the study of
neutron stars, stellar evolution, primordial nucleosynthesis, etc., our bounds are from direct observations
and thus worth noting.

DOI: 10.1103/PhysRevD.97.084011

I. INTRODUCTION

General relativity (GR) is extremely successful as a
classical theory of gravity. Over the years it has been
scrutinized in vacuum or in the weak-field regime through
several precision tests, and no significant deviation from
GR has been found [1]. Still, there exist many unsolved
puzzles in GR such as the problem of singularities (which is
expected to be resolved by quantum gravity), understand-
ing the nature of dark matter and dark energy, etc. In order
to address some of these problems, many researchers
actively pursue modified gravity theories in the classical
domain which deviate from GR inside matter distributions,
or in the strong-field regime. One such modification is
inspired by the well-known Born-Infeld electrodynamics
[2] where, even at the classical level, it is possible to avoid
the infinity in the electric field at the location of a point
charge. Deser and Gibbons [3] first suggested a gravity
theory in the metric formalism consisting of a similar
determinantal structure

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−jgμν þ κRμνj

p
as in the action of

Born-Infeld electrodynamics. In fact, the determinantal
form of the gravitational action is not a new concept; it
existed earlier in Eddington’s reformulation of GR in de
Sitter spacetime [4]. This is essentially an affine formalism

where the affine connection is the basic variable instead of
the metric; however, the coupling of matter to gravity
remained a problem.
Later, the Palatini (metric-affine) formulation in Born-

Infeld gravity was introduced by Vollick [5]. He worked on
various related aspects and also introduced a nontrivial and
somewhat artificial way of coupling matter in such a theory
[6,7]. More recently, Bañados and Ferreira [8] have come
up with a formulation, popularly known as Eddington-
inspired Born-Infeld (EiBI) gravity, where the matter
coupling is different and simpler compared to Vollick’s
proposal. For a recent review on Born-Infeld gravity see
Ref. [9], and for its cosmological, astrophysical, and other
applications see Refs. [10–37] and references therein.
The EiBI theory reduces to GR in vacuum but differs in

the presence of matter. Therefore, most stringent tests of
this theory come from neutron stars and stellar evolution
[10,27]. However, the recent direct detection of gravita-
tional wave (GW) signals from binary black hole and
neutron star mergers [38,39] not only provide direct
confirmation of one of the major predictions of GR, but
also give a platform to probe gravity deeper into the strong-
field regime. The time delay between the observations of
gravitational wave signals from the binary neutron star
merger GW170817 and the observation of its associated
electromagnetic counterparts from the gamma-ray burst
GRB-170817A constrain the difference between the speed
of gravity and the speed of light to less than 10−15c; more
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specifically, j vgw−cc j≲ 10−15 [40]. Also, the observations of
GWs at several Earth-based detectors constrain the speed of
gravity between 0.55c < vgw < 1.42c [41]. These obser-
vations have been used to constrain the theories of gravity
beyond GR [42–50]. In this paper, we point out that another
theory where the speed of gravitational waves deviates
from the speed of light is EiBI gravity. Note that, like GR,
in EiBI gravity the graviton is also massless and there
are only two polarization modes. Although gravitational
waves propagate in vacuum in exactly the same manner as
in GR, there should be some differences due to matter
distributions.
Various upper bounds on the theory parameter (κ,

illustrated in the next section) of EiBI gravity exist in
the literature from astrophysical and cosmological obser-
vations. For example, a strong constraint on the theory
with κ > 0 and κ ≲ 109 m2 comes from the existence of
self-gravitating compact objects like neutron stars [10].
Stellar equilibrium and the evolution of the Sun lead to
jκj ≲ 2 × 1014 m2 [27]. Assuming κ > 0, the constraint
κ ≲ 3.5 × 1017 m2 was obtained from the conditions for
primordial nucleosynthesis [28]. Requiring that the electro-
magnetic force dominates over the gravitational force at the
subatomic scale leads to the very strong constraint jκj ≲
6 × 105 m2 [51]. Note that we express κ in dimensions of
½length�2, i.e., in units of m2. In most of the literature, the
units used are kg−1m5 s−2 with the assumption of 8πG ¼ 1
and, therefore, one should divide the numbers by 8πG for the
conversion. However, most of these bounds are somewhat
indirect. In this article, we obtain constraints on κ from the
bounds on the speed of gravitational waves as mentioned
above. In Sec. II, we obtain the gravitational-wave propa-
gation equation in the background of Earth’s gravitational
field, and using this we put a constraint on κ from the time
delay in the arrival of gravitational-wave signals at widely
separated Earth-based detectors. In Sec. III, we put a
constraint on κ from the time delay between gravita-
tional-wave signals from the recently detected neutron star
merger event GW170817 and the electromagnetic signal
from the associated γ-ray burst event GRB 170817A.
Finally, we conclude and summarize our results in Sec. IV.

II. SPEED OF GRAVITY THROUGH THE
EARTH IN BORN-INFELD GRAVITY

First, we briefly recall EiBI gravity. The central feature
here is the existence of a physical metric which couples to
matter, and another auxiliary metric which is not used for
matter couplings. One needs to solve for both metrics using
the field equations. The action for the theory developed in
Ref. [8] is given as

SBIðg;Γ;ΨÞ ¼
c3

8πGκ

Z
d4x

h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−jgμν þ κRμνðΓÞj

q
− λ

ffiffiffiffiffiffi
−g

p i

þ SMðg;ΨÞ; ð1Þ

where λ ¼ κΛþ 1, with Λ being the cosmological con-
stant. As mentioned earlier, κ is the constant parameter of
the theory with dimensions of ½length�2 and, for sufficiently
small κ, the action reduces to the known Einstein-Hilbert
action. Variation with respect to Γ (assuming symmetric Γρ

μν

and Rμν) gives

qμν ¼ gμν þ κRμνðΓÞ; ð2Þ
where qμν is called the auxiliary metric which satisfies the
compatibility condition ∇αð ffiffiffiffiffiffi−qp

qμνÞ ¼ 0 with respect to
Γ, which gives

Γρ
μν ¼ 1

2
qραðqαμ;ν þ qνα;μ − qμν;αÞ: ð3Þ

Variation with respect to gμν gives the field equation

ffiffiffiffiffiffi
−q

p
qμν ¼ λ

ffiffiffiffiffiffi
−g

p
gμν −

8πG
c4

κ
ffiffiffiffiffiffi
−g

p
Tμν; ð4Þ

where the Tμν components are in the coordinate frame.
Now we derive the equation for the propagation of

gravitational waves in the background of Earth’s gravity.
For the background field equations, we work in the
Newtonian limit or, more precisely, the nonrelativistic limit
of EiBI theory [8]. We consider a time-independent metric,

ds2 ¼ −
�
1þ 2Φ

c2

�
c2dt2 þ

�
1 −

2Φ
c2

�
δijdxidxj; ð5Þ

coupled to the energy-momentum tensor Tμν ≈ ρc2uμuν in
the comoving frame. Here ρ is the matter density and p is
the pressure. In the nonrelativistic limit, p ≪ ρc2 and Φ
is the Newtonian potential. Also, here the cosmological
constant Λ is irrelevant. We additionally assume a time-
independent auxiliary metric,

ds2q ¼ −
�
1þ 2Φq

c2

�
c2dt2 þ

�
1 −

2Φq

c2

�
δijdxidxj: ð6Þ

From the μ ¼ 0, ν ¼ 0 (temporal indices) field equations
[Eqs. (4) and (2)], we have

Φ ¼ Φq þ 2πGκρ; ð7Þ

Φ ¼ Φq þ
κ

2
∇2Φq; ð8Þ

where we keep only linear terms inΦ;Φq, and ρ. In Eq. (8),
we used R00ðqÞ ¼ ∇2Φq=c2. From Eqs. (7) and (8) we get

∇2Φq ¼ 4πGρ: ð9Þ

Taking the Laplacian of both sides of Eq. (7), we get

∇2Φ ¼ ∇2Φq þ 2πGκ∇2ρ; ð10Þ

JANA, CHAKRAVARTY, and MOHANTY PHYS. REV. D 97, 084011 (2018)

084011-2



and using Eq. (9) in Eq. (10), we finally get the modified
Poisson equation

∇2Φ ¼ 4πGρþ 2πGκ∇2ρ: ð11Þ

Using this modified Poisson equation, it was shown in
Ref. [10] that this theory supports a stable pressureless
neutron star. There it was also shown that nonrelativistic
dust collapse does not lead to a singularity for κ > 0, which
is a completely different result from that in Newtonian
gravity. The second term in the modified Poisson equation
may play a repulsive role and may be important in a highly
dense region of matter. However, for a nearly constant
matter density (such as the Earth), this effect is negligible
and we get back Newtonian gravity. But we will see below
that, even for the Earth, there will be a nonzero contribution
in the equation of gravitational-wave propagation.
Now, in the presence of gravitational waves, the per-

turbed line elements will take the following forms:

ds2 ¼ −
�
1þ 2Φ

c2

�
c2dt2 þ

�
1 −

2Φ
c2

�
ðδij þ hijÞdxidxj;

ds2q ¼ −
�
1þ 2Φq

c2

�
c2dt2 þ

�
1 −

2Φq

c2

�
ðδij þ γijÞdxidxj;

where hijðx⃗; tÞ and γijðx⃗; tÞ are transverse and traceless, i.e.,
hii ¼ γii ¼ 0 and ∂ihij ¼ ∂iγ

ij ¼ 0. In our computations,
we keep the terms in first order of hij and γij as well as Φ
and Φq. However, we keep the terms like “Φhij” to capture
the effect of Earth’s gravity. The following identities are
used to construct the perturbed field equations:

ffiffiffiffiffiffi
−g

p
≈ c

�
1 −

2Φ
c2

�
þOðh2Þ;

ffiffiffiffiffiffi
−q

p
≈ c

�
1 −

2Φq

c2

�
þOðγ2Þ;

gij ≈
�
1þ 2Φ

c2

�
ðδij − hijÞ;

qij ≈
�
1þ 2Φq

c2

�
ðδij − γijÞ:

The μ ¼ i, ν ¼ j (spatial indices) field equation from g
variation [Eq. (4)] becomes

�
1 −

2Φq

c2

��
1þ 2Φq

c2

�
ðδij − γijÞ

¼
�
1 −

2Φ
c2

��
1þ 2Φ

c2

�
ðδij − hijÞ;

which simplifies greatly to

γij ¼ hij: ð12Þ

The exact same result is seen in the case of gravitational
waves in a Friedmann-Robertson-Walker (FRW) back-
ground [16,52].
Using Eq. (3), we compute the perturbed RμνðqÞ:

R00ðqÞ ¼ ∇2Φq −Φq;i;jγ
ij;

RijðqÞ ¼
1

2c2

�
1 −

4Φq

c2

�
̈γij þ

1

c2
∇2Φqðδij þ γijÞ

−
1

2
∇2γij −

1

c2
Φq;k;lγ

klδij:

From the μ ¼ 0, ν ¼ 0 perturbed field equation [Eq. (2)],
we get Φq;i;jγ

ij ≪ ∇2Φq. Using this relation in the μ ¼ i,
ν ¼ j equation, we get

�
1 −

2Φq

c2

�
ðδij þ γijÞ ¼

�
1 −

2Φ
c2

�
ðδij þ hijÞ

þ κ

2c2

��
1 −

4Φq

c2

�
̈γij − c2∇2γij

�

þ κ

c2
∇2Φqðδij þ γijÞ;

which [after using Eqs. (8) and (12)] simplifies to

ḧij − c2
�
1þ 4Φq

c2

�
∇2hij ¼ 0: ð13Þ

The two polarization modes × and þ of the radial
component of the gravitational-wave amplitude A×;þ ¼
rhij satisfy the following one-dimensional wave equation:

Äþ c2
�
1þ 4Φq

c2

�
k2A ¼ 0. ð14Þ

We have used ∇2 ¼ −k2, where k is the wave number. Let
us take a plane wave-solution of Eq. (14),

Aðt;ωÞ ¼ ÃðωÞeiðkr−ωtÞ: ð15Þ

Inserting this into the wave equation (14) gives the
dispersion relation as

−ω2 þ c2
�
1þ 4Φq

c2

�
k2 ¼ 0: ð16Þ

Thus the speed of gravitational waves in the background of
Earth’s gravitational field becomes

vgw≡dω
dk

¼c

�
1þ4Φq

c2

�
1=2

≈c

�
1þ2Φ

c2
−
4πGκρ
c2

�
; ð17Þ

where we used Eq. (7). Note that in GR the gravitational
waves propagate with the speed of light, which in this case
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is vEM ≈ cð1þ 2Φ
c2 Þ. At the surface of the Earth,

Φ=c2 ≈ −10−9.

A. Bound on κ from the speed
of gravity in the Earth

Cornish et al. [41] obtained upper and lower bounds on
the speed of gravitational wave propagation from the time
delay between gravitational-wave signals (reported by the
LIGO Scientific and Virgo Collaborations) arriving at
widely separated Earth-based detectors. Their bounds are
given by 0.55c < vgw < 1.42c. Although this bound is very
crude and will improve with more detections and more
detectors joining the worldwide network, there may be a
signature of modified gravity where the speed of gravita-
tional waves is different from the speed of light. This feature
is indeed present in EiBI theory, and we can use the bounds
on vgw to put a bound on κ. Assuming j vgw−cc j < 0.1, we get
jκj ≲ 1021 m2, where we have used the matter density of
Earth ρEarth ¼ 5.5 × 103 kg=m3 in Eq. (17).

III. SPEED OF GRAVITY IN THE
BACKGROUND OF A FRW UNIVERSE

The time delay between the recently detected gravita-
tional-wave signal GW170817 and the associated γ-ray
burst GRB170817A [39] also gives bounds on vgw [40]. The
source was localized at a luminosity distance of 40 Mpc.
Since the signals were propagating over an intergalactic
distance, we consider the gravitational wave propagating in
a background FRWspacetime in cosmology. Thus, we solve
the EiBI field equations in the FRW background for the
tensor perturbations hij and obtain the gravitational-wave
propagation equation (in cosmic time) as [16,52]

ḧij þ
�
3H þ _α

α

�
_hij − c2β2

∇2

a2
hij ¼ 0; ð18Þ

where

α ¼ λþ 8πGκρ
c2

; β2 ¼
���� λ −

8πGκp
c4

λþ 8πGκρ
c2

����;

and ρ and p are the energy density and pressure of the
matter in the Universe, H ¼ _a=a is the Hubble parameter,
and a is the scale factor in the FRW spacetime. From the
coefficient of _hij in Eq. (18), we see that in addition to the
cosmological damping proportional to 3H, there is also an
extra damping factor due to EiBI gravity proportional to _α

α.
On subhorizon propagation distance scales this term
is small.
We go to Fourier space and redefine the perturbations hij

as hij ¼ μij
a
ffiffi
α

p . The wave equation (18) in conformal time τ,

defined via dτ ¼ dt=a, can be written as

μ00ij þ
�
−
a00

a
−
α00

2α
−
a0α0

aα
−

α02

4α2
þ c2β2k2

�
μij ¼ 0; ð19Þ

where a prime denotes a derivative with respect to the
conformal time τ. On subhorizon scales we can safely
ignore all of the terms inside the square brackets compared
to the mode scale k2, and the above equation reduces to

μ00ij þ c2β2k2μij ¼ 0: ð20Þ

The two polarization modes × and þ of the radial
component of the gravitational-wave amplitude A×;þ ¼
rμij satisfy the following one-dimensional wave equation at
large distances from the source:

A00 þ c2β2k2A ¼ 0: ð21Þ

Let the solution of Eq. (21) be

Aðτ;ωÞ ¼ ÃðωÞeikr−
R

iωdτ: ð22Þ

Inserting this into the wave equation (21) gives the
dispersion relation as

−ω2 þ c2β2k2 ¼ 0; ð23Þ

and therefore the speed of gravitational waves can be given
as

vgw ≡ dω
dk

¼ cβ ¼ c

���� λ −
8πGκp
c4

λþ 8πGκρ
c2

����
1=2

: ð24Þ

The difference between the speed of gravity vgw and the
speed of light in vacuum c becomes

vgw − c

c
¼

���� λ −
8πGκp
c4

λþ 8πGκρ
c2

����
1=2

− 1: ð25Þ

A. Bound on κ from the speed of gravity
in a FRW Universe

The observed time delay of 1.74� 0.05 s between the
gravity wave from the neutron star merger event and the
light from the subsequent γ-ray burst constrain the differ-
ence between the speed of gravity and the speed of light to
be between −3 × 10−15c and þ7 × 10−16c. Inserting
j vgw−cc j≲ 10−15, the present energy density of the
Universe to be at the critical density ρ ¼ ρc0, the cosmo-
logical constant Λ ¼ 8πGρDE

c2 ; ρDE ≈ 0.7ρc0, and pressure
p ¼ −ρDEc2 into (25), we obtain jκj≲ 1037 m2.
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IV. CONCLUSIONS

In this article we demonstrated how the signature of
some of the modified theories of gravity may be imprinted
in the speed of gravitational waves. In particular, we put
constraints on EiBI gravity from the bounds on the speed of
gravity from the recent direct detection of GW signals from
binary black hole and neutron star mergers.
We derived the gravitational-wave propagation equation

in the background of Earth’s interior and used it to put a
bound on κ. From the bound on the speed of gravity derived
from the time delay of GW signals at different Earth-based
detectors, we obtained jκj≲ 1021 m2. Similarly, from the
time delay in the signals from GW170817 and GRB

170817A events, in the background of a FRW universe,
we obtained the bound jκj≲ 1037 m2. These bounds are
weaker than other bounds from neutron stars, stellar
evolution, nucleosynthesis, etc. However, they constitute
direct constraints on κ from observations. Also, we note
that there is no dispersion of GWs in matter in EiBI gravity.
Future observations of the speed of GWs and their
dispersion will put tighter constraints on theories of gravity
beyond GR like EiBI theory.
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