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We study relativistic star solutions in second-order generalized Proca theories characterized by a
Uð1Þ-breaking vector field with derivative couplings. In the models with cubic and quartic derivative
coupling, the mass and radius of stars become larger than those in general relativity for negative derivative
coupling constants. This phenomenon is mostly attributed to the increase of star radius induced by a slower
decrease of the matter pressure compared to general relativity. There is a tendency that the relativistic star
with a smaller mass is not gravitationally bound for a low central density and hence is dynamically
unstable, but that with a larger mass is gravitationally bound. On the other hand, we show that the intrinsic
vector-mode couplings give rise to general relativistic solutions with a trivial field profile, so the mass and
radius are not modified from those in general relativity.
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I. INTRODUCTION

The increasing evidence of dark sectors in the Universe
[1,2] implies that there may be some extra propagating
degrees of freedom (DOFs) beyond the realm of general
relativity (GR). The new DOFs arising in modified gravi-
tational theories can be potentially harmful as they gen-
erally mediate fifth forces with ordinary matter. In the local
Universe with a weak gravitational field, however, there
are several screening mechanisms of fifth forces known in
the literature—such as Vainshtein [3] and chameleon [4]
mechanisms. This screening property does not necessarily
persist in the regime of strong gravity, reflecting the fact
that the behavior of new DOFs can be modified by large
nonlinearities in the field equations of motion. The direct
detections of gravitational waves by Advanced LIGO and
Virgo [5,6] have opened up a new window for testing GR in
strong gravity regimes.
Besides black holes (BHs), relativistic stars are also

important compact objects which allow one to search
possible deviation from GR in strong gravity regimes
[7,8]. Especially, neutron stars (NSs) are the representa-
tive relativistic stars. Inside a NS, the gravitational force
balances the degeneracy pressure of fermions [9]. The
properties of NSs, including the mass and radius, depend
on the equation of state (EOS) of strong interacting matter,
i.e., the relation between the matter pressure and density
[10,11]. The microscopic determination of the EOS of
NSs from underlying nuclear interactions in an extremely
high-density regime remains a challenging theoretical
problem.

In modified gravitational theories, the existence of extra
propagating DOFs can also influence the properties of
relativistic stars. In scalar-tensor theories where a scalar
field ϕ has a direct coupling with the Ricci scalar R, the
Einstein-frame metric gμν felt by the matter sector is
different from the Jordan-frame metric g̃μν. The relation
of these two metrics can be parametrized by the form
g̃μν ¼ A2ðϕÞgμν, where AðϕÞ is a function of ϕ [12]. Inside
a star, the conformal coupling to matter can trigger a
tachyonic instability of the scalar field, and spontaneously
scalarizes the relativistic star. Damour and Esposito-Farèse
[13] showed that such a scalarization, which occurs for the
coupling, e.g., AðϕÞ ¼ expðβϕ2=2Þ (where β is a constant),
significantly modifies the properties of relativistic stars
with respect to GR. Such a nontrivial excitation of the
scalar field is a consequence of the absence of a no-hair
theorem for stars. The scalarization can occur only for
β ≲ −4.35 [14–16], whereas binary-pulsar observations
[17] have set stringent bounds on β, as β ≳ −4.5. For
NSs, the existence of EOS-independent relations [18] will
be important to resolve the degeneracies between the
effects associated with modified gravity and uncertainties
in EOSs, and to test modified gravitational theories with
future observations of NSs.
In shift-symmetric Horndeski (and beyond Horndeski)

theories [19,20] with a minimally coupled matter com-
ponent, the no-hair theorem for relativistic stars was
argued in Ref. [21]. The theorem holds under the same
assumptions as those used for proving the no-hair
theorem of BHs in shift-symmetric Horndeski theories
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[22], with the regularity of metric functions and the
scalar field at the center of stars. Thus, as in the case of
hairy BH solutions [23–31], nontrivial NS configurations
have been studied by violating at least one of those
assumptions. For example, there exist relativistic star
solutions for a linearly time-dependent scalar field ϕ ¼
qtþ ψðrÞ [32–35]. Relativistic stars for other modified
gravitational theories have been extensively studied in
Refs. [36–38]. In this paper, we will study relativistic star
solutions in generalized Proca theories described by a
Uð1Þ-breaking vector field with derivative couplings.
We show that the star configuration with nontrivial
influence of the extra DOFs can be constructed more
easily compared to scalar-tensor theories.
The action of generalized Proca theories with second-

order equations of motion was first constructed in
Refs. [39,40] from the demand of keeping three propagat-
ing DOFs besides two tensor polarizations. The theories
were further extended [41] to include intrinsic vector-mode
couplings with the double dual Riemann tensor Lμναβ [42],
such that the Uð1Þ-invariant interactions derived by
Horndeski [43] can be accommodated as a specific case.
It is also possible to go beyond the second-order domain
by keeping the five propagating DOFs [44,45]. In such
(beyond) generalized Proca theories, the derivative inter-
actions can drive the late-time cosmic acceleration [46]
with some distinct observational signatures [47,48],
while satisfying local gravity constraints in the Solar
System [49,50].
In the Einstein-Maxwell theory with a massless vector

field, the unique static and spherically symmetric BH
solution corresponds to the Reissner-Nordström (RN)
metric with mass and electric charge. In the Einstein-
Proca theory with a massive vector field described by the
Lagrangian −m2AμAμ=2, Bekenstein showed that only the
static and spherically symmetric BH solution is given by
the Schwarzschild metric without the vector hair [51]. This
no-hair theorem cannot be applied to vector-tensor theories
with derivative self-interactions and nonminimal couplings
to the spacetime curvature. Indeed, it is known that there
are a bunch of hairy BH solutions in generalized Proca
theories [52–63]. In theories with a nonminimal coupling to
the Einstein tensor, β4GμνAμAν, Chagoya et al. [53] derived
an exact static and spherically symmetric BH solution
for the specific coupling β4 ¼ 1=4. This exact BH solution
was further extended to asymptotically nonflat solutions
[55,58], nonexact solutions for β4 ≠ 1=4 [57,58], and
slowly rotating solutions [55]. There are also exact BH
solutions in a subclass of generalized Proca theories with
new internal symmetries [61,62].
In Refs. [59,60], analytic and numerical BH solutions

have been systematically constructed for a wide class of
generalized Proca theories. The power-law coupling mod-
els, which include the case of vector Galileons, can give
rise to a variety of hairy BH solutions. The cubic and

quartic couplings provide BH solutions with a primary
Proca hair, whereas the sixth-order and intrinsic vector-
mode couplings lead to BH solutions with a secondary
Proca hair. On the other hand, there are no regular BHs for
quintic power-law couplings due to the divergence of the
longitudinal mode at a finite radius.
While both BHs and stars are compact objects with

strong gravitational forces, their internal structures are
different. For static and spherically symmetric BHs the
metric and curvature generally exhibit the divergence at the
center of spherical symmetry, but this is not the case for
stars. Moreover, the configuration of stars is affected by
different choices of the EOS through the change of the
matter pressure. In this paper, we will study how the
presence of derivative couplings in generalized Proca
theories affects the mass and radius of relativistic stars.
In Ref. [57], the authors studied NS solutions in a subclass
of generalized Proca theories with the Lagrangian
β4GμνAμAν. We extend the analysis to more general cubic
and quartic power-law derivative couplings and elucidate
general properties of their effects on the mass and radius of
relativistic stars.
For our purpose of investigating the effects of cubic and

quartic derivative couplings on the mass and radius of
relativistic stars in comparison with GR, we will restrict our
numerical analysis to the case of the simplest polytropic
EOS with two constant parameters [64]. We derive analytic
solutions deep inside the star by imposing regular boundary
conditions at the origin. The validity of analytic solutions
will be confirmed by numerical integrations across the
surface of the star for the polytropic EOS. We will also
study the effects of sixth-order and intrinsic vector-mode
couplings on the configuration of relativistic stars.
However, we will not consider quintic derivative couplings
because of the absence of regular BHs [59,60] as well as
pathological behavior in the regime of weak gravity [50].
The essential qualitative features of relativistic stars in
generalized Proca theories are not sensitive to the choice
of EOSs.
We organize our paper as follows. In Sec. II, we derive a

set of equations in generalized Proca theories with matter
on the static and spherically symmetric background, and
briefly review relativistic stars in GR and the polytrope
EOS. In Secs. III and IV, we study how the mass and radius
are modified by the presence of cubic and quartic power-
law couplings, respectively. In Sec. V, we show that sixth-
order and intrinsic vector-mode couplings lead to the
relativistic star solutions identical to those in GR with a
trivial vector field. We conclude in Sec. VI.
We work in centimeter-gram-second (CGS) units, where

the speed of light, the reduced Planck constant, the gravi-
tational constant, and the neutron mass are given by
c¼2.9989×1010 cm·s−1, ℏ ¼ 1.0546 × 10−27 erg · s, G ¼
6.6741 × 10−8 g−1 · cm3 · s−2, andmn ¼ 1.6749 × 10−24 g,
respectively.
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II. GENERALIZED PROCA THEORIES AND
RELATIVISTIC STARS

A. Equations of motion on the static and spherically
symmetric background

The action of generalized Proca theories with a vector
field Aμ is given by [39,42]

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
F þ

X6
i¼2

Li þ Lm

�
; ð2:1Þ

where g is a determinant of the metric tensor gμν, Lm is a
matter Lagrangian, and

L2 ¼ G2ðX;F; YÞ; ð2:2Þ

L3 ¼ G3ðXÞ∇μAμ; ð2:3Þ

L4 ¼ G4ðXÞRþG4;XðXÞ½ð∇μAμÞ2 −∇μAν∇νAμ�; ð2:4Þ

L5 ¼ G5ðXÞGμν∇μAν −
1

6
G5;XðXÞ½ð∇μAμÞ3

− 3∇μAμ∇ρAσ∇σAρ þ 2∇ρAσ∇νAρ∇σAν�
− g5ðXÞF̃αμF̃β

μ∇αAβ; ð2:5Þ

L6¼G6ðXÞLμναβ∇μAν∇αAβþ
1

2
G6;XðXÞF̃αβF̃μν∇αAμ∇βAν;

ð2:6Þ

with

Fμν ¼ ∇μAν −∇νAμ; F ¼ −
1

4
FμνFμν;

X ¼ −
1

2
AμAμ; Y ¼ AμAνFμ

αFνα: ð2:7Þ

Here, ∇μ, R, and Gμν represent the covariant derivative, the
Ricci scalar, and the Einstein tensor associated with the
four-dimensional metric gμν, respectively. While the func-
tion G2 is generally dependent on X, F, Y, the functions
G3;4;5;6 and g5 depend on X alone with the notation of
partial derivatives Gi;X ≡ ∂Gi=∂X. The dual strength ten-
sor F̃μν and the double dual Riemann tensor Lμναβ are
defined, respectively, by

F̃μν ¼ 1

2
EμναβFαβ; Lμναβ ¼ 1

4
EμνρσEαβγδRρσγδ; ð2:8Þ

where Eμναβ is the Levi-Civita tensor satisfying the nor-
malization EμναβEμναβ ¼ −4!, and Rρσγδ is the Riemann
tensor. The Lagrangians containing the functions g5ðXÞ and
G6ðXÞ correspond to intrinsic vector modes.
We consider a static and spherically symmetric back-

ground characterized by the line element

ds2 ¼ −fðrÞc2dt2 þ h−1ðrÞdr2 þ r2ðdθ2 þ sin2 θdφ2Þ;
ð2:9Þ

where f and h are functions of the distance r from the
center of symmetry. On this background, the vector field
can be expressed in the form

Aμ ¼ ðcA0ðrÞ; A1ðrÞ; 0; 0Þ; ð2:10Þ

where A1ðrÞ is the r-derivative of a longitudinal scalar χ,
such that A1ðrÞ ¼ dχ=dr≡ χ0ðrÞ. The transverse mode

AðTÞ
i in the spatial components Ai needs to vanish due to

the regularity at the origin [49]. On the static and spheri-
cally symmetric background (2.9) with the vector compo-
nents (2.10) there is the relation Y ¼ 4FX, so the additional
dependence of Y in Eq. (2.2) can be removed [60].
We assume that the matter sector is described by a

perfect fluid minimally coupled to gravity. Defining the
matter energy-momentum tensor

Tμν ≡ 2ffiffiffiffiffiffi−gp δð ffiffiffiffiffiffi−gp
LmÞ

δgμν
; ð2:11Þ

the mixed tensor Tμ
ν is expressed in the form

Tμ
ν ¼ diagð−ρc2; P; P; PÞ; ð2:12Þ

where ρ is the total mass density and P is the pressure.
Varying the action (2.1) with respect to f; h; A0; A1,

respectively, we obtain

�
c1 þ

c2
r
þ c3

r2

�
h0 þ c4 þ

c5
r
þ c6

r2
¼ ρ

c2
; ð2:13Þ

−
h
f

�
c1 þ

c2
r
þ c3

r2

�
f0 þ c7 þ

c8
r
þ c9

r2
¼ P

c4
; ð2:14Þ

where c1;2;…;9 are given in the Appendix, and
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rf½2fhðrA00
0 þ 2A0

0Þ þ rðfh0 − f0hÞA0
0�ð1þ G2;FÞ þ r2hA02

0 ½2fhA00
0 − ðf0h − fh0ÞA0

0�G2;FF − 2r2f2A0G2;X

− 2r2fA0
0ðfh2A1A0

1 − hA0A0
0 þ f0hX0 − fh0X1ÞG2;XF − rfA0½2rfhA0

1 þ ðrf0hþ rfh0 þ 4fhÞA1�G3;X

þ 4f2A0ðrh0 þ h − 1ÞG4;X − 8fA0½rfh2A1A0
1 − ðrf0hþ rfh0 þ fhÞX1�G4;XX

− fA0½fð3h − 1Þh0A1 þ hðh − 1Þðf0A1 þ 2fA0
1Þ�G5;X − 2fhA0X1½2fhA0

1 þ ðf0hþ fh0ÞA1�G5;XX

− 2f½fð3h − 1Þh0A0
0 þ hðh − 1Þð2fA00

0 − f0A0
0Þ�G6 − 4fhA0

0X1ðhA0A0
0 − 2fh2A1A0

1 − 2f0hX0 þ 2fh0X1ÞG6;XX

− 2f½4fh2X1A00
0 − 2hðhX − X0Þf0A0

0 þ 2fð6h − 1Þh0X1A0
0 þ hðh − 1ÞA0A02

0 − 2fh2ð3h − 1ÞA0
0A1A0

1�G6;X

− 4fh½2rfhA1A00
0 − fðrf0h − 3rfh0 − 2fhÞA1 − 2rfhA0

1gA0
0�g5

− 4rfhA0
0½hA0A0

0A1 þ 4fhX1A0
1 − 2A1ðf0hX0 − fh0X1Þ�g5;X ¼ 0; ð2:15Þ

A1½r2fG2;X − 2ðrf0hþ fh − fÞG4;X þ 4hðrA0A0
0 − rf0X − fX1ÞG4;XX − hA02

0 ð3h − 1ÞG6;X − 2h2X1A02
0 G6;XX�

¼ r½rðf0X − A0A0
0Þ þ 4fX1�G3;X þ 2f0hX1G5;X þ ðA0A0

0 − f0XÞ½ð1 − hÞG5;X − 2hX1G5;XX� − 2rhA02
0 ðg5 þ 2X1g5;XÞ:

ð2:16Þ

The quantity X is given by X ¼ X0 þ X1, where

X0 ≡ A2
0

2f
; X1 ≡ −

hA2
1

2
: ð2:17Þ

From the matter continuity equation, it follows that

P0 þ f0

2f
ðρc2 þ PÞ ¼ 0: ð2:18Þ

For a given EOS

P ¼ PðρÞ; ð2:19Þ

Eqs. (2.13)–(2.16) with Eq. (2.18) form a closed set of
equations to determine f; h; A0; A1; ρ, and P as functions
of r.

B. Relativistic stars in GR

Here, we briefly review relativistic stars in GR without
the vector field Aμ. This corresponds to the functions

G4¼
1

16πG
; G2¼G3¼G5¼G6¼0; g5¼0: ð2:20Þ

In this case, Eqs. (2.13) and (2.14) reduce, respectively, to

h0

r
þ h − 1

r2
¼ −

8πGρ
c2

; ð2:21Þ

h
f
f0

r
þ h − 1

r2
¼ 8πGP

c4
: ð2:22Þ

Introducing the mass function MðrÞ, as

hðrÞ ¼ 1 −
2GMðrÞ

c2r
; ð2:23Þ

we can express Eq. (2.21) in the simple form

M0ðrÞ ¼ 4πρr2: ð2:24Þ

On using Eqs. (2.22) and (2.23), the continuity equa-
tion (2.18) reduces to the Tolman-Oppenheimer-Volkoff
(TOV) equation

P0ðrÞ ¼ −
Gðρþ P=c2ÞðM þ 4πr3P=c2Þ

r2½1 − 2GM=ðc2rÞ� : ð2:25Þ

Around the center of the star, we expand f, h, ρ, and P in
the following forms:

fðrÞ ¼ 1þ
X∞
i¼2

firi; hðrÞ ¼ 1þ
X∞
i¼2

hiri;

ρðrÞ ¼ ρc þ
X∞
i¼2

ρiri; PðrÞ ¼ pc þ
X∞
i¼2

piri; ð2:26Þ

where fi, hi, ρi, pi are constants. Then, the regularity
conditions f0ð0Þ ¼ h0ð0Þ ¼ ρ0ð0Þ ¼ P0ð0Þ ¼ 0 are satisfied
with ρðrÞ and PðrÞ converging to constant values ρc and pc,
respectively, as r → 0. By solving Eqs. (2.21), (2.22), and
(2.18) iteratively, the boundary conditions around r ¼ 0
can be found as

fðrÞ ¼ 1þ 4πGðc2ρc þ 3pcÞ
3c4

r2 þOðr4Þ; ð2:27Þ

hðrÞ ¼ 1 −
8πGρc
3c2

r2 þOðr4Þ; ð2:28Þ
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PðrÞ ¼ pc −
2πGðc2ρc þ 3pcÞðc2ρc þ pcÞ

3c4
r2 þOðr4Þ:

ð2:29Þ

The numerical integration is performed until reaching the
surface of the star r ¼ R�, where PðR�Þ ¼ 0. By requiring
the continuity of metric functions and their first-order
derivatives across the surface r ¼ R�, the internal solution
is smoothly joined to the exterior Schwarzschild solution
given by the metric (2.9) with

f ¼ h ¼ 1 −
2GM�
c2r

; ð2:30Þ

where the Arnowitt-Deser-Misner (ADM) mass is given by
M� ≡MðR�Þ. Provided that the EOS (2.19) inside the star
is known, it is practically more convenient to integrate
Eqs. (2.22), (2.24), and (2.25) to determine ρðrÞ, PðrÞ, and
MðrÞ. In Secs. III–V, the mass and radius of relativistic
stars in generalized Proca theories will be compared to
those in GR.

C. The polytrope equation of state

As we will see later, the qualitative results of relativistic
stars in generalized Proca theories do not depend on the
choice of EOSs. Thus, in this paper, we focus on one of the
simplest EOSs, known as the polytropic EOS, which is
given by

P ¼ KρΓ0 ; ð2:31Þ

where ρ0 is the rest-mass density, and K, Γ are constants.
In general, the total energy density ρc2 is expressed in the
form ρc2 ¼ ρ0c2ð1þ ϵÞ, where ϵ is the dimensionless
internal energy density per unit mass. For baryons with
number density nb and the mean rest mass mb, the rest-
mass density is given by ρ0 ¼ nbmb. On using the first law
of thermodynamics for the adiabatic process, the baryon
pressure is expressed as P ¼ n2bmbc2∂ϵ=∂nb [64]. For
the polytropic EOS (2.31), i.e., P ¼ KðnbmbÞΓ, we obtain
the integrated solution ϵ ¼ KρΓ−10 =½c2ðΓ − 1Þ�, so the total
mass density yields ρ ¼ ρ0 þKρΓ0=½c2ðΓ − 1Þ�. We define
the dimensionless rest-mass density χ and the rescaled
polytropic gas constant K as

χ ≡ ρ0
ρ̃0

¼ nb
n0

; K ≡ K
ρ̃1−Γ0 c2

; ð2:32Þ

with

ρ̃0 ¼ n0mb; ð2:33Þ

where n0 ¼ 0.1 ðfmÞ−3 is the typical nuclear number
density of relativistic stars. As a result, the polytropic
EOS can be expressed in the form [13]

ρ ¼ ρ̃0

�
χ þ K

Γ − 1
χΓ
�
; P ¼ Kρ̃0c2χΓ; ð2:34Þ

with

w≡ P
ρc2

¼ KχΓ−1

1þ KχΓ−1=ðΓ − 1Þ : ð2:35Þ

In the nonrelativistic regime characterized by KχΓ−1 ≪ 1,
we have w ≃ KχΓ−1, so w grows with the increase of mass
density ρ. In the relativistic regime, w approaches a constant
value Γ − 1 for increasing ρ.
For numerical purposes, it is convenient to introduce the

dimensionless quantities:

x¼ r
r0
; y¼ ρ

ρ̃0
; w0¼

P
ρ̃0c2

; mðrÞ¼ 3MðrÞ
4πρ̃0r30

; ð2:36Þ

where

r0 ¼
ffiffiffiffiffiffiffiffi
c2

Gρ̃0

s
: ð2:37Þ

In the following, we identify mb with the neutron mass
mn ¼ 1.6749 × 10−24 g. Then, the distance (2.37) corre-
sponds to r0¼89.696 km, with ρ̃0¼1.6749×1014 g cm−3.
The polytropic EOS (2.34) can be expressed in the form

w0ðxÞ¼KχðxÞΓ; yðxÞ¼
�
w0ðxÞ
K

�
1=Γ

þw0ðxÞ
Γ−1

: ð2:38Þ

Specifying the value of w0ð0Þ, the associated dimensionless
density yc ¼ ρc=ρ̃0 is also fixed at the center of the star.
The star radius R� is defined by

w0ðx�Þ ¼ 0; ð2:39Þ

where x� ¼ R�=r0. By choosing different boundary con-
ditions of w0 at x ¼ 0, we obtain the configuration of
relativistic stars with different mass M� and radius R�. In
terms of the solar mass M⊙ ¼ 1.9884 × 1033 g, we can
express the ADM mass M� in the form

M� ¼ 2.5462 × 102mðx�ÞM⊙: ð2:40Þ

For comparison with observational data of NSs, how-
ever, we would need phenomenologically parametrized
EOSs specifying the stiffness of the star in several density
intervals [65]. In this paper, we will not perform the
comparison with observational data of NSs, but we focus
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on how vector-field derivative couplings modify the mass-
radius relation of relativistic stars from GR by considering
the polytropic EOS (2.34) with two constant parameters Γ
and K. As we will see below, the qualitative behavior of
vector-field derivative couplings on the mass and radius
of relativistic stars, which can be analytically understood
to some degree, is generally insensitive to the choice of
EOSs. For numerics, we choose the index Γ ¼ 2.34 in
Secs. III and IV.

III. CUBIC COUPLINGS

Let us begin with the cubic derivative interaction
G3ðXÞ. For concreteness, we study the power-law coupling
given by

G3 ¼ β3Xn; ð3:1Þ

where β3 is a constant and n is a positive integer. We also
take into account the Einstein-Hilbert termG4 ¼ 1=ð16πGÞ
in the action (2.1), with G2 ¼ G5 ¼ G6 ¼ 0 and g5 ¼ 0.
We consider the models with positive integer n, which
includes the vector Galileon as a special case (n ¼ 1). From
Eq. (2.16), the longitudinal component is related to A0, f; h
and their derivatives as

A1 ¼ ϵ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rA0ðf0A0 − 2fA0

0Þ
fhðrf0 þ 4fÞ

s
; ð3:2Þ

where ϵ ¼ �1.

A. Analytic solutions around the center of the star

We first derive analytic solutions to the metrics, the
vector field, and the pressure around r ¼ 0. We take the
positive branch of Eq. (3.2) and differentiate it with respect
to r. Then, A1 and A0

1 are substituted into Eqs. (2.13)–(2.15)
to eliminate the dependence of the longitudinal mode.
Around the center of the star, we expand f, h, ρ, P in

the forms (2.26). The temporal vector component is also
expanded as

A0 ¼ a0 þ
X∞
i¼2

airi; ð3:3Þ

where a0 and ai are constants. These solutions satisfy
the regular boundary conditions f0ð0Þ ¼ h0ð0Þ ¼ ρ0ð0Þ ¼
P0ð0Þ ¼ 0 and A0

0ð0Þ ¼ 0. Without loss of generality, we
will assume that a0 > 0. We also require the condition
P00ð0Þ < 0 for the pressure [66]. Expanding the continuity
equation (2.18) around the origin, we obtain

p2 ¼ −
ρcc2 þ pc

2
f2: ð3:4Þ

The condition P00ð0Þ < 0, which corresponds to p2 < 0, is
satisfied for

f2 > 0: ð3:5Þ

From Eq. (3.2), the leading-order solution of the longi-
tudinal mode around the center of the star is given by

A1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a0ða0f2 − 2a2Þ

2

r
r; ð3:6Þ

which ensures the regularity of A1 at r ¼ 0. For the
existence of this solution, we require that

a0ða0f2 − 2a2Þ > 0: ð3:7Þ

Substituting Eq. (3.3) into Eqs. (2.13)–(2.15) and solv-
ing them iteratively, we obtain the following solutions
around the origin:

fðrÞ ¼ 1þ 4π

3
ð1þ 3wc þ F Þ r

2

r2c
þOðr4Þ; ð3:8Þ

hðrÞ ¼ 1 −
8π

3
ð1þ F Þ r

2

r2c
þOðr4Þ; ð3:9Þ

A0ðrÞ ¼
ā0ffiffiffiffiffiffiffiffiffi
8πG

p
�
1þ 4π

3

F
ā20

r2

r2c

�
þOðr4Þ; ð3:10Þ

PðrÞ ¼ pc −
2π

3
ðρcc2 þ pcÞð1þ 3wc þ F Þ r

2

r2c
þOðr4Þ;

ð3:11Þ

where

F≡3n2ā2nþ1
0 β̄3

22nþ3π

"
−β̄3ā2n−10

�
1−

ā20
2

�

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β̄23ā

4n−2
0

�
1−

ā20
2

�
2

þ22nþ3π

3n2
ð1þ3wcÞ

s #
; ð3:12Þ

with the dimensionless constants defined by

β̄3 ≡ β3rc
ð ffiffiffiffiffiffiffiffiffi

8πG
p Þ2n−1 ; ā0 ≡

ffiffiffiffiffiffiffiffiffi
8πG

p
a0;

rc ≡
ffiffiffiffiffiffiffiffi
c2

Gρc

s
; wc ≡ pc

ρcc2
: ð3:13Þ

In the limit that β3 → 0, the iterative solutions (3.8),
(3.9), and (3.11) recover the general relativistic solutions
(2.27)–(2.29). The density ρðrÞ is known for a given EOS.
Using Eq. (3.8) with Eq. (3.12), the condition (3.5) trans-
lates to
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jβ̄3jā2n0 <
2nþ1

n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
πð1þ 3wcÞ

3

r
: ð3:14Þ

Under this bound, the condition (3.7) is automatically
satisfied. The EOS wc is bounded from above with the
maximum value of order 1. For the polytropic EOS (2.35),
we have that wc < Γ − 1. Then, jβ̄3jā2n0 ≲ 2nþ1=n from
Eq. (3.14). For n ¼ Oð1Þ, the product jβ̄3jā2n0 is constrained
to be smaller than order 1. For the branch of the positive
sign in Eq. (3.12), the upper bound (3.14) corresponds to
the negative value of β̄3, whereas, for the negative sign, the
upper limit of β̄3 is positive. In the following, we will focus
on the case of the positive sign in Eq. (3.12) without loss of
generality. Then, for β̄3 < 0, the term F in Eq. (3.11) is
negative, so the negative coupling β̄3 effectively increases
the pressure. In other words, the positive term 1þ 3wc in
Eq. (3.11) is partially compensated by the negative term F .
This means that, with increasing r, the pressure PðrÞ
decreases more slowly relative to the case β̄3 ¼ 0 at least
around the center of the body. Then, we expect that the
negative coupling β̄3 may lead to a larger radius of the star
than that for β̄3 ¼ 0.
Indeed, the negative value of β̄3 close to the upper bound

of Eq. (3.14) gives rise to the pressure (3.11) which is
nearly constant around the center of the star. Then, we may
anticipate that the radius of the star can be infinitely large.
However, we will show that this is not the case. From

Eqs. (2.23) and (3.9) the mass function around r ¼ 0 is
given by

MðrÞ ¼ 4

3
πρcr3ð1þ F Þ þOðr5Þ: ð3:15Þ

The negative coupling β̄3 leads to the decrease of MðrÞ
relative to the case of GR. For the theoretical consistency,
we require that MðrÞ > 0 around the center of body. This
amounts to the condition F > −1, which translates to

jβ̄3jā2n0 <
2nþ1

n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π

3ð2þ 3wcā20Þ

s
; ð3:16Þ

which is tighter than the bound (3.14). Substituting
F ¼ −1 into Eq. (3.11), the pressure corresponding to
the maximum value of jβ̄3j in Eq. (3.16) is given by

PmaxðrÞ ¼ pc

�
1 − 2πð1þ wcÞ

r2

r2c

�
; ð3:17Þ

which decreases for increasing r. This expression is valid
around r ¼ 0, but we extrapolate it to the surface of the
star to provide a crude criterion for the upper limit of the
radius R�. Then, we obtain the bound

R� ≲ rcffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πð1þ wcÞ

p ; ð3:18Þ

which means that R� is constrained to be smaller than the
order of rc. Since the rhs of Eq. (3.18) does not depend on
the power n, the maximum radius is insensitive to the form
of cubic couplings G3ðXÞ.
To discuss the dynamical stability of relativistic stars, we

define the proper mass

Mp ≡
Z
R≤R�

d3xρ
ffiffiffiffiffiffiffi
ð3Þg

q
¼

Z
R�

0

4πρr2ffiffiffi
h

p dr; ð3:19Þ

where ð3Þg is the determinant of a three-dimensional spatial
metric. The gravitational binding energy is defined by the
difference between Mp and the ADM mass M�, i.e.,

Δ≡ ðMp −M�Þc2: ð3:20Þ

The star with Δ > 0 is gravitationally bound and the
condition Δ > 0 can be regarded as a necessary condition
for its dynamical stability, whereas the star with Δ < 0

is not bound and hence dynamically unstable. For β̄3 < 0
the r-derivative of the leading-order term on the rhs of
Eq. (3.15) is smaller than 4πρcr2, whereas the term inside
the integral of Eq. (3.19) is larger than 4πρr2. This implies
that the condition Δ > 0 may hold for β̄3 < 0, but we need

10-5

10-4

10-3

10-2

10-1

100

101

 0  2  4  6  8  10  12  14

GR

(i)
(ii)

P
 / 

(ρ~ 0 
c2 )

r [km]

FIG. 1. Variation of the pressure in cubic Galileons (G3 ¼ β3X)
for the polytropic EOS (2.34) with K ¼ 0.0130 and Γ ¼ 2.34.
The two cases (i) and (ii) correspond to (i) β̃3 ¼ −1, ā0 ¼ 2.2,
χðrÞ ¼ 10.471 at r=r0 ¼ 10−3 and (ii) β̃3 ¼ 1, ā0 ¼ 2.0, χðrÞ ¼
17.783 at r=r0 ¼ 10−3, respectively. We also show the case of GR
with β̃3 ¼ 0, ā0 ¼ 0, χðrÞ ¼ 15.136 at r=r0 ¼ 10−3. The boun-
dary conditions of f; h; A0; P are chosen to be consistent with
Eqs. (3.8)–(3.11).
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to caution for readers that Eq. (3.15) is valid only around
the central region of the star.

B. Numerical solutions

The above analytic solutions have been derived under the
expansion around r ¼ 0. In order to study the effect of the
coupling β3 on the massM� and the radius R� of relativistic
stars more precisely, we numerically solve Eqs. (2.13)–
(2.16) with Eq. (2.18) for the polytropic EOS (2.34) by
using the boundary conditions (3.8)–(3.11) around the
origin. For numerical computations, we will focus on
the case of vector Galileons, i.e., n ¼ 1 in Eq. (3.1). The
numerical integration is performed until reaching the sur-
face r ¼ R� characterized by the condition w0ðR�Þ ¼ 0,
where w0 is defined in Eq. (2.36). By requiring the
continuity of metric functions, the vector field, and their
first-order derivatives across the surface r ¼ R� and using
their values at r ¼ R� as boundary conditions, the exterior
solution can be obtained by integrating Eqs. (2.13)–(2.16)
in the vacuum region r > R�, where ρ ¼ P ¼ 0. The
consistent exterior solutions of the star approach the
iterative solutions in the large r limit characterized by
three parameters including the ADM mass M� [see
Eqs. (5.10)–(5.13) of Ref. [60]].
In Fig. 1, we plot the normalized pressure P=ðρ̃0c2Þ

versus the distance r from the center of the star with
K ¼ 0.013 and Γ ¼ 2.34 for three different values of
β̃3 ≡ β3r0=

ffiffiffiffiffiffiffiffiffi
8πG

p ¼ β̄3r0=rc. In GR, the pressure varies
according to Eq. (2.29) at small distances. As we observe in
Fig. 1, PðrÞ starts to decrease rapidly around the surface of
the star. In the numerical simulation of Fig. 1, the star radius
is R� ≃ 9.3 km for β3 ¼ 0. In the presence of negative
coupling β3, the pressure decreases more slowly with
increasing r; see case (i) of Fig. 1. In case (i), we have
chosen a smaller value of the central pressure relative to
that in GR, but the smaller decreasing rate of PðrÞ in the
former leads to the larger radius, R� ≃ 12.3 km. The case
(ii) in Fig. 1 corresponds to a positive value of β3, with a
larger central pressure compared to the GR case. The
decreasing rate of PðrÞ in case (ii) is faster than that in GR,
so the resulting radius is smaller, R� ≃ 8.3 km.
Similarly, the density ρðrÞ also decreases as a function

of r. The central density ρc in case (i) is smaller than that in
GR, while the radius R� is larger. Since the density ρðrÞ in
case (i) decreases more slowly relative to the case of GR,
the former catches up with the latter at an intermediate
distance (r ≃ 6 km). The r-derivative of the mass function
MðrÞ can be generally written in the form

M0ðrÞ ¼ 4πρðrÞr2½1þ F̃ ðrÞ�; ð3:21Þ

where F̃ ðrÞ is a function of r containing the dependence
of β3. As we estimated in Eq. (3.15), the functions ρðrÞ
and F̃ ðrÞ around r ¼ 0 reduce to the constants ρc and F ,

respectively. When we integrate Eq. (3.21) with respect to
r, the first term on the rhs gives rise to a contribution toM�
which is roughly proportional to ð4π=3ÞρcR3�. The increase
of R� induced by the negative coupling β3 leads to a larger
contribution to M� relative to the decrease of ρc. In case
(i) the mass contribution arising from the integration of the
term 4πρðrÞr2 in Eq. (3.21) is M�1 ¼ 2.87 M⊙, which is
larger than the value M�1 ¼ 1.67 M⊙ of GR in Fig. 1. The
ratio of R3� between the case (i) and GR is given by
ð12.3=9.3Þ3 ¼ 2.31. This increase is slightly compensated
by the smaller density in the central region with the
decrease at about 25%, so the resulting ratio of M�1
between the two cases becomes 2.87=1.67 ¼ 1.72 < 2.31.
For β3 < 0 the function F̃ ðrÞ in Eq. (3.21) is negative

around r ¼ 0, so the negative coupling works to reduce the
mass term M�1. In case (i) of Fig. 1, the mass M�2 arising
from the numerical integration of 4πρðrÞr2F̃ ðrÞ is found to
be M�2 ≃ −0.29M�1, so the total mass M� ¼ M�1 þM�2
can be estimated as M� ≃ 0.71M�1 ≃ 2.03 M⊙. The mass
function MðrÞ in case (i) is smaller than that in GR except
for the distance r around the surface of the star. However,
the increase of MðrÞ in case (i) continuously occurs up to
the radius R� larger than that in GR, so the resulting mass
M� in the former is larger. Thus, the main reason for the
increase of M� comes from the increase of R� induced by
the negative coupling.
For β3 > 0, the radius R� gets smaller compared to the

value in GR; see case (ii) of Fig. 1. Since the function F̃ ðrÞ
in Eq. (3.21) is positive, the mass function MðrÞ is larger
than that in GR at small distances. However, the increase of
MðrÞ stops at a smaller radius R�, which results in a smaller
massM�. Hence the positive coupling β3 generally leads to
the decrease of mass M� relative to the GR case.
In Fig. 2, we plot the mass-radius relation for the

polytropic EOS (2.34) with K ¼ 0.0130 and Γ ¼ 2.34.
The central density is chosen to be in the range
yc ¼ ρc=ρ̃0 ≤ 200. In this case, the maximum ADM mass
M� in GR is given by Mmax ¼ 1.67 M⊙ with the radius
R� ¼ 9.3 km and the central density ρc ¼ 3.5 × 1015 g ·
cm−3 (plotted as the GR case in Fig. 1). For increasing
negative coupling jβ3j, the maximum mass gets larger.
This effect tends to be significant for jβ̃3jā20 exceeding
the order of 1. The maximum mass reached for β̃3 ¼ −1
and ā0 ¼ 2.2 [case (c) in Fig. 2] is Mmax ¼ 2.03M⊙,
with the radius R� ¼ 12.3 km and the central density ρc ¼
2.1 × 1015 g · cm−3 [plotted as case (i) of Fig. 1]. Even
though ρc is smaller than that in GR, the larger radius R�
leads to the maximum mass Mmax which is about
2.03=1.67 ¼ 1.22 times as large as that in GR.
From Eq. (3.16), there is the constraint jβ̄3jā20 <

4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π=½3ð2þ 3wcā20Þ�

p
for n¼1. If β̃3¼−1, wc ¼ 0.247,

ρc=ρ0 ¼ 12.8, this bound translates to ā0 < 2.7. For
increasing ā0, the resulting mass of the star tends to be
larger. In case (d) shown in Fig. 2 (β̃3 ¼ −1, ā0 ¼ 2.4), the
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maximum mass for the radius R� < 20 km is given by
Mmax ¼ 2.22 M⊙. For 2.5≲ ā0 < 2.7, M� changes to a
continuously growing function with respect to R�. This
property may be understood by using Eq. (3.11) for jβ̄3jā20
close to the upper bound (3.16). In this case, the star radius
can be crudely estimated as

R� ≈ r0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ0

2πð1þ wcÞρc

r
: ð3:22Þ

In the regime wc ≪ 1, the radius has the dependence
R� ∝ ρ−1=2c , so it increases for decreasing ρc. The quantity
ρcR3� also increases for smaller ρc, as ρcR3� ∝ ρ−1=2c ∝ R�.
While the negative coupling β̄3 suppresses the growth of
MðrÞ around r ¼ 0, this is compensated by the increase of
R� in the region of small ρc. Hence, for jβ̄3jā20 close to the
upper bound (3.16), the mass M� continuously grows with
the increase of R�. Unless ā0 is very close to the upper limit
2.7, the maximum mass Mmax does not exceed 3 M⊙ for
R� < 20 km with the model parameters used in Fig. 2.
If the quantity jβ̄3jā20 exceeds the upper limit set by

Eq. (3.16), the mass function MðrÞ is negative around the
center of the star. Indeed, we numerically confirmed that
the mass function enters the regionMðrÞ < 0 around r ¼ 0
and then MðrÞ becomes positive at the distance away from
the center. We regard that this situation is unphysical.

As we see in case (e) of Fig. 2, the positive coupling β3
leads to smaller M� and R� than those in GR. In Fig. 3, we
plot the quantity Δ=ðM�c2Þ¼Mp=M�−1 versus the radius
R� for the same model parameters as those used in Fig. 2,
where Mp is the proper mass defined by Eq. (3.19). For
β3 < 0, the binding energy Δ is always positive, so the star
is gravitationally bound. For β3 > 0, the star tends to be
dynamically unstable in the region of small ρc. The
configuration of maximum mass M� ¼ 1.52 M⊙ in case
(e) of Fig. 2 (β̃3 ¼ þ1 and ā0 ¼ 2.0), which corresponds to
the central density ρc ¼ 4.3 × 1015 g · cm−3 and the radius
R� ¼ 8.3 km, leads to a positive binding energy, but the
sign of Δ changes to negative for ρc < 2.6 × 1015 g · cm−3.
For the ranges of ρc smaller than those plotted as the

cases (b)–(d) of Fig. 3, we numerically find that there is a
maximum value of Δ=ðM�c2Þ and then the binding energy
gets smaller for decreasing ρc further. In the intermediate
regime where Δ=ðM�c2Þ decreases with the increase
of ρc, there is the “repulsive” gravity effect induced by
the negative coupling β3. The pressure increased by the
negative coupling β3 can support the star with a stronger
gravitational force. In other words, the increased binding
energy in the intermediate regime of ρc is compatible with
the large effective pressure induced by β3.
The above discussion shows that the sign and the

strength of coupling β3 as well as the amplitude of A0

play an important role for increasing the mass and radius
of star. Around r ¼ 0, the temporal component is given
by Eq. (3.10), so the derivative jA0

0j grows in proportion
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FIG. 3. The gravitational binding energy Δ normalized by
M�c2 versus the radius R� in cubic Galileons for the polytropic
EOS (2.34), with K ¼ 0.0130 and Γ ¼ 2.34 in the region of the
central density 3 ≤ yc ≤ 200. Each curve corresponds to the cases
plotted in Fig. 2. With increasing ρc, the values of Δ and R� shift
to the direction shown as the arrow inside the figure.
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FIG. 2. Mass-radius relations in cubic Galileons for the poly-
tropic EOS (2.34) with Γ ¼ 2.34, K ¼ 0.0130. We choose the
boundary conditions (3.8)–(3.11) at the distance r ¼ 10−3r0.
Each curve corresponds to (a) β̃3 ¼ −1, ā0 ¼ 1.0, (b) β̃3 ¼ −1,
ā0 ¼ 2.0, (c) β̃3 ¼ −1, ā0 ¼ 2.2, (d) β̃3 ¼ −1, ā0 ¼ 2.4,
(e) β̃3 ¼ þ1, ā0 ¼ 2.0, and the GR case β̃3 ¼ 0, ā0 ¼ 0. With
increasing ρc, the values of M� and R� shift to the direction
shown as the arrow inside the figure.
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to r. The longitudinal mode A1 has the same r-depend-
ence as jA0

0j around r ¼ 0; see Eq. (3.6). For increasing
ja0j, the amplitude of A1 also tends to be larger. In Fig. 4,
we plot jA0

0j and A1 versus r for the cases (i) and
(ii) shown in Fig. 1. In both cases, jA0

0j and A1 increase in
proportion to r up to the distance close to the surface of
the star. Outside the body (r > R�), the behavior of the
vector field is similar to the vacuum solution around
the static and spherically symmetric BHs derived in
Refs. [59,60]. Namely, both jA0

0j and A1 decrease as ∝
1=r2 for r ≫ R�. As in Refs. [59,60], the coupling β3
induces some difference between the two metric compo-
nents f and h around the surface of the star, but the
difference becomes negligible in the limit that r ≫ R�.

IV. QUARTIC COUPLINGS

In this section, we study the effect of quartic derivative
couplings G4ðXÞ on the configuration of relativistic stars.
We consider the power-law coupling model given by

G4 ¼
1

16πG
þ β4Xn; ð4:1Þ

with G2 ¼ G3 ¼ G5 ¼ G6 ¼ 0 and g5 ¼ 0, where β4 is a
constant and n is a positive integer. In Ref. [40], the authors
discussed the relativistic star solutions for the specific case
n ¼ 1. Now, we investigate the models of general power n
including the quartic vector Galileon (n ¼ 2). From
Eq. (2.16), the longitudinal mode obeys

β4A1ðA2
0 − fhA2

1Þn−2½A2
1fhfð1þ h − 2nhÞf

þ ð1 − 2nÞrf0hg þ A2
0ffðh − 1Þ þ ð2n − 1Þrf0hg

− 4rðn − 1ÞA0A0
0fh� ¼ 0: ð4:2Þ

This gives rise to the two branches characterized by A1 ¼ 0
or A1 ≠ 0. For the latter branch, our numerical analysis
shows that the solutions are qualitatively similar to those of
cubic derivative couplings discussed in Sec. III. Hence we
will focus on the other branch,

A1 ¼ 0; ð4:3Þ

in the rest of this section.

A. Analytic solutions around the center of star

Let us first derive analytic solutions to f; h; A0; P
by using the expansions (2.26) and (3.3) around r ¼ 0.
From the continuity equation (2.18), we obtain the same
relation as in Eq. (3.4) among the coefficients p2 and f2.
Substituting A1 ¼ 0 and A0

1 ¼ 0 into Eqs. (2.13)–(2.15), we
obtain the iterative solutions

fðrÞ ¼ 1þ f2r2 þOðr4Þ; ð4:4Þ

hðrÞ ¼ 1 −
8π

3½1 − 21−nð2n − 1Þβ̄4ā2n0 �
r2

r2c
þOðr4Þ; ð4:5Þ

A0ðrÞ ¼
1ffiffiffiffiffiffiffiffiffi
8πG

p
�
ā0 þ

24−nπnβ̄4ā2n−10

3f1 − 21−nð2n − 1Þβ̄4ā2n0 g
r2

r2c

�

þOðr4Þ; ð4:6Þ
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FIG. 4. Numerical solutions to the derivative jĀ0
0j ¼

ffiffiffiffiffiffiffiffiffi
8πG

p
r0jA0

0j (left) and the longitudinal mode Ā1 ¼
ffiffiffiffiffiffiffiffiffi
8πG

p
A1 (right) in cubic

Galileons for the polytropic (2.34) with K ¼ 0.0130 and Γ ¼ 2.34. The cases (i) and (ii) correspond to the same model parameters and
boundary conditions as those used in Fig. 1.
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PðrÞ ¼ pc −
c2ρc þ pc

2
f2r2 þOðr4Þ; ð4:7Þ

where the definitions of ā0; rc; wc are the same as those given in Eq. (3.13), and

β̄4 ¼
β4

ð8πGÞn−1 ; ð4:8Þ

f2 ¼
4π½1þ 3wc þ 21−nf1 − 3ð2n − 1Þwcgβ̄4ā2n0 − 25−2nn2β̄24ā

4n−2
0 �

3½1 − 21−nð2n − 1Þβ̄4ā2n0 �2r2c
: ð4:9Þ

Without loss of generality, we assume that ā0 > 0 in the
following discussion. Using Eq. (4.9), the condition (3.5)
translates to

F− < β̄4ā2n−20 < Fþ; ð4:10Þ

where F� are defined by

F� ≡ 2n−5

n2

�
1 − 3ð2n − 1Þwc

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f1 − 3ð2n − 1Þwcg2 þ 32n2ð1þ 3wcÞā−20

q �
:

ð4:11Þ

From Eqs. (2.23) and (4.5), the mass function around r ¼ 0
is given by

MðrÞ ¼ 4πρcr3

3½1 − 21−nð2n − 1Þβ̄4ā2n0 � þOðr5Þ: ð4:12Þ

To ensure that MðrÞ > 0 around the center of the star, we
require the condition

β̄4ā2n0 <
2n−1

2n − 1
; ð4:13Þ

which is automatically satisfied for β̄4 < 0. If β̄4 > 0, the
upper limit corresponding to Eq. (4.13) leads to the
divergence of the quantity f2 in Eq. (4.9), so the condition
β̄4ā2n−20 < Fþ gives a tighter bound than Eq. (4.13).
The coupling β̄4 affects the decreasing rate of the

pressure PðrÞ through the function f2, whose value in
GR is given by fGR2 ¼ 4πð1þ 3wcÞ=ð3r2cÞ. The difference
between f2 and fGR2 is

f2 − fGR2 ¼ 8πβ̄4ā2n0 ½2nf4n − 1þ 3wcð2n − 1Þg − 2β̄4ā2n−20 f8n2 þ ā20ð2n − 1Þ2ð1þ 3wcÞg�
3½2n − 2β̄4ā2n0 ð2n − 1Þ�2r2c

: ð4:14Þ

For β̄4 < 0, the rhs of Eq. (4.14) is negative and hence
f2 < fGR2 . If the solution (4.7) is extrapolated up to the
surface of the star, it is expected that the radius R� is larger
than that in GR due to the slower decrease of PðrÞ toward 0.
Since the amplitude of negative coupling is not constrained
from the conditionMðrÞ > 0, the radius R� is not bounded
from above. This property is different from that in cubic
power-law couplings where R� is constrained as Eq. (3.18)
from the condition MðrÞ > 0.
If β̄4 > 0 and jβ̄4jā2n−20 ≪ 1, then the first term in the

square bracket of the numerator of Eq. (4.14) dominates
over the second one, so that f2 > fGR2 . In this regime,
the radius R� should be smaller than that in GR due to the
faster decrease of PðrÞ toward 0. For increasing β̄4 and ā0,
the function f2 reaches a maximum and then it starts to
decrease toward 0 (which corresponds to β̄4ā2n−20 ¼ Fþ).
As a function of β̄4, f2 has the maximum value

fmax
2 ¼π½32n2ð1þ3wcÞþ ā20f1þ3ð1−2nÞwcg2�

6n½4n− ā20ð2n−1Þ�r2c
; ð4:15Þ

at

β̄4 ¼
2n−1½2ð2þ 3wcÞn − 1 − 3wc�

16n2 − ā20ð2n − 1Þ½1þ 3ð1 − 2nÞwc�
ā2−2n0 : ð4:16Þ

The coupling (4.16) is smaller than the upper limit
β̄4 ¼ Fþā2−2n0 determined by Eq. (4.10). This gives the
following bound:

ā0 < āmax ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffi
4n

2n − 1

r
: ð4:17Þ

The regime in which the condition f2 < fGR2 is satisfied is
given by
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F cā2−2n0 < β̄4 < Fþā2−2n0 ; ð4:18Þ

where

F c ≡ 2n−1½2ð2þ 3wcÞn − 1 − 3wc�
8n2 þ ā20ð2n − 1Þ2ð1þ 3wcÞ

: ð4:19Þ

To realize the slower decrease of PðrÞ around r ¼ 0 relative
to the GR case, we need to choose the large value of
β̄4ā2n−20 close to Fþ. For given β̄4 and n > 1, this amounts
to choosing larger ā0 close to the upper bound (4.17).
Taking the limit ā0 → āmax, however, both F cā2−2n0 and
Fþā2−2n0 approach the same value ð2n − 1Þn−1=ð2nþ1nnÞ.
In this limit, the parameter space consistent with Eq. (4.18)
disappears with the divergence of fmax

2 . Even if we consider
the value ā0 ¼ āmax − ε, where ε is a small positive
parameter, the expansions of F cā2−2n0 and Fþā2−2n0 in
terms of ε show that two terms are equivalent up to the
order of ε. Since the difference between F cā2−2n0 and
Fþā2−2n0 appears only at the order of ε2, the parameter
space consistent with Eq. (4.18) is restricted to be very
narrow. This discussion shows that, for β̄4 > 0, the function
f2 is in the range f2 > fGR2 for most of the parameters
under consideration, which should result in smaller R�
compared to the GR case.
In the following, we will confirm the above analytic

estimation by numerically solving Eqs. (2.13)–(2.15) and
(2.18) with A1 ¼ 0.

B. Numerical solutions

For the numerical computation, we focus on the case of
quartic vector Galileons (n ¼ 2). The properties of solu-
tions in other power-law models (n ≠ 2) are qualitatively
similar to those discussed below.
In Fig. 5, we plot the mass function MðrÞ versus r for

several different values of β̄4 and ā0 with the same central
density ρc. We employ the polytropic EOS (2.34) with
Γ ¼ 2.34 and K ¼ 0.01. The massM� and the radius R� of
the star can be identified by the point at which MðrÞ stops
increasing, e.g., M� ≃ 1.4 M⊙ and R� ≃ 9.5 km in GR
(β̄4 ¼ 0). As we analytically estimated above, the value of
MðrÞ for β̄4 < 0 is smaller than that in GR at small
distances. However, as we see in case (i) of Fig. 5, the
mass function in the former catches up with that in the latter
at an intermediate distance inside the star, so the resulting
mass M� gets larger. Moreover, we have numerically
confirmed that the negative coupling β̄4 leads to a slower
decrease of the pressure PðrÞ up to the star surface relative
to the case β̄4 ¼ 0, which results in a greater radius R�.
The case (i) in Fig. 5 shows that both R� andM� are larger
than those in GR. When β̄4 > 0, the mass function MðrÞ
at small distances is larger than that for β̄4 ¼ 0. This
property can be seen in case (ii) of Fig. 5, but the increase
of MðrÞ stops at a smaller radius R� because of a faster

decrease of PðrÞ. Hence the massM� in case (ii) is smaller
than that in GR.
In Fig. 6, we show the mass-radius relation for the

polytropic EOS with Γ ¼ 2.34 and K ¼ 0.01 in the
presence of quartic Galileon couplings β̄4 ¼ −0.1 or
β̄4 ¼ 0.1. Compared to GR, the negative coupling β̄4 leads
to larger values of M� and R�. For this EOS, the maximum
value of M� in GR is given by Mmax ¼ 1.51 M⊙ with the
central density ρc ¼ 4.1 × 1015 g · cm−3 and the radius
R� ¼ 8.48 km. In the presence of negative β̄4, the larger
maximum mass can be realized with the smaller central
density. In case (c) plotted in Fig. 6, which corresponds to
β̄4 ¼ −0.1 and ā0 ¼ 1.3, the maximum mass Mmax ¼
2.06 M⊙ with the radius R� ¼ 11.8 km is reached at the
density ρc ¼ 1.6 × 1015 g · cm−3. If we increase either jβ̄4j
or ā0 further, Mmax becomes larger. Indeed, the condition
MðrÞ > 0 around r ¼ 0 does not restrict the amplitude of
negative coupling β̄4, so the mass M� can be even larger
than 3 M⊙ for β̄4 close to the lower limit determined by the
condition β̄4ā20 ¼ F−.
In cases (e) and (f) depicted in Fig. 6, which correspond

to β̄4 > 0, the mass M� and the radius R� are smaller than
those in GR, independent of the detail of EOSs. In these
cases the condition f2 > fGR2 is satisfied, so the faster
decrease of PðrÞ leads to the smaller radius R� compared
to that in GR. As shown in Fig. 5, the mass function MðrÞ
is larger than that for β̄4 ¼ 0 in the central region of the
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(ii)

GR

(i)

M
(r

) 
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o•

r [km]

FIG. 5. The mass functionMðrÞ versus the distance r in quartic
Galileons (n ¼ 2) for the polytropic EOS (2.34) with Γ ¼ 2.34,
K ¼ 0.010, and the central density ρc ¼ 2.3 × 1015 g · cm−3. The
two curves at the top and bottom correspond to the model
parameters (i) β̄4 ¼ −0.06, ā0 ¼ 1.5, and (ii) β̄4 ¼ 0.06,
ā0 ¼ 1.5, while the solid curve corresponds to GR with
β̄4 ¼ 0, ā0 ¼ 0.
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star, but the decrease of R� induced by positive β̄4
overwhelms this effect to end up with smaller M�. We
recall that there exists the restricted parameter range
(4.18) in which the condition f2 < fGR2 can be satisfied
for β̄4 > 0. When n ¼ 2, β̄4 ¼ 0.1, and wc ¼ 0.4, for
example, the bound (4.18) translates to 1.600746 <
ā0 < 1.600816, whose parameter space is very narrow.
Moreover, we find that the solutions in such a narrow
parameter region are prone to numerical instabilities.
Thus, the positive coupling β̄4 generally leads to the
suppression of M� and R� in most of the parameter space
with stable solutions.
The instability of the star for large positive values of β̄4ā20

close to Fþ can also be confirmed by computing the
binding energy Δ defined by Eq. (3.20). In Fig. 7, we show
Δ=ðM�c2Þ versus the radius R� for Γ ¼ 2.34 and K ¼ 0.01
with several different values of β̄4 and ā0. When β̄4 < 0, the
binding energy is always positive, so the star is gravita-
tionally bound. If β̄4 > 0, Δ can be negative in the region
of small central density ρc. In cases (e) and (f) shown in
Fig. 7, Δ is negative for ρc < 1.2 × 1015 g · cm−3 and
ρc < 8.2 × 1015 g · cm−3, respectively, so that the region
of instability tends to be larger for β̄4ā20 approaching the
upper limitFþ. Thus, for β̄4 > 0, it is difficult to realize the
stable configuration of the star with M� and R� larger than
those in GR.

V. INTRINSIC VECTOR-MODE COUPLINGS

Finally, we investigate the relativistic star solutions in the
presence of intrinsic vector-mode couplings given by

G2¼−2g4ðXÞF; g5¼g5ðXÞ; G6¼G6ðXÞ; ð5:1Þ

with G4 ¼ 1=ð16πGÞ, where g4ðXÞ is a function of X, and
F ¼ hA02

0 =ð2fÞ on the background (2.9). From Eq. (2.16),
it follows that

A02
0 ½fr2g4;X þ ð3h − 1ÞG6;XgA1 − 2rg5

þ 2hrg5;XA2
1 −G6;XXh2A3

1� ¼ 0: ð5:2Þ

We can write Eq. (2.15) in the following form:

α1A00
0 þ α2A0

0 þ α3A02
0 ¼ 0; ð5:3Þ

where α1;2;3 are functions containing A0, A1, A0
1; f; h; f

0; h0

and g4, g5, G6 as well as their X-derivatives. The explicit
expression of the coefficient α1 is given by

α1 ¼ ð2g4 − 1Þr2 þ 4hrg5A1 − 2h2A2
1G6;X þ 2ðh − 1ÞG6:

ð5:4Þ

From Eq. (5.2), there is a branch characterized by
A0
0ðrÞ ¼ 0, that is

A0ðrÞ ¼ constant; ð5:5Þ

which is consistent with Eq. (5.3).
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FIG. 7. The binding energy Δ normalized by M�c2 versus
the radius R� in quartic Galileons for the polytropic EOS with
Γ ¼ 2.34 and K ¼ 0.01 in the range 3 ≤ yc ≤ 200. Each curve
corresponds to the cases plotted in Fig. 6.
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FIG. 6. Mass-radius relations in quartic Galileons for the
polytropic EOS (2.34) with Γ ¼ 2.34, K ¼ 0.01. We use
Eqs. (4.4)–(4.7) as the boundary conditions at the distance
r ¼ 10−3r0. Each curve corresponds to (a) β̄4 ¼ −0.1, ā0 ¼ 1.0,
(b) β̄4 ¼ −0.1, ā0 ¼ 1.2, (c) β̄4 ¼ −0.1, ā0 ¼ 1.3, (d) β̄4 ¼ −0.1,
ā0 ¼ 1.4, (e) β̄4 ¼ þ0.1, ā0 ¼ 1.0, and (f) β̄4 ¼ þ0.1, ā0 ¼ 1.5.
The GR case with β̄4 ¼ 0 and ā0 ¼ 1.0 is plotted as the solid line.
With increasing ρc, the values of M� and R� shift to the direction
shown as the arrow inside the figure.
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There exist other branches where the terms in the square
brackets of Eq. (5.2) vanish, which can give rise to a
nonvanishing longitudinal component A1. Even in such
cases, the temporal vector component needs to obey the
regular boundary condition A0

0ð0Þ ¼ 0 at the center of
the star. Then, we obtain α1A00

0ð0Þ ¼ 0 from Eq. (5.3), so
that A00

0ð0Þ ¼ 0 for α1 ≠ 0. This means that, when we
integrate Eq. (5.3) from r ¼ 0 with the boundary condition
A0
0ð0Þ ¼ 0, the derivative A0

0ðrÞ remains 0 for arbitrary r.
Then, provided that α1 ≠ 0, we end up with the solution
(5.5) even for the branches other than A0

0ðrÞ ¼ 0 in
Eq. (5.2). Substituting the solution A0

0ðrÞ ¼ 0 into
Eqs. (2.13) and (2.14), it follows that

h0

r
þ h − 1

r2
¼ −

8πGρ
c2

; ð5:6Þ

h
f
f0

r
þ h − 1

r2
¼ 8πGP

c4
; ð5:7Þ

which are exactly the same as Eqs. (2.21) and (2.22) in GR,
respectively. This shows that the intrinsic vector-mode
couplings do not give rise to any modifications to the
metric components f and h. The TOV equation also holds
in the same form as Eq. (2.25). Thus, for a given EOS, the
solutions to f, h, P, ρ are the same as those in GR with
A0ðrÞ ¼ constant. Requiring the smooth matching of the
metric and vector field at the surface, Eq. (5.5) remains the
solution outside the star with the exterior metric given by
the Schwarzschild solution (2.30).
The above property is in stark contrast with that in cubic

and quartic couplings where the differential equation
corresponding to Eq. (5.3) contains the A0-dependent terms
which are not multiplied by the powers of A0

0. As we
discussed in Secs. III and IV, the existence of such terms
leads to the variation of A0ðrÞ for r > 0. We also note that
the presence of mass contribution m2X to G2 gives rise
to the terms m2A1 and m2A0 to Eqs. (5.2) and (5.3),
respectively, so the general solution to A0ðrÞ is different
from Eq. (5.5).
In summary, the intrinsic vector-mode couplings (5.1)

only lead to the metric components in GR with the trivial
temporal vector component (5.5) as the unique solution for
relativistic stars, indicating no-hair properties unlike the
BH solutions studied in Refs. [59,60]. This no-hair prop-
erty of relativistic stars is intrinsically related to the regular
boundary condition A0

0ðrÞ ¼ 0 at the center of the star
together with the peculiar structure of the differential
Eq. (5.3). The result in this section holds irrespective of
the choice of the coupling functions and the detail of EOSs.

VI. CONCLUSIONS

In this paper, we studied how the mass-radius relation of
relativistic stars is modified in generalized Proca theories.
In these theories there exists a Uð1Þ-breaking vector field

with derivative couplings, which leads to the propagation
of fifth forces. On the weak gravitational background in the
Solar System, it is known that such fifth forces can be
suppressed by derivative self-interactions under the oper-
ation of the Vainshtein mechanism [49,50]. On the other
hand, the deviation from GR can manifest itself in the
strong gravitational regime like BHs [59,60]. Indeed, there
exist a bunch of hairy BH solutions in generalized Proca
theories. Our interest in this paper was to show how the new
“hair” induced by vector-field derivative couplings affects
the configuration of relativistic stars.
In Sec. III we considered the cubic power-law derivative

coupling (3.1) including the vector Galileon (n ¼ 1) as a
specific case. In these models, the vector field has a
nonvanishing longitudinal mode A1 related to the temporal
component A0 according to Eq. (3.2). Imposing the
regularity of metrics, pressure, density, and the vector field
at the center of the star (r ¼ 0), we derived the analytic
solutions (3.8)–(3.11) around r ¼ 0. As we see in
Eq. (3.11), the negative coupling constant β3 leads to a
slower decrease of the matter pressure PðrÞ. This slower
decrease continues up to the star surface, so the resulting
radius R� for β3 < 0 tends to be larger than that in GR. We
also showed that the amplitude of negative coupling β3
is constrained as Eq. (3.16) from the demand MðrÞ > 0

around r ¼ 0. This limits the maximum radius reached by
the cubic coupling; see Eq. (3.18). These properties hold
independently of the EOS of relativistic stars.
To compute the massM� and the radius R� of relativistic

stars precisely, we numerically solved Eqs. (2.13)–(2.16)
for the cubic Galileon coupling G3 ¼ β3X by employing
the polytropic EOS (2.34) with Γ ¼ 2.34. We confirmed
that the negative coupling β3 gives rise to R� larger than
in the case β3 ¼ 0. Although the mass function MðrÞ is
suppressed by negative β3 around r ¼ 0, the increase of R�
overwhelms this decrease to realize the mass M� greater
than that in GR. As we observe in Fig. 2, the maximum
mass Mmax increases for a larger temporal vector compo-
nent a0 at r ¼ 0 and for an increasing amplitude of negative
coupling β3. For β3 > 0, both M� and R� are smaller than
those in GR. Moreover, the models with large positive
values of β3 and a0 are prone to instabilities associated
with a negative gravitational binding energy Δ in the low-
density regime.
In Sec. IV we studied the effect of quartic power-law

couplings (4.1) on the configuration of relativistic stars by
considering the branch A1 ¼ 0. Again, the negative cou-
pling β4 leads to the larger massM� and the larger radius R�
relative to those in GR. The difference from cubic deriva-
tive interactions is that the amplitude of negative β4 is not
constrained from the condition MðrÞ > 0. For β4 > 0 we
found that both M� and R� are smaller than those in GR
for most of the parameter space. The solutions are also
subject to instabilities in the low-density regime with
increasing values of β4 and a0. This is not the case for
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negative β4 where the necessary condition for the
dynamical stability is satisfied.
In Sec. V we showed that the intrinsic vector-mode

couplings (5.1) give rise to the same solutions as those in
GR with the constant value of A0. This is attributed to the
peculiar structure of the differential equation (5.3) as well
as the regular boundary condition A0

0 ¼ 0 at r ¼ 0. Thus,
the intrinsic vector modes do not modify the radius and
mass of relativistic stars in GR.
There are several issues we did not address in this paper.

We adopted the polytropic EOS (2.34) with Γ ¼ 2.34 to
compute the mass and radius of relativistic stars, but for
comparison with the observational data of NSs, we need to
extend the analysis to more realistic EOSs by taking into
account nuclear interactions and the composition of each
layer of NSs. It is also possible to include the rotation of
NSs in our analysis along the lines of Ref. [67] and
investigate the existence of EOS-independent relations
[18] useful to test generalized Proca theories with NSs
further. Although we have confirmed that most of the
solutions obtained in this paper are gravitationally bound,
the analysis of dynamical stabilities against odd- and even-
parity perturbations may provide further constraints on
couplings in generalized Proca theories. With this pertur-
bative analysis on the spherically symmetric background,

we should also be able to derive the local propagation speed
cg of gravitational waves around NSs. If the vector-field
derivative couplings studied in this paper are also respon-
sible for today’s cosmic acceleration, the recent GW170817
bound of cg [6] on the cosmological background will
provide tight constraints on quartic derivative couplings.
These interesting issues will be left for future works.
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APPENDIX: COEFFICIENTS IN THE
GRAVITATIONAL EQUATIONS OF MOTION

The coefficients c1;2;…;19 in Eqs. (2.13) and (2.14) are
given by

c1 ¼ −A1XG3;X;

c2 ¼ −2G4 þ 4ðX0 þ 2X1ÞG4;X þ 8X1XG4;XX;

c3 ¼ −A1ð3hX0 þ 5hX1 − XÞG5;X − 2hA1X1XG5;XX;

c4 ¼ G2 − 2X0G2;X −
h
f
ðA0A1A0

0 þ 2fXA0
1ÞG3;X −

hA02
0 ð1þ 2G2;FÞ

2f
;

c5 ¼ −4hA1X0G3;X − 4h2A1A0
1G4;X þ 8h

f
ðA0X1A0

0 − fhA1XA0
1ÞG4;XX þ 2h2

f
A1A02

0 ðg5 þ 2X0g5;XÞ;

c6 ¼ 2ð1 − hÞG4 þ 4ðhX − X0ÞG4;X þ 8hX0X1G4;XX −
h
f
½ðh − 1ÞA0A1A0

0 þ 2fð3hX1 þ hX0 − XÞA0
1�G5;X

−
2h2X1

f
ðA0A1A0

0 þ 2fXA0
1ÞG5;XX þ hA02

0

f
½ðh − 1ÞG6 þ 2ðhX − X0ÞG6;X þ 4hX0X1G6;XX�;

c7 ¼ −G2 þ 2X1G2;X −
h
f
A0A1A0

0G3;X þ hA02
0 ð1þ 2G2;FÞ

2f
;

c8 ¼ 4hA1X1G3;X þ 4h
f
A0A0

0ðG4;X þ 2X1G4;XXÞ −
2h2

f
A1A02

0 ð3g5 þ 2X1g5;XÞ;

c9 ¼ 2ðh − 1ÞG4 − 4ð2h − 1ÞX1G4;X − 8hX2
1G4;XX −

h
f
A0A1A0

0½ð3h − 1ÞG5;X þ 2hX1G5;XX�

−
h
f
A02
0 ½ð3h − 1ÞG6 þ 2ð6h − 1ÞX1G6;X þ 4hX2

1G6;XX�:
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