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Will [Astrophys. J. 191, 521 (1974)] solved the perturbation of a Schwarzschild black hole due to a
slowly rotating light concentric thin ring, using Green’s functions expressed as infinite-sum expansions in
multipoles and in the small mass and rotational parameters. In a previous paper [P. Čížek and O. Semerák,
Astrophys. J. Suppl. Ser. 232, 14 (2017)], we expressed the Green functions in closed form containing
elliptic integrals, leaving just summation over the mass expansion. Such a form is more practical for
numerical evaluation, but mainly for generalizing the problem to extended sources where the Green
functions have to be integrated over the source. We exemplified the method by computing explicitly the
first-order perturbation due to a slowly rotating thin disc lying between two finite radii. After finding basic
parameters of the system—mass and angular momentum of the black hole and of the disc—we now add
further properties, namely those which reveal how the disc gravity influences geometry of the black-hole
horizon and those of circular equatorial geodesics (specifically, radii of the photon, marginally bound and
marginally stable orbits). We also realize that, in the linear order, no ergosphere occurs and the central
singularity remains pointlike, and check the implications of natural physical requirements (energy
conditions and subluminal restriction on orbital speed) for the single-stream as well as counter-rotating
double-stream interpretations of the disc.
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I. INTRODUCTION

Disc accretion onto a black hole is a likely engine of
some of the most energetic astrophysical sources, like
active galactic nuclei, x-ray binaries, or gamma-ray bursts.
Modeling of such sources naturally starts from determi-
nation of the gravitational field of the black hole encircled
by a disc. Although the disc typically has just a tiny fraction
of the black-hole mass, its gravitational effect may be
important on the level of higher derivatives of the potential
(space-time curvature), which in turn are crucial for
stability of motion of its own matter. To take the disc’s
gravity into account is however only easy in a static
(nonrotating) and axially symmetric case when exact
“superposition” of the two sources can at least partially
be obtained analytically. The simple static setting has been
studied many times in the literature; it can approximate
some properties of the actual accretion systems, but it lacks
a significant feature suggested by every depiction of
accretion onto compact objects: rotation.
If the rotation of the central black hole is slow, one of

the analytical options is to perform a small perturbation of

a Schwarzschild solution and adjust it to the boundary
conditions corresponding to a chosen source—usually a
ring, a disc, or a toroid. This means to expand the relevant
quantities in the Einstein equations in corresponding small
parameters (typically related to mass and angular momen-
tum of the additional matter) and then try to solve the
equations to a desired order of expansion. In the previous
paper [1] we considered a linear (first-order) perturbation
of the Schwarzschild black hole due to a slowly rotating
concentric finite thin disc. Inspired by [2] who calculated
a perturbation due to an infinitesimally thin ring, we
expressed in closed form the Green functions (for metric
functions representing gravitational potential and rotational
dragging), given in his paper as series in orthogonal
polynomials. The closed form uses elliptic integrals and
is more practical for numerical evaluation, but mainly for
studying extended sources when the Green functions have
to be integrated over the source volume. We illustrated the
method on linear perturbation due to a simple disc existing
between two finite radii and having constant Newtonian
density.
In the cited paper we provided a longer introduction

and described there thoroughly the perturbation method as
well as interpretation of the disc both in terms of a one-
component ideal fluid and in terms of a two-component
(counter-rotating) geodesic dust. Let us thus only remind
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that the general metric considered is that of circular, i.e.,
stationary and axisymmetric plus orthogonally transitive
space-times,

ds2 ¼ −e2νdt2 þ B2r2e−2νsin2θðdϕ − ωdtÞ2
þ e2ζ−2νðdr2 þ r2dθ2Þ; ð1Þ

where the unknown functions ν, B, ω, and ζ depend only on
r and θ covering the meridional surfaces. Note that the
above coordinates (mostly called isotropic) are related to
the Weyl-type cylindrical coordinates ρ and z by

ρ ¼ r sin θ; z ¼ r cos θ:

The unknown functions are given by Einstein equations
with appropriate boundary conditions. The function B can
in our case be chosen to read

B ¼ 1 −
k2

4r2
¼ ð2r − kÞð2rþ kÞ

4r2
; ð2Þ

which corresponds to a horizon lying on r ¼ k=2 (namely
where B ¼ 0); this also provides the meaning of the
parameter k. We start from a Schwarzschild background,

ds2 ¼ −
�
2r −M
2rþM

�
2

dt2

þ ð2rþMÞ4
16r4

½dr2 þ r2ðdθ2 þ sin2θdϕ2Þ�;

so in our case k coincides with the black-hole massM. Note
that the Schwarzschild background is described by

ν0 ≡ νSchw ¼ ln
2r −M
2rþM

ð3Þ

and that the radial derivative of this potential (often
occurring in calculations) reads, with our choice (2) for B,

ν0;r ¼
MB
r2

:

The main task of any stationary and axisymmetric
problem is to find the functions ν and ω which have the
meaning of a gravitational potential and of a dragging
angular velocity, respectively. We derived the perturbative
(linear-order) solution for these functions in the first paper
[1], in particular, we expressed in closed form the Green
functions for both the functions and illustrated, on a simple
example of a disc with constant Newtonian density stretch-
ing between two finite radii rout > rin > M=2, how the
Green functions can be employed to obtain a solution for an
extended source. Because the solution is quite cumber-
some, we will not repeat the formulas here, just asking the
reader to see Eqs. (83) and (81) in the above paper for the

perturbation of ν (denoted by ν1 and representing entirely
the effect of the disc) and Eqs. (84)–(86) for the perturba-
tion of ω (denoted by ω1 and equal to the total ω). The
solution depends, besides the black-hole mass M, on four
parameters: the inner and outer radius of the disc (rin and
rout in terms of the isotropic radius) and two densities, one
(denoted by S) having the meaning of Newtonian surface
mass density and scaling the disc mass and (thus) potential,
and the other (denoted by W) having similar role for the
dragging function ω. Examples of the disc-potential pro-
files are shown in Fig. 1, as plotted in the equatorial plane
(given by the disc) and along the symmetry axis.
In the previous paper we found parameters of the one-

component as well as two-component interpretation of
the resulting disc (density and pressure in the former case,
while two densities in the latter one, plus the corresponding
velocities). We also computed the mass and angular
momentum of the black hole and of the disc [see
Eqs. (113) and (114) of Paper I], the main point being
that we adjusted the black-hole rotation (which can be
chosen rather freely within the linear order) in such a
manner that the hole keeps, in perturbation, its mass as well
as zero angular momentum, while the angular velocity of
its horizon becomes nonzero (positive). This means that
the hole is just being “dragged along” by the disc.1 Asking
about total mass and angular momentum, we found the
asymptotic behavior of ν and ω at radial infinity. We also
checked how the solution looks at important locations,
namely on the axis, in the equatorial plane and on the
horizon.
The present paper is devoted to further properties of

the perturbative black-hole–disc solution. Section II deals
with the influence of the disc on geometry of the black-hole
horizon, as revealed by isometric embedding of its meridio-
nal outline into E3, by the latter’s Gauss curvature, by its
proper area and surface gravity, and by its equatorial and
meridional proper circumferences. Then, in Sec. III, we
briefly realize that the first-order perturbation does not give
rise to an ergosphere and that the central singularity
remains given by that of the original, Schwarzschild space-
time. Section IVfocuses on the influence of the disc on the
properties of circular equatorial geodesics, in particular on
the positions of the photon, marginally bound and margin-
ally stable orbits, as well as on that of a “marginally
possible” (or “Lagrangian”) orbit where the gravitational
influence from the hole and from the external source just
compensate. Finally, in Sec. V, we check implications of
several natural physical requirements (energy conditions
and subluminal character of the disc-matter motion) for

1The freedom in the choice of the black-hole angular mo-
mentum arises because dragging (ω) enters the potential (ν) only
in the second order, so in the first order it has no back effect on the
potential.
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interpretations of the disc in terms of a one-component
fluid as well as in terms of a two-component dust.
We use geometrized units in which c ¼ 1, G ¼ 1,

metric tensor gμν has the signature (−þþþ), Greek
indices run from 0 to 3 and index-posed comma denotes
partial derivative.

A. Validity of the linear perturbation order

Restricting to the linear perturbation order means that
during derivation of the solution one neglects all terms
quadratic and higher-order in the perturbation quantities ν1
and ω1 ≡ ω as well as in any of its derivatives. Validity of
such a result is, roughly speaking, restricted to regions
where ν1 and ω as well as their derivatives are small with
respect to the unperturbed potential ν0. Practically this
depends on where the disc is placed—if its radius is large, it
lies where the black-hole influence is already weak, so even

a very low values of the densities S and/or W can make its
effect dominant, mainly in its vicinity. However, one is
clearly more interested in the case when the disc lies on
radii where astrophysical accretion discs are supposed to
have their inner radii, i.e., around or somewhat below 10M.
It is of course simple to evaluate and compare ν1, ω (and
their derivatives) with ν0 for any given set of parameters,
but let us only restrict here to providing some idea by
saying that for a disc lying—in terms of the isotropic radius
r—between rin ¼ 5M and rout ¼ 8M (which is just above
the pure-Schwarzschild radius of the innermost stable
circular orbit), the linear approximation is valid up to some
S ≃ 0.002=M and up to some W ≃ 20M: for such values,
the disc potential jν1j and the dragging function jωj are
at worst (close to the disc) about 3× smaller than the
black-hole potential jν0j, so the neglected quadratic terms
are about 10× smaller. Let us add that S ≃ 0.002=M and

FIG. 1. Radial profiles of the constant-density-disc potential, plotted in the disc (≡equatorial) plane (top row) and along the symmetry
axis (bottom row). In the left column, the disc stretches between the radii rin ¼ 5M and rin ¼ 8M and its density is (from top to bottom
curve) S ¼ 0.02=M; 0.04=M; 0.06=M;…; 0.2=M. In the right column, the density is set to S ¼ 0.1=M and the disc has radial width 3M,
with inner radius (from top to bottom curve again) rin ¼ 2M; 4M; 6M;…; 20M. The potential clearly behaves according to expectation.
(There is no black hole included in these plots, so the parameter M can be understood just as a certain mass scale.)
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W ¼ 20=M imply, for the 5M < r < 8M disc, that its mass
is about M1 ≐ 0.25M and its angular momentum is about
J 1 ¼ 7.45M2. We checked that a similar bound also holds
for gradient ofω [this is important, because it is the gradient
squared through which ω enters the equation for ν—see
Eq. (6) or (12) in Paper I]; however, dragging generally falls
off much faster than potential when receding from the
source, and one has to be careful if using higher (than the
first) derivatives of ω—these are typically larger, at least
close to the disc (especially close to its edges).
A minor note concerning the term eν1 which frequently

appears in the formulas below: the perturbation of the
potential ν1 is one of the quantities which should be left
only in linear order, yet we often do not expand eν1 to
ð1þ ν1Þ (though it can of course be done easily). Namely,
since the dragging (ω) only “back-affects” the potential in
the second perturbation order, the properties which do not
contain ω (in the linear order) behave like in the exact static
axisymmetric case. If—for example for the illustrations (of
such properties) to better show some tendency—one also
admits larger values of ν1 than those strictly complying
with the linear regime, it is thus more safe to use the full
formula than its linear-in-ν1 part. (The result is anyway
relevant only where the linear approximation is acceptable.)

II. GEOMETRY OF THE HORIZON

With the choice B ¼ 1 − k2

4r2, the black-hole horizon lies
at r ¼ k=2 (where k ¼ M in our case, since we start from
the Schwarzschild metric), so its coordinate picture is
exactly spherical irrespectively of the perturbation.
However, the intrinsic shape of the horizon (given by
proper distances in the two angular directions) does change
due to the presence of the additional source. In order to
reveal this, let us take the horizon as the two-dimensional
surface ft ¼ const; r ¼ M=2g. From (1), its metric reads

ds2H ¼ ðgθθÞHdθ2 þ ðgϕϕÞHdϕ2

¼ M2

4
ðe2ζ−2νÞHdθ2 þ

M2

4
ðB2e−2νÞHsin2θdϕ2

¼ M2

4

�
B2

e2νð0Þ

�
H

�
e2νðθÞ

e2νð0Þ
dθ2 þ e2νð0Þ

e2νðθÞ
sin2θdϕ2

�
H
;

where the relation valid on stationary and axisymmetric
horizon

ζHðθÞ ¼ 2νHðθÞ − 2νHð0Þ þ lnB ð4Þ
has been employed [see e.g. [2], Eq. (12)]. Substituting
now ν ¼ ν0 þ ν1, where ν0 ≡ νSchw and ν1 is the perturba-
tion brought by the external source, one has

ðB2e−2νÞH ¼ 16e−2ν1

and the Schwarzschild part of the exponent 4νHðθÞ −
4νHð0Þ cancels out, so the horizon metric reduces to

ds2H ¼ 4M2

e2ν1ð0Þ

�
e2ν1ðθÞ

e2ν1ð0Þ
dθ2 þ e2ν1ð0Þ

e2ν1ðθÞ
sin2θdϕ2

�
ð5Þ

evaluated at r ¼ M=2. Hence, the horizon geometry
depends only on the metric function ν and thus in the first
perturbation order it behaves like in the exact static-case
superposition. The latter has been solved at many places,
see, e.g., [3].

A. Isometric embedding into E3

In that paper (actually an erratum), the isometric
embedding was summarized (as taken from [4]) of the
horizon two-surface in a three-dimensional Euclidean
space (revealing the actual horizon shape), and also the
prescription for its Gauss curvature was given. Let us just
briefly recall that the isometric imbedding starts from
writing the metric in the form

ds2 ¼ η2½f−1ðμÞdμ2 þ fðμÞdϕ2�;

where μ ≔ cos θ and, in our case,

η ¼ 2Me−ν1ðμ¼1Þ;

fðμÞ ¼ ð1 − μ2Þe2ν1ðμ¼1Þ−2ν1ðμÞ;

with ν1 already understood to be evaluated at the horizon
(r ¼ M=2). The embedding into a Euclidean three-space
endowed with Cartesian coordinates ðx; y; zÞ is then
given by

x
η
¼

ffiffiffi
f

p
cosϕ;

y
η
¼

ffiffiffi
f

p
sinϕ;

z
η
¼

Z
μ

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 − ðf;μÞ2

4f

s
dμ: ð6Þ

B. Gauss curvature

The Gauss curvature is itself a good indicator of how the
horizon behaves when subjected to a tidal effect of the
external source. In particular, it is a common experience
that, when the source is about the equatorial plane, the
horizon’s axial parts may be so “strained” that the Gauss
curvature decreases below zero there (a similar distortion
also arises as a consequence of rotation, as in the Kerr case).
The Gauss curvature equals half of the Ricci curvature
scalar, computed for the chosen two-dimensional surface.
For the metric (1), the r ¼ const surface has Gauss
curvature

Kðr ¼ constÞ ¼ 1þ ν;θθ þ ðν;θ þ ζ;θÞ cot θ − ν;θζ;θ
r2e2ζ−2ν

;

which specifically for the horizon (r ¼ M=2, ζ;θ ¼ 2ν;θ)
gives
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KH ¼ 1þ ν1;θθ þ 3ν1;θ cot θ − 2ðν1;θÞ2
4M2e2ν1ðθÞ−4ν1ð0Þ

; ð7Þ

where ν1 again represents just the external source. (The last,
quadratic term should therefore be omitted in order to
comply with the first-order approximation, and the expo-
nential downstairs can also be expanded accordingly.) Like
for the isometric embedding, the explicit expression valid
for our constant-density disc is rather cumbersome, but on
the axis it reduces to

KHðθ ¼ 0Þ ¼
1 − 8πMSð 1

xin
− 1

xout
Þ

4M2e4πMSðxout−xinÞ ; ð8Þ

where we have used the horizon value [Eq. (90) in the
previous paper]

ν1ðx ¼ 1Þ ¼ −2πMS

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2out − sin2θ

q
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2in − sin2θ

q �
;

ð9Þ

as written in the radial variable

x ≔
r
M

þM
4r

(in terms of the latter, the horizon is on x ¼ 1).2 Clearly (8)
can become negative for sufficiently large Newtonian
density of the disc S (and for the outer radius of the disc
xout sufficiently larger than the inner radius xin). For S ¼ 0,
the expression reduces to the Schwarzschild value 1=ð4M2Þ.
The effect of the constant-density disc on the horizon’s

intrinsic geometry is illustrated in Fig. 2. As clear from
above, the effect is solely determined by the external-
source potential (the parameter W is thus irrelevant in
the linear perturbation order), so in the case of our disc
equations (83) and (81) of [1] are important. The plot may
look almost like a repetition of the figure presented in [3],
but it is not so—the sources considered there were
different from the present disc (there, it was a Bach-
Weyl thin ring and an infinite disc obtained by inversion of
the first member of the Morgan-Morgan counter-rotating
family). Anyway, the plot does not need much comment—
the horizon inflates towards to external source as
expected. What could however be mentioned here is
the paper by [5] who solved the black-hole–thin-disc
problem numerically and obtained, in some slowly-rotating
cases, a prolate horizon (see discussion at the very end of
our previous paper [1]). Such an observation has not been
repeated in any other study, and there also does not seem to
be any chance for it in our case. Actually, this is already
clear from Eq. (5): the prolate-horizon eventuality would

require ν1ðθÞ > ν1ð0Þ (the potential well generated by the
external-source would have to be deeper at the horizon’s
poles than elsewhere), which, for an attractive equatorial
source, is never true.

FIG. 2. Meridional section (ϕ ¼ const) of the horizon’s iso-
metric embedding into E3, with the symmetry axis going in the
vertical direction and the equatorial plane perpendicular to it. The
horizontal axis thus represents azimuthal circumferential radius
(proper azimuthal circumference of the horizon divided by 2π),
while in the vertical direction the contour goes in such a way that
its length represents proper distance measured along the horizon
in the meridional (polar) direction. For a disc lying between
rin ¼ 0.8333M and rout ¼ 1M and having density S ¼ 0.0, 0.1,
0.2, 0.3 and 0.4 (in the units of 1=M), the horizon becomes more
and more flattened. Both axes are in the units of M.

FIG. 3. Gauss curvature of the horizon at the axis of symmetry
(θ ¼ 0) in dependence on the disc density S, plotted for discs of
radial width rout − rin ¼ 0.2M and having—from the bottom to
the top curve–inner radius at rin ¼ 0.7M; 0.9M; 1.1M;…; 1.9M.
For all of these, the Gauss curvature falls to negative values if the
disc is sufficiently dense/massive. Axes are in the units of 1=M
and 1=M2, respectively.

2For our choice B ¼ 1 −M2=ð4r2Þ, it holds x;r ¼ B=M. It is
also useful to note that Be−ν0 ¼ ð2rþMÞ2=ð4r2Þ.
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FIG. 4. Basic properties of the horizon—its proper area AH (first row), surface gravity κH (middle row), and ratio of its
meridional to equatorial circumferences cmeri=cequa (bottom row), plotted for discs of radial width rout − rin ¼ 0.2M, in
dependence on their density S (left column) and inner radius rin (right column). Specifically, in the left plots, the above quantities
are plotted, against S, for ten different inner radii rin ¼ 0.6M; 0.7M; 0.8M;…; 1.5M, while in the right plots they are plotted
against rin for ten different densities S ¼ 0.02=M; 0.04=M; 0.06=M;…; 0.2=M. Identification of curves: in the left column, with S
growing from zero, AH increases from 16πM2, κH decreases from 1=ð4MÞ and cmeri=cequa decreases from 1, the more steeply the
smaller is rin; in the right plot, with rin growing (from M=2, which is the radius of the horizon), AH increases, κH decreases and
cmeri=cequa increases, the more steeply the larger is S. Units: ½M2� for AH, ½1=M� for κH, dimensionless for cmeri=cequa, ½1=M� for S
and M for rin.
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Figure 3 shows how the Gauss curvature of the horizon at
the axis pole behaves in dependence on the disc density S.
Several cases with different inner disc radii (while the same
width rout − rin) are plotted. Generally, the curvature
decreases from the Schwarzschild value of 1=ð4M2Þ and
eventually falls below zero when the disc density (and thus
mass) is increased. Again, the plot resembles Fig. 2 of [6]
where the same effect was studied for an exact super-
position of a Schwarzschild black hole with various
members of the inverted Morgan-Morgan counter-rotating
disc family.

C. Proper area and surface gravity

Another horizon properties on which the external-source
effect can be studied are the horizon’s proper area and
surface gravity. The area is given by

AH ¼
I
H

ffiffiffiffiffiffiffiffiffiffiffiffiffi
gθθgϕϕ

p
dθdϕ ¼ 2π

Z
π

0

ðBr2eζ−2νÞH sin θdθ

and in our case—with (4) and (9)—amounts to

AH ¼ 16πM2e−2ν1ðx¼1;θ¼0Þ ¼ 16πM2e4πMSðxout−xinÞ: ð10Þ

The surface gravity on a stationary and axisymmetric
horizon is given by

κ2H ≔ lim
N→0þ

ðgμνN;μN;νÞ ¼
�
e4ν−2ζ

�
ðν;rÞ2 þ

ðν;θÞ2
r2

��
H
;

where the lapse function N is simply N ≡ eν. Substituting
again our case, we have

κH ¼ e2ν1ðx¼1;θ¼0Þ

4M
¼ 1

4Me4πMSðxout−xinÞ ¼
4πM
AH

: ð11Þ

Note that this result is independent of θ (κH is uniform all
over the horizon) as it should be, according to the zeroth
law of black-hole thermodynamics, for any stationary
horizon. Clearly the horizon area grows rapidly (exponen-
tially) while the surface gravity falls down when the disc
density S increases. See Fig. 4 for illustration.

D. Equatorial and meridional circumferences

Deformation of the horizon due to the external source is
naturally accompanied by a change of the ratio between
its equatorial and meridional proper circumferences. The
equatorial (actually any azimuthal) one is very simple due
to the axial symmetry,

cequa ¼ 2π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gϕϕðr ¼ M=2; θ ¼ π=2Þ

q
¼ πM½Be−νðθ¼π=2Þ�H;

and in our black-hole–disc case it comes out

cequa¼ 4πMe−ν1ðx¼1;θ¼π=2Þ

¼ 4πMexp

�
2πMS

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2out−1

q
−

ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2in−1

q ��
: ð12Þ

The meridional (in the given coordinates, it means latitu-
dinal) circumference

cmeri ¼ 2

Z
π

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gθθðr ¼ M=2Þ

p
dθ ¼ M

R
π
0 ðeζ−νÞHdθ

¼ M½Be−νð0Þ�H
Z

π

0

eνHðθÞ−νHð0Þdθ

is more difficult to compute explicitly. For our specific
situation, it reads

cmeri ¼ 4Me−2ν1ðr¼M=2;0Þ
Z

π

0

eν1ðr¼M=2;θÞdθ; ð13Þ

with (9) substituted for ν1ðr ¼ M=2; θÞ again.
The ratio of the horizon’s meridional to equatorial

circumferences is plotted (together with the proper area
and surface gravity) in Fig. 4 for several sequences of black-
hole–disc configurations, in order to illustrate its dependence
on the disc density (mass) and location. The plots correspond
to flattening of the horizon due to the disc.3

III. STATIC LIMIT AND SINGULARITY

A rotating horizon is usually surrounded by a static
limit—a surface which limits the possibility to stay at rest
relative to an asymptotic rest frame (namely to “resist”
rotational dragging caused by the source). In a non-
rotating case, the static limit coincides with the horizon.
Our first-order perturbation does not separate a static limit
from the horizon. Actually, if “staying at rest with respect
to infinity” means to stay in spatial coordinates, i.e., to
have four-velocity

uμ ¼ ðut; 0; 0; 0Þ with ut ¼ 1ffiffiffiffiffiffiffiffi−gtt
p ;

the static limit is given by gtt ¼ 0, which for the metric (1)
means

−e2ν þ B2r2ω2e−2νsin2θ ¼ 0;

so in the first order just

eν ¼ eν0eν1 ¼ 0:

3Sometimes the behavior of the cmeri=cequa ratio is suggested as
a sufficient indicator of the horizon shape. However, this is not
always reliable, namely cmeri exceeds cequa when the horizon gets
stretched along the axis as well as if it gets concave in the axial
regions (while cequa kept constant).
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The disc potential is nowhere infinitely deep, eν1 > 0,
so the static limit remains where it lies in the original
space-time,

eν0 ¼ 2r −M
2rþM

¼ 0 ⟺ r ¼ M
2
:

Another possible question is whether the physical
singularity of the solution is perturbed off its original,
pointlike character. A detailed answer is difficult and we
will not provide it here. First, one should admit that in
isotropic coordinates the black-hole interior is not covered.
Second, the answer should be reached by identifying
possible divergence(s) of (e.g.) the Kretschmann curvature
invariant, which for the perturbed metric leads to quite a
long expression. Nevertheless, one can judge the answer
from the structure of the Kretschmann scalar. Computing
this scalar for the metric (1) written in terms of the
functions

N2 ≡ e2ν; gϕϕ ≡ B2r2e−2νsin2θ;

grr ≡ e2ζ−2ν and ω

and omitting all the terms quadratic or higher-order in ω,
one is left with an expression which does not contain ω at
all. All the other terms, however, are determined purely by
ν ¼ ν0 þ ν1, of which ν1 is nowhere singular, so all the
singularities of the resulting space-time must be given by
singularities of the (Schwarzschild) background.

IV. PROPERTIES OF EQUATORIAL CIRCULAR
GEODESICS

Although there is no self-gravity (nonlinear effect of
the matter on itself) involved in the first perturbation
order, one can still estimate some features on this level
already—simply from how the gravitational field is
changed due to the perturbation. In particular, the modi-
fied field implies a modified geodesic structure, ergo a
different world lines of free particles. Indeed, these are
being followed by free test particles, but, in the given
approximation, also by the matter which is generating the
perturbation. We will focus on important equatorial
circular geodesics and check how they are shifted due
to the gravity of the additional disc source.

A. Lightlike limits of circular motion

The first important property are the lightlike limits of
circular motion, namely the light-cone boundaries
expressed in terms of the angular velocity Ω ≔ dϕ=dt,
which are given by

ds2ðρ ¼ const; z ¼ constÞ
¼ ðgtt þ 2gtϕΩþ gϕϕΩ2Þdt2 ¼ 0:

Substituting

gtt ¼ −e2ν − gϕϕω2; gϕϕ ¼ B2ρ2e−2ν;

gtϕ ¼ −gϕϕω;

one obtains

Ωmin;max ¼ ω ∓ e2ν

ρB
ð14Þ

(where for the equatorial motion everything is to be
evaluated at z ¼ 0). In our linear perturbation of
Schwarzschild, we have, in the equatorial plane,

Ωmin;max ¼ ω1 ∓ 4rð2r −MÞ
ð2rþMÞ3 e2ν1 : ð15Þ

B. Zero-speed limit of free circular motion

The opposite limit of free circular motion is the case of
zero speed. Actually, when speaking of a very compact
centre, one immediately imagines high orbital speed,
necessary to produce sufficient centrifugal effect to balance
the center’s gravity. However, if there is (also) some heavy
enough source external to the orbit (the disc in our case),
it may attract the test body so strongly that “no angular
velocity is small enough” (even a body at rest is pulled
outwards). Put simply, the test particle has to orbit below
the Lagrangian point (in fact a whole circle) of the system.
The limit, Lagrangian orbit, has to lie in the equatorial

plane and is given by a very simple condition: the radial
acceleration must vanish, i.e., in the linear-perturbation
order (when dragging does not enter), ν;rðθ ¼ π=2Þ ¼ 0.
Substituting νSchw þ ν1 for the total potential, one obtains
quite a long result (due to ν1) which is not worth presenting.
However, we will evaluate its behavior numerically and
include it in a summarizing figure below.

C. Condition for free circular motion

The condition that the circular motion be free (geodesic;
in astrophysics usually called Keplerian) is easily obtained
by demanding that the acceleration corresponding to the
four-velocity uμ ¼ utð1; 0; 0;ΩÞ vanishes. In the Killing-
type coordinates, the acceleration has just meridional
components, of which the latitudinal (or “vertical”) one
generally vanishes only in the equatorial plane, and
vanishing of the radial component has two solutions

Ω� ¼ −
gtϕ;ρ
gϕϕ;ρ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
gtϕ;ρ
gϕϕ;ρ

�
2

−
gtt;ρ
gϕϕ;ρ

s

¼ ωþ gϕϕω;ρ

gϕϕ;ρ
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
ωþ gϕϕω;ρ

gϕϕ;ρ

�
2

−
gtt;ρ
gϕϕ;ρ

s
: ð16Þ

In the linear approximation of our problem, clearly the
parenthesis under the square root is to be omitted, since it is
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quadratic in ω. Also, of gtt ¼ −e2ν þ gϕϕω2 one keeps only
the first term, and in the term before the square root one
substitutes ν ¼ ν0 into gϕϕ ¼ B2ρ2e−2ν. More precisely, the
linear approximation here means to take

gϕϕ
gϕϕ;ρ

¼ Br3

M2 þ 2Br2ð1 − rν0;rÞ
¼ r

2

2rþM
2r −M

¼ r
2eν0

; ð17Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
ωþ gϕϕω;ρ

gϕϕ;ρ

�
2

−
gtt;ρ
gϕϕ;ρ

s
≐

ffiffiffiffiffiffiffiffiffiffiffi−gtt;ρ
gϕϕ;ρ

r

≐
8

ffiffiffiffiffiffiffiffiffi
Mr3

p
e2ν1

ð2rþMÞ3
�
1þ 2rþM

2r −M
4r2 þM2

8M
ν1;r

�
; ð18Þ

where we have already fixed to the equatorial plane (where
ρ≡ r) and indicated by ≐ the restriction to the linear order
in ν1 (or its derivative). In the Schwarzschild limit, the
Keplerian frequencies reduce to

Ω� ¼ �
ffiffiffiffiffiffiffiffiffiffiffi−gtt;ρ
gϕϕ;ρ

r
¼ � 8

ffiffiffiffiffiffiffiffiffi
Mr3

p

ð2rþMÞ3 :

D. Marginally stable circular geodesics

For any kind of theoretical behavior to be realistic, the
principal realizability is a necessary condition, but physi-
cally not a sufficient one: the behavior should also be
stable. In connection with thin accretion discs, the stability
of their orbits with respect to perturbations acting within
the disc plane is usually emphasized; it is known to lead to
the condition that the angular momentum of circular motion
has to increase in the outward radial direction, i.e., that
uϕ;r > 0. Actually, when subject to such an equatorial
perturbation, a circular orbit oscillates, with respect to an
asymptotic inertial frame, with the so-called radial epicy-
clic frequency (see, e.g., [7] for derivation in the same
notation) whose square reads

κ2 ¼ e2ν−2λ

ðutÞ3uϕ
gαϕ;ρuαgtβuβ;ρ

¼ e2ν−2λuϕ;ρ
ðutÞ4ρ2B2

½uϕ;ρ − ðutÞ3ρ2B2Ω;ρ�: ð19Þ

For a geodesic orbit, the geodesic value(s) of Ω (16)
should be employed. Let us restrict to the equatorial plane
and notice that the result depends on the signs of uϕ;r and
Ω;r. Since the perturbation values should be much smaller
than the “background,” Schwarzschild ones, we assume
the usual argumentation (valid for isolated stationary
black holes) can be applied: Ωþ decreases and Ω−
increases with r (namely, their magnitude falls of with
distance). Hence, for “prograde” orbits, for which uϕ > 0

and Ω;r < 0, stability is ensured by uϕ;r > 0 (then κ2

comes out positive). For “retrograde” orbits, on the other
hand, uϕ < 0 and Ω;r > 0, and stability is ensured by
uϕ;r < 0 (which means that the angular-momentum mag-
nitude increases).
In order to calculate uϕ;ρ, one uses the relations (valid for

any motion in the given type of space-times)

uϕ ¼ gϕϕutðΩ − ωÞ;
ut ¼ ½−gtt − gϕϕΩðΩ − 2ωÞ�−1=2:

For an unperturbed Schwarzschild, the geodesic-orbit value
of the latter is given by

ðut�Þ−2 ¼ −gtt − gϕϕðΩ�Þ2 ¼
ð2r −MÞ2 − 4Mr

ð2rþMÞ2 :

Calculation of uϕ;r yields quite a cumbersome result, even
after the restriction to linear perturbation, the more so after
substituting the geodesic values Ω�, so we only illustrate it
numerically below.

E. Marginally bound circular geodesics

It is also useful to check down towhere the circular orbits
(geodesics in our case) are energetically bound, i.e., having
−ut < 1. In terms of the contravariant four-velocity com-
ponents, the marginal case thus reads

1 ¼ ut½e2ν þ B2ρ2e−2νωðΩ − ωÞ�
≐ utðe2ν0e2ν1 þ B2r2e−2ν0ω1ΩÞ; ð20Þ

where the second row restricts to the linear perturbation.
In the second term, one can use B2r2e−2ν0 ¼ ð2rþMÞ4=
ð16r2Þ and substitute just the unperturbed, pure-
Schwarzschild value for the geodesic values of Ω, thus
finding

B2r2e−2ν0ω1Ω� ≐ � 1

2

ffiffiffiffiffi
M
r

r
ð2rþMÞω1:

F. Photon geodesics

The “innermost” possible tracks for free circular motion
are found by equating the lightlike limits of stationary
circular motion (15) with the geodesic values (16)–(18).
One thus obtains the conditions

ð2rþMÞ4 ω1;r

e2ν1
¼∓ 8ð2r −MÞð2r −M − 2

ffiffiffiffiffiffiffi
Mr

p
Þ

� 2

ffiffiffiffiffi
r
M

r
ð2rþMÞð4r2 þM2Þν1;r: ð21Þ

For a pure Schwarzschild limit, they reduce to

ð2r −MÞ2 ¼ 4Mr

which gives the correct Schwarzschild value.
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G. Coordinate versus geometrical measures

The statements about space-times are often being
expressed in coordinate terms, and this is especially the
case when speaking of location of the important orbits we
have just focused on. Although the isotropic, Weyl (or
Schwarzschild) coordinates do represent some of the space-
time features quite adequately, such statements should be
made with caution. Specifically in the case of orbital radii,
one should check them by employing more invariant
measures, like proper radial distance or circumferential
radius (given as proper circumference of a given circle
divided by 2π). This is mainly desirable in space-times
where there is another source present like in situation we
consider here, because this additional source also contrib-
utes to the metric and thus to the way how such measures
are computed. Let us briefly check how it goes for our
black-hole–disc system.
The proper radial distance from a horizon (r ¼ M=2) to a

given r > M=2, calculated along all the three remaining
coordinates (t, θ, ϕ) constant, is given byZ

r

M=2

ffiffiffiffiffiffi
grr

p
dr ¼

Z
r

M=2
eζ−νdr;

while the proper circumference corresponding to a certain r
(computed along constant t, r and, in the equatorial plane,
θ ¼ π=2) readsZ

2π

0

ffiffiffiffiffiffiffi
gϕϕ

p
dϕ ¼ 2π

ffiffiffiffiffiffiffi
gϕϕ

p ¼ 2πBre−ν:

The proper distance would thus require to know ζ which
is however quite a difficult task. Actually, this function is
given, in the first perturbation order, by equations

ð2−BÞrζ;r−Bζ;θcotθþ2−2B¼B½r2ðν;rÞ2−ðν;θÞ2�;
ð2−BÞζ;θþBrζ;rcotθ−ð2−2BÞcotθ¼2Brν;rν;θ

(in the first order, the function ω does not enter at all),
which could be only solved numerically (with our given ν)
and we have not done it in the first paper nor here. On the
other hand, the circumferential radius of the r ¼ const rings
is much easier to find,

rcf ¼ Bre−ν ¼ ð2rþMÞ2
4reν1

; ð22Þ

where, for the equatorial case, one substitutes the equatorial
form of the disc potential for ν1. Results obtained for the
important circular orbits are shown in Fig. 5, together with
their coordinate values.

H. Illustrations

In Fig. 5, we exemplify the conditions derived above for a
disc lying between rin ¼ 7M and rout ¼ 10M, evaluating
them numerically in terms of the coordinate (isotropic) as
well as circumferential radii. The figure shows how the
locations of the important circular equatorial geodesics
depend on the disc mass (actually on its Newtonian density
S) for several values ofW. With increasing S, the photon and
marginally bound orbits go down (from their Schwarzschild
values) in coordinate radius, but their circumferential radii
increase, because the exponential in (22) “beats” the
decrease of r. The interval of stable circular motion, existing
between the disc and the pure Schwarzschild location (in
isotropic radius, it is r ≐ 4.95M), shrinks and finally

FIG. 5. Dependence of the location of the photon (left), marginally bound (middle) and marginally stable (right) circular orbits on the
disc mass (actually its density S), drawn for a disc existing between rin ¼ 7M and rout ¼ 10M, for several values of the “dragging
density” W. The bottom halves of the plots are drawn in terms of the isotropic radius r, while the top halves are given in terms of the
corresponding circumferential radius rcf ≡ ffiffiffiffiffiffiffigϕϕ

p . In all the plots, the middle (solid) line corresponds toW ¼ 0 and the two side curves
correspond to W ¼ 1=M and W ¼ 5=M; the orbits co-rotating with the disc are represented by dashed lines lying above the middle
W ¼ 0 curve (or, to the right of it in the right plot), while the orbits counter-rotating with respect to the disc are represented by dot-
dashed lines lying below the middle curve (to the left of it in the right plot; just one of these exists there). In the top plots, the region filled
with the disc is shaded in grey. The radii are given in the units of M, the density S is in the units of 1=M.
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disappears for a certain S; for example, in the W ¼ 0 case
this happens just above 0.0004=M (which corresponds to the
total disc mass M1 ≐ 0.064M). Note that with increasing S
the circumferential radii of the disc inner and outer edges
(the disc between them is grey shaded) first slightly recede
from each other, but than come closer and finally “intersect”
for S ≃ 0.11=M. Well understandable from expression (22),
it indicates rather strong spatial curvature due to the potential
valley generated by the disc. (Keep in mind that S ≃ 0.11=M
is far beyond validity of the linear approximation—see
Sec. I A.)
In Fig. 6, the properties of free circular motion (both

below, within, and above the disc) are shown for discs lying
at three different radii relatively close to the black hole.
They are indicated by shades of grey: dark grey is where the
geodesics are possible, timelike, bound, and stable, lighter
grey are possible, timelike, and bound but not stable, still
lighter grey shows where they are only possible and
timelike (but neither stable nor bound), and pure white
indicates where they are only possible or where even none
of the conditions is satisfied. We remind the reader that
“possible” means that there exists a value of angular
velocity for which a circular track at a given radius is
realizable as a geodesic. The boundary of a region where
this is fulfilled (given by the Lagrangian circle ν;r ¼ 0) is
indicated by the dot-dashed curve.
The plots shown in Fig. 6 are quite complicated, but

one should bear in mind that (i) their most complicated,

right-hand parts are typically far beyond validity of the
linear approximation (something like left quarter of the
plots may be relevant, see Sec. I A), and that (ii) probably
only the leftmost of the plots is reasonable astrophysi-
cally, because in the others the disc is too close to the
black hole. Anyway, the best understandable and simply
behaving are the orbits which exist above the disc: these
represent photon, marginally bound and marginally stable
orbits of the whole system; for low disc mass, the photon
and the marginally bound orbits are seen to practically
coincide with the edge of the disc. Between the black hole
and the disc lie the orbits which “belong to the black hole”
but shift from their Schwarzschild positions due to the
disc presence. As expected, this shift is slow and gradual
for the photon and marginally bound orbits, whereas the
marginally stable orbit(s) are much more sensitive to the
details of the field; focusing already on the disc entirely
lying above the Schwarzschild radii of all the important
orbits (leftmost plot), it is seen that there originally
(for a negligible-mass disc) exists a region of stable
circular geodesics between the Schwarzschild value of
rISCO and the inner disc edge, but with increased disc mass
this region shrinks and quite soon disappears, leaving
the whole region below the disc unstable. In the middle
plot, the inner edge of the disc lies below the pure-
Schwarzschild radius of the ISCO, and the situation is
seen to be just opposite to the previous case: there first
exists an unstable region between the inner disc edge

FIG. 6. Dependence on the disc density S of the isotropic radii r of the photon (rph), marginally bound (rmb), and marginally stable
(rms) circular geodesics, drawn, together with the (dot-dashed) boundaries of the region(s) where such orbits are possible as geodesics
(ν;r ¼ 0), for the W ¼ 0 disc lying between rin ¼ 7M and rout ¼ 10M (left plot), between rin ¼ 4M and rout ¼ 7M (middle plot), and
between rin ¼ 2M and rout ¼ 5M (right plot); the inner and outer radii of the discs are indicated by dashed lines. Meaning of the lines is
clear from shading: dark shaded are regions where the geodesics are possible, time-like, bound and stable (in the horizontal direction),
lighter grey are possible, timelike and bound but not stable, still lighter grey shows where they are only possible and timelike (but neither
stable nor bound), and pure white indicates where they are only possible or where even none of the conditions is satisfied. It is helpful to
keep in mind that for S ¼ 0, i.e., when there is no disc, all the graphs reduce to the pure Schwarzschild values rms ≐ 4.95M, rmb ≐
2.91M and rph ≐ 1.87M (remember r is the isotropic radius, not the Schwarzschild one). It is also seen that with increasing mass density
the counter-rotating dust interpretation of the disc becomes problematic, because—even for the disc on the largest radius (left plot)—free
circular orbits within the disc gradually cease to be stable/bound/possible/time-like. The radius is in the units ofM and the density is in
the units of 1=M.
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and the Schwarzschild value of rISCO, which quite quickly
shrinks and disappears with increased disc mass. In any
case, the disc orbits quite soon (in the sense of increasing
the disc mass) become unstable at the outer disc edge.
And just a final note: interesting is the region around
the mass value of 0.0005M in the middle plot, because
there all the disc orbits are stable (and bound and time-
like), although the inner disc edge is below the pure
Schwarzschild value of rISCO.
The dependence of the important-orbit radii on the

radius of the disc is plotted in Fig. 7, specifically for
the orbits lying between the horizon and the disc (the
corotating as well as counterrotating ones) and for small
values of the disc mass density. With increasing disc
radius, the orbits approach their Schwarzschild locations,
except for the marginally bound orbits (determined by
energy with respect to infinity and thus affected even
when the disc lies on large radii).

V. PHYSICAL REQUIREMENTS ON THE DISC

In a previous paper [1], we considered two interpreta-
tions of the disc—the interpretation in terms of a single
ideal fluid in stationary circular motion, characterized
by surface density σ, azimuthal pressure P and orbital
velocity v, and the interpretation in terms of two counter-
rotating but noninteracting (dust) streams orbiting the
black hole on prograde and retrograde circular geodesics,
characterized by surface densities σ� and orbital velocities
v� (all the velocities are taken with respect to the local
zero-angular-momentum observer, ZAMO). Let us sup-
plement this part by listing basic physical requirements
imposed on the disc and checking what they imply for the
parameters of the above two pictures.
Let us recall, from the first paper, that the two

interpretations correspond to writing the surface energy-
momentum tensor

FIG. 7. Dependence on the disc inner radius rin of the isotropic radii of those photon (rph), marginally bound (rmb) and marginally
stable (rms ¼ rISCO) circular geodesics which lie between the black hole and the disc, drawn for light discs (density S ¼ 10−4=M) of
radial width rout − rin ¼ 3M and dragging densitiesW ¼ 1=M (upper row) andW ¼ 10=M (lower row). Actually plotted are differences
between the radii of the respective co-rotating and counter-rotating orbits (drawn in solid/dashed lines) and the corresponding
Schwarzschild values (marked as zeros on the axes)—hence the notation by δ. With increasing radius of the ring rin, the photon and
marginally stable orbits approach their Schwarzschild positions, whereas the marginally bound orbit remains shifted due to the presence
of the disc (orbital energy with respect to infinity is naturally affected by the disc for anyrin; in addition, increasing the disc radius while
keeping its density generally means increasing the disc mass, so its gravitational effect does not fall off as quickly as one might expect).
All axes are scaled by M.
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SαβðρÞ ≔
Z

z¼0þ

z¼0−
Tα
βe

2ζ−2νdz

in the forms

Sαβ ¼ σuαuβ þ Pwαwβ ð1 streamÞ
¼ σþuαþu

β
þ þ σ−uα−uβ− ð2 streamsÞ:

Here uα is the “bulk” four-velocity,

uα ¼ utð1; 0; 0;ΩÞ;

uα ¼ ρBut
�
−
e2ν

ρB
− ωv; 0; 0; v

�
;

where

ðutÞ2 ¼ e−2ν

1 − B2ρ2e−4νðΩ − ωÞ2 ¼
e−2ν

1 − v2

and

v ≔ ρBe−2νðΩ − ωÞ ¼ ffiffiffiffiffiffiffi
gϕϕ

p
e−νðΩ − ωÞ

represents linear velocity with respect to the local ZAMO,
and wα is the “azimuthal” vector perpendicular to uα, with
components

wα ¼ ut
�
v; 0; 0;

e2ν

ρB
þ ωv

�
;

wα ¼ ρButð−Ω; 0; 0; 1Þ:

The four-velocities uα� of the counterrotating picture are
of the uα� ¼ uα�ð1; 0; 0;Ω�Þ form again, now with Ω�
(and the corresponding v�) given by free circular motion
(see Sec. IV C). The parameters of the two interpretations
are related in a number of ways, which we mentioned in the
previous paper.

A. Energy conditions

In terms of the surface energy-momentum tensor Sμν, the
energetic conditions (slightly different requirements for
the attractive character of gravity) read

weak condition∶ Sμνûμûν ≥ 0;

dominant condition∶ gαβSαμSβνûμûν ≤ 0;

strong condition∶ Sμνûμûν þ
S
2
≥ 0;

where ûμ represents any future-pointing timelike four-
velocity (≡ a physical observer). Substituting the one-stream
expression for Sμν, one finds easily

Sμνûμûν ¼ γ̂2ðσ þ v̂2PÞ;
gαβSαμSβνûμûν ¼ γ̂2ð−σ2 þ v̂2P2Þ;

Sμνûμûν þ
S
2
¼ γ̂2

2
ðσ þ PÞð1þ v̂2Þ;

where

γ̂ ≔ −uνûν ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − v̂2
p

is the Lorentz factor corresponding to the relative speed v̂
of the fluid (uμ) with respect to the observer (ûμ).
Combining the two extreme cases v̂ ¼ 0 and v̂2 ¼ 1 (plus,
for the dominant condition, the requirement that the
energy flow −Sαμûμ should be oriented towards future),
we have, from the respective energy conditions,

weak∶ ðσ ≥ 0Þ ∧ ðσ þ P ≥ 0Þ;
dominant∶ σ ≥ jPj;
strong∶ σ þ P ≥ 0:

(Hence, the dominant condition implies the weak one,
which even holds in general.) For the two-stream inter-
pretation, the energy conditions imply that the densities
σ� be non-negative.
Physical intuition tells that the counterrotating interpre-

tation is only possible for discs with non-negative azimu-
thal pressure, P ≥ 0. Mathematically, this is seen from the
trace of the energy-momentum tensor, σþ þ σ− ¼ −σ þ P.
Together with the P ≥ 0 assumption, the requirements of
the energy conditions can be summarized as

σ ≥ P ≥ 0; σ� ≥ 0: ð23Þ

Finally, let us recall how σ�, σ, and P came out for our
example of constant-density disc, as given in Eqs. (100)
and (102), (103) in [1]:

σ� ¼ 4r2 − 8MrþM2

8r2

�
S� WðMrÞ3=2

2πð2rþMÞ3
�
; ð24Þ

σ ¼ þΣþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Σ2 þ 16Mrð2r −MÞ2σþσ−

ð4r2 − 8MrþM2Þ2

s
; ð25Þ

P ¼ −Σþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Σ2 þ 16Mrð2r −MÞ2σþσ−

ð4r2 − 8MrþM2Þ2

s
; ð26Þ

where we have denoted Σ ≔ ðσþ þ σ−Þ=2, S is the (con-
stant) Newtonian surface density and W is its counterpart
(also constant) which appeared in integration of the dragging
differential equation, both assumed to be positive and having
the dimension of 1=M. Now the energy conditions (23) can
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be checked easily. Most notably, σ ≥ P ≥ 0 is clearly
satisfied if σ� ≥ 0. The value of σþ only comes out negative
at very low radii, namely at r < ð1þ ffiffiffi

3
p

=2ÞM ≐ 1.866M
(this is still above horizon which lies on r ¼ M=2); the value
of σþ might also turn negative elsewhere ifW were too large
relative to S.

B. Subluminal motion of the disc fluid

Another obvious requirement is that the disc fluid should
be moving with subluminal speed, v2 < 1. In [1], we got,
for our constant-density disc,

v2 ¼ 4Mrσ − ð2r −MÞ2P
ð2r −MÞ2σ − 4MrP

; ð27Þ

where, when taking the square root (after substituting for σ
and P from above), the þ=− sign should be chosen in case
that σþ > σ−=σþ < σ−. Combining the above requirement
with v2 ≥ 0 and assuming that the disc lies above the
photon circular geodesic of the original (Schwarzschild)
space-time (namely where ð2r −MÞ2 > 4Mr), one obtains
either σ > jPj, or σ < −jPj. If considering the interpreta-
tion in terms of two counterrotating geodesic streams, the
whole disc should lie above both corresponding photon
geodesics (Sec. IV F).
Note that in astrophysical settings the requirement of

subluminal motion is not sufficient, namely, if adhering to
the two-stream interpretation, one would also add that the
whole disc should lie where the free circular motion is
stable (Sec. IV D).

VI. CONCLUDING REMARKS

Several important properties have been derived of
space-times generated by a black hole surrounded, in a
symmetric manner, by a rotating light finite thin disc. We
have thus continued our study of the corresponding linear
perturbation of Schwarzschild solution presented recently
in [1]. Due to the disc, the black-hole horizon grows
bigger and oblate, inflating towards the external source as
usual. No ergosphere occurs in the first perturbation order
and the central singularity remains like in the original,
Schwarzschild space-time. Free circular equatorial motion
is affected by the presence of the disc, as best illustrated
by how the radii of important orbits change with the disc
mass and radius. Since these orbits (mainly the innermost
stable one, ISCO) are crucial for disc-accretion scenarios,
their shift due to the disc’s own gravity should indicate
how a real accretion configuration might differ from its
test-matter approximation. For some parameter ranges this
implies just shift of the inner edge of the accretion disc,
while for other it might indicate a tendency for radial
fragmentation. Finally, to calculation of basic physical
parameters of the disc (made in previous paper), we have
added a check of the natural physical requirements like

energy conditions or timelike (subluminal) character of
disc-matter motion; they lead to simple conditions for
parameters in terms of which the disc is interpreted.
At several places, we compared the present results/figures

with those obtained, e.g., in [3,6]. The whole series to which
these older papers belong (as well as others’ work cited
therein) studied the influence of disc or ring matter con-
figurations on space-time of a black hole within static and
axisymmetric class of metrics. In the static case, the problem
is much easier than in the more general, stationary case
considered here, because then ω ¼ 0 and the potential ν
superposes linearly. In the present paper, stationary rotation
of the sources is admitted, though it is only taken into
account in the linear perturbation order. We have seen that in
this order the properties which are given solely by the
gravitational potential (ν) keep their static (Schwarzschild-
like) form, because rotation (dragging angular velocity ω)
only “back-affects” the potential in the second order.
The main literature on gravitating stationary (rotating)

discs or toroids around black holes was already mentioned
in the first paper. In particular, we summarized the paper by
[5] who considered a very similar task (a thin disc around a
black hole, assuming stationarity and axial symmetry), but
solved it “exactly” (numerically), with a different kind of
disc and under different assumptions. We thus concluded
there that it is difficult to compare Lanza’s results directly
with our linear-perturbation approximation, although in the
limit of very light disc the results should be similar in some
sense; we plan to return to this point in future. However, to
mention at least one clear point, in contrast to the above
paper, we have never obtained a prolate deformation of the
black-hole horizon. Let us, in addition, refer here to the
paper by [8] which treated, numerically, a thick toroid
rather than a thin disc (around a rotating black hole), but
whose point is very close to that of ours: to provide a space-
time describing a reasonable deviation from Kerr and test
its implications for astrophysical black-hole sources. In
particular, they checked there whether the presence of the
massive toroid somehow changes the gravitational wave-
forms produced by an equatorial inspiral of a small body
onto such a system (and found that the effect in general is
very small).
Finally, possible future plans include trying to compute

the first-order perturbation due to a different type of disc.
Actually, the disc with a constant density is probably not
very realistic astrophysically, although one can hardly
expect to be able to integrate the Green functions over a
more generic function of radius, specifically for some
which would really follow from some model of high-
angular-momentum accretion. Another challenge is of
course to extend the treatment to higher perturbation orders.
Namely, in the linear order there is no back reaction of the
disc to its own gravity (no self-gravity), so the most
inherent feature of general relativity is not present (spe-
cifically, the potential superposes like in the static case,
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because dragging only enters the equation for potential
quadratically). Unfortunately, the differential equations for
the kth perturbation terms have (k − 1)th (and lower-order)
terms on their right-hand sides, so it is practically impos-
sible to find their solution if the right-hand sides are not
very simple; the latter is clearly not our case.
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