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The recent detection of GRB 170817A and GW170817 constrains the speed of gravity waves cT to be
that of light, which severely restricts the landscape of modified gravity theories that impact the
cosmological evolution of the Universe. In this work, we investigate the presence of black hole hair in
the remaining viable cosmological theories of modified gravity that respect the constraint cT ¼ 1. We focus
mainly on scalar-tensor theories of gravity, analyzing static, asymptotically flat black holes in Horndeski,
Beyond Horndeski, Einstein-scalar-Gauss-Bonnet, and Chern-Simons theories. We find that in all of the
cases considered here, theories that are cosmologically relevant and respect cT ¼ 1 do not allow for hair, or
have negligible hair. We further comment on vector-tensor theories including Einstein-Yang-Mills,
Einstein-Aether, and generalized Proca theories, as well as bimetric theories.
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I. INTRODUCTION

General relativity (GR) is widely accepted to be the
correct description of gravity at Solar System scales. In this
regime, not only do its predictions show remarkable
agreement with astrophysical data, but precise measure-
ments of phenomena such as light deflection around the
Sun, perihelion shift of Mercury, and others, rule out many
modifications to GR. Nonetheless, GR exhibits weaknesses
both at very high and very low energy regimes.
At high energies, unavoidable singularities arise during

gravitational collapses and the so-called renormalization
problemlimits theanalysisofquantumstates.At lowenergies,
in particular, on cosmological scales, GR relies on the
presence of an unknown component in order to explain the
observed accelerated expansion of theUniverse. Theprevious
limitations suggest that GR may need modifications for both
extreme energy regimes. Furthermore, modifications in the
two regimes may be related as high energy corrections to GR
might leak down to cosmological scales, showing up as low
energy corrections. In this paper we explore possible con-
nections between these two regimes. In particular, we will
show how recent local constraints on the speed of gravity
waves limit their solution for compact objects.
In the past decades a large variety of gravity theories have

been proposed [1]. They have been extensively studied and
constrained with cosmological data from cosmic microwave
background (CMB) and large scale structure. However,
recently strong constraints have been imposed with the

detection of gravitational waves emission GW170817 from
aneutron star binarymerger byLIGOandVIRGO[2], and its
optical counterpart (the gamma ray burst GRB 170817A)
[3–6]. The delay of the optical signal was of 1.7 seconds,
which places a stringent constraint on the propagation
speed of gravity waves cT . Indeed, it was found that
jc2T − 1j < 1 × 10−15 (with unity speed of light). As a result,
a large class of modified gravity theories was highly
disfavored as argued in [7–12].
On the other hand, there have also been efforts to test

gravity theories from observations of black holes [13–15].
GR predicts that black holes are solely characterized by a
few “charges”—their mass m, angular momentum a and
electric charge Q—through what is known as the no-hair
theorem. In extensions to GR additional degrees of freedom
(d.o.f.) are usually introduced, which may add a new kind
of charge to the spacetime solution. In this case, the metric
carries additional information besides the mass, angular
momentum and electric charge, and we say we are in the
presence of a hairy black hole. These extra d.o.f. will be
carriers of fifth forces which may be detected from star
orbits around the black holes [16–18] or from the overall
structure of accreting gas near the event horizon [19–21].
These two examples correspond to nondynamical tests
which probe the stationary spacetime of a black hole. We
note however that, even in the case where theories can
avoid hair and have the same stationary black hole
solutions as GR, new signatures may arise in dynamical
situations; for example, when black holes are formed in a
binary merger, the ringdown signal may carry a new set of
modes that can be traced back to the new d.o.f. [22–24]. In
general, dynamical tests allow us to distinguish models that
have the same stationary spacetime.
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In this paper we consider gravity models that have
cT ¼ 1 on a cosmological background—where the extra
d.o.f. can play a significant role on cosmological scales—
and, as a first approach, expose the relation between the
presence of hairy static black hole solutions and the speed
of gravity waves. Before we proceed, it is important to
clarify what type of “hair” we will be considering here. We
will consider hair to be any modification to GR that can be
measured with nondynamical tests. In particular, hair will
be a permanent charge in a static, spherically symmetric,
and asymptotically flat spacetime. When the metric profile
is characterized by a new global charge (different to mass,
spin or electric charge) we will say we have “primary” hair,
and if the profile has modifications that depend on the same
charges as in GR, we say we have “secondary” hair [25,26].
This distinction is important to understand the number of
independent parameters that fully determine the black hole
solution, but both have physical consequences as they
induce a geometry different to GR.
We mention that in some cases it may be possible to

construct “stealth” black holes, where the geometry of
spacetime is unchanged from the correspondingGR solution
(i.e. no new charge), but the black hole is dressed with a
nontrivial additional field profile. For example, some stealth
black hole solutions in scalar-tensor and vector-tensor
theories can be found in [27,28]. In this situation, non-
dynamical tests will not be able to distinguish these models
from GR and, therefore, for the purpose of this paper, these
examples will not be considered as hairy solutions.
With a clear definition of hair, we explore static,

asymptotically flat black hole solutions on different modi-
fied gravity theories that are cosmologically relevant. We
find that all scalar-tensor theories considered here have no
hair at all or hair with negligible effects (although excep-
tions can be found in theories with no cosmological
effects). Other models such as vector-tensor or bimetric
theories more easily lead to hairy black holes regardless of
their cosmological solution. We find examples with pri-
mary and secondary hair. Our study allows us to identify
the theories which may lead to observable signatures on
both cosmological and astrophysical scales, and can be
used to build a roadmap for a coordinated study with
future large scale structure surveys and gravitational wave
observations.
No-hair theorems for GR and modified gravity (e.g. [29])

have been constructed under quite strict conditions, e.g. the
spacetime must be asymptotically flat and hair must be
permanent. It is straightforward to break these conditions in
a reasonable way [14] and thus obtain hairy solutions, even
in GR. For instance, changing the boundary conditions may
lead to the Schwarzschild–de-Sitter solution which has a
metric such that g00 ¼ 1 − 2m=rþ Λr3=3, i.e. an extra
term proportional to Λ which might be considered hair.
Alternatively, in scalar-tensor theories, a time-dependent
boundary condition for the scalar field can anchor hair on

the surface of the black hole [30]. In the same way, more
complex extra fields can be arranged to form hair. A notable
example arises with a complex scalar field [25] or with
coupled dilaton-Maxwell systems [31]. More recently, it
has been shown that it is possible to construct solutions in
which massive scalar fields hover around black holes for an
extended period of time [32] leading to long-lived but not
permanent hair. Given that we live in a cosmological
spacetime with an abundance of fields, all of these examples
show that hair can be easily present in black holes under
reasonable assumptions.
Nevertheless, all the mechanisms that have been pro-

posed so far lead to very mild hair which, arguably, may be
unobservable. For example, “de Sitter” hair is remarkably
weak compared to the usual Newtonian potential and any
cosmological boundary condition that might lead to scalar
hair will be highly suppressed. So if one can show that a
theory must satisfy the no-hair theorem, it is extremely
likely that any attempts at breaking it solely through
changing the boundary condition will lead to effects which
are too weak to be detected as a fifth force (although they
might emerge in a stronger gravitational regime, like a
black hole merger). This means that no-hair theorems are a
useful guide to undertake a rough census of where to look
in the panorama of gravitational theories.
This paper is organized as follows. In Sec. II we discuss

the speed of gravitational waves in the context of modified
gravity. In Sec. III we focus on scalar-tensor theories with
cT ¼ 1 and discuss the presence of hairy static black hole
solutions. In Sec. IV we discuss mainly vector-tensor
theories as well as other gravitational models with
cT ¼ 1 that do evidence hair, such as bimetric theories.
Finally, in Sec. V we summarize our results and discuss
their consequences.
Throughout this paper we will use natural units in

which GN ¼ c ¼ 1.

II. THE SPEED OF GRAVITATIONAL WAVES

GR is a single metric theory for a massless spin-2
particle, and hence it propagates 2 physical d.o.f. corre-
sponding to two polarizations. On any given background
spacetime, GR predicts that both polarizations propagate
locally along null geodesics, and thus gravitational waves
travel at the same speed as that of electromagnetic waves.
This feature is particular of GR where Lorentz invariance is
locally recovered, and hence all massless waves are
expected to propagate at the same speed. However, such
a feature can easily change in a theory of gravity where
additional d.o.f. are coupled to the metric in a nontrivial
way. These additional fields can take special configurations
in different backgrounds, and define a preferred direction
that will spontaneously break local Lorentz invariance. In
this case, there will be an effective medium for propagation
of gravity waves, and their speed will change. Furthermore,
depending on the configurations of the additional d.o.f., the
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speed of gravity waves could be anisotropic and even
polarization dependent [33].
The speed of gravity waves can be used to discriminate

and test various modified gravity theories. This has been a
topic of special interest in cosmology where a number of
models have been proposed. In this case, the metric
background is given by

ḡμν ¼ −dt2 þ aðtÞ2dx⃗2; ð1Þ

where aðtÞ is the scale factor describing the expansion of
the Universe. Gravitational waves are described by small
perturbations of the metric and thus we can write the total
metric as

gμν ¼ ḡμν þ hμν; ð2Þ

where hμν describes the amplitude of the waves and carries
the information of all the metric polarizations. In this
background, additional gravitational fields such as scalars
or vectors will generically have a time-dependent solution
which, even in a local frame, will define a preferred
direction of time. It has been shown that for single-metric
gravity models propagating a massless spin-2 particle, the
action for gravity waves can generically be written as

S ¼ 1

2

Z
d3xdtM2�ðtÞ½ _h2A − c2TðtÞð∇⃗hAÞ2�; ð3Þ

where we have expanded hμν in two polarization compo-
nents hA with A ¼ þ;×.1 Here, M� is an effective Planck
mass and cT is the propagation speed of gravity waves.
Both of these quantities may in general depend on time, and
thus in this case the speed will always be isotropic and
polarization independent. It is usual that cT depends on the
background solution of the additional gravitational d.o.f.
Let us consider one particular example of a shift-

symmetric quartic Horndeski gravity theory [34,35]
given by

S ¼ 1

2

Z
d4x

ffiffiffiffiffiffi
−g

p ½GðXÞR

þ G;XðXÞðð□ϕÞ2 −∇μ∇νϕ∇μ∇νϕÞ�; ð4Þ

where ϕ is an additional gravitational scalar field, and G is
an arbitrary function of the kinetic term X ¼ − 1

2
∇μϕ∇μϕ

and G;X its derivative with respect to X. On a cosmological

background, we find c2T ¼ 1=ð1 − 2XG;X

G Þ. One can see that,
Taylor expanding, G ≃G0 þ XG;X, if XG;X ≪ G0 then,

cT ≃ 1. This can occur if XGX is small but also if G0 is
large, i.e., if the contribution of the scalar field to the overall
cosmological dynamics is negligible. In this paper we will
consider the case when the contribution to the background
dynamics is not negligible, i.e. the extra d.o.f. has a relevant
impact on cosmological scales.
There are, of course, cases in which the additional d.o.f.

do not affect the propagation speed of gravity waves. A
particular, well-studied, example is Jordan-Brans-Dicke
theory [36,37] given by

S ¼ 1

2

Z
d4x

ffiffiffiffiffiffi
−g

p �
ϕR −

ω

ϕ
ð∇μϕ∇μϕÞ

�
; ð5Þ

where ω is an arbitrary constant. In this case cT ¼ 1.

III. SCALAR-TENSOR THEORIES

Scalar-tensor theories have been extensively studied in
both the strong gravity and cosmological regime. Much
effort in recent years has been put into researching general
theories of a scalar field nonminimally coupled with a
metric; from Horndeski gravity [38], to Beyond Horndeski
[39,40], and degenerate higher order scalar tensor
(DHOST) theories [41]. Furthermore scalar-tensor theories
are ubiquitous in that they appear as some limit of other
theories of gravity, such as the decoupling limit of massive
gravity [42]. The well-posedness and hyperbolicity of
scalar-tensor theories has been studied in [43,44].
We will focus on Horndeski and Beyond Horndeski

theories in this section (as well as Chern-Simons [45] and
Einstein-scalar-Gauss-Bonnet gravity [46]) and show the
solutions of static black holes when cT ¼ 1. In this paper, we
will ignore DHOST theories due to the relative infancy of
research into their black hole solutions. Cosmological
consequences of the detection of GW/GRB170817 to
DHOST theories has, however, been investigated in [47,48].

A. Horndeski

The most general action for scalar-tensor gravity with
second order-derivative equations of motion is given by the
Horndeski action [34]

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p X5
n¼2

Ln; ð6Þ

where the Horndeski Lagrangians are given by

L2 ¼ G2ðϕ; XÞ ð7Þ

L3 ¼ −G3ðϕ; XÞ□ϕ ð8Þ

L4 ¼ G4ðϕ;XÞRþG4;Xðϕ;XÞðð□ϕÞ2 −ϕμνϕμνÞ ð9Þ

1Bimetric gravity theories will propagate additional tensor
modes that will generically be coupled to h, and hence the action
for gravity waves will be different to that in Eq. (3). Nevertheless,
a similar analysis can be done to find cT (or some dispersion
relation) in Friedmann-Robertson-Walker (FRW).
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L5 ¼ G5ðϕ; XÞGμνϕ
μν −

1

6
G5;Xðϕ; XÞðð□ϕÞ3

− 3ϕμνϕμν þ 2ϕμνϕ
μσϕν

σÞ; ð10Þ

where ϕ is the scalar field with kinetic term X ¼ −ϕμϕ
μ=2,

ϕμ ¼ ∇μϕ, ϕμν ¼ ∇ν∇μϕ, and Gμν ¼ Rμν − 1
2
Rgμν is the

Einstein tensor. The Gi denote arbitrary functions of ϕ and
X, with derivatives Gi;X with respect to X.
For theories where the scalar field plays some role

on the cosmological scales, the constraint cT ¼ 1 imposes
G4;X ¼ 0 and G5 has to be constant (in which case L5

vanishes through Bianchi identity). Therefore, the resulting
constrained Horndeski action is given by

S¼
Z

d4x
ffiffiffiffiffiffi
−g

p ½G4ðϕÞRþG2ðϕ;XÞ−G3ðϕ;XÞ□ϕ�: ð11Þ

In this case, we expect the cosmological energy density
fraction of the scalar field to be Ωϕ ∼Oð1Þ due to our
considering only cosmologically relevant theories, where
Ωϕ is given for the above action by [49]

Ωϕ ¼ −G2 þ 2XðG2;X − G3;ϕÞ þ 6 _ϕH0ðXG3;X −G4;ϕÞ
6G4H2

0

;

ð12Þ

where H0 is the value of the Hubble parameter today, Gi;ϕ

denote derivatives of the functionsGi with respect to ϕ, and
overdots denote derivatives with respect to time.
We now proceed to analyze the black hole solutions

arising from the action in Eq. (11). Even though there is no
no-hair theorem for generic Gi functions, there are a
number of theorems for restricted cases. We mention three
distinct families of models.
First, through a conformal transformation, the action in

Eq. (11) can be reexpressed in the form of GR plus a
minimally coupled scalar field (with modified G2 and G3

[50]). The Lagrangian would then resemble a kinetic
gravity braiding model [51]. For G2 ¼ ωðϕÞX, G3 ¼ 0,
the reduced Horndeski action can be seen to be in the form
of generalized Brans-Dicke theories [52], for which a
no-hair theorem exists [29]. Second, a no-hair theorem
for K-essence (i.e. G3 ¼ 0, G4 ¼ 1) is given in [53],
provided that G2X and ϕG2;ϕ are of opposite and definite
signs. Third, we mention that for shift-symmetric theories,
which are invariant under ϕ → ϕþ constant and hence
Gi;ϕ ¼ 0 in Eq. (11), the action takes the form of a
minimally coupled scalar field with potentially unusual
kinetic terms arising from G2ðXÞ and G3ðXÞ. For such
shift-symmetric theories, no-hair theorems exist for static
black holes [29,54]. The outline of these no-hair theorems
for shift-symmetric theories is given by: (i) spacetime is
spherically symmetric and static, and the scalar field shares
the same symmetries; (ii) spacetime is asymptotically flat,

dϕ
dr → 0 when r → ∞, and the norm of the Noether current
associated to the shift symmetry is regular on the horizon;
(iii) there is a canonical kinetic term X in the action and the
Gi;X functions contain only positive or zero powers of X.
We note that this no-hair theorem is valid for all shift-

symmetric Horndeski actions that satisfy the above con-
ditions, even those that do not satisfy the constraint cT ¼ 1.
Focusing on a spherically symmetric and static spacetime,
we can still have hairy black hole solutions by breaking
assumptions (ii) or (iii) of this no-hair theorem. It is indeed
expected that realistic situations of dark-energy models will
break assumption (ii) as the scalar field is responsible for
the late-time accelerated expansion of the Universe or,
more generally, the scalar field can lead to large-scale
effects and thus dϕ

dr does not necessarily vanish when
r → ∞. Examples like this can easily be realized by adding
a time-dependent boundary condition to the scalar field
[30] associated to the cosmological expansion. However,
such a scalar hair would be highly suppressed and
negligible in the vicinity of a black hole.
We explore further cases that violate assumption (iii). A

number of Lagrangians that break this assumption are
discussed in [27] but we will focus on the only two
examples which still obey the constraint cT ¼ 1 for
Horndeski gravity. In addition, we will discuss a class of
theories that even though they explicitly depend on ϕ, are
related to shift-symmetric theories via conformal trans-
formations and therefore they also satisfy the no-hair
theorem previously mentioned.

1. Quadratic term

The first potentially hair-inducing term posited in [27] is
the addition of a square-root quadratic term to the canonical
kinetic term, G2ðXÞ ¼ X þ 2β

ffiffiffiffiffiffiffi
−X

p
, G4 ¼ 1

2
M2

P, where β
is an arbitrary constant. As we can see, in this case G2;X

does contain negative powers of X and thus hairy black
holes may appear.
First, we require the scalar field to be cosmologically

relevant, and thus

Ωϕ ¼ −X
3M2

PH
2
0

∼Oð1Þ: ð13Þ

Now, assuming a spherically symmetric and static ansatz
for the metric and scalar field,

ds2 ¼ −hðrÞdt2 þ 1

fðrÞ dr
2 þ r2dΩ2; ϕ ¼ ϕðrÞ ð14Þ

and requiring that the radial component of the Noether
current Jr ¼ 1ffiffiffiffi−gp δS

δð∂rϕÞ ¼ 0 [to ensure a regular current on

the horizon, as required in assumption (ii) above] we find
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−X ¼ 1

2
fðrÞ

�
dϕ
dr

�
2

¼ β2: ð15Þ

We can then solve the field equations (provided in [27]) for
the metric function fðrÞ to find

fðrÞ ¼ hðrÞ ¼ 1 −
2m
r

þ β2

3M2
P
r2: ð16Þ

Thus, we find a stealth Schwarzschild-AdS black hole of
mass m with an effective negative cosmological constant
Λeff ¼ −β2=M2

P (assuming real β and hence β2 > 0). If we
required asymptotic flatness then this model would have
the same solution as GR, and there would be no hair.
Relaxing that assumption, we note that cosmologically
relevant scalar fields satisfy Eq. (13) and we then expect
Λeff ∼H2

0. Therefore, hair would be negligible near the
black hole.

2. Cubic term

A second possibility analyzed in [27] is the introduc-
tion of a logarithmic cubic term with G2 ¼ X, G3 ¼
αMP logð−XÞ, G4 ¼ M2

P=2, where α is an arbitrary dimen-
sionless constant. Again, we see that in this example, G3;X

has negative powers of X. If the scalar field is to have
cosmological relevance, we need

Ωϕ ¼ X þ 6 _ϕH0αMP

3M2
PH

2
0

∼Oð1Þ: ð17Þ

Again, using the ansatz given by Eq. (14) we find the
following expression for dϕ=dr by requiring Jr ¼ 0:

dϕ
dr

¼ −αMP

�
1

hðrÞ
dhðrÞ
dr

þ 4

r

�
: ð18Þ

To proceed we assume that hðrÞ ¼ fðrÞ. Making use of the
field equations calculated in [28] (translating from a vector-
tensor theory to a shift-symmetric scalar-tensor theory such
that Aμ → ∂μϕ, i.e. A0 ¼ X0 ¼ 0, A1 ¼ dϕ=dr), we find
the following hairy solution:

ds2 ¼ −
�
1 −

2m
r

þ c

r4þ
1

α2

�
dt2 þ

�
1 −

2m
r

þ c

r4þ
1

α2

�
−1
dr2

þ r2

1þ 4α2
dΩ2; ð19Þ

where we have rescaled r and t by constant prefactors to
obtain a Schwarzschild-like solution. If we imposed
asymptotic flatness, we would find that the solution cannot
have hair as the metric line element does not approach
Minkowski when r → ∞ due to the factor of 1=ð1þ 4α2Þ
in the angular part. Thus, we cannot construct a static,
spherically symmetric, asymptotically flat solution with

scalar hair in this theory [under the assumption that
hðrÞ ¼ fðrÞ]. Furthermore, the fact that G3 generically
diverges for X ¼ 0 is suggestive that Minkowski space is
not a solution for this theory, and therefore this model does
not seem to be viable.

3. Conformally shift-symmetric theories

We now proceed to discuss models that depend explicitly
on ϕ, and hence break the assumptions of the shift-
symmetric no-hair theorem. While such models could
generically lead to hairy black holes, here we analyze a
special class that is conformally related to shift-symmetric
theories, and thus avoids scalar hair.
In the prototypical scalar-tensor theory of gravity, Brans-

Dicke theory, it is well known that the theory can be recast
from the “Jordan frame” (in which a nonminimal coupling
between the scalar and curvature exists) into that of GR
with a minimally coupled scalar field through the use of a
conformal transformation [29,50]. The trade-off is that, in
this so-called “Einstein frame” where the nonminimal
coupling between the scalar field and curvature has been
eliminated, any additional matter fields no longer couple
solely to the metric but also to the gravitational scalar field.
However, if we work in a vacuum then both Jordan and
Einstein frames are entirely physically equivalent. We can
use this same analysis to show that theories in the Jordan
frame of the type

SJ ¼
M2

P

2

Z
d4x

ffiffiffiffiffiffi
−g

p ½ϕRþ ϕ2F2ðX=ϕÞ

− ϕF3ðX=ϕÞ□ϕ − VðϕÞ� ð20Þ

can be transformed from the Jordan frame into the Einstein
frame through the conformal transformation g̃μν ¼ ϕgμν.
Here, Fi are arbitrary functions of X=ϕ and V is a potential
for the scalar field. Equation (20) leads to the following
action in the Einstein frame:

SE ¼ M2
P

2

Z
d4x

ffiffiffiffiffiffi
−g̃

p
½R̃þ F2ðX̃Þ þ 2X̃F3ðX̃Þ − F3ðX̃Þ□̃ϕ

−ϕ−2VðϕÞ�: ð21Þ

In the case of vanishing potential V ¼ 0, the Einstein frame
action SE is clearly shift symmetric in the scalar field ϕ.
Thus, via the no-hair theorem in [54], static black hole
solutions for g̃μν should be the same as in GR with no scalar
hair. As a consequence, solutions for gμν from SJ will not
have hair either.
For cosmologically relevant models, ϕ will have a

fractional energy density given by
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Ωϕ ¼ V − ϕ2F2 þ 2Xðϕ2F2;X − F3 − ϕF2;ϕÞ þ 3 _ϕH0ð2ϕXF3;X −M2
PÞ

3M2
PH

2
0ϕ

∼Oð1Þ: ð22Þ

Generalizing to the case with V ≠ 0, it is known that if F3 ¼ 0 we then have a K-essence model and static black hole
solutions will not have hair provided that V;ϕϕ > 0 and F2;X > 0 (these conditions can be interpreted as constraining the
scalar field to be stable and to satisfy the null energy condition [29,53]).
For nonzero V and F3, the no-hair condition can be shown to be [through integrating ðϕ−2VÞϕEϕ from the horizon to

spatial infinity, with Eϕ being the equation of motion for the scalar field in the Einstein frame [55]]

ðF2 þ 2X̃F3Þ;X̃ þ fðrÞ dϕ
dr

F3X̃

�
1

2hðrÞ
dhðrÞ
dr

−
2

r

�
≥ 0 and ðϕ−2VÞϕϕ ≥ 0

or ðF2 þ 2X̃F3Þ;X̃ þ fðrÞ dϕ
dr

F3X̃

�
1

2hðrÞ
dhðrÞ
dr

−
2

r

�
≤ 0 and ðϕ−2VÞϕϕ ≤ 0; ð23Þ

where hðrÞ, fðrÞ are the metric functions in the spherically symmetric ansatz given by Eq. (14).

B. Beyond Horndeski

Horndeski gravity can be extended by the addition of
terms which lead to higher order derivative equations of
motion, but without an extra propagating d.o.f. [39,40]. The
Beyond Horndeski terms are given by

LBH
4 ¼ F4ðϕ; XÞεμνρσ εμ

0ν0ρ0σϕμϕμ0ϕνν0ϕρρ0 ð24Þ

LBH
5 ¼ F5ðϕ; XÞεμνρσεμ0ν0ρ0σ0ϕμϕμ0ϕνν0ϕρρ0ϕσσ0 : ð25Þ

The condition cT ¼ 1 generalizes to

F5 ¼ 0; G5;X ¼ 0; G4;X −G5;ϕ ¼ 2XF4: ð26Þ

Note that by setting F4 ¼ 0 in the above equation (i.e.
recovering Horndeski theory), the condition for cT ¼ 1
appears to be G4;X ¼ G5;ϕ rather than G4;X ¼ G5;ϕ ¼ 0

as stated in Sec. III A. This is not inconsistent, as
Horndeski theories with G4;X ¼ G5;ϕ will indeed result
in cT ¼ 1 [9–12]. As discussed in [9], however, in the
Horndeski case we require both G4;X and G5;ϕ to vanish
independently rather than relying on any finely tuned
cancellation between the two terms. On the other hand,
for Beyond Horndeski theories we can make use of the
presence of the additional free function F4 to cancel the
contributions of G4;X and G5;ϕ in cT , thus preserving a
richer landscape of viable theories with cT ¼ 1.
Similarly to the Horndeski case, we first require the

scalar energy density parameter to be cosmologically
relevant, i.e. Ωϕ ∼Oð1Þ, with Ωϕ given by

Ωϕ¼
−G2þ2XðG2;X−G3;ϕÞþ6H0

_ϕðXG3;X−G4ϕ−2XG4;ϕXÞþ24H2
0X

2ðF4þG4;XXÞ−48H2
0X

2ð2F4þXF4;XÞ
6H2

0ðG4−2XG4;XþXG5ϕÞ
: ð27Þ

In [56], it is shown that shift-symmetric Horndeski and
Beyond Horndeski have no hair for a regular, asymptoti-
cally flat spacetime, with canonical kinetic term X in action
and positive powers of Gi;X and Fi;X. In what follows, we
focus again on models that break the last assumption. We
investigate two terms given in [27] that respect the
constraint cT ¼ 1.

1. Square root Quartic models

We first consider including a
ffiffiffiffiffiffiffi
−X

p
term in G4 (with the

choice of F4 corresponding to the above conditions that
lead to cT ¼ 1):

G2 ¼X; G4 ¼
1

2
M2

Pþ γ
ffiffiffiffiffiffiffi
−X

p
; F4 ¼

γ

4ð−XÞ32 ; ð28Þ

where γ is an arbitrary constant.
For this choice ofGi, Fi, the condition for the scalar field

to be cosmologically relevant is given by

Ωϕ ¼ X − 6H2
0γ

ffiffiffiffiffiffiffi
−X

p

3H2
0M

2
P

∼Oð1Þ: ð29Þ

Assuming a spherically symmetric ansatz for the metric as
in Eq. (14), we find two branches of solutions for X:
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XðrÞ ¼ 0 ⇒
dϕ
dr

¼ 0; ð30Þ

or

XðrÞ ¼ −
�
4γ2 þM2

Pr
2

3γr2

�
2

⇒
dϕ
dr

¼
ffiffiffiffiffiffiffiffiffi
2

fðrÞ

s
4γ2 þM2

Pr
2

3γr2
;

ð31Þ

respectively. We see that the first branch results in a
solution with a constant scalar field, i.e. no-scalar hair,
resulting in regular GR black holes. We thus try to find
solutions for the metric functions fðrÞ and hðrÞ for the
second branch of solutions for XðrÞ. We find the following
for fðrÞ:

fðrÞ ¼ 64γ6þ 9γ2c1r3−M6
Pr

6þ 45γ2M4
Pr

4þ 144γ4M2
Pr

2

9ðγM2
Pr

2− 8γ3Þ2 :

ð32Þ

For large r, fðrÞ ∼ r2, this solution is clearly not asymp-
totically flat. Thus we have not been able to construct an
asymptotically flat spherically symmetric black hole sol-
ution with scalar hair for this model.

2. Purely quartic models

Purely quartic models are proposed in [27] (i.e. only G4

and F4 nonzero and with no canonical kinetic term for the
scalar field). One such model that obeys the cT ¼ 1
constraint is given by

G4 ¼
1

2
M2

P þ
X
n≥2

2an
ðX − X0Þnþ1

ðnþ 1Þðnþ 2Þ ½ðnþ 1ÞX þ X0�

ð33Þ

F4 ¼
X
n≥2

anðX − X0Þn; ð34Þ

where X ¼ X0 is the constant value of the background
scalar field kinetic term around the black hole:

dϕ
dr

¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
−
2X0

fðrÞ

s
; ð35Þ

thus leading to nontrivial scalar field profile for X0 ≠ 0.
The cosmological density parameter for the scalar field

in this case is

Ωϕ¼
−8X2

P
n≥2anðX−X0Þn

M2
Pþ4

P
n≥2

anðX−X0Þn
nþ2

½ð3−2nÞX2− 1
nþ1

X0ðnXþX0Þ�
ð36Þ

and we expect it to be of order 1.
The black hole solution of this model is a stealth black

hole, where the spacetime geometry is given by the appro-
priate GR solution, but the scalar field takes a nontrivial
profile (as shown above). For a stealth Schwarzschild black
hole, the scalar field is thus given by [27]

ϕðrÞ¼
ffiffiffiffiffiffiffiffiffiffiffi
−2X0

p h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2−2mr

p
þmlog

�
r−mþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2−2mr

p �i
:

ð37Þ

The above profile for the scalar field is regular everywhere
outside the horizon of the black hole, with ϕ ∼ r as r → ∞.
Since the spacetime geometry is the same as that of GR,

we do not expect to be able to distinguish this model
through nondynamical tests such as analyses on orbits of
stars or electromagnetic imaging of the accretion flow
around the black hole. Nevertheless, we do expect to see a
difference in dynamical situations. In particular, it has
been suggested that while scalar-tensor theories with ϕ ¼
constant may not lead to any new signature during the
inspiral of two black holes, the no-hair theorem can be
pierced if the scalar field has some dynamics [57]. In the
case of stealth black holes, the scalar field will have a
nontrivial initial profile as in Eq. (37) which may trigger a
subsequent dynamical evolution which may lead to dipole
gravitational wave radiation which in turn will change the
evolution of the emitted GW waveform phasing compared
to that of GR.

C. Einstein-scalar-Gauss-Bonnet

In four dimensions, the Gauss-Bonnet (GB) term is a
topological invariant, and as such the addition of theGB term
to the usual Einstein-Hilbert action of GR does not affect the
equations of motion. If, however, the GB term is non-
minimally coupled to a dynamical scalar field in the action,
the dynamics are significantly altered. Consider the action of
Einstein-scalar-Gauss-Bonnet (ESGB) gravity [46]:

SGB¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
M2

P

2
R−

1

2
gμνϕμϕν−VðϕÞ−1

2
ξðϕÞR2

GB

�
;

ð38Þ

where we have introduced a scalar field ϕ with potential
VðϕÞ,which for simplicitywewill neglect fromnowon, anda
coupling function ξðϕÞ. In addition, we have defined R2

GB ¼
RμναβRμναβ − 4RμνRμν þ R2 as the Gauss-Bonnet term.
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It is well known that models given by Eq. (38) can
produce scalar hair on black hole backgrounds in both the
static [46,58,59] and slowly rotating [60–65] regimes.
However, on a cosmological background they lead to a
modified speed of gravity waves. Indeed, we find that

cT ¼ 1þ 4
ðH _ϕ − ϕ̈Þξ0 − _ϕ2ξ00

M2
P − 4H _ϕξ0

; ð39Þ

where a prime denotes a derivative with respect to ϕ (see
also [66]). Equivalently, Eq. (38) can be recast into the
form of Horndeski gravity with the following choice of
functions Gi:

G2 ¼ X − V þ 4ξ0000X2ðlogX − 3Þ
G3 ¼ 2ξ000Xð3 logX − 7Þ

G4 ¼
M2

P

2
þ 2ξ00XðlogX − 2Þ

G5 ¼ 2ξ0 logX: ð40Þ

In this form, it is clear the ESGB gravity does not conform to
the constraints of [9–12] that G4;X ¼ 0 ¼ G5 to ensure that
cT ¼ 1. Furthermore, it is well known that the case of
coupling to the GB term is a loophole in the no-hair theorems
for shift-symmetric Horndeski theories [29,46,55].

Assuming that the scalar field is cosmologically relevant, we find that Ωϕ ∼Oð1Þ where

Ωϕ ¼ V þ X þ 4ðξ0000 − ξ000ÞX2ð3 − logXÞ þ 24H0XðH0ξ
00 þ 3 _ϕξ000Þ

3H2
0ðM2

P þ 4ξ00X logX − 4ξ0H0
_ϕÞ : ð41Þ

We then impose cT ¼ 1 for a generic background evolu-
tion. Therefore, from Eq. (39) we get ξ0 ¼ ξ00 ¼ 0, in which
case the GB term decouples from the scalar field ϕ and we
obtain GR with a minimally coupled scalar field plus a GB
term. In this case, as mentioned above, the addition of the
GB term to the usual Einstein-Hilbert term represents
nothing more than the addition of a total divergence that
leaves the equations of motion unaffected. Thus the
constraint on cT rules out the possibility of ESGB gravity
having any cosmological relevance. As discussed above,
the scalar field ϕ could avoid modifying cT at an observable
level only if it is assumed to be incredibly subdominant on
cosmological scales, i.e. if Ωϕ ≪ 1.
As a counterexample to the above discussion of the

cosmological impact of ESGB gravity, the following theory
is studied in [67]:

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
M2

P

2
R −

1

2
gμνϕμϕν − VðϕÞ

þF1ðϕÞGμνϕμϕν −
1

2
F2ðϕÞR2

GB

�
; ð42Þ

with string-inspired exponential forms for F1, F2, and V. It
is shown in [67] that this theory, including both scalar
coupling to the GB term and scalar derivative coupling to
the Einstein tensor, can admit de-Sitter-like and power-law
cosmological solutions whilst maintaining cT ¼ 1. This
theory is clearly not shift symmetric and so the no-hair
theorem of [54] is not applicable, whilst a coupling to the
GB term is known to produce black holes with scalar hair
[46,58,59], or at least that are unstable to spontaneous
scalarization [68,69]. Thus we expect that, in general, black

holes in this string-inspired theory can possess scalar hair
and satisfy current constraints on the speed of gravity
waves, although with no cosmological effects.

D. Chern-Simons

Chern-Simons (CS) gravity [45] is characterized by the
addition of the Pontryagin invariant, �RR ¼ 1

2
ϵμναβRλ

σαβR
σ
λμν

to the standard Einstein-Hilbert term of the action. The
Pontryagin invariant can be coupled to either a dynamical
or nondynamical scalar field, leading to two different
formulations of the theory. For concreteness, consider
the dynamical formulation of CS gravity,

SCS ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
M2

P

2
R−

1

2
gμνϕμϕνþαfðϕÞ�RR

�
; ð43Þ

where α is a constant coupling parameter and fðϕÞ is an
arbitrary function of the scalar field.
In [70–72] it is shown that in CS gravity, gravitational

waves propagate at the speed of light on conformally flat
background spacetimes such as FRW. As such, [70]
postulates that it is not possible to constrain CS gravity
purely through the propagation speed of gravitational
waves. Regardless, static and spherically symmetric black
holes in CS gravity do not have hair and admit the same
solutions as in GR [73].

IV. OTHER THEORIES

We now consider other theories which go beyond the
broad span of scalar-tensor theories. As one expects, the
moment one considers fields with more “structure” (i.e.
more indices), there is a greater possibility of nontrivial
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coupling with the metric which, in turn, can lead to black
hole hair.

A. Einstein gravity with Maxwell,
Yang-Mills and Skyrme fields

The simplest theory with a vector field corresponds to an
Einstein-Maxwell system. In this case, the black hole
solution is Kerr-Newman which, besides mass and spin,
is characterized by an electric charge. While this black hole
solution is not considered hairy, we will start by mentioning
this case (and its non-Abelian extensions) to get a flavor of
what to expect in the case of fields with more structure.
The Einstein-Maxwell theory is given by

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
M2

P

2
R −

1

4
FαβFαβ

�
; ð44Þ

where Fμν ¼ ∂μAν − ∂νAμ is the Maxwell tensor associated
with a vector field Aα. In this model, we have that the FRW
cosmological fractional energy density of the vector field is

ΩA ¼ F0αFα
0 þ 1

4
FαβFαβ

3M2
PlH

2
0

∼
jB⃗j2

H2
0M

2
Pl

; ð45Þ

where B⃗ is the associated magnetic field. In this isotropic
background, one has that Aμ ¼ ðA0ðtÞ; 0⃗Þ and gravity wave
propagation will be direction independent with exactly
cT ¼ 1. Furthermore, in this case, the cosmological evo-
lution is exactly the same as that of GR as the magnetic
field vanishes (B⃗ ¼ 0) in this homogeneous background,
and hence ΩA ¼ 0 from Eq. (45).
If the vector field is cosmologically relevant, taking into

account the fact that the electrical conductivity of the
Universe is large, we expect the presence of magnetic fields
which will lead to anisotropies. On the one hand, in the case
of stochastic magnetic fields, the metric may be locally
anisotropic but too weak to affect local gravitational wave
propagation.
On the other hand, in the case of a global magnetic

component, the vector field will have a spatial dependence
A⃗ ≠ 0 and the Universe will be anisotropic. Therefore, the
propagation of gravitational waves will be direction de-
pendent [74]. Current constraints on global anisotropy (and
homogeneous magnetic fields) from the cosmic microwave
background are remarkably tight [75–77] and we will
enforce strict isotropy in what follows (although it is
conceivable that multiple measurements of cT in different
directions might improve these constraint).
The black hole solutions for the Einstein-Maxwell

system are Kerr-Newman, which are fully characterized
by three charges—mass m, spin a and electric charge Q—
and with a nontrivial profile for the vector potential Aα. In
the spherically symmetric case (where a ¼ 0), one has the
Reissner-Nordstrom solution given by

hðrÞ ¼ 1 −
2m
r

þ Q2

4πε0r2
and A0ðrÞ ¼

Q
r
; ð46Þ

where ε0 is the vacuum permittivity constant. Here, we
have again used a metric of the form of Eq. (14) and
Aμ ¼ ðA0ðrÞ; A1ðrÞ; 0; 0Þ, with A1 being an unphysical
gauge mode.
The above description can be extended to the case where

the gauge field is non-Abelian—the Einstein-Yang-Mills
system—or the vector field has a stronger nonlinear self
coupling—the Einstein-Skyrme system; in this case we are
considering genuine hair. In both of these cases, new
phenomena can come into play. While, on the whole,
the energy density of the fields can remain subdominant at
cosmological scales, nonperturbative structures (topologi-
cal and nontopological defects) can in principle make a
nontrivial contribution to the overall energy density and to
the global isotropy of space (although, generally, these
effects are expected to be weak). Again, we can enforce
cT ¼ 1 yet still allow for non-Abelian hair. Notable
examples can be found in the Einstein-Yang-Mills case
[78,79] which combine solitonic cores with long range
forces; in the Einstein-Skyrme cases there is a range of
solutions combined with solitonic states [80–82].

B. Einstein-Aether

Generalized Einstein-Aether is a gravity theory where
the metric is coupled to a unit timelike vector field, dubbed
the aether. This model provides a simple scenario for
studying effects of local Lorentz symmetry violation. In
particular, the vector field defines a preferred frame where
boosts symmetry is broken but rotational symmetry is still
preserved. The action describing this model is given by

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
M2

P

2
Rþ F ðKÞ þ λðAμAμ þ 1Þ

�
; ð47Þ

where λ is a Lagrange multiplier that forces the vector field
to be unit timelike. Also, F ðKÞ is an arbitrary function of
the kinetic term K given by K ¼ c1∇μAν∇μAνþ
c2ð∇μAμÞ2 þ c3∇μAν∇νAμ (with ci constants) (an addi-
tional quartic term in Aμ contributing to K is sometimes
considered).
The cosmological consequences of Einstein-Aether have

been extensively explored in [83–85]. The case where the
aether field can play the role of either dark matter or dark
energywas explored in [84] where the existing cosmological
constraints ruled it out as an alternative to a cosmological
constant. In the case of the standard Einstein-Aether case
[with F ðKÞ ∼ K], current Solar System constraints [86]
combined with binary pulsar constraints [87,88] place jc1j,
jc3j ≤ 10−2 and c2 ≤ 1. Cosmological constraints allow
ΩA ∼ 0.3 so the aether field can still have a non-negligible
contribution to the cosmological evolution [89].
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The propagation speed of gravitational waves on a cosmo-
logical background is such that c2T ¼ 1=½1þ ðc1 þ c3ÞF ;K�,
and thus the constraint on cT implies c1 ¼ −c3. This means
that K is reduced to a canonical kinetic term (an “F2” term)
supplemented by a ð∇μAμÞ2 term.
For models which respect cT ¼ 1, the condition that the

aether field Aμ has cosmological relevance is thus given by

ΩA ¼ −F
3M2

PH
2
0ð1 − 3c2F ;KÞ

∼Oð1Þ; ð48Þ

where F ;K denotes the derivative F with respect to K.
Little has been done on black hole solutions for general

F ðKÞ and thus we will restrict ourselves to the standard
Einstein-Aether case. Black hole solutions with hair have
been found in such a case, that are regular, asymptotically
flat and depend on only one free parameter [90–94]. For
instance, in the case where c3 ¼ 0, c2 must satisfy the
condition

c2 ¼ −
c31

2 − 4c1 þ 3c21
; ð49Þ

where c1 is the only free parameter of the black hole
solution. We can use a spherically symmetric ansatz for the
line element as in Eq. (14). The full solution must be found
numerically, but an analytical perturbative solution can be
given when x ¼ 2m=r ≪ 1:

hðrÞ ¼ 1þ xþ ð1þ c1=8Þx2 þ � � � ; ð50Þ

fðrÞ−1 ¼ 1 − x − c1=48x2 þ � � � : ð51Þ

We note that this is an example of primary hair, where the
spacetime geometry is different to that of GR and,
furthermore, the solution depends on an additional inde-
pendent free parameter c1.
More general solutions satisfying c3 ¼ −c1 (and hence

cT ¼ 1) are expected to have the same behavior [90]. This
shows that black hole solutions always have hair, regardless
of additional cosmological constraints. While in static
black holes deviations from GR are typically of a few
percent (only exceeding 10% for some region of the viable
parameter space) [94], generalizations to spinning black
holes may offer better prospects for observing hair in these
models.

C. Generalized Proca

The generalized Proca theory [95–99] is given by

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p 	
F þ

X6
i¼2

Li½Aα; gμν�


; ð52Þ

where Li are gravitational vector-tensor Lagrangians
given by

L2 ¼ G2ðX;F; YÞ;
L3 ¼ G3ðXÞ∇μAμ;

L4 ¼ G4ðXÞRþG4X½ð∇μAμÞ2 −∇μAν∇νAμ�;
L5 ¼ G5ðXÞGμν∇μAμ

−
1

6
G5X½ð∇μAμÞ3 − 3ð∇αAαÞð∇μAν∇νAμÞ

þ 2∇μAα∇νAμ∇αAν� − g5ðXÞF̃αμF̃βμ∇αAβ;

L6 ¼ G6ðXÞLμναβ∇μAα∇αAβ þ
1

2
G6XF̃αβF̃μν∇αAμ∇βAν;

ð53Þ

which are written in terms of six free functions G2, G3, G4,
G5, g5, and G6. We can define the following tensors:

Fμν ¼ ∇μAν −∇νAμ; ð54Þ

F̃μν ¼ 1

2
εμναβFαβ; ð55Þ

Lμναβ ¼ 1

4
εμνρσεαβγδRρσγδ; ð56Þ

where Rρσγδ is the Riemann tensor and εμναβ is the Levi-
Civita antisymmetric tensor. The five free parametersGi are
free functions of the following scalar quantities of the
previously defined tensors:

X ¼ −
1

2
AμAμ; ð57Þ

F ¼ −
1

4
FμνFμν; ð58Þ

Y ¼ AμAνFμ
αFνα: ð59Þ

The conditions to have cT ¼ 1 areG4;X ¼ G5;X ¼ 0 (with
the term proportional to Gμν∇μAν vanishing due to the
Bianchi identity). In this case, the condition for cosmological
relevance of the vector field Aμ is given by [100]

ΩA ¼ −G2 þG2;XA2
0 þ 3G3;XH0A3

0

6G4H2
0

∼Oð1Þ; ð60Þ

where Aμ ¼ ðA0ðtÞ; 0⃗Þ.
Most of the theories that satisfy cT ¼ 1 are of the form of

GR with a minimally coupled vector field possessing
“exotic” kinetic terms, in which case hairy black holes
are to be expected. It can be easily shown that spherically
symmetric black holes can indeed have hair. For instance,
[28] shows the solution when G3 ≠ 0, G4 ¼ M2

P=2, in
which case
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fðrÞ ¼
�
1−

m
r

�
2

; A0 ¼
ffiffiffi
2

p
MPl

�
1−

m
r

�
; A1 ¼ 0;

ð61Þ

where we have again assumed a metric ansatz given by
Eq. (14) [withhðrÞ¼fðrÞ], and thatAμ¼ðA0ðrÞ;A1ðrÞ;0;0Þ.
This resembles an extremal Reissner-Nordstrom black hole
with a “charge” that depends on mass. This is an example of
secondary hair, where the spacetimemetric is different to that
of GR, but both theories depend on the same number of
independent free parameters.
In contrast, since the Lagrangian L6 couples the

vector field nonminimally to curvature through Lμναβ this
Lagrangian corresponds to an intrinsic vector mode, and as
such does not contribute to the background equations of
motion for a homogenous and isotropic cosmological
background [where Aμ ¼ ðA0ðtÞ; 0⃗Þ] [101]. In this case,
with nonminimal coupling to curvature, one solution is that
of a stealth Schwarzschild black hole with a nontrivial
profile for the background vector field [28]:

fðrÞ ¼ 1−
2m
r
; A0 ¼ const; A1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2
0 − 2X0fðrÞ

p
fðrÞ ;

ð62Þ

where X ¼ X0 ¼ const. As shown in [23], the QNMs of
this stealth Schwarzschild black hole will be unaffected
from the usual GR spectrum due to Fμν ¼ 0 for the above
vector profile.

D. Scalar-vector-tensor

We now consider theories in which there are two
additional fields to the metric: a scalar and a vector. A
specific model was analyzed in [102], where a shift-
symmetric scalar field ϕ and a Uð1Þ gauge invariant vector
field Aμ are coupled [103]. Specifically, the action of
interest is given by

S¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
M2

P

2
RþXþFþβ3F̃

μ
ρF̃νρϕμϕν

þβ4Xn−1
�
XLμναβFμνFαβþ

n
2
F̃μνF̃αβϕμαϕνβ

��
; ð63Þ

where β3 and β4 are arbitrary constants, X ¼ −ϕμϕ
μ=2 is

the scalar kinetic term as in scalar-tensor theories, and with
all other terms being defined as in Sec. IV C.
Given that the vector field strength Fμν vanishes on iso-

tropic cosmological backgrounds [withAμ ¼ ðA0ðtÞ; 0⃗Þ�, the
action given by Eq. (63) reduces to that of GR with a
minimally coupled, massless scalar field in cosmological
settings. The speed of gravitational waves cT will, therefore,
be equal to unity in these theories, thus satisfying the
constraint determined by GRB 170817A and GW170817.

Black hole solutions in this model were studied in [102],
where asymptotically flat, static and spherically symmetric
black holes with hair are found for β4 ¼ 0 and for β4 ≠ 0 in
the cases of n ¼ 0 or 1. In all of the cases studied, modified
Reissner-Nordstrom-like solutions with global charges m
and Q are found, with the black hole further endowed with
a secondary scalar hair sourced by the vector charge Q.

E. Bigravity

We now consider bimetric theories. The only nonlinear
Lorentz invariant ghost-free model is given by the deRham-
Gabadadze-Tolley (dRGT) [104–106] massive (bi)gravity
action:

S ¼ M2
g

2

Z
d4x

ffiffiffiffiffiffi
−g

p
Rg þ

M2
f

2

Z
d4x

ffiffiffiffiffiffi
−f

p
Rf

−m2M2
g

Z
d4x

ffiffiffiffiffiffi
−g

p X4
n¼0

βnen
� ffiffiffiffiffiffiffiffiffiffi

g−1f
q �

; ð64Þ

where we have two dynamical metrics gμν and fμν with their
associated Ricci scalars Rg andRf, and constant mass scales
Mg and Mf, respectively. Here, βn are free dimensionless
coefficients, whilem is an arbitrary constant mass scale. The
interactions between the two metrics are defined in terms of
the functions enðXÞ, which correspond to the elementary
symmetric polynomials of the matrix X ¼

ffiffiffiffiffiffiffiffiffiffi
g−1f

p
.

This bigravity action generally propagates one massive
and one massless graviton, with the field gμν being a
combination of both modes. There is one special case
where Mf=Mg → ∞, and only the massive graviton prop-
agates (while the metric fμν becomes a frozen reference
metric). As discussed in [9], constraints on the speed of
gravity waves lead to bounds on the graviton mass of the
order m≲ 10−22 eV, which are weak compared Solar
System fifth force constraints of order m≲ 10−30 eV. As
long as m ∼H0 we expect the massive graviton to have
some cosmological relevance.
Regarding black hole solutions, massive gravity (with

one dynamical metric) has some static solutions, although
they have been found to be problematic as they can describe
infinitely strongly coupled regimes or have singular hori-
zons. One well-behaved solution was proposed recently in
[107], for a time-dependent black hole.
On the other hand, massive bigravity has a much more

rich phenomenology with a number of possible stationary
solutions (static, rotating, and with or without charge) (see a
review in [108]). Focusing on asymptotically flat solutions,
it is possible to have Schwarzschild or Kerr solutions for
both metrics [109]. However, these solutions are generi-
cally unstable, although they can still fit data as long as
m≲ 5 × 10−23 eV [110]. Hairy static solutions can also be
found for some parameter space [111]. Using the ansatz in
Eq. (14) for the metric gμν and the following ansatz for fμν:
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ds2f ¼ −PðrÞdt2 þ 1

BðrÞ dr
2 þUðrÞ2dΩ2: ð65Þ

Here, there are five independent functions fh; f; P; B;Ug
to be determined by the equations of motion. However, due
to the presence of a Bianchi constraint, there are only three
independent functions ff; B;Ug satisfying first-order
differential equations. The complete solution must be
found numerically, but an expansion can be made for
r → ∞ [111]:

fðrÞ1=2 ¼ 1 −
c1
2r

þ c2ð1þ rμÞ
2r

e−rμ;

YðrÞ ¼ 1 −
c1
2r

−
c2ð1þ rμÞ

2r
e−rμ;

UðrÞ ¼ rþ c2ð1þ rμþ r2μ2Þ
r2μ2

e−rμ; ð66Þ

where ci are integration constants, μ ¼ m
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þM2

g=M2
f

q
,

and Y is a proxy function for B given by Y ¼ U0=B1=2.
While the constant c1 may be identified with the mass of
the black hole, c2 is a new charge that adds a Yukawa-type
suppression to the metric due to the massive graviton.
Here we have mentioned some possible black hole

solutions for bimetric theories, but we note that since these
solutions are not unique, it is not clear what the physical
spacetime and the outcome of gravitation collapse will be.
Future simulations on nonlinear gravitational collapse
should allow us to find the physical solution.

V. CONCLUSION

Modifications to general relativity may affect the evo-
lution of the Universe and lead to cosmologically observ-
able effects. The range of possible modifications has been
drastically reduced with the discovery of GW170817 and
the resulting constraint on the speed of gravitational waves.
We have looked at the reduced space of theories to see
which of them will lead to distinctive signatures around
black holes, specifically black hole hair. By looking for
observable signatures of that hair and combining them with
constraints from current and future cosmological surveys, it
should be possible to further narrow down the span of
allowed modifications to general relativity and, if the data
points that way, single out new physics.
We have focused on scalar-tensor theories. Of all

theories, these are the most thoroughly understood and,
furthermore, emerge as low energy limits of other, more
intricate theories. Not only is there a reasonably general
classification of scalar-tensor theories, but there is also a
comprehensive body of work on black holes and black hole
hair arising in them. As was shown in [9–12], the discovery
of GW170817 places severe constraints on these models.
We have found that, generally, and in the cases where they

have been studied more carefully, these theories do not
have hair for static, spherically symmetric, and asymptoti-
cally flat black holes. Specific examples that were con-
structed to have hair (as suggested in [27]), in the case
where they contribute cosmologically and satisfy cT ¼ 1, do
not have hair. We found that the case where Einstein-scalar-
Gauss-Bonnet gravity is cosmologically relevant, it is ruled
out by the GW170817 constraint, while Chern-Simons
gravity is left unconstrained (and furthermore, known to
have hair in the slowly rotating regime [112–117]). We also
looked at other theories, primarily involving vectors, and
found that in that case it is possible for them to satisfy the
various cosmological conditions and still have black holes
with hair for spherically symmetric and rotating black holes.
We also discussed bimetric theories, which allow for hairy
and nonhairy asymptotically flat black holes, and under-
standing which solution describes physical setups requires
further work on gravitational collapse.
Our analysis is limited in scope in the sense that we

have not considered the most general actions allowed. For
example we have not considered combinations of the
Beyond Horndeski models studied in [27]. We have done
this for two reasons. The first reason is that these models
were constructed as proofs of concept without any strong
underlying physical motivation—questions of analyticity
arise in the limit where X → 0. The second reason is that
the equations of motion become vastly more complicated
with multiple nonanalytic leading terms which means it is
difficult to obtain solutions which can be easily interpreted
and classified. Lacking more general results (such as the
Galileon no-hair theorem of [54]) it is always plausible that
theories, which satisfy the constraints we impose and lead
to hair, exist.
Nevertheless, our analysis is useful for determining how

to move forward with the theories we looked at. Given
their cosmological relevance, we take for granted that they
will be thoroughly tested when the next generation of
cosmological data is made available. What we can now do
is determine how to combine these cosmological tests with
nondynamical tests in the strong-field regime. In the cases
where the black holes do have hair, one would look for
evidence of a fifth force for example in the accreting
material or nearby objects.
For theories where black holes have no hair the situation

is more complex. In that case, the only observations that
might lead to data which allow us to constrain the extra
fields are dynamical tests which include inspirals of binary
black holes, extreme mass-ratio inspirals (EMRI) or ring-
down of single black holes. In GR, due to the strong
equivalence principle, the orbital motion and the gravita-
tional wave signal of binary inspirals or EMRI only depend
on the masses and spins of the objects involved. On
the contrary, in modified gravity theories this principle
is violated, and the additional d.o.f. will determine the
effective gravitational coupling constant which will depend
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on the new field or its derivatives at the location of the
relevant object (e.g. see [57,118–120] for binary inspirals in
scalar-tensor theories and a general analysis in [121,122],
as well as [123,124] for EMRI in scalar-tensor theories). In
the case of ringdown, one would expect that the violent
event would have excited any putative extra d.o.f. (such
as a scalar or a vector). While the end state might be a
Kerr-Newman solution, the perturbations around this back-
ground (i.e. the quasinormal modes) should contain infor-
mation about the extra d.o.f. [23]. It would be interesting
further work to study the specific quasinormal-mode
signatures of the theories investigated here that do not
exhibit hairy black hole solutions (yet still abide by the cT
constraint).
Finally, given that we have found that most scalar-tensor

theories abide to the no-hair theorem and present trivial
constant profiles around black holes, it would be interesting
to explore black hole solutions in the presence of screening. It
has been argued that models satisfying Solar System con-
straints (i.e. which hide the presence of fifth forces in the
weak-field limit) do so through screening. The main screen-
ing mechanisms which have been advocated are the
Vainshtein [125], chameleon [126] and symmetron [127]
mechanisms, all of which suppress the fifth force compared
to the Newtonian force, depending on the local environment.
The current approach is to assume that the self-gravity of
compact objects is sufficiently substantial that it decouples
the scalar charge from the mass—in the limit of a black hole,
the scalar charge is set to zero [128]. However, little has been
done to construct screened black hole solutions by, for
example, violating the condition of asymptotic flatness.
Such an analysis might give us insight on the presence of
hair in more realistic setups. A particularly interesting

scenario might arise in the case of a binary neutron star
merger, such as GW170817. There, screened compact
objects (neutron stars) end up forming a black hole; if indeed
the black hole has no hair (and no screening) one might
expect that the process of shedding the scalar field could lead
to an observable effect. Alternatively, if the black hole adopts
the screening mechanism, it would be useful to understand
what is the final, stable, solution and how it jibes with the no-
hair theorem.
We have entered a new era in gravitational physics in

which multiple regimes can be tested with high precision.
While multimessenger gravitational wave physics has
grown to prominence, we believe it should now also
include other, significantly different, arenas; from the
cosmological, through the galactic all the way down to
astrophysical and compact objects, a wide range of obser-
vations can be brought together to construct a highly
precise understanding of gravity.
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