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Unimodular gravity is an interesting approach to address the cosmological constant problem, since the
vacuum energy density of quantum fields does not gravitate in this framework, and the cosmological
constant appears as an integration constant. These features arise as a consequence of considering a
constrained volume element 4-form that breaks the diffeomorphisms invariance down to volume preserving
diffeomorphisms. In this work, the first-order formulation of unimodular gravity is presented by
considering the spin density of matter fields as a source of spacetime torsion. Even though the most
general matter Lagrangian allowed by the symmetries is considered, dynamical restrictions arise on their
functional dependence. The field equations are obtained and the conservation laws associated with the
symmetries are derived. It is found that, analogous to torsion-free unimodular gravity, the field equation for
the vierbein is traceless; nevertheless, torsion is algebraically related to the spin density as in standard
Einstein-Cartan theory. The particular example of massless Dirac spinors is studied, and comparisons with
standard Einstein-Cartan theory are shown.
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I. INTRODUCTION

Perhaps the simplest mechanism to account for the
observed accelerated expansion of the Universe [1,2] is
to add a cosmological constant term into the Einstein-
Hilbert action. However, the microscopic nature of the
cosmological constant is not understood in the sense that
the value obtained from the vacuum energy density of
quantum fields is many orders of magnitude larger than that
extracted from observations. Thus, the bare cosmological
constant needs to be fine-tuned by many orders of magni-
tude to fit the experimental data. This is known as the
cosmological constant problem (for a review see Ref. [3]).
Unimodular gravity (UG) is an appealing proposal to

tackle this problem, and it can be traced back as far as
Einstein [4–13]. In this framework, the vacuum energy does
not gravitate, and the cosmological constant merely appears
as an integration constant. The main feature of UG is that it
contains a nondynamical volume 4-form, which reduces
both the number of independent components of the metric
and the gauge symmetries of the theory. Many interesting
properties of UG theories have been studied [14–19],
including some of their quantum aspects [20–32]. In
addition, the unimodular constraint has been implemented
in extensions of general relativity (GR), such as fðRÞ
theories [33], teleparallel fðTÞ theories [34,35], and FðGÞ
theories [36], among others.

On the other hand, gauge theories of gravity, such as
Poincaré gauge theories [37] andChern-Simons gravity [38],
are formulated within a geometrical structure that departs
from (pseudo-)Riemannian geometry. In this geometry—
known as Riemann-Cartan—spacetime curvature and tor-
sion are regarded as independent quantities, and the latter is
not assumed to vanish a priori. The simplest theory within
this framework is theEinstein-Cartan theory, where torsion is
sourced by the nontrivial spin density ofmatter. In the case of
Dirac spinors, when torsion is integrated out, the effective
theory has a four-fermion interaction which might induce
observable effectswhenhigh spin densities are involved [39].
Higher dimensional scenarios might enhance such an inter-
action, allowing one to constrain the parameter space of such
theories [40–42]. Moreover, a Peccei-Quinn mechanism
[43,44] can be implemented in this formalism, to address
the strong CP problem from a gravitational viewpoint
[45–47]. Cosmological models based on Riemann-Cartan
geometries have interesting features, such as avoidance of
singularities, bouncing solutions, and inflationary epoch,
among others [48].
The only extension to UG within Riemann-Cartan

geometry has been presented in vacuum [49]. However,
the inclusion of matter with nontrivial spin density and their
symmetries have not been studied. Developing such an
extension, which is dubbed unimodular Einstein Cartan
(UEC), is the main goal of the present manuscript. The
relevance of this study is threefold: first, many UG studies
assume a conventional conservation law for matter fields,
which is unjustified according to the restricted symmetries
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of UG. Second, the presence of spin and torsion can relax
some geometrical restrictions that arise in standard UG,
allowingone to search formoregeneral solutions. Finally, the
physical effects associated with UG in the presence of spin
may uncover new avenues to look for torsion and vice versa.
The manuscript is organized as follows: Sec. II presents a

review of the Einstein-Cartan theory in the first-order
formalism, which is the language used throughout this work.
In Sec. III, the UEC theory is developed by considering the
most general matter Lagrangian allowed by the symmetries.
Section IV tackles the question of the matter conservation
laws and their relationwith the symmetries of the theory. The
UEC theory coupled with Dirac spinors is studied in Sec. V,
and the conclusions are presented in Sec. VI. Finally, the
main results of the paper are summarized in tensorial notation
in the Appendix. Throughout this work, spacetime is
considered to be a four-dimensional manifoldMwith trivial
topology. Latin and greek characters are used for Lorentz and
spacetime indices, respectively, and the set of p-forms is
denoted by ΩpðMÞ. This is the notation utilized, e.g., in
Refs. [50,51].

II. FIRST-ORDER FORMALISM

The first-order formalism of gravity considers two
independent potentials: the vierbein 1-form ea ¼ eaμdxμ,
which is related to the spacetime metric gμν via gμν ¼
ηabeaμebν, where ηab ¼ diagð−;þ;þ;þÞ, and the Lorentz
connection 1-formωab ¼ ωab

μdxμ, which encodes the affine
structure. The vierbein and Lorentz connection transform as
1-forms under diffeomorphisms (Diff), and as a vector and
connection under local Lorentz transformations (LLT),
respectively. In particular, for an infinitesimal Diff
generated by the vector field ξ, and an infinitesimal LLT
associated with λab, the transformation laws are1

Diff ¼
�
δξea ¼ Lξea ¼ iξdea þ diξea;

δξω
ab ¼ Lξω

ab ¼ iξdωab þ diξωab;
ð1Þ

LLT ¼
�
δλea ¼ λabeb;

δλω
ab ¼ −Dλab;

ð2Þ

where d is the exterior derivative, D is the exterior covariant
derivative with respect to the Lorentz connection, and
iξ∶ΩpðMÞ → Ωp−1ðMÞ is the inner contraction such that,
for α ∈ ΩpðMÞ,

iξα ¼ 1

ðp − 1Þ! ξ
μαμν2…νpdx

ν2 ∧ … ∧ dxνp : ð3Þ

In this formalism, the curvature and torsion 2-forms are
respectively defined by Cartan’s structure equations,

Rab ¼ dωab þ ωa
c ∧ ωcb ¼ 1

2
Rab

cdec ∧ ed; ð4Þ

Ta ¼ dea þ ωa
b ∧ eb ≡ Dea ¼ 1

2
Ta

bceb ∧ ec: ð5Þ

The Bianchi identities take the form DRab ¼ 0 and
DTa ¼ Ra

b ∧ eb, and, by virtue of such identities, the
soð3; 1Þ-valued 3-forms

Ea ≡ ϵabcdRbc ∧ ed; ð6Þ
Eab ≡ ϵabcdTc ∧ ed ð7Þ

satisfy

DEa ¼ iaRbc ∧ Ebc þ iaTb ∧ Eb; ð8Þ
DEab ¼ E½a ∧ eb�; ð9Þ

where ϵabcd is a completely antisymmetric invariant tensor
such that ϵ0123 ¼ 1, and ia ≡ iEa

where Ea ¼ Eμ
a∂μ is the

dual vierbein basis.
The Einstein-Cartan theory with cosmological constant

belongs to the so-called Lovelock-Cartan family [53],
which describes the most general action in four dimensions
such that (i) is a polynomial on the vierbein and (derivatives
of) the Lorentz connection, (ii) is invariant under Diff
and LLT, and (iii) is constructed without the Hodge
dual2 ⋆∶ΩpðMÞ → Ωð4−pÞðMÞ, defined as acting on
α ∈ ΩpðMÞ as

⋆α ¼ 1

p!ð4 − pÞ! αa1…apϵ
a1…ap

apþ1…a4e
apþ1 ∧ … ∧ ea4 :

ð10Þ
The action principle for such a theory is

S ¼ 1

4κ

Z
ϵabcd

�
Rab −

Λ
6
ea ∧ eb

�
∧ ec ∧ ed þ

Z
Lm;

ð11Þ
where Lm ¼ Lm½ea;ωab;ϕ� ∈ Ω4ðMÞ is the matter
Lagrangian, and ϕ collectively denotes the matter fields.3

The equations of motion are obtained by performing
stationary variations of Eq. (11) with respect to ea, ωab, and
ϕ, giving respectively

Ea − 2Λ⋆ea ¼ 2κτa; ð12aÞ

1The LLT invariance can be enhanced to local Poincaré
invariance by considering a nontrivial transformation of the
Lorentz connection under local translations [52].

2This restriction ensures that the field equations remain of
first order, since for an arbitrary α ∈ ΩpðMÞ, d2α ¼ 0, but
d⋆dα ≠ 0. The absence of this restriction was studied in Ref. [54].

3Additional terms can be included in the action principle such
as Rab ∧ ea ∧ eb and Ta ∧ Ta. In general, these parity-odd terms
contribute to the field equations and might induce interesting
effects [55–57]. When combined as Ta ∧ Ta − Rab ∧ ea ∧ eb ¼
dðea ∧ TaÞ they give rise to the Nieh-Yan topological density
[58], which measures the difference between two Pontryagin
classes [59].
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Eab ¼ κσab; ð12bÞ
δLm

δϕ
¼ 0; ð12cÞ

where τa ≡ δLm=δea and σab ≡ 2δLm=δωab are the
soð3; 1Þ-valued energy-momentum and spin density 3-
forms, respectively. Invariance of the matter action under
Diff and LLT implies the on-shell conservation laws

Dτa ¼ iaTb ∧ τb þ
1

2
iaRbc ∧ σbc; ð13Þ

Dσab ¼ 2τ½a ∧ eb�: ð14Þ

In components, Eq. (14) relates the spin density with the
antisymmetric part of the energy-momentum tensor [see
Eq. (A8) in the appendix]. Notice that within the first-order
formalism, the energy-momentum tensor is defined as the
functional derivative of the matter action with respect to the
vierbein, which, in principle, has no index symmetries. In
the absence of spin density, torsion vanishes, the energy-
momentum tensor is symmetric, and the Einstein field
equations are recovered. In general, however, the spin
density acts as a source of torsion, and the Einstein field
equations are no longer equivalent to those derived from
Einstein-Cartan theory. In the next section this theory is
generalized to include the unimodular constraint.

III. UNIMODULAR EINSTEIN-CARTAN
THEORY WITH SPIN DENSITY

The main feature of unimodular theories is that the
metric determinant g satisfies

ffiffiffiffiffiffi−gp ¼ ε0, where ε0 is a
nondynamical scalar density of weight 1. Even though the
original proposal was to consider this scalar density to be a
constant, in this section the general case is analyzed by
considering matter fields with nontrivial spin density. The
unimodular constraint can be implemented through the
metric redefinition [6–10]

gμν ¼
ffiffiffi
χ

p
g̃μν; ð15Þ

where χ ¼ ε0=
ffiffiffiffiffiffi
−g̃

p
. Notice that g̃μν is unconstrained, and

the scalar field χ measures the ratio between the non-
dynamical volume element and the one associated with g̃μν.
Analogously, in the first-order formalism, this field redefi-
nition is applied at the vierbein level through

ea ¼ χ1=4ẽa; ð16Þ

where det eaμ ≡ e ¼ ε0, ẽa stands for the unconstrained
vierbein, ẽ≡ det ẽaμ, and χ ¼ ε0=ẽ.
The main advantage of introducing χ is that it allows one

to write the UEC action with the most general matter

Lagrangian L̃m compatible with the symmetries of the
theory (see Sec. IV). This is achieved by considering L̃m to
have a general dependence on χ. Thus, the action is

S ¼ 1

2κ

Z �
1

2

ffiffiffi
χ

p
ϵabcdRab ∧ ẽc ∧ ẽd − 2λðχϵ̃ − ϵÞ

�

þ
Z

L̃m½ẽa; χ;ωab;ϕ�; ð17Þ

where λ is a Lagrange multiplier that imposes the constraint
(16) on shell. Notice that the condition (16) is implemented
as a relation between the volume 4-forms associated with
ea and ẽa, which have the form

ϵ̃ ¼ 1

4!
ϵabcdẽa ∧ ẽb ∧ ẽc ∧ ẽd; ð18Þ

ϵ ¼ 1

4!
ϵabcdea ∧ eb ∧ ec ∧ ed

¼ 1

4!
ε0ðxÞϵμνλρdxμ ∧ dxν ∧ dxλ ∧ dxρ: ð19Þ

The dependence of the Einstein-Hilbert term (i.e., the first
term in the action) on χ is chosen for later convenience. In
principle, however, one could consider a first-order action
such that an arbitrary dependence on χ is allowed within a
generic gravitational action, as expected from well-known
results in scalar-tensor theories [60]. In general, this class of
theories can introduce interesting effects associated with
the torsion [61–64]. Even though this possibility is worth
exploring, we focus on the UEC theory for the sake of
simplicity, and relegate the general dependence on χ to the
matter action only.
The field equations are obtained by performing sta-

tionary variations of Eq. (17) with respect to ẽa, ωab, χ, and
λ, leading respectively to

ffiffiffi
χ

p
Ẽa − 2λχ⋆̃ẽa ¼ 2κτ̃a; ð20aÞ

ffiffiffi
χ

p
Ẽab þ d

ffiffiffi
χ

p ∧ ⋆̃ðẽa ∧ ẽbÞ ¼ κσ̃ab; ð20bÞ

1ffiffiffi
χ

p Ẽa ∧ ẽa þ 8λϵ̃ ¼ 8κ
δL̃m

δχ
; ð20cÞ

χϵ ¼ ϵ̃; ð20dÞ

where τ̃a ≡ δL̃m=δẽa and σ̃ab ≡ 2δL̃m=δωab are the
soð3; 1Þ-valued energy-momentum and spin density
3-forms, respectively. The tilde denotes quantities
associated with ẽa, for instance, Ẽa ¼ ϵabcdRbc ∧ ẽd,
Ẽab ¼ ϵabcdT̃c ∧ ẽd, T̃a ¼ dẽa þ ωa

b ∧ ẽb, and ⋆̃ẽa ¼
ϵabcdẽb ∧ ẽc ∧ ẽd=3!, with ⋆̃ being the Hodge dual asso-
ciated with ẽa. Additionally, the matter field equations
are assumed to hold.
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As it can be noticed by inspection, not all Eq. (20) are
independent. For instance, λ can be obtained by two
methods, first, contracting Eq. (20a) with ẽa and then
taking the Hodge dual, which gives

ffiffiffi
χ

p
Ẽ − 8λχ ¼ 2κτ̃; ð21Þ

where Ẽ ¼ ⋆̃ðẼa ∧ ẽaÞ and τ̃ ¼ ⋆̃ðτ̃a ∧ ẽaÞ, when trans-
lated into tensor notation, are the traces of the (torsionful)
Einstein and energy-momentum tensors, respectively. The
second method is to take the Hodge dual on Eq. (20c),
giving

ffiffiffi
χ

p
Ẽ − 8λχ ¼ 8κχ⋆̃ δL̃m

δχ
: ð22Þ

The comparison of Eqs. (21) and (22) yields

1

4

δL̃m

δẽa
∧ ẽa ¼ χ

δL̃m

δχ
; ð23Þ

which, in turn, implies

L̃m½ẽa; χ;ωab;ϕ� ¼ L̃m½χ1=4ẽa;ωab;ϕ�: ð24Þ
Therefore, the matter Lagrangian cannot have an arbitrary
dependence on χ when the field equations are satisfied. In
fact, from this point on, it is assumed that Eq. (24) holds,
which accounts for Eq. (20c). This is one of the main results
of this paper and it is valid for any T̃a, including the trivial
case T̃a ¼ 0.
Inserting λ in Eq. (20a) leads to

ffiffiffi
χ

p �
Ẽa −

1

4
Ẽ ⋆̃ ẽa

�
¼ 2κ

�
τ̃a −

1

4
τ̃ ⋆̃ ẽa

�
: ð25Þ

In terms of the constrained vierbein, which has no tilde, the
UEC field equations are

Ea −
1

4
E⋆ea ¼ 2κ

�
τa −

1

4
τ⋆ea

�
; ð26aÞ

Eab ¼ κσab; ð26bÞ
e ¼ ε0; ð26cÞ

where τa ≡ δLm=δea and σab ≡ 2δLm=δωab are defined in
terms of Lm ¼ L̃m½ea;ωab;ϕ�. The torsion 2-form in Eab is
such that Ta ¼ Dea, and it is related to T̃a through

Ta ¼ χ1=4ðT̃a þ d ln χ1=4 ∧ ẽaÞ: ð27Þ
It has been assumed that the Lorentz connection remains
unaffected by the vierbein redefinition. The UEC theory is
similar to Einstein Cartan in that the torsion does not
propagate but it is algebraically related to the spin density.
However, the vierbein equation is traceless and this field is
constrained by Eq. (26c), which is reminiscent of the
conventional UG.

As it can be seen from Eq. (26b), torsion vanishes in the
absence of spin density. This is not obvious since Eq. (20)
could suggest that χ acts as a torsion source. Therefore, in
vacuum, UEC reduces to the standard vacuum UG, which
is known to be equivalent to GR with a cosmological
constant arising as an integration constant. This concludes
the analysis of the UEC dynamics and the next section is
devoted to studying the matter conservation law.

IV. CONSERVATION LAWS

Several papers in UG assume that the energy-momentum
tensor is divergence free (see, e.g., Refs. [8,10,24]).
However, this is not a direct consequence of the unimodular
constraint. Imposing this conservation law leads to
additional restrictions that are typically disregarded. The
conservation law of matter fields can be obtained by
considering two approaches. The first method is to apply
a covariant derivative to Eq. (26a) and use the Bianchi
identities, leading to

Dτa − iaTb ∧ τb −
1

2
iaRbc ∧ σbc ¼ d

�
−

E
8κ

þ τ

4

�
⋆ea;

ð28Þ
which implies the conservation law

d⋆ia
�
Dτa − iaTb ∧ τb −

1

2
iaRbc ∧ σbc

�
¼ 0: ð29Þ

Notice that, since this method uses the field equations, this
relation must be regarded as an on-shell conservation law.
The second approach is based on the symmetries of the

theory. The main advantage of this approach is that it can be
used to obtain the off-shell conservation laws, which are
relevant when unconventional quantum effects are consid-
ered (see for instance Ref. [31]). It is clear that to apply this
method is necessary to determine the symmetries of the
theory. The unimodular constraint implies that only those
Diff that leave the volume 4-form ϵ invariant are sym-
metries of the theory.4 Under a general Diff generated by a
vector field ξ, such a volume 4-form transforms as

δξϵ ¼ Lξϵ ¼ diξϵ ¼ d⋆ξ: ð30Þ
Therefore, the subgroups of Diff for which Eq. (30)
vanishes are the symmetries of this theory. This class of
Diff is known as volume preserving Diff (VPD).5 In fact, to
study the transformation law of the matter action under
VPD, it is necessary to find a generic solution of d⋆ξ ¼ 0.

4Interestingly, breaking Diff invariance implies Lorentz vio-
lation and vice versa [65,66]. Thus, it may be possible to use
experiments looking for Lorentz violation [67] to put bounds on
the unimodular constraint.

5Volume preserving Diff and transverse Diff are usually
unequivalent, as discussed in Ref. [68].
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However, it is trivial to show that ξ ¼ ⋆dα, where α is an
arbitrary 2-form, fulfils the required condition. The matter
action transformation under VPD is obtained using Eq. (1),
provided that ξ ¼ ⋆dα. The result (modulo boundary
terms) is

δξSm ¼
Z

αd⋆ia
�
Dτa − iaTb ∧ τb

−
1

2
iaRbc ∧ σbc þ

δLm

δϕ
iadϕ

�
: ð31Þ

Given that α is arbitrary, on shell, Eq. (29) is recovered.
Observe that, by virtue of the Poincaré lemma, there

exists a Θ ∈ Ω0ðMÞ such that

⋆ia
�
Dτa− iaTb ∧ τb−

1

2
iaRbc ∧ σbcþ

δLm

δϕ
iadϕ

�
¼ dΘ:

ð32Þ

A comparison with Eq. (28) reveals

−
E
8κ

þ τ

4
¼ Λþ Θ; ð33Þ

where Λ is an integration constant. Therefore, the field
equation for the vierbein in standard Einstein-Cartan theory
is obtained, where the cosmological constant appears as an
integration constant, i.e.,

Ea − 2Λ⋆ea ¼ 2κτ̄a; ð34Þ

where, as shown in Ref. [32] for the torsion-free case,
τ̄a ≡ τa þ Θ⋆ea is an “improved” energy-momentum
3-form, which is conserved according to Eq. (13). As
noticed in Ref. [21], this equation is invariant under the
simultaneous shift τa → τa þ C⋆ea and Θ → Θ − C,
where C is a constant. This can be concluded from
Eq. (26a) as well, using the fact that the traceless part of
the energy-momentum 3-form is invariant under such a
shift. This result offers an interesting perspective to address
the cosmological constant problem.
Notice that, in vacuum, Eq. (28) implies that dE ¼ 0,

which is a strong constraint on the spacetime curvature.
However, since torsion and spin density are nontrivial,
they allow one to relax such a constraint. Additionally, in
UG and UEC, the energy-momentum tensor is generically
not divergence free. This implies that, when considering
homogeneous and isotropic solutions, the well-known
dependences of the matter energy density on the scale
factor cannot be used, since such dependences are
obtained from the divergence-free condition of the
energy-momentum tensor.6 Given that the conservation

law is nontrivial, it would be interesting to extend the
method of Ref. [69] to find the equations governing the
evolution of free test pointlike particles in UEC. This,
however, is left for a future contribution.
Finally, when the field equations hold, invariance

under LLT implies a conservation law that coincides with
Eq. (14). This finishes the discussion of the matter con-
servation laws and in the next section a concrete example
where matter is described by Dirac spinors is studied.

V. DIRAC SPINORS IN UNIMODULAR
EINSTEIN CARTAN

Due to their nontrivial spin density, Dirac spinors have
been regarded as one of the best probes of spacetime torsion
in standard Einstein-Cartan theory. Here, only massless
Dirac fields are considered since, even though their mass
contributes to the energy-momentum 3-form, it does not
affect the spin density and torsion. The Dirac action for
massless spinors is given by

Sψ ¼ 1

2

Z
ðψ̄⋆γ ∧ Dψ þ Dψ̄ ∧ ⋆γψÞ; ð35Þ

with ψ̄ ¼ iψ†γ0, γ ¼ γaea being the 1-form gamma matrix
such that fγa; γbg ¼ 2ηab, and Dψ ¼ dψ þ ωabγabψ=4,
where γa1…ap ≡ γ½a1…γap�. The Dirac equation derived
from this action is

⋆γ ∧
�
Dψ −

1

2
iaTaψ

�
¼ 0; ð36Þ

and the energy-momentum and spin density 3-forms are
respectively given by

τðψÞa ¼ 1

2
ðDψ̄ ∧ ⋆ðγ ∧ eaÞψ − ψ̄⋆ðγ ∧ eaÞ ∧ DψÞ;

σðψÞab ¼ 1

2
J5 ∧ ea ∧ eb; ð37Þ

where the 1-form fermionic axial current is defined by
J5 ≡ iψ̄γ5γaψea, and γ5 ≡ iγ0γ1γ2γ3.
Torsion can be solved from the Lorentz connection field

equation (26b), giving

Ta ¼ κ

2
⋆ðJ5 ∧ eaÞ: ð38Þ

Then, the effective equations where torsion is replaced
by the right-hand side of Eq. (38) can be found by
separating the Lorentz connection into a Levi-Civita con-

nection ω
∘ ab plus the contorsion Kab, where ω

∘ ab satisfies

dea þ ω
∘ a

b ∧ eb ¼ 0, andKab is defined byTa ¼ Ka
b ∧ eb.

The effective equations are6We thank M. Salgado for this remark.
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E
∘
a −

1

4
E
∘⋆ea ¼ 2κ

�
τðeffÞa −

1

4
τðeffÞ⋆ea

�
; ð39aÞ

⋆γ ∧ D
∘
ψ ¼ 3κ

8
ϵðiaJ5Þiγ5γaψ ; ð39bÞ

e ¼ ε0; ð39cÞ

where the ring denotes torsion-free quantities, and

τðeffÞa ¼ 1

2
ðD∘ ψ̄ ∧ ⋆ðγ ∧ eaÞψ − ψ̄⋆ðγ ∧ eaÞ ∧ D

∘
ψÞ

−
3κ

16
J5 ∧ ⋆ðJ5 ∧ eaÞ: ð40Þ

Furthermore, the effective conservation law can bewritten as

⋆iaD∘ τðeffÞa ¼ dΘ; ð41Þ

where Θ can be obtained from the field equations as done
in Sec. IV.
In contrast to the standard Einstein-Cartan theory, in

UEC only the traceless part of the four-fermion interaction
gravitates. Moreover, given a particular ε0, it would be
possible to implement Eq. (39c) by, for example, solving
for one of the vierbein components. Then, there would be
additional modifications to the remaining field equations.
This suggests that it may be possible to use experiments
that look for torsion [70] to investigate if the spacetime
geometry is subject to the unimodular constraint.

VI. CONCLUSIONS

In this work, the unimodular extension of Einstein-
Cartan theory coupled with matter fields with nontrivial
spin density is presented in the first-order formalism. This
study shows that torsion can open new avenues to test the
unimodular constraint and vice versa. The results can be
divided into two parts: the dynamical analysis, and the
conservation laws associated with the restricted symmetries
of the theory.
Regarding the dynamical study, the most general

dependence on the nondynamical volume 4-form within
the matter Lagrangian is considered; however, a constraint
fixes its functional dependence on shell. The field equation
for the vierbein turns out to be the traceless part of the
standard Einstein-Cartan field equation for the vierbein,
and what gravitates is the traceless energy-momentum
3-form. The latter is insensitive to the quantum fields’
vacuum energy density, offering an interesting perspective
to the cosmological constant problem in the presence of
spin and torsion. On the other hand, seemingly to Einstein
Cartan, torsion does not propagate since it is algebraically
related to the spin density. Therefore, in the absence of spin
density, this theory reduces to standard UG, which is
equivalent to GR with the cosmological constant arising

as an integration constant. In addition, since the unimodular
constraint is implemented through a Lagrange multiplier, it
shows up at the level of the field equations. However,
according to the UG spirit, the nondynamical volume
4-form should be given a priori.
The conservation law associated with the matter energy-

momentum 3-form can be found from the field equations,
or by using the symmetries of the theory, i.e., VPD. The
latter method can be used in future studies where unconven-
tional quantum effects are considered, and the (classical)
field equations are not assumed to be valid at all times.
Using the conservation law derived from the symmetries of
the matter action, it is shown that this theory can be thought
of as the standard Einstein-Cartan theory, provided that the
cosmological constant arises as an integration constant. The
same statement holds in unimodular GR, and it is gener-
alized to include spin density and torsion.
As a concrete example, the case where matter fields are

described by massless Dirac spinors is worked out. This
case highlights the modifications that arise with respect to
standard Einstein-Cartan theory, and which may generate a
synergy between the unimodular constraint and torsion.
Finally, combining these two extensions of general rela-
tivity may open new avenues to test the current gravity
paradigm, which is certainly of great interest.
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APPENDIX: SUMMARY IN TENSOR NOTATION

Here, the most important results of this work are
presented in tensorial notation. First, the relation between
formalisms can be obtained from the vierbein postulate

∂μeaν þ ωa
bμebν ≡ Dμeaν ¼ Γλ

μνeaλ; ðA1Þ

which, when antisymmetrizing, provides the torsion com-
ponents Tλ

μν ¼ Γλ
μν − Γλ

νμ. The torsionful covariant
derivative associated with Γ is denoted by ∇ and it acts
on spacetime indices.
The Lorentz curvature given in Eq. (4), in components,

reads as

Ra
bμν ¼ ∂μω

a
bν þ ωa

cμω
c
bν − ðμ ↔ νÞ; ðA2Þ

and it is related with the torsionful Riemann tensor through
Rλ

ρμν ¼ Eλ
aebρRa

bμν. The torsionful Ricci tensor Rμν and
curvature scalar R can be constructed in the usual way from
Rλ

ρμν. The Bianchi identities take the form
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∇½μRρσ
νλ� ¼ Tγ ½μνRρσ

λ�γ; ðA3Þ

Rρ½μνλ� ¼ ∇½μTρ
νλ� − Tγ ½μνTρ

λ�γ; ðA4Þ

which can be used to obtain

∇μ

�
Rμν −

1

2
gμνR

�
¼ Tλ

νρRρ
λ −

1

2
Tλ

ρσRρσ
νλ;

−2R½μν� ¼ ð∇λ þ TλÞðTλ
μν þ 2δλ½μTν�Þ;

where Tμ ≡ Tλ
μλ is the torsion trace.

The field Eq. (26) become

Rμν −
1

4
gμνR ¼ κ

�
τμν −

1

4
gμντ

�
; ðA5aÞ

Tλ
μν þ 2δλ½μTν� ¼ κσλμν; ðA5bÞ

ffiffiffiffiffiffi
−g

p ¼ e ¼ ε0; ðA5cÞ

where τλρ and σμλρ can be read from

τμa ≡ 1

e
δðeLmÞ
δeaμ

; ðA6Þ

σμab ¼
2

e
δðeLmÞ
δωab

μ
; ðA7Þ

and vierbein and its inverse have been used to map Lorentz
indices into spacetime ones, and the spacetime metric gμν to
lower indices.
Finally, the conservation law associated with the invari-

ance of the matter action under LLT is

ð∇μ þ TμÞσμλρ ¼ 2τ½λρ�: ðA8Þ

The VPD are associated with vector fields that leave
ffiffiffiffiffiffi−gp

invariant. Since δξ
ffiffiffiffiffiffi−gp ¼ ffiffiffiffiffiffi−gp ∇∘ μξ

μ, it implies ∇∘ μξ
μ ¼ 0.

The solution to this equation can be written in terms of a

2-form α as ξμ ¼ −ϵμνλρ∇∘ ναλρ=2. Following the method
outlined in Sec. IV, the conservation law associate with
VPD takes the form

ð∇μ þ TμÞτμρ − Tλ
ρμτ

μ
λ −

1

2
Rλν

ρμσ
μ
λν ¼ ∇ρΘ; ðA9Þ

where the field Eq. (A5) and the Bianchi identities can be
used to obtain

−Θ ¼ Λþ 1

4κ
ðRþ κeaμτμaÞ: ðA10Þ

This summarizes the main results of the paper in tensor
notation.
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