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In this paper, we study the evolution of dark matter perturbations in the linear regime by considering the
possibility of dark energy perturbations. To do this, two popular parametrizations, Chevallier-Polarski-Linder
(CPL) and Barboza-Alcaniz (BA), with the same number of free parameters and different redshift
dependency have been considered. We integrate the full relativistic equations to obtain the growth of
matter fluctuations for both clustering and smooth versions of CPL and BA dark energy. The growth rate is
larger (smaller) than the ΛCDM in the smooth cases when w < −1 (w > −1), but the dark energy clustering
gives a larger (smaller) growth index when w > −1 (w < −1). We measure the relative difference of the
growth rate with respect to concordance ΛCDM and study how it changes depending on the free parameters.
Furthermore, it is found that the difference of growth rates between smooth CPL and BA is negligible, less
than 0.5%, while for the clustering case, the difference is considerable and might be as large as 2%.
Eventually, using the latest geometrical and growth rate observational data, we perform an overall likelihood
analysis and show that both smooth and clustering cases of CPL and BA parametrizations are consistent with
observations. In particular, we find the dark energy figure of merit is approximately 70 for the BA and
approximately 30 for the CPL, which indicates the BA model constrains relatively better than the CPL one.
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I. INTRODUCTION

Dark energy (DE) is one of the fabulous concepts in
modern cosmology introduced to explain the current
acceleration expansion of Universe. Several distinct and
independent observations including type-I supernovae
[1–4], the cosmic microwave background (CMB) [5–9],
baryon acoustic oscillation (BAO) [10–12], and large scale
structures (LSS) [13–15] indicate that the current expansion
of the Universe is accelerated. We know that, in the
framework of General Relativity (GR), the gravitational
force of ordinary matter pushes everything together. So, the
current accelerating expansion of Universe requires an
unusual component with negative pressure to overcome
the gravity. On the other hand, one can assume the
modification of gravity on large scales beyond GR to
interpret the cosmic acceleration. The earliest and simplest
candidate for DE is the cosmological constant (Λ), which
has a negative pressure exactly equal to its energy density
(wΛ ¼ pΛ

ρΛ
¼ −1) [16–18]. Such a component has no evo-

lution during the cosmic history (ρΛ ¼ cte) and miracu-
lously dominates at recent time (coincidence problem). The
cosmological constant acts like a vacuum energy, and by
considering the cold dark matter as another component, one
can make a cosmological model the so-called ΛCDM,
which is highly consistent with current observations.
However, the ΛCDM model suffers from severe theoretical
fine-tuning and cosmic coincidence problems (see, for
example, Refs. [18–23]).

As we mentioned above, modification of gravity is one
solution to explain the current observations. In this
approach, the laws of gravity change so that the accelerating
expansion of Universe is realized without any DE fluid. In
this way, the simplest possibility is the modification of
Einstein-Hilbert action, which is proportional to the scalar
curvature (R), and considering a generic function fðRÞ
instead [24–28]. The original form of such models suffers a
strong instability [29], so people introducemore generalized
models to avoid the problem. In addition to fðRÞ gravity,
there are other alternatives including scalar-tensor theories,
Gauss-Bonnet gravity, and braneworld models, which can
explain the current observations [30]. Generally, the modi-
fication of Einstein gravity leads to additional degrees of
freedom, and if these come from higher derivatives, the
theory suffers from Ostrogradsky ghost instability [31].
On the other hand, in the framework of GR, we need a

fluid with negative pressure to explain current observations.
To alleviate the theoretical problems appearing in ΛCDM
theory, we can consider a cosmic fluid with w ≠ −1. Based
on the continuity equation for such a DE fluid, the energy
density has an evolution during cosmic history and might
alleviate the concordance problem. In addition, the DE
fluid can be described by a scalar field in two different
approaches: 1) a scalar field with a canonical Lagrangian,
so-called quintessence models [32,33], and 2) a scalar field
with a noncanonical Lagrangian, the so-called k-essence
models, in which the negative pressure comes from the
kinetic term [32,34–37].
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DE not only accelerates the cosmic expansion but also
affects the evolution of cosmic structures. It is well known
that the galaxies and clusters of galaxy thatwe observe toady
are developed from the initial fluctuations at the inflation era
[38,39]. During the cosmic history, gravity can amplify the
amplitude of these fluctuations, in particular at the matter-
dominated epoch. Notice that at the DE-dominated phase
DE suppresses the fluctuations and slows down the growth
rate of structures. Two main properties of DE, which are
needed to study the scenario of cosmological perturbations,
are the equation-of-state (EoS) parameter wde and the
effective sound speed c2e ¼ δp

δρ. Notice that at the background
level the EoS parameter can solely describe the evolution of
DE. However, at the perturbation level where we study the
growth of fluctuations, the properties of DE are determined
by both the EoS and effective sound speed parameters.
Two extreme cases have been extensively studied in the

literature (see the following text for relevant references):
(i) Models with negligible effective sound speed,

c2e ≈ 0. In this case, DE collapses like dark matter
(DM) on sub-Hubble scales but with much smaller
amplitude.

(ii) Models with an effective sound speed roughly equal
to unity c2e ≈ 1 (in units of light speed c ¼ 1). In this
case, DE perturbations cannot grow on sub-Hubble
scales.

More deeply speaking, we know that LSS data provide
valuable information regarding the nature of DE [14,40].
DE changes the rate of growth, and measuring it on large
scale structures through redshift space distortion can be
used to understand the nature of DE. For scalar-based DE
models such as quintessence models, the effective sound
speed c2e ≈ 1, so DE is smooth on Hubble and smaller
scales. On the other hand, in the k-essence models, c2e can
be negligible, and so DE perturbations grow through
cosmic history [32,34,41–43]. The possibility of DE
clustering and its effects on DM perturbations has been
studied in several papers [44–56]. Specifically, the authors
of Ref. [47] showed that CMB and LSS slightly prefer a
dynamical DE with speed of sound differing from unity. On
the other hand, the authors of Ref. [57] investigated the
concentration parameter of massive galaxy clusters and
pointed out that smooth DE is not very consistent with
observations. Furthermore, the effects of negligible DE
sound speed on the growth of DM perturbations in the GR
framework are studied in Ref. [58], and it is revealed that
c2e ≈ 0 is favored by observations.
In this work, we focus on the parametrization method to

investigate the rule of EoS parameter wde of DE on the
scenario of cosmological structure formation. In the liter-
ature, one can find many different EoS parametrizations.
One of the simplest and earliest parametrizations intro-
duced by Chevallier-Polarski-Linder is the so-called CPL
parametrization [59,60]. The CPL parametrization is the

Taylor expansion of wde with respect to the scale factor a up
to first order as wdeðaÞ ¼ w0 þ w1ð1 − aÞ and conse-
quently in terms of redshift as wdeðaÞ ¼ w0 þ w1

z
1þz.

Notice that, although the CPL is a well-behaved para-
metrization at early (z → ∞) and present (z ¼ 0) epochs, it
diverges at future time (z ¼ −1). Beside CPL parametriza-
tion, some purely phenomenological parametrizations have
been proposed (see Ref. [61] for more details). The DE
clustering scenarios mostly have been studied in w ¼
cteðconstantÞ þ cold darkmatter (wCDM) and CPL para-
metrizations in the literature, but it is not clear how DE
clustering affects DM perturbations in different paramet-
rizations, specifically when the evolution of the EoS
parameter is different from the CPL. To address this, we
investigate the phenomenological parametrization wðzÞ ¼
w0 þ w1

zð1þzÞ
1þz2 introduced in Ref. [62] and hereafter called

BA. TheBAmodel provides a different redshift dependency,
and through it, we can study how effects of DE clustering
may change by different parametrizations. There are many
available parametrizations that can be used in the current
study, but we select the BA parametrization for two reasons:
first, it has the same number of free parameters, so it is
possible to study the effect of redshift dependencyof theEoS,
and second, it does not diverge at future times. In this paper,
we examine how the DE clustering affects the growth rate of
DM perturbations in these two parametrizations. Moreover,
we study theBAparametrization as a rivalmodel for theCPL
in the scenario of cosmological structure formation and use
the latest geometrical and growth rate data to examine the
ability of these parametrizations against observations.
The structure of this paper is as follows. In Sec. II, we

present the basic equations governing the evolution of the
DE and DM at background and linear perturbation level. In
Sec. III, the observational data sets are presented, and
details of data processing are discussed. Finally, in Sec. IV,
we conclude and discuss our results.

II. EVOLUTION OF DE AND DM

In this section, we first investigate the evolution of
background cosmology and then study the growth of
perturbations considering the CPL and BA DE models.
To do these within GR, we need the Einstein field equations
along with the continuity equations. We assume no direct
interaction between DM and DE, and therefore each fluid
evolves independently.

A. Background level

In the flat Friedmann-Robertson-Walker (FRW)
Universe, the evolution of the Hubble parameter is given by

H2 ¼ H2
0ðΩdmðzÞ þΩdeðzÞ þΩrdðzÞÞ; ð1Þ

where dm, de, and rd stand for DM, DE, and radiation,
respectively, and ΩxðzÞ presents the density parameter. It is
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convenient to introduce the normalized Hubble parameter

EðzÞ ¼ HðzÞ
H0

, where H0 is the present time Hubble param-
eter. In the case of noninteracting cosmic fluids, the

continuity equation leads to ΩdmðzÞ ¼ Ωð0Þ
dmð1þ zÞ3 for

DM (w ¼ 0), ΩrdðzÞ ¼ Ωð0Þ
rd ð1þ zÞ4 for radiation ðw ¼ 1

3
Þ

and

ΩdeðzÞ ¼ Ωð0Þ
de ð1þ zÞ3 exp

Z
z

0

wðzÞ
1þ z

dz ð2Þ

for a DE fluid with an arbitrary EoS parameter. The
superscript (0) indicates the present time value of quan-

tities. Notice that in a flat UniverseΩð0Þ
rd þΩð0Þ

dm þΩð0Þ
de ¼ 1,

and hereafter, we confine ourself to a flat Universe. Now,
we calculate the energy density of DE for the two CPL and
BA parametrizations considered in this work. The EoS
parameter of CPL in terms of redshift is given by

wCPLðzÞ ¼ w0 þ w1

z
1þ z

; ð3Þ

where w0 and w1 are two free parameters of the model.
Using the continuity equation, the density parameter in this
case is

ΩdeðzÞ ¼ Ωð0Þ
de ð1þ zÞ3ð1þw0þw1Þ exp

−3w1z
1þ z

: ð4Þ

The EoS parameter of BA reads

wBAðzÞ ¼ w0 þ w1

zð1þ zÞ
1þ z2

; ð5Þ

with two free parameters like the CPL model. Here, the
energy density of DE can be easily obtained. In this case,
the density parameter is

ΩdeðzÞ ¼ Ωð0Þ
de ð1þ zÞ3ð1þw0Þð1þ z2Þ32w1 : ð6Þ

At present and early times, these two parametrizations
are the same, but at the far future z → −1, the CPL
diverges, while the BA gives a constant value. These
two models differ from each other due to different redshift
dependencies. We show the difference between the two
parametrizations, wBA − wCPL, in units of w1 in Fig. 1,
which indicates a maximum difference of around 0.55 at
redshift z ∼ 2. Such a difference in the EoS affects not only
the Hubble parameter but also the growth of rate of
perturbations. To realize how various redshift dependencies
affect the Hubble parameter as well as growth of perturba-
tions, we measure the relative difference of these two
quantities in this and subsequent parts. The relative differ-
ence between the Hubble parameter with respect to the
concordance ΛCDM one is computed as

ΔEð%Þ ¼ ECPL;BA − EΛCDM

EΛCDM
× 100; ð7Þ

where EΛ is the Hubble parameter for the ΛCDM. In Fig. 2,
we show the evolution of the relative difference ΔE as a
function of redshift z for different values of free parameters
w0 and w1. Here, for all cases, we fix w0 to −0.9 and allow
that w1 gets −0.2 and þ0.2, only to show how these two
models affect the Hubble parameter.
As expected, at the present time, all cases coincide with

each other because of the normalization of the Hubble
parameter. We observe that the difference between different
parametrizations occurs at low redshifts between z ∼ 1 and
2. This result is so interesting since at low redshifts DE
dominates the total energy of Universe and the dynamics of
the whole Universe is determined by DE. In the case of
w1 ¼ −0.2, we observe that for both CPL and BA the
quantityΔE is roughly 1% at redshift around z ∼ 1.7, while
in the case of w1 ¼ 0.2, this value is approximately 5%-6%

FIG. 1. The relative difference of EoS of our models in units of
w1 with respect to the cosmic redshift.

FIG. 2. The redshift evolution of percentage relative difference
between Hubble parameters of CPL and BA parametrizations
with respect to the standard ΛCDM model.
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at z ∼ 1.6. We also observe that in the case of w1 ¼ 0.2 the
maximum of ΔE for BA parametrization is roughly 2%
larger than the CPL one. Moreover, for w1 ¼ −0.2
(w1 ¼ 0.2), the BA parametrization results are smaller
(larger) ΔE compared to CPL. At high redshifts, we
see that the difference goes to zero for all parameters.
This means that at early times (DM-dominated epoch) the
effect of DE on the dynamics of the Universe is negligible.
The Hubble parameter not only affects the evolution of
cosmic fluid but also has a direct influence on the evolution
of fluctuations. We will see in the next subsection how
the Hubble parameter difference alters the growth of
fluctuations.

B. Perturbation level

In the framework of GR, the evolution of perturbations
can be described using the conformal Newtonian gauge. In
this gauge, the perturbed FRW metric is given by

ds2 ¼ aðtÞ2½ð1þ 2ψÞdη2 − ð1 − 2ϕÞδijdxidxj�; ð8Þ
where ψ and ϕ are the Bardeen potentials and η is the
conformal time. For a fluid without anisotropic stress, the
Einstein equations imply ψ ¼ ϕ, but for modified gravity
models, this is not true generally. In the following, we
assume the DE fluid has no anisotropic stress so these two
potentials are the same. The Einstein equations in the
perturbed FRW metric read

3Hϕ0 þ ð3H2 þ k2Þϕ ¼ −
3H2

2
ðΩmδm þ ΩdδdÞ; ð9Þ

ϕ00 þ 3Hϕ0 þ
�
2a00

a
−H2

�
ϕ ¼ 3H2

2
Ωd

δpd

δρd
δd; ð10Þ

whereH ¼ aH is the conformal Hubble parameter and the
prime denotes a derivative with respect to the conformal
time. Here, δm and δd are the perturbations of DM and DE,
respectively. Notice that in Eqs. (9) and (10) we consider a
general case in which both DM and DE have been
perturbed. For subhorizon scales H2 ≪ k2 and in the
matter-domination epoch ϕ ≈ cte, the first equation turns
to the usual Poisson equation,

k2ϕ ¼ −
3H2

2
ðΩmδm þ ΩdδdÞ: ð11Þ

The continuity equations at the perturbation level for a
general fluid are [63]

δ0i ¼ −ð1þ wiÞðθi − 3ϕ0Þ − 3
a0

a

�
δpi

δρi
− wi

�
δi; ð12Þ

θ0i ¼ −
a0

a
ð1 − 3wiÞθi −

w0
i

1þ wi
θi þ

δpi
δρi

1þ wi
k2δþ k2ϕ;

ð13Þ

where θ is the divergence of velocity. The ratio of pressure
to density perturbation δpi

δρi
needs to be a gauge-invariant

quantity, so it is given by [44]

δp
δρ

¼ c2e þ 3Hð1þ wÞðc2e − c2aÞ
θ

δ

1

k2
; ð14Þ

where c2e and c2a indicate the effective and adiabatic sound
speed squared, respectively. The adiabatic sound speed
squared is given by

c2a ¼ w −
a dw

da

3ð1þ wÞ ; ð15Þ

which is determined by the EoS parameter and so is
negative for most of the DE models. The negative value
of sound speed squared (c2a < 0) leads to unstable expo-
nential growth of perturbations. Fortunately, the pressure
perturbation is given in terms of the effective sound speed
and not the adiabatic one, and the problem can be avoided
when we deal with the effective sound speed. In contrast to
the adiabatic sound speed, the effective sound speed
squared is a positive value in the range of [0, 1] (for more
details about DE sound speed, see the next subsection).
Here, we assume both smooth (ce ∼ 1) and clustered
(ce ∼ 0) DE scenarios and study their effects on the growth
of matter perturbations within the framework of DE para-
metrizations considered in this work.
Taking another derivative of Eq. (12) and using Eqs. (9)

and (13), we can obtain a second-order differential equation
that governs the evolution of perturbations for the fluids
[58]. These differential equations are in the forms

d2δm
da2

þ 1

a

�
2þ H0

H2

�
dδm
da

¼ S; ð16Þ

d2δd
da2

þ 1

a

�
2þ H0

H2
þ 3c2a − 6wd

�
dδd
da

þ Bdδd ¼ ð1þ wdÞS; ð17Þ

where Bd and S are given by

Bd ¼
1

a2

�
3ðc2e − wdÞ

�
1þ H0

H2
− 3wd þ 3c2a − 3c2e

�

þ k2

H2
c2e − 3a

dwd

da

�
;

S ¼ 3H2

2
ðΩmδm þ ΩdδdÞ: ð18Þ

To obtain the DE perturbation equation, we set c2e ¼ 0 and
substitute Eq. (14) into Eqs. (12) and (13), but in the case of
smooth DE, we set δd ¼ 0 in these equations. Notice that
the source term in Eq. (17) is proportional to 1þ wd, so any
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DE perturbation vanishes in the case of standard ΛCDM
cosmology. In Eqs. (16) and (17), we need to know the
derivative of the Hubble parameter that can be easily
obtained from the Friedman equations as follows:

H0

H2
¼ −

1

2
ð1þ 3ΩdwdÞ: ð19Þ

To solve the perturbation equations (16) and (17), we use
the initial conditions [58,64]

δm;i ¼ −2ϕi

�
1þ k2

3Hi
2

�
; ð20Þ

dδm;i
da

¼ −
2

3

k2

Hi
2
ϕi; ð21Þ

δd;i ¼ ð1þ wdÞδm;i; ð22Þ
dδd;i
da

¼ð1þ wdÞ
dδm;i

da
þ dwd

da
δm;i; ð23Þ

where we set ϕi ¼ −6 × 10−7. These initial conditions lead
to a linear perturbation (δm ≈ 0.1) for scale k ¼
0.15h Mpc−1. In this work, we fix the scale to k ¼
0.15h Mpc−1 and integrate the perturbation equations
numerically from a ¼ 0.01 to the present time. We should
note that varying the value of k to other linear scales has a
very tiny effect on the evolution of perturbations, as
discussed in Ref. [58]. Furthermore, notice that the initial
conditions for DE perturbations are given by assuming an
adiabatic condition [37,65].
To compare our results with observation, the relevant

quantity is the product of growth rate f and mass variance
in a sphere of radius 8 Mpc=h (σ8). The growth rate at any
redshift is given by

fðzÞ ¼ −
1þ z
δmðzÞ

dδmðzÞ
dz

: ð24Þ

Also, the mass variance at a given redshift is

σ8ðzÞ ¼ σ8
δmðzÞ

δmðz¼0Þ, where σ8 is the mass variance at the

present time. Generally, the mass variance at the present
time is a free parameter and can be constrained using the
observational data.
To realize how DE perturbations affect the growth of DM

perturbations, we fix Ωm ¼ 0.3, h ¼ 0.7 and compute the
relative difference of fσ8ðzÞ for CPL and BA parametriza-
tions with that of in the ΛCDM according the following
relation:

Δfσ8 ¼
fσ8;model − fσ8;Λ

fσ8;Λ
× 100: ð25Þ

Since our parametrizations have two free parameters, we
fix one parameter and present Δfσ8 as a function of the
other parameter. In Fig. 3, we set w1 ¼ 0.2 and show the
evolution of Δfσ8 calculated at the present time as a
function of w0 for both smooth and clustering DE scenar-
ios. The results for smooth CPL and BA are very close to

each other, and the differences are less than 0.5%. However,
for clustered CPL and BA cases, the difference is relatively
large, and we measure it as 0.5% − 2.5% for w0 in the
range ð−1.3;−0.7Þ.
Moreover, the smooth and clustered DE behave differ-

ently on both sides of wd ¼ −1. We observe that Δfσ8 is
positive for clustering cases when wd > −1 and may reach
to 8% for w0 ¼ −0.7. On the other hand, the relative growth
rate is negative for smooth DE parametrizations when
wd > −1, but the differences with respect to the ΛCDM
model are around 2% for w0 ¼ −0.7. In addition, one can
measure the small difference between smooth and cluster-
ing cases when the EoS parameter crosses the phantom line
ðwd < −1Þ. The different behaviors of clustered DE models
on both sides of phantom line ðwd ¼ −1Þ can be described
as follows. When the EoS of DE crosses the phantom line,
the sign of the source term in Eq. (17) changes, and DE
perturbations are negative and vise versa.
Another interesting point that might be realized from

Fig. 3 is that for DE in the regime wd > −1 (wd < −1) the
growth rate of DM perturbations is larger (smaller) com-
pared to the ΛCDM. This prediction can be easily under-
stood from an extra term due to DE perturbations (δd) in the
source term of the DM perturbation equation, which is
positive (negative) in the case wd > −1 (wd < −1). For
smooth DE models, there is no δd, and the growth of DM
perturbations is affected by the evolution of the Hubble
parameter. As is clear from Fig. 2, the Hubble quantity is
larger than the ΛCDM for the wd > −1 regime, so the
growth rate is smaller.
In Fig. 4, we show the evolution of Δfσ8ðz ¼ 0Þ as a

function of w1 where w0 is fixed to −0.9. We observe that
the evolution of Δfσ8ðz ¼ 0Þ with respect to w1 is similar
to the previous one. However, our result shows a very small
difference for smooth DE models (less than 0.5%) when w1

FIG. 3. The relative growth rate as a function of w0 for the CPL
and BA parametrizations. SCPL and SBA (CCPL and CBA)
indicate smooth CPL and BA (clustered CPL and BA) models.
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is in the range ð−1; 0.6Þ. For clustered DE models, when
w1 < 0, the difference is small, but for a positive value of
w1, the difference is relatively larger and might be as large
as 10% for w1 ¼ 0.6. Furthermore, the result shows a tiny
difference between our models and the ΛCDM for w1 < 0
in both cases of smooth and clustering DE. For w1 > 0, the
smooth DE does not change the growth rate significantly
compared to the ΛCDM, but for the clustering case, the
difference increases rapidly as w1 increases and might be as
large as 17% for w1 ¼ 0.6.
From the above statements, it has been revealed how the

EoS parameter of DE affects the DM growth rate in both the
smooth and clustering DE cases. For smooth DE, these two
parametrizations roughly give similar results, but in the latter
case, the growth ratemight considerably be different in these
two models, which is due to the different redshift depend-
encies. Based on our analysis, various redshift dependencies
of EoSmight change the growth rate around 2% in clustering
DE scenarios, which is four times larger than the growth rate
difference in the smooth DE. Using current observational
data, it is not possible to distinguish between smooth and
clustering DE cases, but according to Refs. [66,67], a
combination of weak lensing and the peculiar velocity
observations can break the degeneracy of the DE clustering
(no anisotropic stress) and some modified gravity theories
and also distinguish between the smooth and clustering DE
cases. So, further cosmological data, for example, data from
Euclid, can improve the quality of data, and it might be
possible to distinguish between clustering or smooth DE.

C. DE sound speed

Since the DE sound speed is a crucial quantity in the
clustering DE, it is worth it to discuss it with more details.
In a general case, the pressure not only depends on the
energy density but also on the entropy s, so pðρ; sÞ and its
perturbation are

δp ¼
�∂p
∂ρ

�
s
δρþ

�∂p
∂s

�
ρ

δs; ð26Þ

where ð∂p∂ρÞs is the adiabatic sound speed squared and the
second term is due to entropy perturbation [68]. Hence, we
have

δp
δρ

¼ c2a þ
�∂p
∂s

�
ρ

δs
δρ

: ð27Þ

For a perfect fluid, there is no entropy perturbation, and the
second term vanishes. In this case, the pressure perturbation
is given in terms of the adiabatic sound speed squared, and
it is negative for most DE models. However, the second
term can compensate the first, and the pressure perturbation
become zero or positive. The sum of these two terms results
in the effective sound speed of the DE, which is the related
quantity in the case of DE perturbations.
As we mentioned, it is generally believed that if the

sound speed squared for a fluid is negative, its perturbations
are unstable. However, by considering the perturbation of
entropy, the problem can be avoided. The second term in
Eq. (26) can be dominated due to some dissipative process,
and consequently, it would change the effective sound
speed of DE to a null or positive value [68]. Notice that the
above discussion is important when we consider the
clustering DE models. In the cases of smooth DE scenarios,
we need only the EoS parameter of DE to determine the
evolution of DM perturbations.

III. OBSERVATIONAL DATA AND
LIKELIHOOD ANALYSIS

To check the validity of our models with observational
data, we perform a Markov chain Monte Carlo (MCMC)
analysis using the most recent data. Basically, the obser-
vational data consist of two parts: 1) data to constrain the
background parameters and 2) data to constrain the growth
rate of DM perturbations (at the first level). We use the most
recent SN Ia (JLA sample), BAO, CMB, and Hubble
parameter data to constrain the background parameters
including ðΩm; h; w0; w1Þ and also the growth rate of
perturbations, fσ8 data, to constrain our models at the
first perturbation level. In the following, we first briefly
explain the data set and then the procedure of the MCMC

FIG. 4. The relative growth rate as a function of w1 for the CPL
and BA parametrizations. SCPL and SBA (CCPL and CBA)
indicate smooth CPL and BA (clustered CPL and BA) models.

TABLE I. The BAO data used in this work.

z di Survey and references

0.106 0.336 6dF [72]
0.35 0.113 SDSS-DR7 [73]
0.57 0.073 SDSS-DR9 [74]
0.44 0.0916 WiggleZ [12]
0.6 0.0726 WiggleZ [12]
0.73 0.0592 WiggleZ [12]
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analysis. Finally, we present the best value of the param-
eters as well as their uncertainties and discuss the results.
For the JLA SN sample, the theoretical value of distance

module μth is given by

μth ¼ 5log10

�
dLðzhel; zcmbÞ

Mpc

�
þ 25; ð28Þ

where dL is the luminosity distance and zcmb (zhel) is the
CMB rest-frame (heliocentric) redshift of SN. The lumi-
nosity distance dL is given by [69]

dL ¼ ð1þ zhelÞrðzcmbÞ; ð29Þ
where rðzÞ is the comoving distance that is given in terms
of the normalized Hubble parameter. The observational
distance module is given by the empirical relation [70]

μobs ¼ mB −MB þ α × x1 − β × C; ð30Þ
where mB corresponds to the observed peak magnitude in
rest frame of the B band and α, β, and MB are nuisance

TABLE II. The best values of parameters and the 1σ uncer-
tainties for the smooth case.

Parameter CPL BA

Ωm 0.281 5� 0.0073 0.282 3� 0.0076
h 0.696 5� 0.0056 0.695 7� 0.0055
w0 −0.896� 0.079 −0.908� 0.069
w1 −0.50þ0.41

−0.35 −0.27þ0.23
−0.17

σ8 0.754� 0.018 0.753� 0.018

TABLE III. The best values of parameters and the 1σ uncer-
tainties for the clustering case.

Parameter CPL BA

Ωm 0.281 4� 0.0078 0.281 9� 0.0073
h 0.696 4� 0.0057 0.6963� 0.0053
w0 −0.900þ0.079

−0.091 −0.912� 0.065

w1 −0.48þ0.44
−0.36 −0.26þ0.21

−0.18

σ8 0.757� 0.017 0.757� 0.017

FIG. 5. The confidence regions for smooth DE.
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parameters that should be marginalized at the end. To see
details and the definition of other parameters, see Ref. [70].
The χ2 of SN data is given by

χ2sn ¼ ΔμTCov−1snΔμ; ð31Þ

where Δμ ¼ μobs − μth and Covsn is the total covariance
matrix that includes statistical and systematic uncertainties
(for more details of the covariance matrix, see Ref. [70]).
The next data set is the BAO, which is based on the

observed baryon oscillations in the power spectrum of the
galaxy correlation function. In our analysis, we use six
distinct data points, which are presented in Table I. In this
case, the quantity χ2bao in terms of the covariance matrix is
given by

χ2bao ¼ YTC−1
baoY; ð32Þ

where we use Y and Cbao from Ref. [71].
Since the position of the CMB acoustic peaks depends

on the DE dynamics through the angular diameter distance,
the CMB data provide valuable information to constrain a

DE model. The process of calculating χ2cmb (for Planck
data) is not repeated here, and we refer reader to Ref. [58]
for more details.
Furthermore, we use an updated version of the Hubble

parameter compared to our previous one in Ref. [58]. The
Hubble parameter in this work is those data (38 data points)
collected in Ref. [75]. For this data set, the χ2 is given by

χ2h ¼
X
i

½HðziÞ −Hob;i�2
σ2i

; ð33Þ

where HðziÞ ðHob;iÞ is the theoretical (observational)
Hubble parameter.
In addition to the above data, we use the growth rate data

(fσ8), which are obtained from redshift space distortion
(RSD). Since not all of the current available data points are
independent, we use data introduced in Ref. [76], which are
an independent set of growth rate data.
Finally, since the overall likelihood is the product of each

likelihood, the total χ2 is given by

FIG. 6. The confidence regions for clustering DE.
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χ2tot ¼ χ2sn þ χ2bao þ χ2cmb þ χ2H þ χ2fs: ð34Þ

We use the MCMC method to find the best value of
parameters as well as their uncertainties. The results are
summarized in Tables II and III for the smooth and
clustering cases, respectively. In addition, the 1σ and 2σ
confidence regions of the free parameters are presented in
Figs. 5 and 6.
Our results almost show the same confidence regions for

the free parameters Ωm, h, and σ8. However, the DE
parameters are constrained slightly differently, and interest-
ingly, the area of confidence regions for the BA model is
smaller than the CPL one for both the smooth and clustering
cases. To quantify this, the DE figure of merit (FoM) is often
defined as 1

Δw0Δw1
, where Δw0 and Δw1 are uncertainties of

the parameters at 1σ level. A large value of FoM means a
better constraint, and our results indicate that the BA model
provides a better constraint than the CPL in both the smooth
and clustering cases. The FoM for BA parametrization is
∼70, while it is ∼30 for the CPL model (the difference for
smooth and clustering cases is very small).
To check the consistency of our models with the

observational data, the corrected Akaike Information
Criterion (AIC) has been used. This quantity is given by

AIC ¼ χ2min þ 2nfit; ð35Þ

where nfit is number of the free parameters. To compare two
models, the pair differences ΔAIC ¼ AICy − AICx have to
be computed. Two models with jΔAICj ≤ 2 are consistent,
while jΔAICj ≥ 6 indicates strong evidence against the
model with larger AIC. In Table IV, the AIC values for the
two parametrizations as well as the ΛCDM model
are shown.
According to the AIC criterion, all models are consistent

with the data, and there is no positive nor strong evidence
against these models compared to ΛCDM. However, our
results show the DE clustering provides a smaller AIC
compared to the smooth cases, which indicates the data
slightly prefer DE clustering, but of course it is not
significant with current data. Notice that a similar con-
clusion is reported in Refs. [77–79], which indicates good
agreement of our results with other works. As we men-
tioned above, the future observational data, for example,
based on the Euclid, are expected to improve the quality of

data significantly, and thus the validity of DE clustering
will be tested in the near future.

IV. CONCLUSION

To summarize, we studied the growth of matter perturba-
tions by considering the possibility of DE perturbations. We
considered CPL and BA parametrizations with an equal
number of free parameters but different redshift dependen-
cies and integrated the relativistic linear equations to realize
the evolution of DM and DE perturbations. Since from
previous works it was not clear howDE clustering affects the
growth rate in different EoSparametrizations,we selected the
BAmodel with a different redshift dependency to investigate
and compare to the CPL as well as theΛCDM.Moreover, in
contrast to the CPL parametrization, the BA model gives a
finite value at far future times (z → −1). We obtained the
relative difference of the Hubble parameter, which depends
on the free parameters. For instance, for parameters
w0 ¼ −0.9; w1 ¼ 0.2, the Hubble parameter of the BA
(CPL) model is around 6% (4%) larger than the ΛCDM
case. So, for the same values of free parameters, the Hubble
parameter in these twomodels differs around∼2% due to the
different redshift dependencies.
We examined both the smooth and clustering DE cases

within the framework of CPL and BA parametrizations and
calculated the relative difference of the growth rate to show
the effect of DE clustering on the scenario of structure
formation in the Universe. The growth rate is larger
(smaller) than ΛCDM in the smooth DE cosmology for
w < −1 (w > −1). In contrast to this, DE clustering gives a
larger (smaller) growth index for w > −1 (w < −1). We
observed a (1–2)% difference between the parametrizations
analyzed in this work and ΛCDM when we fixed w1 ¼ 0.2
and allowed w0 to vary in range ð−1.3;−0.7Þ for smooth
DE (1%–8% for clustered DE). We also examined how the
growth rate changes with respect to the w1 parameter, and it
was found that the difference between our parametrizations
and the concordanceΛCDMmodel is very small in the case
of smooth DE. However, in the case of DE clustering, the
difference might be as large as 17% (6%) when w0 ¼ −0.9
and w1 ¼ 0.6 for the BA (CPL) model. Notice that the
difference between the growth rate of these parametriza-
tions is due to the different redshift dependencies of the
EoS, so our results indicate that in the case of clustered DE
understanding the exact functional form of the EoS
parameter is a crucial quantity but its effect is not
significant in the case of smooth DE. A combination of
weak lensing and the peculiar velocity observations can
distinguish between the smooth or clustered DE [66,67].
To check the consistency of our models with observation,

we used current available data including SN Ia (the JLA
sample), Planck CMB, BAO, the Hubble parameter, and the
growth rate fσ8 to put constraints on the cosmological
parameters. The MCMC method was used to obtain the
best-fit values of the parameters aswell as their uncertainties.

TABLE IV. The AIC value for our models.

Model AIC

SCPL 728.9
SBA 728.4
CCPL 727.8
CBA 727.1
ΛCDM 728.3
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We obtained almost the same confidence regions for
Ωm; h; σ8 pairs. However, this was not the case for the w0,
w1 pair.Wemeasured theFoMofDEas approximately 70 for
the BA and approximately 30 for the CPL parametrizations
with a tiny difference between the smooth and clustering
cases. This means that, apart from the type of DE (smooth or
clustering) scenarios, the BA parametrization provides a
tighter constraint compared to the CPL. Hence, based on this

result, we suggest the BA parametrization instead of the CPL
as a totally better approximation for the EoS parameter.
Finally, on the basis of the AIC criterion, these two para-
metrizations are consistent with observations as equally as
the ΛCDM cosmology. As a comparison between clustering
and smooth DE scenarios, we found a smaller AIC for
clustering cases, which indicates that the observational data
slightly prefer clustered DE models.
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