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The standard cosmology strongly relies upon the cosmological principle, which consists on the
hypotheses of large scale isotropy and homogeneity of the Universe. Testing these assumptions is,
therefore, crucial to determining if there are deviations from the standard cosmological paradigm. In this
paper, we use the latest type Ia supernova compilations, namely JLA and Union2.1 to test the cosmological
isotropy at low redshift ranges (z < 0.1). This is performed through a Bayesian selection analysis, in which
we compare the standard, isotropic model, with another one including a dipole correction due to peculiar
velocities. The full covariance matrix of SN distance uncertainties are taken into account. We find that the
JLA sample favors the standard model, whilst the Union2.1 results are inconclusive, yet the constraints
from both compilations are in agreement with previous analyses. We conclude that there is no evidence for
a dipole anisotropy from nearby supernova compilations, albeit this test should be greatly improved with
the much-improved data sets from upcoming cosmological surveys.

DOI: 10.1103/PhysRevD.97.083518

I. INTRODUCTION

One of the cornerstone of modern cosmology is the so-
called cosmological principle (CP), which consists of a
statement that the Universe is statistically isotropic and
homogeneous on large scales. A mathematical representa-
tion of these symmetries is given by the Friedmann-
Lamaître-Robertson-Walker (FLRW) metric, and based
on it one may build up homogeneous and isotropic
cosmological models such as the standard ΛCDM cosmol-
ogy. This scenario seems to best account for our current
observations, namely, the angular power spectrum of the
cosmic microwave background (CMB) temperature fluc-
tuations [1], the clustering of matter which describes the
large-scale structure of the Universe [2,3], besides the
cosmic distances from Type Ia supernovae (SNe) [4,5], and
age measurements of passively evolving galaxies over the
cosmic evolution [6–8].
Although the validity of ΛCDM model has been put

under scrutiny along the last decades, some of its under-
lying hypotheses, such as the CP, have always been
assumed to hold true in most of the analyses. Since it
comprises one of the most fundamental hypothesis of the
standard cosmological model, it is crucial to directly assess
its validity against cosmological observations, as

significant departures from statistical isotropy and homo-
geneity would require a complete reformulation of the
standard cosmological paradigm.1

In the recent years, some authors reported potential
deviations from the CP, e.g., the presence of an unexpected
large velocity flow of galaxy clusters via kinematic
Sunyaev-Zeldovich effect (kSz) [12–15], large-angle fea-
tures in the CMB temperature map [16,17], as well as a large
dipole anisotropy in the counts of radio sources [18–21].
However, others authors claim no significant evidence for
some of these signals, at least with the present uncertainties
and systematics. For instance, [22] ruled out, at ∼4σ
confidence level, a bulk flow of ∼1000 km=s as seen by
[13] using low redshift SN compilations. A similar result
was confirmed by [23], also using SNe, and by [24] through
Planck’s first kSZ data release. On the other hand, the CMB
features and the large anisotropy on the radio sky remain
open issues.
Therefore, we need to clarify whether some of these

puzzles arise due to the limitations of current cosmological
datasets, or whether they are actual indications of physics
beyond the standard model. In order to do this, we use the
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1One of the most common approaches to test cosmological
isotropy in the literature consists on probing consistency between
the dipole signal seen in the CMB global temperature, which is
ascribed to Doppler and aberration effects due to our relative
motion [9–11]. We will not pursue this approach here, but rather
look for the statistical validity of possible anisotropic signatures
in the low-redshift Universe.
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most recent compilations of SNe, namely, the Joint Light
curve Analysis (JLA) [5] and Union2.1 [4], to test the local
isotropy (0.015 < z < 0.1) in the Universe, similarly to
previous works [22,25–30]. The novelty of this work is the
Bayesian selection analysis performed in the low-z SN
data, so we can compare how does a dipole modulation in
the luminosity distance due to local peculiar velocities, as
proposed by [31], can characterize the observational data
with respect the standard cosmographic analysis.2 If we
find strong evidence for a higher velocity dipole than
obtained in previous analyses, this would hint at a possible
breakdown of the FLRW description at the z < 0.1 scales.
The paper is organised as follows: Sec. II presents

the models considered in this analysis; Sec. III is dedicated
to the description of the observational samples; Sec. IV
presents the Bayesian selection method adopted throughout
our analysis; Sec. V discusses our results; the concluding
remarks are discussed in Sec. VI.

II. MODELS

A. Cosmographic model

Assuming that the FLRW metric holds true, we can
expand the scale factor around the present time, and then
measure distances regardless the dynamics of the Universe.
This is the well-known cosmographic approach [32–34].3
The luminosity distance reads

DLðzÞ ¼
c
H0

�
zþ ð1 − q0Þ

z2

2
þOðz3Þ

�
; ð1Þ

where z is the redshift observed in the comoving rest frame
with respect to the expansion of the Universe,H0 and q0 are
the Hubble constant and decelerating parameter at present
time, respectively, being c the speed of light given in km/s.
Cosmography is well-known to suffer from divergences in
the Taylor expansion. Finite truncations could give rise to
systematics. Thus, in order to avoid this issue we param-
eterise the redshift variable by y≡ z

1þz [36,37]. Therefore,
rewriting the luminosity distance in terms of y, usually
referred to as y-redshift, we have,

DLðyÞ ¼
c
H0

�
yþ ð3 − q0Þ

y2

2
þOðz3Þ

�
: ð2Þ

This expression is related to Eq. (7) through

μ ¼ 5log10

�
DLðyÞ
Mpc

�
þ 25: ð3Þ

As shown in the Eq. (2), the luminosity distance depends
only on H0 and q0 up to the second order in redshift.
Therefore, we restrict our analysis up to that order. It is
worth mentioning that we estimated the error on DL that
this truncation may result and found that the third order
term in Eq. (2) differs in less than 1% at z ¼ 0.1 compared
to the second order term in the same expression. Hereafter
we will refer to Eq. (2) as the reference model.

B. Dipole modulation

As pointed out in [38], the directional luminosity
distance can be expanded in spherical harmonics leading
to a observable multipoles, ClðzÞ. The dipole term, C1ðzÞ,
has a minor contribution from lensing effect, whereas our
peculiar motion has a huge impact on it. Neglecting higher
order terms than the dipole, one can write the directional
luminosity distance as following:

DLðz;nÞ ¼ Dð0Þ
L ðzÞ þDð1Þ

L ðzÞðn · eÞ; ð4Þ

where Dð0Þ
L ðzÞ is set up to be the reference model as in

Eq. (2), and Dð1Þ
L ðzÞðn · eÞ is obtained in a perturbed

Friedmann Universe, i.e.,

Dð1Þ
L ðzÞðn · eÞ ¼ ð1þ zÞ2

HðzÞ ðn · v0Þ; ð5Þ

being v0 the peculiar velocity, HðzÞ the Hubble parameter,
and n and e correspond to unit vectors denoting the SN
position in the sky and the bulk flow direction, respectively.
Thus, the luminosity distance can be rewritten such as

DL ¼ c
H0

�
yþ ð3 − q0Þ

y2

2

�
þ vbf cosϕ

HðyÞ ðz=yÞ2; ð6Þ

where vbf is the bulk flow velocity, and cosϕ ¼ ðn · vbfÞ
denotes the angle between each SN location and the bulk
flow velocity direction. We will henceforth refer to this
model, where DL is corrected by the bulk flow velocity at
first order, as the dipole model.

III. THE OBSERVATIONAL DATA SETS

Our analysis is performed using both the JLA and the
Union2.1 samples, as obtained from both The Paris
Supernova Cosmology Group and The Supernova
Cosmology Project websites,4,5 respectively. The JLA

2Even though the luminosity distance modification presented
in [31] consists of a correction rather than a different model, it
provides us a framework to estimate the constraints on the
velocity dipole, and thus the validity of the isotropy hypothesis
in the local Universe.

3We caution that this approach suffers from some caveats,
specially in high-redshift ranges, as pointed out in [35]. These
problems do not arise at z < 0.1, though.

4http://supernovae.in2p3.fr/
5http://supernova.lbl.gov/
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sample consists of a set of 740 spectroscopically
confirmed SNe, while Union2.1 compilation encompasses
580 objects.
The modulus distance of each SNe is given by

μ ¼ mB − ðMB − α × x1 þ β × clÞ; ð7Þ

where mB is the observed peak magnitude in the rest
frame B band, α; β;MB are nuisance parameters in the
distance modulus estimate that account, respectively, for
corrections on the shape (x1) and color (cl) of the SN
light-curves, and absolute magnitude in the same B band.
In addition, dL corresponds to the dimensionless lumi-
nosity distance, i.e., dL ¼ ðH0=cÞDL, whereas M is
given by

M≡ 25þ log10

�
c

H0 × 1Mpc

�
þMB: ð8Þ

Since H0 is degenerated with the absolute magnitude
MB, we thus treat it as a nuisance parameter along with
α and β in our analyses.
After selecting only the objects lying in the z < 0.1 range

in both compilations, we plot their distribution in the sky as
displayed in Fig. 1. These maps were constructed using the
HEALPIX software package [39].

IV. BAYESIAN ANALYSIS

According to the Bayes’ theorem, there is a relationship
between a given model and a set of data and the information
one might know beforehand. Mathematically, the Bayes’
theorem reads

PðΘjD;MÞ ¼ LðDjΘ;MÞPðΘ;MÞ
EðD;MÞ ; ð9Þ

where P is the posterior, i.e., the probability that a set
of parameters (Θ) arise from the data given a model M; L
is the likelihood, thus describing how we believe the
data are distributed; P is the prior knowledge about the
parameters; E is the evidence that the datawere drawn from a
given model.
In model fitting the denominator of Eq. (9) can be

ignored, as it only consists of a normalization constant.
Thus, we can write a posterior marginalized over the set of
parameter we are not interested in (the so-called nuisance
parameters of §2), such as

PðθjD;MÞ ∝
Z

LðDjΘ;MÞPðΘ;MÞdϕ: ð10Þ

On the other hand, the denominator in Eq. (9) plays the
rule in model section, since it tells us how likely
the data were sample from the model. Then, we can
use it to compare between different models, so that
the evidence can be computed from the following
integral over the full parameter space of the underlying
model:

EðD;MÞ ¼
Z
M
LðDjΘ;MÞPðΘ;MÞdΘ: ð11Þ

In order to perform such comparison between models we
compute the ratio,

B12 ≡ E1

E2

; ð12Þ

which is usually referred to as Bayes’ factor, and we use it to
calculate the Jeffreys scale [40] in order to discriminate two
competing models. Here, we use a modified version of
Jeffreys scale, as suggested by [41], where the strength of
the evidence is regarded as inconclusive when j lnB12j < 1,
weak in the cases where j lnB12j > 1, moderate if

FIG. 1. Mollweide projections of the SN celestial distribution for JLA (left panel) and Union2.1 (right panel) data sets.
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j lnB12j > 2.5, and strong for cases where j lnB12j > 5. It is
worthy noting that lnB12 > 1 indicates that model one,M1,
is favoured in comparison to model two, M2. Otherwise,
lnB12 < −1 would support model M2 (for some recent
application of Bayesian model selection in cosmology, see
[42–44] and references therein).
Furthermore, we assume that both JLA and Union2.1

SN data sets follow a multivariate Gaussian likelihood,
such as

LðDjΘÞ ∝ exp

�
−
χ2ðDjΘÞ

2

�
; ð13Þ

whose χ2 reads

χ2ðDjΘÞ ¼ ½μ − μðΘÞ�TC−1½μ − μðΘÞ�; ð14Þ

where μ denotes a vector of the observed distance
modulus, μðΘÞ are the theoretical values obtained from
the models we shall test, and C is the covariance matrix
which accounts for both statistic and systematic uncer-
tainties for each sample.
In order to carry out the Bayesian analysis, we use

the PYMULTINEST [45], a Python module based on the
nested sampling (NS) algorithm MULTINEST ([46–48]).
Here, we make use of Importance Nested Sampling,
since it can provide the Bayesian evidence with

better accuracy than vanilla NS method according to
[48]. Moreover, we assume flat priors on the set of
cosmological parameters Θ, as described in Table I.
Hence, we can determine how does the dipole model
describe the observational data when compared to the
reference one.

V. RESULTS

We show the mean estimates obtained from JLA for
the parameters describing the reference and dipole model
in the upper part of Table II. Their corresponding
posteriors are then presented in Fig. 2. We note that
the constraints on the cosmographic parameter q0 do not
appreciably change from one case to the other, and that
there is just marginal evidence for a non-null bulk flow
velocity from this data set. Such a result is compatible
with those reported in [49], where no significant evi-
dence for a bulk flow using the same SN compilation
was found.
The lower part of the same Table II presents the

results obtained from the Union2.1 compilation. Their
corresponding posteriors are then presented in Fig. 3.
Again, the q0 constraints are similar for both models,
and the bounds imposed on the bulk flow velocity and
direction are weakly restrictive. However, the mean bulk
flow direction estimated from Union2.1 is compatible
with previous analyses in the literature, such as the
preferred direction reported by [26], which points toward
ðl; bÞ ¼ ð316°; 14°Þ, as well as the results from [23],
which obtained a bulk flow velocity located at the
ðl; bÞ ¼ ð295°; 10°Þ direction.
Such a result is reflected in the model selection

analysis, as presented in the upper part of Table III
for the JLA, and in the lower part for the Union2.1
data set. We obtained weak evidence in favor
of the reference model (lnB ¼ 1.582� 0.026) for
the former, while the results are inconclusive

TABLE I. The flat priors Uða; bÞ assumed throughout our
analysis.

Parameters Model associated Prior

q0 All Uð−0.67;−0.49Þ
vbf DM Uð0; 500Þ
l DM Uð0; 360Þ
b DM Uð−90; 90Þ

TABLE II. The constraints on the parameters of reference model, denoted as cosmography (CG), as well as the parameters
characterizing the dipole model (DM). The last column shows the 95% credible intervals.

Data set Models Parameters Mean Standard deviation 95% c.i.

CG q0 −0.587 0.052 ð−0.667;−0.497Þ
JLA q0 −0.589 0.051 ð−0.666;−0.496Þ

DM vbf 80.823 59.250 (3.705, 221.825)
l 169.268 101.506 (11.702, 348.162)
b 11.630 49.062 ð−80.856; 86.017Þ

CG q0 −0.578 0.051 ð−0.665;−0.495Þ
Union 2.1 q0 −0.577 0.052 ð−0.665;−0.494Þ

DM vbf 167.368 87.421 (18.474, 352.066)
l 250.222 100.443 (7.531, 353.462)
b 34.117 32.071 ð−28.728; 86.963Þ

ANDRADE, BENGALY, ALCANIZ, and SANTOS PHYS. REV. D 97, 083518 (2018)

083518-4



FIG. 3. Same as Fig. 2 for the Union2.1 data set.

FIG. 2. The posteriors of the reference (left panel) and dipole (right panel) models, as obtained for the JLA compilation.
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(lnB ¼ −0.275� 0.027) for the latter6 Although pre-
vious analysis reported that the absence of a dipole
correction in DL is disfavored at > 2σ confidence level
from an earlier low-redshift assemble of 44 SNe [31]
adopting a maximum likelihood analysis, we obtained
that the dipole model is not supported by a Bayesian
model comparison analysis within the limitations of
current SN compilations.

VI. DISCUSSION AND CONCLUSIONS

In this work, we have performed a Bayesian comparison
between two FLRW cosmological distance approaches,
which differ from each other by a dipole modulation that
arises from first order perturbation. This correction accounts
for peculiar velocity due to local bulkmotions, and therefore
can provide constraints on the isotropy of the local Universe,
i.e., at z < 0.1. Because a FLRW Universe strongly relies
upon the assumption of large-scale statistical isotropy and
homogeneity, we need to assess whether they actually hold
true in light of observational data. Any compelling evidence
against such hypotheses would have profound implications
for the standard paradigm of cosmology.
In our analysis, no further assumption on the dynamics

of the Universe was made, as our description of the
cosmological distances are purely given in terms of a
Taylor expansion that gives rise to kinematic parameters,
i.e., the cosmographic approach. We have truncated this
expansion in redshift up to second order, since it accurately
describes the luminosity distance at the scales we are
probing, and thus compared it against a model which
presents a correction in DL due to the nearby matter
inhomogeneities [31] in the form of a dipole modulation.
This comparison is carried out in a Bayesian framework for
the first time, so that a strong evidence for a large

anisotropy in the SN data would indicate a potential
violation of the CP, at least of local origin.
Adopting the two largest compilations of SNe currently

available, namely JLA and Union2.1, in the low-z threshold
(z < 0.1), we have found weak evidence in favor of the
reference model in the former, and inconclusive evidence
for the latter, once both the statistical and systematic
uncertainties of these samples are properly accounted
for. This result is in agreement with the estimate from
[49] regarding the bulk flow constraints from JLA. Yet our
Union2.1 result is compatible with previous analyses, we
found no significant evidence in favor of the dipole
modulation model in a Bayesian framework.
Because blind tests of cosmological isotropy using SN

data provided no statistical significance against the cosmic
isotropy assumption as well [50–59], we conclude that
there is no significant evidence for a dipolar anisotropy in
the local Universe within the limits of present SN obser-
vations. A similar conclusion was drawn in [60]. As these
authors used the luminosity function of z < 0.1 galaxies
rather than SNe, it provides an independent confirmation of
our results, thus strengthening their significance. We expect
this analysis to be highly improved once the next gen-
eration cosmological surveys, such as J-PAS [61], LSST
[62], Euclid [63], andWFIRST [64] deliver much larger SN
datasets with enhanced light-curve calibration, besides a
stronger control of their potential systematics.
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6The error bars of the Bayesian factor and evidence correspond
to the precision of the MULTINEST code on computing these
quantities due to the sampling method it relies on.

TABLE III. Bayesian evidence and Bayes’ factors between the reference model and the dipole modulation one given the JLA and
Union2.1 data sets.

Data set Models ln E lnB Evidence interpretation

CG −75.718� 0.017 0 � � �
JLA DM −77.300� 0.019 1.582� 0.026 Weak (disfavored)

CG −82.822� 0.008 0 � � �
Union2.1 DM −82.548� 0.026 −0.275� 0.027 Inconclusive
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