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We investigate cosmological scenarios containing one canonical scalar field with an exponential
potential in the context of bouncing models, in which the bounce happens due to quantum cosmological
effects. The only possible bouncing solutions in this scenario (discarding an infinitely fine-tuned exception)
must have one and only one dark energy phase, occurring either in the contracting era or in the expanding
era. Hence, these bounce solutions are necessarily asymmetric. Naturally, the more convenient solution is
the one in which the dark energy phase happens in the expanding era, in order to be a possible explanation
for the current accelerated expansion indicated by cosmological observations. In this case, one has the
picture of a Universe undergoing a classical dust contraction from very large scales, the initial repeller of
the model, moving to a classical stiff-matter contraction near the singularity, which is avoided due to the
quantum bounce. The Universe is then launched to a dark energy era, after passing through radiation- and
dust-dominated phases, finally returning to the dust expanding phase, the final attractor of the model. We
calculate the spectral indices and amplitudes of scalar and tensor perturbations numerically, considering the
whole history of the model, including the bounce phase itself, without making any approximation nor using
any matching condition on the perturbations. As the background model is necessarily dust dominated in the
far past, the usual adiabatic vacuum initial conditions can be easily imposed in this era. Hence, this is a
cosmological model in which the presence of dark energy behavior in the Universe does not turn the usual
vacuum initial conditions prescription for cosmological perturbation in bouncing models problematic.
Scalar and tensor perturbations end up being almost scale invariant, as expected. The background
parameters can be adjusted, without fine-tunings, to yield the observed amplitude for scalar perturbations
and also for the ratio between tensor and scalar amplitudes, r ¼ T=S≲ 0.1. The amplification of scalar
perturbations over tensor perturbations takes place only around the bounce, due to quantum effects, and it
would not occur if General Relativity has remained valid throughout this phase. Hence, this is a bouncing
model in which a single field induces not only an expanding background dark energy phase but also
produces all observed features of cosmological perturbations of quantum mechanical origin at linear order.
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I. INTRODUCTION

Bouncing models have been proposed as cosmological
scenarios without an initial singularity. Instead, the
Universe had at least a preceding contracting phase from
very large length scales, shrinking the space until the scale
factor reaches a minimum value in which some new physics
takes place, mainly related to gravity modifications at very
small length scales, halting the contraction and launching
the Universe into the expanding phase we are living in.
In the standard cosmological model, inflation is respon-

sible for exponentially increasing the particle horizon after

the big bang in order to explain why regions, which are not
in causal contact at the last scattering surface, present a
highly correlated temperature distribution, as observed
today in the cosmic microwave background radiation
(CMB). Without inflation, these regions would be causally
disconnected in a purely big bang model. This puzzle is the
so-called horizon problem, and it does not exist in bouncing
models. Since the Universe had a very large period of
contraction in the past, there is no limit to the particle
horizon (if the fluids dominating the contracting phase
satisfy the strong energy condition). Another puzzle of a
purely big bang scenario is the flatness problem; i.e.,
considering a Friedmann metric in a expanding phase,
the spatial curvature dilutes more slowly than any other
matter content (assuming again the strong energy condi-
tion) of the model. Hence, unless the spatial curvature is
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strongly fine tuned to zero initially, it would quickly
dominate the expansion afterward. When inflation is added
to the big bang scenario, it turns out that the Universe is
driven dynamically to an almost flat hypersurface, avoiding
the initial curvature fine-tuning problem. In the bounce
scenario, this issue is not posed, since flat spacelike hyper-
surfaces are dynamical attractors during contraction [1,2].
Despite the fact that inflation does not yet have con-

sensual fundamental physics behind it, a simple slow-roll
prescription for the inflation scalar field is enough to solve
the above-mentioned puzzles and to amplify quantum
vacuum fluctuations after the big bang, thus giving rise
to an almost scale-invariant adiabatic power spectrum, in
good agreement with CMB observations [3]. It is a
challenge for bounce cosmologies to reproduce a competi-
tive fit for the observations, and many models have been
scrutinized over the years with this aim.
In what concerns the primordial phase of bounce

cosmologies, it has been shown that perturbations origi-
nated from quantum vacuum fluctuations during a matter-
dominated contraction phase become almost scale invariant
[4–6] in the expanding phase. Whether the linear pertur-
bation theory remains valid for a specific gauge choice
through the bounce is a subtle question addressed by many
authors [7–10] and finally clarified in Refs. [11,12], con-
firming the validity of linear perturbation theory up to
the expanding phase. The background scenarios used to
developed those investigations are matter contractions
driven either by a canonical scalar field with an exponential
potential, a K-essence scalar field representing a hydrody-
namical fluid, or a relativistic perfect fluid using Schutz
formalism [13,14]. This scenario with a contracting phase
dominated by a dustlike fluid is called the matter bounce
scenario. This class of models is an interesting new
approach to the big bang/inflation scenario [1,2,10,15],
and they have been extensively studied over the past
15 years. A weak point for any model including a
contracting phase, in which all the matter content satisfies
the dominant energy condition, is the presence of Belinsky-
Khalatnikov-Lifshitz (BKL) instabilities [16–19], the fast
growth of anisotropies during the contraction. Some
proposals inspired in the ekpyrotic model [20] address
this problem by means of an ad hoc ekpyrotic type potential
[21]. It is not the aim of this work to address this kind of
issue, since it is possible to overcome it in more complex
scenarios without completely spoiling a suitable primordial
power spectra. Note that any cosmological model, either
inflationary, bouncing, or any other, has a much more
serious problem to deal with: the large degree of initial
homogeneity necessary to turn all these models compatible
with observations. This is largely more serious than the
BKL problem. Note also that, once one assumes an initial
homogeneous and isotropic Universe, one can show for the
models we are considering that the shear perturbation will
never overcome the background degrees of freedom, even

growing as fast as a−6 in the contracting phase [12], and
hence the BKL problem is not present once such an
assumption is made. For a discussion on that, see also
Ref. [22].
In this paper, we will carefully study the physical

properties of primordial quantum perturbations in a matter
bounce realized by a canonical scalar field with an
exponential potential. Our starting point is the results
obtained in Refs. [23,24]. In our scheme, we will argue
that, approaching the singularity during contraction, quan-
tum effects as calculated in Ref. [24] become relevant, and
a bounce arises naturally in the context of the canonical
quantization of gravity, connecting the classical contracting
and expanding phases described in Ref. [23]. The known
cosmological solutions obtained through the de Broglie-
Bohm (dBB) formulation of quantum mechanics can be
applied to this system since the classical singularity takes
place when the kinetic term dominates the scalar field
dynamics, and the potential becomes negligible, exactly as
in the model investigated in Ref. [24]. Hence, one has
classical contracting and expanding phases connected by a
quantum bounce. Our background model avoids the need
of a ghost scalar field and is sustained by the fact that, in the
regime where the curvature scale is 102 Planck length or
larger, the canonical quantization we implement is expected
to be an effective limit of more fundamental theories of
quantum gravity. Finally, since the perturbations evolve
through the background quantum phase, we use the right
action for the perturbations when the background is not
assumed to be classical [25].
In contrast to our proposal, the usual approach pioneered

by Halliwell and Hawking [26] requires an approximation
already on the background. In this work and in those
following it, for instance, in the Wheeler-DeWitt equation
context [27–29], and in the loop-quantum cosmology case
[30–33], a background wave function sharply peaked on a
semiclassical trajectory is imposed. Furthermore, since an
approximation is used on the background quantization,
further refinements on this sector result in additional cor-
rections on the perturbative level. It is interesting to remark
that in this approach, in which one uses these quantum-
corrected trajectories for the background, it is necessary to
obtain the perturbative second-order Lagrangian without
assuming a classical solution for the background variables
[33]. Background-independent Lagrangians were also
obtained previously in a different context [6,25,34–37], in
which the de Broglie-Bohm conditional wave-functional
method, which we employ in the present paper, was used.
What evinces the contrast is that, here and in the aforemen-
tioned related references, we develop the full Wheeler-
DeWitt approach for the background cosmology without
imposing any approximation, which is rather advantageous
when dealing with the full system. Calculating the full
Bohmian trajectories from the background wave function,
one can construct the conditional wave functional for the
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perturbations, i.e., the wave functional of the perturbative
sector conditioned to a given Bohmian trajectory, without
any additional corrections on the perturbations, apart from
the fact that the background variables now evolve according
to the de Broglie-Bohm quantum theory. Note that, as in the
other approach described above [33], it is also required
that the second-order action should be derived without
assuming the background dynamics. Then, it is possible to
show that the constructed conditional wave functional
describing the quantum perturbations satisfies the usual
functional Schrödinger equation for semiclassical perturba-
tions, with background classical variables replaced by the
Bohmianones, for a nontrivial subset of quantumstates of the
full system [36].
Our dynamical system analysis shows that this scenario

carries an interesting feature: as we will see, if a bounce
takes place in between classical contracting and expanding
phases, the scalar field presents an effective transient dark
energy-type equation of state (EoS), either in the past of the
contracting phase or in the future of the expanding phase.
This addresses an aspect of bouncing cosmologies that has
gained increased attention [38–43]: the role of the dark
energy (DE) in the contracting phase of bouncing models.
In the expansion history probed by current observations,
the effects due to the existence of a DE component can only
be felt when the scale factor is of about three to four e-folds
from the last scattering surface [44]. Whether the DE is a
cosmological constant or a quintessence field, it should be
present during the contracting phase, too. Thus, it may
affect the contracting phase evolution of perturbations
sensible to scales around the same Hubble radius as today.
The presence of dark energy in the contracting phase of
bouncing models may turn the imposition of vacuum initial
conditions for cosmological perturbations in the far past of
such models problematic. For instance, if dark energy is a
simple cosmological constant, as also studied in Ref. [45],
all modes will eventually become larger than the curvature
scale in the far past, and an adiabatic vacuum prescription
becomes quite contrived; see Ref. [41] for a discussion on
this point. However, in the case of a scalar field with
exponential potential, which contains a transient dark
energy phase, the Universe will always be dust dominated
in the far past, and adiabatic vacuum initial conditions can
be easily imposed in this era, as usual. Hence, this is a
situation in which the presence of dark energy does not turn
the usual initial conditions prescription for cosmological
perturbations in bouncing models problematic.
The bounce solutions obtained here are necessarily

asymmetric; i.e., the transient DE is effective either in
the contracting phase or in the expanding phase, but not
in both. Here, we will study the more realistic solution in
which the dark energy phase happens in the expanding era,
connecting the bounce model with the current accelerated
expansion phase. Hence, one has the picture of a Universe
which realizes a dust contraction from very large scales, the

initial repeller of the model; moves to a stiff-matter
contraction near the singularity; and realizes a quantum
bounce that ejects the Universe in a stiff-matter expanding
phase. The latter moves to a dark energy era, finally
returning to the dust expanding phase, the final attractor
of the model. The other possibility, DE in the contracting
phase, is more academic, and we leave it for a future work.
The background solutions are constructed numerically,
matching the classical and quantum eras in the phase in
which both have the similar dynamics.
Note that exact solutions of the full Wheeler-DeWitt

equation for a canonical scalar field with exponential
potential, which is not neglected in the quantum phase,
can already be found in the literature [46]. These solutions
were obtained without matchings. However, as they have
exactly the same physical features as the solutions
described above (classical behavior up to stiff-matter
domination, in which quantum effects begin to be impor-
tant and the potential is negligible, and one and only one
DE energy phase all along), we preferred to adopt the above
matching procedure, in which the numerical calculations
are simpler to handle.
After the background construction, scalar and tensor

perturbations are calculated numerically, and the results are
understood analytically. Depending on the parameters of
the background, they turn out to be almost scale invariant,
with the right observed amplitude for scalar perturbations
and also for the ratio between tensor and scalar amplitudes,
r ¼ T=S≲ 0.1. The amplification of scalar perturbations
over tensor perturbations takes place only around the
bounce, and we explicitly show that it happens due to
the quantum effects on the background model producing
the bounce. There are many papers pointing out the
difficulties of producing this amplification of scalar per-
turbations over tensor perturbations in the framework of
General Relativity (GR); see Refs. [10,47,48]. Indeed, the
amplification we will present would not occur if GR has
remained valid all along the bounce. Hence, our result
shows that when GR is violated around the bounce the
influence of this phase on the evolution of cosmological
perturbations can be nontrivial and must be evaluated with
care. These effects provide a counterexample to the usual
case in which the perturbations are unaffected by the details
of the bounce and their amplitudes are determined by the
bounce depth (the ratio between the value of the scale factor
during the potential crossing and its value at the bounce).
Another possibility is the so-called matter bounce inflation
scenario [49]. In such an approach, there is an inflationary
period in the beginning of the expanding phase of a matter
bounce model. This scenario provides additional freedom
in the scalar and tensor perturbation amplitudes, allowing
for different values of r when compared with the models
cited above. Nevertheless, this approach requires an addi-
tional step (the inflationary phase), while in our model, the
same quantum effects that give rise to the bounce modify
the tensor-to-scalar ratio in a nontrivial way.

CONSISTENT SCALAR AND TENSOR PERTURBATION … PHYS. REV. D 97, 083517 (2018)

083517-3



The paper will be divided as follows. In Sec. II, based on
Ref. [23], we summarize the classical minisuperspace
model and its full space of solutions. In Sec. III, we
present the quantum background near the singularity, as
presented in Ref. [24]. The matching of the classical and
quantum solutions is explained in Sec. IV, in which we
obtain the full background model with reasonable obser-
vational properties. Section VI describes the equations of
motion for the quantum perturbations with suitable vacuum
initial conditions, and we perform the numerical calcula-
tions in Sec. VII, exhibiting our final results for both scalar
and tensor perturbations. We conclude in Sec. VIII with
discussions and perspectives for future work.
In what follows, we will consider ℏ ¼ c ¼ 1 and the

reduced Planck mass MP ≡ 1=κ ≡ 1=
ffiffiffiffiffiffiffiffiffiffiffiffi
8πGN

p
. The metric

signature is ðþ;−;−;−Þ.

II. BACKGROUND

We consider a canonical scalar field ϕ of which the
Lagrangian density is given by

L ¼ ffiffiffiffiffiffi
−g

p ½∇νϕ∇νϕ − VðϕÞ�: ð1Þ

The potential VðϕÞ is chosen to be the exponential, i.e.,

VðϕÞ ¼ V0e−λκϕ; ð2Þ

where the constantV0 has unitsmass4 and λ is dimensionless.
The exponential potential has vastly assisted cosmolo-

gists to address puzzles of the standard model because of its
rich dynamics. In Refs. [50–56], we have some hetero-
geneous collection of what was published with exponential
potential only in 2016. For the background dynamics, we
will use results from Refs. [10,23,57–59].
In a flat, homogeneous, and isotropic Universe, the

Friedmann-Lamâitre-Robertson-Walker metric is

ds2 ¼ N2ðτÞdτ2 − aðτÞ2ðdx2 þ dy2 þ dz2Þ; ð3Þ

whereNðτÞ is the lapse function and aðτÞ is the scale factor.
The evolution of the scale factor in cosmic time (NðτÞ ¼ 1,
τ ¼ t) is given by the Friedmann equation coupled to the
Klein-Gordon equation, respectively,

_a ¼ aH; ð4Þ

_H ¼ −
κ2

2
_ϕ2; ð5Þ

ϕ̈ ¼ −3H _ϕ −
dV
dϕ

; ð6Þ

where the dot operator represents the derivative with
respect to the cosmic time t. The Hubble function, H,
must satisfy the Friedmann constraint

H2 ¼ κ2

3

�
_ϕ2

2
þ VðϕÞ

�
: ð7Þ

The background dynamics can be made simpler through
a choice of dimensionless variables that allows us to rewrite
the coupled second-order equations (5) and (6) as a planar
system [60], i.e.,

x ¼ κ _ϕffiffiffi
6

p
H
; y ¼ κ

ffiffiffiffi
V

pffiffiffi
3

p
H
: ð8Þ

In those new variables, the Friedmann constraint, Eq. (7),
and the effective EoS read

x2 þ y2 ¼ 1; w ¼ 2x2 − 1: ð9Þ

Applying the above definitions to the system of Eqs. (5)
and (6) leads to the planar system

dx
dα

¼ −3xð1 − x2Þ þ λ

ffiffiffi
3

2

r
y2; ð10Þ

dy
dα

¼ xy

�
3x − λ

ffiffiffi
3

2

r �
; ð11Þ

where α≡ lnðaÞ. This system is supplemented by the
equations

_α ¼ H; _H ¼ −3H2x2: ð12Þ

The critical points are listed in Table I.
Near the critical points where w ¼ 1, the effective energy

density of the scalar field evolves close to a−6; i.e., it
behaves approximately like a stiff-matter fluid. For those in
which the effective EoS is w ¼ 1

3
ðλ2 − 3Þ, it evolves as

a−λ
2

. The qualitative behavior of the system can be studied
with the tools described in Refs. [60–62]; for a detailed
analysis, see Refs. [10,23,58,59].
In the contracting phase H < 0, we can see by the

definition of y, Eq. (8), that y < 0. Note that y is completely
determined by the value of x through the constraint (9) and
the sign of H. This phase is, therefore, tied to the lower

TABLE I. Critical points of the planar system of Eqs. (10)
and (11).

x y w

−1 0 1
1 0 1

λffiffi
6

p −
ffiffiffiffiffiffiffiffiffiffiffi
1 − λ2

6

q
1
3
ðλ2 − 3Þ

λffiffi
6

p
ffiffiffiffiffiffiffiffiffiffiffi
1 − λ2

6

q
1
3
ðλ2 − 3Þ
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quadrants of the phase space, while the upper quadrants
depict the expanding phase; see Fig. 1. Using the
Friedmann constraint, Eq. (10) yields

dx
dα

¼ −3
�
x −

λffiffiffi
6

p
�
ð1 − xÞð1þ xÞ: ð13Þ

For λ <
ffiffiffi
6

p
, the first two critical points, x�c ¼ �1 and

y�c ¼ 0, are unstable (repellers) during expansion and
stable (attractors) in the contraction phase, i.e.,

dx
dα

����
x¼1−ϵ

< 0;
dx
dα

����
x¼−1þϵ

> 0;

for 0 < ϵ ≪ 1. For λ > 0, the critical point xλ ¼ λ=
ffiffiffi
6

p
has

the following behavior:

dx
dα

����
x¼ λffiffi

6
p þϵ

< 0;
dx
dα

����
x¼ λffiffi

6
p −ϵ

> 0:

It is, therefore, an attractor during the expanding phase and
an a repeller in a contracting phase.
For the purpose of this work, we will choose λ ¼ ffiffiffi

3
p

. As
a consequence, the scalar field behaves as a matter fluid,
w ¼ 0, around the critical point xλ. Then, choosing the
initial conditions for x, as

xλ ¼
λffiffiffi
6

p � ϵ; ð14Þ

leads to a matter-fluid contracting phase. Since xλ is the
only attractor in the expanding phase, the model will
always end in a matter fluid–dominated epoch.
In Fig. 1, we have the phase space for the planar system.

The critical points in which the scalar field behaves as a
stiff-matter fluid are marked as S�, and the ones in which it
behaves as a matterlike fluid are M�. The contraction
history goes as follows: the Universe starts close to the
critical point M− and, depending on the choice of sign in
Eq. (14), arrives at the stable point Sþ or S− for þ and −,
respectively. The evolution then ends up in a singularity (if
no quantum effects are included). The final EoS parameter
is w ¼ 1. Classically, there is no possible bounce solution
when the system arrives in the critical points S�.
In the trajectoriesM− → S− and S− → Mþ, the Universe

passes through a transient DE epoch, since

−1 < x <
λffiffiffi
6

p ⇒ −1 ≤ w <
1

3
ðλ2 − 3Þ: ð15Þ

Both possible expanding trajectories start in a stiff-matter
epoch, S�, and end up in the matter epoch, Mþ.
It will be useful to analyze what happens with H and _ϕ

when the system is close to the critical points S�. Around
these points, we get from Eq. (12) that

H ∝ e−3α; ð16Þ

as is expected for a stifflike fluid, which diverges when
approaching the singularity. Consequently, using Eq. (8),
we deduce that in the neighborhood of these points the
asymptotic behavior is

lim
x→�1

8>><
>>:

H → −∞;

ϕ → �
ffiffi
6

p
κ α →∓ ∞;

_ϕ → �
ffiffi
6

p
κ H →∓ ∞

ð17Þ

in the contracting phase, while in the expanding phase, one
gets

lim
x→�1

8>><
>>:

H → ∞;

ϕ → �
ffiffi
6

p
κ α →∓ ∞;

_ϕ → �
ffiffi
6

p
κ H → �∞:

ð18Þ

Figure 2 summarizes what we presented above qualita-
tively. Nevertheless, this figure represents only the critical
points and flow resulting from the classical equations of
motion. The quantum dynamics takes place in the portion
of phase space where the Ricci scalar is close to the Planck
length, near the singularities. As in Fig. 2, we set κ ¼ ffiffiffi

6
p

,
and the S� critical points representing the classical singu-
larities are depicted in this figure by the lines H ¼ � _ϕ

when jHj → ∞ and j _ϕj → ∞. Hence, quantum effects can
modify Fig. 2 only around these regions, with a quantum
bounce connecting the regions around S� in the lower
quadrants to the regions around S� in the upper quadrants.
However, trajectories connecting the neighborhood of Sþ in
the lower quadrant to the neighborhood of Sþ in the upper

FIG. 1. Phase space for the planar system of Eqs. (10) and (11).
The critical points are indicated by M� for a scalar field with a
matter-type effective EoS and S� for a stiff-matter one. For y < 0,
we have the contracting phase, and for y > 0, we have the
expanding phase. Lower and upper quadrants are not physically
connected because there is no classical mechanism that could
drive a bounce between the contracting and expanding phases.
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quadrant, or similarly connecting the neighborhoods of S−
in both quadrants, necessarily cross the classical M� line,
H ¼ ffiffiffi

2
p

_ϕ. As we will see, in the de Broglie-Bohm
quantum theory, which we will use in this paper, velocity
fields yielding the quantum Bohmian trajectories are
single-valued functions on phase space, as they arise from
well-defined functions on this space (the phase’s gradient
from the corresponding Wheeler-DeWitt wave equation’s
solution). Consequently, such trajectories cannot cross each
other. Hence, the only way to connect the almost singular
contracting and expanding behaviors without crossing the
line M� is through a connection from the regions around
S� to the regions around S∓, in this reversed order,
necessarily. Indeed, as we will see below [see Eq. (28)],
around the critical points S�, the quantum bouncing
trajectories have a well-defined sign for _ϕ, which is
determined completely from the model parameters. As H
necessarily changes sign through a bounce, then these
bouncing trajectories can only connect the neighborhoods
of S� to the ones of S∓. Concluding, there is no solution in
the complete phase space in which the Universe contracts in
the direction of S− (Sþ) and expands from S− (Sþ). A
bounce is only possible in the phase space of H and _ϕ if it
connects the contracting phase ending in Sþ (S−) to the
expansion starting from S− (Sþ).
For the model in consideration, we have then two

possible histories of the Universe, depicted in Figs. 3
and 4. In the case of Fig. 3, a contracting phase starts close
to M− (matter-fluid era), passes through a DE phase, and
ends in S− [as described in Eq. (15)], where the scalar field
behaves as an stiff-matter fluid. At this point, new physics

takes place, performing a bounce, and the Universe starts
expanding from Sþ (scalar field as stiff-matter) and ends in
matterlike expansion in Mþ. There is no DE epoch in the
expanding phase in this scenario.
The case of Fig. 4 goes in the opposite direction.

Contraction happens from a matter epoch, M−, to a stiff-
matter one, Sþ. The new physics avoids the singularity and
brings the Universe to an expansion that starts in S−
followed by a DE epoch, ending finally inMþ, a matterlike
epoch.
The two above-mentioned scenarios have the interesting

feature of a transient DE-like phase. For the sake of future
reference along the article, let us call the case with DE
during contraction, Fig. 3, case A and the one with DE
during expansion, Fig. 4, case B.
Case A shows the less compelling situation, in which the

background performs a matter contraction followed by a
DE epoch before the bounce, but the expanding phase has
no DE epoch. Previous works considering the presence of
DE during contraction used a ghost field to perform the

FIG. 2. This qualitative figure illustrates the behavior of the
solutions for H and _ϕ close to the critical points of the classical
model, Eqs. (10) and (11). In this figure, we chose κ ¼ ffiffiffi

6
p

;
hence, the M� critical points are represented by the line
H ¼ ffiffiffi

2
p

_ϕ, while the S� critical points are represented by the
lines H ¼ � _ϕ for jHj → ∞ and jϕj → ∞. In a full quantized
system, in which the Universe bounces due to the quantum
corrections close to the Planck scale, the allowed phase space
should connect the contraction, finishing in S� with the ex-
pansion beginning in S∓.

FIG. 3. Case A: the scalar field has a DE-type equation of state
during contraction. By means of the quantum bounce, this system
cannot address the DE in the future, since the matter attractor is
reached before.

FIG. 4. Case B: the contracting phase begins close to the
unstable point M−, in which the scalar field has a dust-type EoS.
After the quantum bounce, the system emerges from S− and
follows a DE phase until reaches the future attractor Mþ.
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bounce. In such scenarios, the phase space is very different
from the one presented here, and it can have a DE epoch
in both the contracting and expanding phases [23,63].
Nevertheless, a complete and rigorous calculation of the
primordial power spectra in such scenarios has not yet been
performed.
Case B is the one wewill explore in this work. As wewill

see, the same scalar field with exponential potential that
realizes the matter bounce scenario yielding an adiabatic
scale-invariant power spectrum also produces a DE epoch
in the expanding phase. Furthermore, there is no need of an
extra ghost potential nor any auxiliary scalar fields in order
to yield the physical conditions that produce the bounce.
As we mentioned earlier, there is no classical bounce in

the previous described backgrounds. Close to the attractor
of the contracting phase, Sþ in case A and S− in case B,
H ∝ −a−3, and when a → 0, we reach a singularity. This
happens because the kinetic term dominates the Lagrangian
of the scalar field and diverges, but in these cases, it has
already been proven that quantum bounce solutions may
arise. In the next section, we present the results from
Ref. [24] and show how they can be applied to our case to
avoid the singularity.

III. QUANTUM BOUNCE

Quantum cosmology is the field of research in which
quantum theory is applied to the Universe and should have
the standard cosmological model as its classical limit. This
interesting and challenging topic not only whitens funda-
mental problems of cosmology, as the singularity problem,
but also allows fundamental quantum mechanics to be
tested at the cosmological level [34,64–67].
The quantum description of gravity, besides facing many

difficulties with the nonrenormalizable aspect of GR [68],
also suffers from fundamental conceptual issues in what
concerns the application of a quantum theory to the
description of the whole Universe. To construct a quantum
theory for the Universe, the traditional Copenhagen inter-
pretation of quantummechanics has to be replaced. Its main
limitation is the postulate of the collapse of the wave
function [69,70], where an outside classical system is
necessary to perform the collapse. This does not make
sense if the whole Universe is quantized.
The quantum theory which will replace the traditional

Copenhagen point of view must of course be able to
reproduce the results of quantum experiments already
performed, but it must also dispense this exterior classical
world, or collapse recipes, in order to be applicable to
quantum cosmology. There are many proposals of quantum
theories that satisfy these criteria and were already applied
to cosmology: the consistent histories approach [71–74],
collapse models for the wave function [66,67,75,76], the
many-worlds interpretation [77–79], and the dBB quantum
theory [70,80,81], which is the one we will adopt here.

The canonical quantization of gravity obtained through
the Arnowitt-Deser-Misner (ADM) formalism [82,83],
which should be an effective limit of a more fundamental
theory, can be interpreted using the dBB formulation of
quantum mechanics. The dynamics of the wave function of
the Universe is given by the Wheeler-DeWitt equation from
which, in this formulation, one can obtain Bohmian
trajectories with objective reality describing the evolution
of the whole system. In this approach, there is no need to
postulate any collapse of the wave function of the
Universe [70,84].
Both models described in this paper depicted in Figs. 3

and 4 present the same feature: the end of the classical
contraction and the beginning of classical expansion
happen when the kinetic energy overcomes the scalar field
potential VðϕÞ. A system consisting of a flat, homo-
geneous, and isotropic space-time in the presence of a
scalar field with a dominant kinetic term has already been
quantized. The Bohmian trajectories resulting from the
Gaussian superposition of plane wave functions led to
bounce solutions. Details of this construction can be found
in Ref. [24]. We will summarize their results in what
follows.
In the case in which the dynamics is dominated by the

kinetic term, the Hamiltonian for a scalar field in the metric
(3) reads

H ¼ NH ¼ Nκ2

12Ve3α
ð−Π2

α þ Π2
ϕÞ; ð19Þ

where V is the volume of the conformal hypersurface, and
from here on, we will be using the dimensionless
scalar field

ϕ →
κϕffiffiffi
6

p :

The momenta associated with the canonical variables α and
ϕ are, respectively,

Πα ¼ −
6V
Nκ2

e3α _α; Πϕ ¼ 6V
Nκ2

e3α _ϕ: ð20Þ

Finally, we choose the conformal hypersurface volume
as V ¼ 4πl3

P=3, where lP ≡ ffiffiffiffiffiffiffi
GN

p ¼ 1=ð ffiffiffiffiffiffi
8π

p
MPÞ is the

Planck length. With this choice, the scale factor value has
an absolute meaning; i.e., when a ¼ 1, the Universe has
approximately the Planck volume.
Performing the Dirac quantization procedure, we can

write the Wheeler-DeWitt equation as

ĤΨðα;ϕÞ ¼ 0 ⇒

�
−

∂2

∂α2 þ
∂2

∂ϕ
�
Ψðα;ϕÞ ¼ 0: ð21Þ

The general solution is
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Ψðα;ϕÞ ¼ Fðϕþ αÞ þ Gðϕ − αÞ

≡
Z

dkffðkÞ exp½ikðϕþ αÞ�

þ gðkÞ exp½ikðϕ − αÞ�g; ð22Þ

where f and g are arbitrary functions of k.
Writing the wave function in polar form, Ψ ¼ R expðiSÞ,

where R is the amplitude and S is the phase in units of ℏ and
substituting into Eq. (21) leads to the Hamilton-Jacobi–like
equation for the phase S,�∂S

∂α
�

2

−
�∂S
∂ϕ

�
2

−
1

R

�∂2R
∂α2 −

∂2R
∂ϕ

�
¼ 0: ð23Þ

When the last term of Eq. (23), the so-called quantum
potential, is negligible with respect to the others, we get the
usual classical Hamilton-Jacobi equation for the minisuper-
space model at hand. Assuming the ontology of the
trajectories αðtÞ and ϕðtÞ, this classical limit suggests
the imposition of the so-called dBB guidance relations
in order to determine the trajectories, in correspondence to
the usual classical Hamilton-Jacobi theory, and they read,
in cosmic time N ¼ 1,

Πα ¼
∂S
∂α ¼ −lPe3α _α; ð24Þ

Πϕ ¼ ∂S
∂ϕ ¼ lPe3α _ϕ: ð25Þ

When the quantum potential is not negligible in Eq. (23),
these Bohmian quantum trajectories may be different from
the classical ones and may present a bounce.
In Ref. [24], the simple appealing prescription of a

Gaussian superposition of plane waves in Eq. (22) given by

fðkÞ ¼ gðkÞ ¼ exp
�
−ðk − dÞ2

σ2

�
ð26Þ

was chosen. Calculating the phase S of the aforementioned
solution, and substituting it into the guidance relations (24)
and (25), we find the planar system that describes the
Bohmian trajectories:

lP _α ¼ ϕσ2 sinð2dαÞ þ 2d sinhðσ2αϕÞ
2e3α½cosð2dαÞ þ coshðσ2αϕÞ� ; ð27Þ

lP
_ϕ ¼ −ασ2 sinð2dαÞ þ 2d cosð2dαÞ þ 2d coshðσ2αϕÞ

2e3α½cosð2dαÞ þ coshðσ2αϕÞ� :

ð28Þ
When solving the equations above, we have a time
definition in units of Planck time (essentially putting
lP ¼ 1 in the above equations). However, since the scales
of interest for the perturbations are those around the Hubble
radius today, RH ≡ 1=H0 (here, we adopt the current value
H0 ¼ 67.8� 0.9 km s−1 Mpc−1 [3]), we convert back to

using the factor RH=lP when matching with the classical
solution.
In Fig. 5, we have the phase space for Eqs. (27) and (28).

We can notice the presence of bounce and cyclic solutions.
It is easy to calculate the nodes and the centers. They happen
all along the line ϕ ¼ 0: the nodes for dα ¼ ð2nþ 1Þπ=2
and the centers for σ2α=2d ¼ cotðdαÞ.
The classical limits of Eqs. (27) and (28) are obtained for

large α, when the hyperbolic function dominates. From the
definition of x in that limit, it is straightforward to obtain
the relations

x ≈ coth ðσ2αϕÞ; ð29Þ
H
H0

≈
RH

lP

de−3α

x
; ð30Þ

lP
_ϕ ≈ de−3α: ð31Þ

These equations imply thatϕ and x have the same sign, and _ϕ
has the same sign as d in the classical limit. This means that
in case A, since its contraction ends in x → −1, Eq. (30) is
satisfied only if d > 0. Similarly, case B requires d < 0. This
result is consistent with our discussion in Sec. II. In case A,
the quantum dynamics starts with x ≈ −1 (ϕ ≪ −1), ending
in x ≈ 1 (ϕ ≫ 1). The opposite happens in case B; i.e., our
bouncing dynamics always connects the classical critical
points S− (Sþ) with Sþ (S−). In practice, the sign of d
determines which case is being evolved.

IV. MATCHING OF BACKGROUND

In the previous section, we presented the quantum
corrections to the system when the kinetic term of the
scalar field dominates, yielding a bounce. To construct a
complete background, we should be able to match the
solutions from the classical evolution, described in Sec. II

FIG. 5. Phase space for the system of Eqs. (27) and (28) for
d ¼ −1 and σ ¼ 1. We can notice bouncing and cyclic solutions.
The bounces in the figure correspond to case B, in which _ϕ < 0,
and it connects regions around Sþ in the contracting phase with
regions around S− in the expanding phase.
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with the quantum solution from the system of Eqs. (27)
and (28).
In a complete formulation of this problem, the desig-

nation of “classical” and “quantum” solutions should not be
taken strictly. In the complete dBB formulation, we have
the Bohmian trajectories that accounts for both regimes. In
our hybrid background, we make this distinction only to
emphasize the fact that we do not have a complete Bohmian
trajectory and to make explicit which equations of motion
are being used. The full quantum description of this system
can be found in Ref. [46], in which full Bohmian bounce
solutions are exhibited. However, to perform the calcula-
tion of cosmological perturbations around some full
Bohmian trajectory is quite cumbersome, and hence we
prefer to adopt this simpler method of matching classical to
quantum solutions, with no loss of relevant information.
The nomenclature in what follows may be tricky, and in

order to avoid confusion, we will adopt the expressions
“quantum/classical solutions,” “regimes,” or “branches” to
distinguish the dynamics described by Eqs. (27) and (28)
(quantum) from the one determined by Eqs. (10) and (11)
(classical). To make reference to the period at which the
quantum potential is relevant, we will adopt “quantum
phase” in opposition to “classical phase,” in which the
quantum potential is irrelevant.
The complete background solution has three branches.

The first one is the classical contraction that starts with
x ≈ 1=

ffiffiffi
2

p
and ends in x → �1. The second branch is the

quantum background that starts in x ≈�1 and bounces to
x →∓ 1. The third branch, the classical expansion, starts
with x≈ ∓ 1 and ends with x → 1=

ffiffiffi
2

p
. The lower signs

stand for case A, while the upper signs stand for the case B.
The matching is performed, guaranteeing continuity of the
solutions up to the first derivative at the time when they
move from the quantum to the classical regimes. This
happens when the quantum solutions reach their classical
limit given in Eqs. (29) and (30).
However, the classical limit of the quantum regime

happens when x ¼ �1, which is a critical point of the
classical equations,
Equations (10) and (11) describe the classical dynamics.

To start the classical phase exactly in a critical point means
that the Universe would be stuck in the stiff-matter epoch.
Nonetheless, the initial classical epoch is unstable; hence, we
always start it with a small shift around the critical points.We
will parametrize x in the proximity of the stiff critical points
by x ¼ �ð1 − ϵ�Þ, 0 < ϵ� ≪ 1. In the matching point, ϵ�
should be small enough to justify the classical limit of the
quantum regime.
If we had a complete Bohmian trajectory, it would only

be necessary to set initial conditions in the far past. For
instance, we would give an initial xλ close to the unstable
point M−. The proximity to the critical point and from
which side of the critical point it begins dictates the
duration of the matter contraction and selects between

cases A and B (which must be compatible with the choice
of sign for d). We would also give an initial scale factor,
aini, and a Hubble constant, Hini, (ϕini and _ϕini are con-
strained by the values of xini and V0 through the Friedmann
equation). With that all set, the Bohmian trajectories would
handle the whole evolution until the expanding phase.
Naturally, parameters as the minimum scale factor at the
bounce, the energy scale of the DE epoch, and the duration
of the quantum bounce would be obtainable from the model
parameter V0, the system wave function, and the initial
conditions.
Because of our matching procedure, things are not so

simple. We have not only the choice of initial conditions
and the quantum bounce parameters, d and σ (extracted
from the wave function), but also two new variables,
namely, the contraction and expansion matching parame-
ters, denoted by ϵc and ϵe, respectively. In what follows, we
will rewrite these two variables in terms of new parameters,
which also controls the number of e-folds between the
bounce and a given Hubble scale.
To connect the classical solution parameters at the

matching point with its quantum evolution, we integrate
Eqs. (12) and (13) analytically. However, it is not possible
to write explicit functions for xðαÞ and HðαÞ. The best we
can do is to obtain implicit functions, which, apart from two
integration constants, read

3α ¼ −
ffiffiffi
2

p
tanh−1ðxÞ − ln

"ð 1ffiffi
2

p − xÞ2
1 − x2

#
þ const; ð32Þ

lnH ¼
ffiffiffi
2

p
tanh−1ðxÞ þ ln

� 1ffiffi
2

p − x

1 − x2

�
þ const: ð33Þ

We begin by recasting these solutions in a more
convenient form,�

a
ā0

�
6
�
H
H0

�
2

¼ C1

ð 1ffiffi
2

p − xÞ2 ; ð34Þ

�
a
ā0

�
3

¼ C2ð1 − xÞγþð1þ xÞγ−
ð 1ffiffi

2
p − xÞ2 ; ð35Þ

where γ� ≡ 1� 1ffiffi
2

p and C1 and C2 are constants. We
introduced H0, the Hubble parameter today, and ā0 for
mere convenience. Note that these constants can be
absorbed in C1 and C2, and they do not represent any
additional freedom of the system. We can calculate the
number of e-folds between the critical points S� and M�.
Expanding Eq. (35) around x ¼ �ð1 − ϵ�Þ and x ¼
ð1= ffiffiffi

2
p � ϵλÞ at leading order yields, respectively,�

a�
ā0

�
3

≈
C22

γ∓ϵγ��
γ2∓

; ð36Þ

CONSISTENT SCALAR AND TENSOR PERTURBATION … PHYS. REV. D 97, 083517 (2018)

083517-9



�
aλ
ā0

�
3

≈
C2γ

γþ− γγ−þ
ϵ2λ

; ð37Þ

where we note that, at leading order, the second expression
does not depend on from which side we approach M�.
From their ratio, we get�

a�
aλ

�
3

≈
2γ�

γγþ− γγ−þ γ2∓
ϵγ�� ϵ2λ : ð38Þ

Imposing that we must be close enough to the critical
points, i.e., ϵi < 10−4 (for i ¼ �, λ), Eq. (38) leads to

aþ
aλ

≲ e−10;
a−
aλ

≲ e−6:

This means that the trajectories M− → S− or S− → Mþ,
depicted in the lower quadrants of Fig. 3 and the upper
quadrants of Fig. 4, respectively, must have a minimum of
six e-folds. The remaining trajectories (M− → Sþ and
Sþ → Mþ) must have a minimum of ten e-folds.
Analogously, we can also calculate the number of e-folds

until the DE phase (x ¼ 0), yielding�
ade
ā0

�
3

≈ 2C2;

�
a−
ade

�
3

≈
2γþϵγ−−
2γ2þ

;
a−
ade

≲ e−1:

The background will be constructed numerically from
the quantum bounce to the classical contracting and
expanding phases. As the solutions are necessarily asym-
metric, the matching between the quantum and classical
regimes can be arranged in two possible ways, depending
on whether we want to write ϵc and ϵe in terms of the
number of e-folds between the bounce and a point in the
matter-fluid domination or the DE phase. Let us now
describe this construction in the following subsections.

A. Initial conditions at the bounce

Our numerical calculation consists in solving the back-
ground, starting from the bounce and evolving to the
expanding and contracting phases. To accomplish this,
we start the calculation around the bounce with slightly
positive (negative) time for the expansion (contraction)
phase. A convenient time variable is τ defined by

α ¼ αb þ
τ2

2
; ð39Þ

which leads to dτ=dt ¼ H=τ and dα ¼ τdτ. We have
already included in this choice of time variable the initial
condition for α; i.e., we always set the bounce at τ ¼ 0. We
can see from Eq. (27) that the initial value αðt0Þ ¼ 0
induces a trivial solution αðtÞ ¼ 0. As trajectories in the
ðα;ϕÞ plane cannot cross, this implies that α cannot change
sign along the possible trajectories. Hence, the choice of

time above selects the positive branch of the phase space
ðα;ϕÞ, Fig. 5. For a single bounce, α attains its smallest
value at the bounce, which provides the last justification for
our parametrization (39).
We need now the initial condition for the field ϕ.

Examining Eq. (27), we realize that the bounce can only
take place when ϕ ¼ 0. Indeed, the denominator is always
positive, and it diverges to the classical limit, where no
bounce is possible. Hence, the necessary condition for the
bounce _α ¼ 0 can occur if and only if the numerator is zero.
If there were a root of the numerator of Eq. (27) different
from the trivial one ϕ ¼ 0, it would satisfy

sinhðAÞ
A

¼ −
sinðBÞ
B

;

where we have defined A ¼ σ2αϕ and B ¼ 2dα, both
different from zero, by assumption. However, this equation
cannot be solved for any real A and B. Therefore, for the
quantum system, we will always use the only possible
initial conditions αð0Þ ¼ αb and ϕð0Þ ¼ 0.
Expanding Eqs. (27) and Eq. (28) about the bounce, we

get the leading-order approximations

dτ
dtQ

¼ ϕ

τ
D1; ð40Þ

dϕ
dtQ

¼ D2; ð41Þ

where we rewrote the equation in terms of τ and the
convenient dimensionless time variable e3αlPdtQ ¼ dt.
The two constants D1 and D2 are

D1 ¼
σ2½sinð2dαbÞ þ 2dαb�
2½2 cosð2dαbÞ þ 1� ;

D2 ¼
−αbσ2 sinð2dαbÞ þ 2d cosð2dαbÞ þ 2d

2½2 cosð2dαbÞ þ 1� :

These equations can be easily integrated to give

τ ¼ tQ
ffiffiffiffiffiffiffiffiffiffiffiffi
D1D2

p
; ϕ ¼ tQD2; ð42Þ

where we have also chosen the sign of τ coinciding with
the sign of tQ. These solutions hold close to the bounce;
hence, we chose a very small value of tQ, for instance,
tiniQ ∝ �Oð10−50Þ, to start the numerical evolution of
Eqs. (27) and (28), using the new time tQ. To do that,
one must know D1 and D2; hence, αb, d, and σ must be
given. The above choice of initial tQ gives well-defined
numerical results for the whole range of parameters studied
in this work. The time variable tQ is then used to solve the
quantum dynamics until the matching with the classical
phases, in the contracting branch and in the expanding
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branch. For d < 0, the positive time direction in the
integration moves the solution to the DE branch, while
for d > 0, the positive time direction moves the solution to
the branch without DE. From there on, we have two
possibilities to parametrize the matching, depending on
whether there is a DE behavior in the classical dynamics
or not.

B. Matching with matter-domination scale

Evolving the quantum era as described above, we arrive
at a nearly classical evolution with stiff-matter behavior at
some a� ¼ lnðα�Þ with xða�Þ ¼ �½1 − ϵ�ða�Þ�. At this
point, we match the quantum evolution with the classical
one. To control this matching and its cosmological mean-
ing, we will write a� and its corresponding ϵ�ða�Þ in terms
of the number of e-folds between the bounce and the
matter-fluid domination, where x ¼ 1=

ffiffiffi
2

p þ ϵλ, with
0 < ϵλ ≪ 1. We will suppose that the free constant ā0
belongs to the infinity open set of real numbers satisfying
xðā0Þ ¼ 1=

ffiffiffi
2

p þ ϵλðā0Þ, with 0 < ϵλðā0Þ ≪ 1.
The first step is to impose continuity of the Hubble

function at the matching point. Expanding Eq. (34) about
x� gives �

H�
H0

�
2

≈
C1

γ2∓

�
ā0
a�

�
6

: ð43Þ

Equating this expression to Eq. (30) yields

C1 ¼
R2
H

l2
P

d2γ2∓
ā60

: ð44Þ

This equation relates the free constant C1 of the classical
system to ā0. As the scale factor at the bounce ab was
already chosen, giving the physical parameter

Xb ≡ ā0
ab

ð45Þ

is equivalent to fixing C1. The parameter Xb yields the
number of e-folds from the bounce to the moment of
the matter-fluid domination determined by ā0, which,
as commented above, is still rather arbitrary; the only
constraint on it is to satisfy xðā0Þ ¼ 1=

ffiffiffi
2

p þ ϵλðā0Þ, with
0 < ϵλðā0Þ ≪ 1.
For the second constant C2, we obtain from Eq. (36) that

C2 ¼
γ2∓

2γ∓ϵγ��

�
a�
ā0

�
3

: ð46Þ

This equation relates the matching point a� and its
corresponding ϵ�ða�Þ to C2. Note, however, that the
end of the quantum evolution does not designate any
specific value of a� as long as the quantum evolution

stays very close to the stiff-matter classical evolution.
Hence, all points where 0 < ϵ� ≪ 1 are acceptable. Here
lies the ambiguity of the matching.
We could arbitrarily choose a� in order to fix C2.

However, we will do the reverse: we will connect C2 with
sensible cosmological parameters associated with physical
features of the classical branch, and after a judicious choice
of them determining C2, we use Eq. (46) to finally find the
matching point a�. This can be done as follows: close to the
matter-fluid epoch, the zeroth-order term of the Hubble
function reads �

H
H0

�
2

≈
C1

C2γ
γþ− γγ−þ

�
ā0
a

�
3

: ð47Þ

The above result motivates the definition of the arbitrary
constant

Ωd ¼
C1

C2γ
γþ− γγ−þ

¼ R2
H

l2
P

d2γ2∓
C2γ

γþ− γγ−þ ā60
: ð48Þ

This constant is very useful, as long as it gives a precise
meaning to Xb. Indeed, from Eq. (47) and Eq. (48), we get

H2ða ¼ ā0Þ ≈H2
0Ωd:

The parameter Xb can now be understood as yielding the
number of e-folds between the bounce and the moment
when the Hubble radius is RH=

ffiffiffiffiffiffi
Ωd

p
. Hence, once Ωd is

given, Xb acquires a very precise meaning.
In terms of the physical variables Ωd and Xb, the

constant C2 reads

C2 ¼
R2
H

l2
P

d2γ2∓
Ωdγ

γþ− γγ−þ a6bX
6
b

: ð49Þ

This expression is completely determined by our choices of
quantum initial condition ab and the constants Ωd and X b.
Plugging it into Eq. (46), we obtain our matching time

a�
ϵγ�=3�

≈
1

X bab

�
R2
Hd

22γ∓

l2
Pγ

γþ− γγ−þΩd

�
1=3

: ð50Þ

Then, given a value for Xb and Ωd, with the cosmological
meanings described above, we must evolve the quantum
branch until some values of α� ¼ ln a� and ϵ� where
Eq. (50) is satisfied. From this point on, we continue using
the classical equations (13) with these matching values for
α� and x� as initial conditions.
Summarizing, from the classical dynamics, we intro-

duced four (redundant) constants to control the initial
conditions (ā0, H0, C1, and C2). We chose H0 to match
today’s value of the Hubble parameter in order to have the
problem scaled to the perturbation scales of cosmological
interest. To fix the other arbitrary parameters, we studied
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the classical solution around the matter-fluid critical point,
introducing the matter parameter Ωd, which only serves to
give a meaning to Xb. Note that the matching (50) depends
only on the product X3

bΩd, evincing that one of these
parameters is arbitrary. The first actual initial condition we
impose by matching the value of the Hubble function in the
end of a quantum branch with its value in the beginning of a
classical branch. The second initial condition is, however,
not completely determined by the quantum phase, as we
can choose any small value of ϵ� we want. For this reason,
we choose a value for Xb (keeping Ωd fixed), which has a
clear cosmological meaning, to completely determine a�
and ϵ� through Eq. (50), and the subsequent system
evolution.
Finally, it is useful to study the allowed values for Xb.

Using for the moment Ωd ¼ 1, i.e., choosing Xb to
represent the number of e-folds between the bounce and
the instant when the Hubble radius matches today’s value,
we get

Xb ≈ ðaba�Þ−1
�
R2
Hd

22γ∓ϵγ��
l2
Pγ

γþ− γγ−þ

�
1=3

: ð51Þ

The value of Xb is inversely proportional to aba�; thus, to
maximize X b, we need to minimize aba�. Using the fact
that αb > 0, we get ab ¼ 1 as the minimum value of ab.
Assuming that the quantum phase is fast enough so that it
has approximately zero e-folds of duration, we get a� ¼ 1
as the minimum value of a�. Then, ignoring the order 1
factors, we get

Xb ≲ 1040d2=3ϵγ�=3� ; ð52Þ

which shows that, given the value of d, we have a
maximum for the number of e-folds. This fact is very
relevant for the perturbations, since their amplitudes are
determined partially by Xb. Note also that this kind of
constraint is present in any matter bounce, and it can make
it difficult to generate enough amplitudes for the perturba-
tions without approaching the Planck scale too much.
Moreover, Xb is proportional to ϵγ�� ; thus, a long quantum
branch (ϵγ�� very small) results in a shallow bounce.

C. Matching with the dark energy scale

For trajectories containing the DE epoch, we have an
alternative way to give meaning for a reference scale. We
can choose ā0 to represent the exact point where w ¼ −1,
i.e., x ¼ 0. At this point, we have�

Hða ¼ ā0Þ
H0

�
2

¼ 2C1 ≡ΩΛ; 2C2 ¼ 1; ð53Þ

where we have introduced the parameter ΩΛ (in the same
way and with similar characteristics to Ωd). There is an
important distinction to make in comparison with the other

case. Here, we are matching with a fixed point in time,
whereas, in the last matter-fluid, we can match to any time
when 0 < ϵλ ≪ 1. For this reason, the value of ΩΛ
completely determines the matching, and in this case,
Xb is obtained from it. For ΩΛ ¼ 1, DE domination takes
place around our present Hubble time.
Since we have fully determinedC1 andC2, all we need to

do is substitute them in Eqs. (44) and (46), from which we
obtain the matching condition

a−
ϵγ−=3−

≈
�

RHjdj2γþ
lP

ffiffiffiffiffiffiffiffiffi
2ΩΛ

p
γþ

�
1=3

; ð54Þ

where we specialized in the − branch since it is the only one
containing a DE phase. The number of e-folds in this case
is given by the logarithm of

Xb ≈
1

ab

�
2R2

Hγ
2þd2

l2
PΩΛ

�
1=6

: ð55Þ

It is worth noting that the number of e-folds between the
bounce and the jHj ¼ H0 scale, assuming ΩΛ ¼ 1, is
different for the different matching procedures, showing
the asymmetry of themodel. Note also that themain factor in
determining Xb in the matter-fluid matching is ðRH=lPÞ2=3,
while for the DEmatching, we have ðRH=lPÞ1=3; i.e., the DE
matching produces a smaller number of e-folds in the branch
in which it is applied. It is also clear from the equation above
that larger (smaller) ΩΛ results in fewer (more) e-folds
between the DE phase and the bounce.
For one last comment, when the DE phase happens

during expansion (case B), it is natural to use this procedure
to match, using ΩΛ ≈ 1, which guarantees us that we could
model the current accelerated expansion using this field.
However, if the DE phase happens during the contraction
(case A), we do not have any reason to choose a priori a
given scale to match.

D. Summarizing the background reconstruction

As explained in this section, the numerical integration
used to construct the background model is initiated at the
bounce itself, using the quantum guidance equations. For
that, one should give the values of αb, d, and σ. The system
is evolved until reaching the classical limit, where it is
matched with the classical evolution. This matching is
controlled by the cosmological parameters ΩΛ and X b.
In the branch with a DE phase, the quantum evolution is
halted when Eq. (54) is satisfied, while in the branch
without a DE phase, the quantum dynamics is stopped
when condition (50) is reached. This gives the values of α�
and x� to be used as initial conditions to the subsequent
integration of the classical equations (13).
Hence, the complete collection of parameters needed to

fix the background model is (αb, d, σ, ΩΛ, and Xb), all of
them with clear cosmological significance. For d > 0, we
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have case A, and the DE phase is in the contracting phase,
while for d < 0, we are in case B, and the DE phase is in the
expanding phase.
As a last remark, the classical branch could, in principle,

be calculated using Eq. (13), and all other quantities are
obtained by simple integrals of x. However, the variable x is
not well behaved numerically; for instance, to represent a
point very close to Sþ, say, x ¼ 1–1020, we would need at
least a 20 decimal digits floating point number, well beyond
the default double precision (about 16 decimal digits)
present in today’s computers. To avoid this numerical
pitfall, we make the change of variables

x�ðq�Þ ¼ �
�
1 −

γ∓q�
1þ q�

�
; ð56Þ

which maps the x range (�1, 1=
ffiffiffi
2

p
) into the numerically

well-defined interval ð0;∞Þ.1 For this reason, we numeri-
cally solve Eq. (13) written in terms of q� for the paths
ending/beginning on S�.

V. NUMERICAL SOLUTIONS FOR THE
BACKGROUND

In this section, we will explore the parameter space of the
theory and see its influence in the complete background
behavior, which will be used in the perturbative analysis.
When one parameter is varied in the figures below, the bold
values in Table II designate the other parameters, which get
fixed in the corresponding figures. For example, the
different curves appearing in Fig. 7 for case B correspond-
ing to the different values of d present in Table II were
calculated with the parameters σ ¼ 0.5, αb ¼ 10−40,
Xb ¼ 1030, and ΩΛ ¼ 1. Also, since we are interested in
perturbations at scales near the Hubble radius today, we use
Ωd ¼ 1 from here on.
In what concerns the study of the cosmological pertur-

bations, the background dynamics can be fully understood
by the plot of H with α, Figs. 7–9. We show clearly the
bounce asymmetry by choosing the horizontal axis as being
signðτÞðα − αbÞ. In that way, the negative interval repre-
sents the contracting phase, while the positive interval
represents the expanding phase. For a perfect fluid with
p ¼ wρ, the evolution of H is

ln jHj ∝ 3

2
ðwþ 1Þα; ð57Þ

thus, in the intervals with a well-defined w (stiff and matter-
fluid phases), H behaves as a power law. In the matter
epoch, the effective EoS of the scalar field is w ¼ 0, and in
the stiff-matter one, it is w ¼ 1, yielding the different slopes
in Figs. 6–10. The durations of the epochs are connected

with the size of the Universe at which we see the transition
from one slope to another. The closer to the bounce that
transition happens, the longer the matter epoch is. This is
very important since we are interested in controlling the
matter contraction to confirm its influence in the relevant
mode scales.

TABLE II. The parameters of the numerical solutions,
Figs. 7–10. The bold values in the table are fixed when one
parameter is varied. In all examples, we considered Ωd ¼ 0.3.

d σ αb Xb ΩΛ

10−5 5 × 10−2 10−40 1020 1
10−1 5 × 10−1 10−5 1025 1020

10 5 1 1030 1040

FIG. 6. For case A, the dependence of the DE epoch with the
parameter ΩΛ. Smaller values lead to earlier DE epochs. This
behavior is also noticed in case B, but since in case B the DE
epoch happens in the expanding phase, smaller values of ΩΛ will
imply a later DE epoch. We included a zoom in of the narrow
interval around the DE phase, showing the constance of H
around it.

FIG. 7. For case B, the dependence of the background dynamic
with the parameter d. Smaller values of d imply longer matter
duration. This behavior is also noticed in case A. We included a
zoom in of the narrow interval around the bounce, showing the
behaviors of H using different values of d.

1The default double-precision float point number can represent
numbers from ≈10−300 to ≈10þ300.
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The DE epoch happens when x ¼ 0 corresponds to a
short plateau between the matter and stiff-matter phases,
for example, in Fig. 7 around α ¼ 20.2 In Fig. 6, we
included a zoom in for this interval, showing the transient
DE phase.
We plotted Figs. 7–10 for case B; however, equivalent

figures for case A can be obtained by simple mirror
symmetry:

signðτÞðα − αbÞ → −signðτÞðα − αbÞ:

As we have mentioned before, it makes no sense to change
ΩΛ away from ≈1 in case B, since it is an observational
constraint and we expect to use this transient DE phase to
model the current accelerated expansion. On the other
hand, in case A, this is exactly the parameter in which we
are interested in order to study perturbations in a DE epoch.
Therefore, Fig. 6 is a plot from case A.

The bounce happens in α ¼ αb, and the two peaks are the
highest values of H reached by the system, further on
referred to asHmax. The peaks happen when _H ¼ 0, and we
can use them to define the duration of the bounce, δb. They
can be better noticed in the zooms depicted in Figs. 7 and 8.
The closer the peaks are in the plots, the smaller δb is (faster
bounce).
In what concerns the quantum solutions, the variation

of the parameters d, σ, and αb directly changes the time
and energy scales of the bounce. When increasing d,
the frequency in Eqs. (27) and (28) is higher, and it
is possible that the background oscillates close to the
bounce, Fig. 7.
Another important influence of d is in the duration of the

matter phase in contraction. Using Eq. (37), we can mark
the onset of the matter-fluid phase by choosing a fixed ϵλ
(for example, 10−4). Then, it is clear from Eq. (43) that aλ
(marking the beginning of the matter-fluid phase) is
proportional to jdj2=3. Hence, larger d yields longer stiff-
matter phases. This effect can be seen in Fig. 7. In the
expanding era, which contains a DE phase, the same
Eq. (37) can be used, but now C2 ¼ 1=2, and the con-
nection to d is through ā0 given by Eq. (55). Consequently,
aλ ∝ jdj1=3. In the expanding era of Fig. 7, we can see that
the DE plateau shifts by a smaller δα than the matter-fluid
era shift in the contraction phase.
The parameter σ is relevant only in the quantum phase.

Figure 8 shows that larger σ’s imply higher energy and
shorter time scales in the bounce. This can be easily
understood looking again at Eqs. (27) and (28). The
hyperbolic functions have the argument σ2αϕ [see, for
instance, Eq. (29)], and they saturate when the argument is
of the order of 11 [x ≈ cothð11Þ ≈ 1þOð10−10Þ]. Hence,
a larger value for σ leads to a faster saturation of the
hyperbolic functions and, consequently, to an earlier stiff-
fluid epoch. Furthermore, in the small α and ϕ approxi-
mation, the value of jHmaxj is also proportional to σ,
meaning that larger values of σ generate more energetic
bounces.

FIG. 8. For case B, the dependence of the Hmax with σ. Hmax is
an important parameter in order to determine the validity of the
canonical quantization, since we should maintain the energy scale
of the bounce below the Planck scale.

FIG. 9. For case B, the dependency of the bounce energy scale
with the minimum scale factor. Smaller values of αb allow a
longer contraction that increases jHmaxj.

FIG. 10. For case B, the duration of matter epoch is longer for
bigger values of Xb.

2This could be deduced directly from Eq. (55) since RH=lP ≈
1060 and all other constants are of order 1.
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A similar argument leading to higher values of jHmaxj
can be used when analyzing the influence of αb, Fig. 9.
More profound bounces imply in a longer stiff-matter
epoch, as we can see in the transitions of the slopes in
Fig. 9. During that period, jHj has more time to increase,
leading to high-energy scale bounces.
Finally, in Fig. 10, we observe that Xb, controlling the

matching point between the classical and quantum
branches, influences the duration of the dust-domination
era. This turns out to be crucial for the perturbations, not
only because the power-spectrum slope depends on which
fluid dominates when the mode leaves the Hubble radius
but also because the spectrum amplitude depends on how
long the mode evolves in each fluidlike epoch.

VI. PRIMORDIAL PERTURBATION

The perturbed Einstein equations can be recast in a very
simple and objective manner combining the scalar pertur-
bation in the metric and in the matter component by means
of the gauge-invariant curvature perturbation ζ. The action
that gives the dynamic for the perturbations comes from
the first-order perturbed Einstein-Hilbert action and reads
[see Ref. [25], Eq. (66)]

S ¼
Z

dτdx3
z2

2

�
ζ02 þ N2ζΔζ

a2

�
; z2 ≡ 3a3x2

κ2N
; ð58Þ

where Δ is the spacial Laplacian, ζ is the gauge-invariant
dimensionless curvature perturbation, and the time oper-
ator is defined by 0≡ d=dτ.3 All background quantities
refer to the Bohmian quantum trajectories exhibited in
Sec. IV. It is their presence that turns the evolution of
perturbations different from the situation in which the
background is classical, yielding a different Schrödinger
equation for the wave functional of quantum perturba-
tions. Note that, in contrast to Refs. [27–33], in order to
arrive at this result, no expansion in the Planck mass is
made; nor is any Wentzer-Kramers-Brillouin (WKB)
approximation used. The main different feature here is
the use of the so-called conditional wave functional,
ΨðaðtÞ;φðtÞ; ζðx; tÞÞ, where aðtÞ and φðtÞ are the pre-
scribed Bohmian background trajectories obtained from
background Hamiltonian operator. This conditional wave-
functional concept is available only in the de Broglie-
Bohm quantum theory. For details, see Ref. [36]. Hence,
this is supposed to be a more general approach. Whether
these methods coincide in their appropriate limits is yet to
be investigated. The equation of motion for ζ is obtained
by the variational principle, and after the field decom-
position, it reads

ζ00k þ 2
z0

z
ζ0k þ

N2k2

R2
Ha

2
ζk ¼ 0: ð59Þ

In the above equations, we used the dimensionless time τ
[Eq. (39)],

N ¼ dt
dτ

¼ τ

H
:

Here, k is measured in units of R−1
H ,4 and z and ζk have

dimensions of length−3=2 and length3=2, respectively.
We are in the domain of linear perturbation theory, in

which the scalar, vector, and tensor perturbations decouple.
The tensor perturbation hij, the amplitude of any of its two
polarizations of which will be refereed by h, presents a
similar action, i.e.,

S ¼
Z

dτdx3
z2h
2

�
h02 þ N2hΔh

a2

�
; z2h ≡ a3

4κ2N
: ð60Þ

Its equation of motion can be easily deduced from the
action above,

h00k þ 2
z0h
zh

h0k þ
N2k2

R2
Ha

2
hk ¼ 0; ð61Þ

where hk also has dimension of length3=2. The above
formulation can be found in the literature, for instance,
in Refs. [85–87]. Here, we introduced only the necessary
information in order to define the observational probes that
we will calculate. The quantities constrained by the
observations are the power spectra,

Δζk ≡
k3jζkj2
R3
H2π

2
¼ l2

P

R2
H

4k3jζ̃kj2
3π

; ð62Þ

Δhk ≡
k3jhkj2
R3
H2π

2
¼ l2

P

R2
H

16k3jh̃kj2
π

; ð63Þ

where we introduced the dimensionless mode functions

ζk ≡
ffiffiffiffiffiffiffiffiffiffiffi
κ2RH

3

r
ζ̃k; hk ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffi
4κ2RH

q
h̃k: ð64Þ

The spectral indices for the scalar curvature perturbation ζ
and tensor perturbation h labeled by the subscripts s and T
are, respectively,

ns;T − 1≡ d logðΔζk;hkÞ
d log k

����
k¼k�

ð65Þ

and the tensor-to-scalar ratio3Note that our definition of z is different from the one in
Ref. [25], Eq. (66), z2 ¼ 1=ðNκ2z̄2Þ, where z̄ denotes the z
appearing in that equation. 4The eigenvalues of the Laplacian Δ are given by −R−2

H k2.
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r≡ 2
Δhk

Δζ

����
k¼k�

; ð66Þ

where the factor 2 comes into account for the two polar-
izations of the tensor perturbation. We use the same pivotal
scale as in Ref. [88], k� ¼ 0.05RH Mpc−1. The latest
Planck release estimates for long wavelengths Δζk ≈ 10−10,
ns ≈ 0.96, and r < 0.1 [88].
Following the results from Refs. [1,89], the spectral

index for the modes getting bigger than the curvature scale
during the domination of a fluid with EoS w is

ns ¼ 1þ 12w
1þ 3w

: ð67Þ

In case B, the modes getting bigger than the curvature scale
in the matter epoch w ¼ 0 have scale invariant spectrum.
Depending on the duration of the matter contraction, some
very small-scale modes may become bigger than the
curvature scale during the transition to the stiff-matter
phase, w ¼ 1, leading to a blue spectrum. For case A,
besides the above two possibilities, there is also the
influence of the transient DE epoch in large scale modes.
Hence, although case A is more academic, it should be
quite interesting to evaluate the exact spectral index in this
case in order to estimate the impact of the presence of a
transient DE in the contracting phase of a matter bounce in
the standard results.

A. Initial vacuum perturbations

It is usually proposed in current cosmological models
that the inhomogeneities in the Universe have their origin in
primordial vacuum quantum fluctuations. In the infla-
tionary scenario, the exponential growth of the scale factor
is responsible for amplifying those quantum fluctuations.
After a 60 e-fold expansion, they have enough amplitude to
fit the CMB observations.
Bouncing models assume the same mechanism for the

origin of inhomogeneities, but replaced in the far past of the
contracting phase. Some scenarios may find difficulty in
providing the Minkowski vacuum as initial conditions. This
is the case in which the cosmological constant is consid-
ered [41].
In the present case, the scalar field behaves like a matter

fluid, and the usual quantization of the adiabatic vacuum
fluctuations in a Minkowski space-time coincides with the
WKB solution with positive energy for the Mukhanov-
Sasaki variable v≡ zζ. The equation of motion (59) can be
written as

v00k þ w2
kvk ¼ 0; ð68Þ

where

w2
kðη; kÞ≡ N2k2

a2R2
H
−
z00

z
: ð69Þ

Note that the expressions above reduce to the usual
conformal time equations for N ¼ a.
A solution of the above equation can be expressed in

terms of the WKB approximation (see, for example,
Ref. [86]), which has a certain limit of validity. Let us
define

QWKB ¼ 3

4

�
w0
k

wk

�
2

−
1

2

w00
k

wk
: ð70Þ

In the regime in which����QWKB

w2
k

���� ≪ 1; ð71Þ

the solution is

ṽWKB
k ≈

1ffiffiffiffiffiffiffiffi
2wk

p e�i
R

dτwk: ð72Þ

The matter contraction satisfies (71), and Eq. (72) not
only gives the initial conditions but also a good approxi-
mation for the solution of Eq. (68), while condition (71) is
satisfied.
For N2k2=ða2R2

HÞ ≫ jz00=zj, the initial vacuum condi-
tions are reduced to

vini ¼
1ffiffiffiffiffi
2k

p
ffiffiffiffiffiffiffiffiffi
aRH

N

r
; ð73Þ

dv
dτ

����
ini

¼ i
ffiffiffiffiffi
2k

p
ffiffiffiffiffiffiffiffiffi
N

aRH

s
; ð74Þ

where we have set the initial phase factor equal to zero.
Again, we can recover the usual vacuum conditions
choosing the conformal time lapse function N ¼ a. The
tensor modes h can be expressed in terms of the variable

μ ¼ zhh; ð75Þ
which satisfies similar equations as v, but with zh. The
same treatment given to the quantization of v can be
performed for μ, and the initial conditions are equivalent for
the tensor modes.
In the adiabatic limit, the perturbations are in a high

oscillatory regime, and the numerical calculations become
contrived. Avery common approach to numerically solving
the perturbations is to consider the WKB solution until
N2k2=ða2R2

HÞ > jz00=zj and to switch to the numerical
calculation just before the saturation of the inequality.
The problem with this approach is that, by construction, the
WKB approximation is worse and worse as we approxi-
mate the saturation point. Thus, we must balance two
problems. First if we start the numerical evolution very
close to the saturation, we would need a high-order WKB
approximation to get a reasonable initial condition. The
high-order WKB approximation needs high-order time
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derivatives of the background functions, which in turn is
badly defined numerically or involves complicated back-
ground functions also numerically error prone. If we decide
to start away from the saturation point, we need to deal with
the highly oscillatory period, in which the processing time
is longer and the numerical errors accumulate with the
oscillations.5

To circumvent the above-mentioned problems, we will
use the action angle (AA) variables to rewrite the pertur-
bations dynamics and numerically solve the new sets of
equations. These variables are better suited to the high
oscillatory regime and allow us to use initial conditions
away from the saturation point [22,91,92].
General linear oscillatory systems have a quadratic

Hamiltonian in the form

H ¼
Π2

ζ̃k

2m
þmν2

2
ζ̃2k; ð76Þ

where m is the associated “mass” of the system and ν is the
frequency. The generalized variable and associated
momenta are ζ̃k and Πζ̃k

, respectively.
From action (58) and the definition of the dimensionless

variables (64), we can easily deduce that

m ¼ κ2RHz2

3
¼ a3x2RH

N
; ν ¼ Nk

aRH
: ð77Þ

The new equations describing the perturbations in terms
of AA variables are deduced in the Appendix, as are the
important relations needed to recover the original quantities
ζ and h.
A general purpose integrator for systems described by an

action in the form (76) was implemented as part of
the NUMCOSMO (numerical cosmology library) [93]. The
abstract implementation of the harmonic oscillator
action angle is provided by the object NCMHOAA [94].
The adiabatic and tensor mode objects, respectively,
NCHIPERTADIAB and NCHIPERTGW, are built on top of
NCMHOAA, connecting it to the exponential potential
background model NCHICOSMOVEXP. We should stress
that these codes can be used in any background model; all
one needs to do is implement the interface which calculates
the mass m and frequency ν of the model.

VII. NUMERICAL SOLUTIONS FOR THE
PERTURBATIONS

Using the AA variables, we can calculate the power
spectra for both scalar and tensor perturbations. In this
section, we will present these solutions and discuss how the

basic parameters of the model influence the primordial
perturbations. We will focus in case B, which is a complete
background that addresses the problem of DE in bounce
models by means of a single scalar field; in this analysis, we
keep both ΩΛ ¼ 1 and Ωd ¼ 1 fixed. Here, we analyze in
detail four parameter sets defined in Table III.
Before moving to the solutions themselves, it is worth

taking a look at the differences between the scalar mode
and the tensor mode evolution. The super-Hubble solutions
for Eqs. (76) are, at leading order,

ζ̃k ¼ A1
k½1þOðν2Þ� þ A2

k

�Z
dτ
m

þOðν2Þ
�
; ð78Þ

h̃k ¼ B1
k½1þOðν2hÞ� þ B2

k

�Z
dτ
mh

þOðν2hÞ
�
; ð79Þ

where changing the integration limits in the integrals
above results in a redefinition of A1

k and B1
k. Using the

expression for the masses in Eqs. (77) and (A33), we recast
the integral asZ

dτ
m

¼ 1

RH

Z
dτ

N
x2a3

¼ 1

RH

Z
dt

x2a3
; ð80Þ

Z
dτ
mh

¼ 1

RH

Z
dτ

N
a3

¼ 1

RH

Z
dt
a3

: ð81Þ

In the classical contracting branch of case B, x varies
between (1=

ffiffiffi
2

p
, 1), while the scale factor goes through a

large contraction. In other words, the value of this integral
will be dominated by the values of a near the bounce phase,
in which a attains its smallest value (see Ref. [11] for a
detailed analysis of this integral). Nonetheless, when the
quantum phase begins, the value of x is no longer restricted
to (1=

ffiffiffi
2

p
, 1). For example, in Fig. 11, we show three time

evolutions for 1=x2 using four different sets of parameters.
During the matter phase, 1=x2 ≈ 2, and during the stiff-

matter domination, 1=x2 ≈ 1. Therefore, in the classical
phase, the presence of 1=x2 in the integral (78) increases its
value by a maximum factor of 2. On the other hand,
throughout the quantum phase, different parameter sets

TABLE III. Model parameters for four different cases in which
the present model produces Δζ close to 10−10 and scale-invariant
spectra. The relevant background quantities are presented in
Figs. 11–14, while the modes evolution can be seen in Fig. 15.
The DE scale is fixed at ΩΛ ¼ 1.

d σ αb Xb

Set 1 −9 × 10−4 9 8.3163 × 10−2 2 × 1036

Set 2 −9 × 10−4 100 7.4847 × 10−3 4 × 1036

Set 3 −0.1 4 10−5 6 × 1037

Set 4 −0.1 4 10−7 6 × 1037

5One should also note that the usual approximation, k2 ¼ V,
used to calculate the power spectrum, underestimates its ampli-
tude [90].

CONSISTENT SCALAR AND TENSOR PERTURBATION … PHYS. REV. D 97, 083517 (2018)

083517-17



result in quite different behaviors, as can be seen in Fig. 11.
The set 1 curve shows that the presence of 1=x2 in the
aforementioned integral will result in a sharp increase in the
spectrum amplitude around jα − αbj ≈ 10−1. This effect
takes place slightly closer to the bounce in set 2.
Furthermore, in set 3, we show a solution in which the
peaks are negligible, and hence there is no further increase
of the perturbation amplitudes around the bounce. The
phase space plot in Fig. 12 elucidates what is happening.
The set 1 and set 2 configurations are such that the system

passes close to the cyclic solutions (see Fig. 5), and the
curve is near vertical, and α changes abruptly with ϕ,
making x close to zero during this interval. The scalar field
shortly behaves as a DE fluid, implying a momentarily
large deceleration (acceleration), which enhances the scalar
perturbations. We also added set 3 and set 4 to show
solutions which pass far from these cyclic solutions. In this
case, the evolution of α with respect to ϕ is smoother,
resulting in bigger values of x.
On the other hand, the tensor mode amplitudes do not

depend on x; see Eq. (81). In Fig. 13, we present the
evolution of both integrands of Eqs. (80) and (81). Note that
the first peak to the left in both figures is just the usual
increase in amplitude related to the contraction, while
during the bounce itself, we have two different behaviors
depicted. The tensor modes, which depend only on t
he lapse function N and the scale factor, are sensitive to
the peaks of N at the bounce, whereas for scalar modes, the
presence of the 1=x2 term in the integrand overcomes the N
dependence around the bounce. Here, we would like to
emphasize that the exact dynamics controlling the bounce
is extremely important to determine the amplitude of the
spectrum. Integrating only the classical phase, the first left
peak in both integrands would provide similar amplitudes
for both scalar and tensor modes, implying a tensor-to-
scalar ratio larger than 1 (see, for example, Ref. [95]).
However, one cannot stop at the classical phase, since the
bounce evolution will leave a definite imprint on the
amplitudes: an increase in the tensor mode amplitude at
the bounce and two amplifications of the scalar modes at
two symmetric points around the bounce. Hence, any new
physics around the bounce producing this kind of effect
can be physically relevant, and its consequences must be
evaluated with care.
The contracting phase with a matter era puts this model

in the category of the matter bounce scenarios. Previous
works on the field obtained the bounce by means of a
second scalar field with a ghost-type Lagrangian. Choosing
wisely the parameters of the ghost scalar field, the bounce
takes place only very close to the singularity, and the
perturbations are studied, sometimes, without taking it into
account. The results obtained in the literature about matter
bounces can be summarized as follows: the spectrum is
scale invariant; the tensor-to-scalar ratio is usually larger
then measured in CMB if the scalar field is canonical and
the bounce is symmetric; and attempts to solve this problem
assuming the validity of GR all along results in the increase
of non-Gaussianities, which seems to suggest a no-go
theorem for bounce cosmologies [95,96]. Our results point
to a new direction: bounces which are out of the scope of
GR can lead to new ways to decrease r, and they should be
investigated with care. In our model, the decrease of the
tensor-to-scalar ratio relies on the actual bounce dynamics
in a nontrivial way, due to quantum effects. The increases in
amplitudes of the scalar and tensor modes take place at

FIG. 12. Phase space evolution for the four sets of parameters
appearing in Table III. Note that the set 1 and set 2 curves are
almost vertical near the bounce. This happens because they pass
close to the periodic trajectories (see Fig. 5 for a full picture of the
phase space trajectories). At these points, x ∝ dϕ=dα ≈ 0, which
results in the peaks seen in Fig. 11. Contrastingly, the set 3 and set
4 curves pass far from the center points of Fig. 5, resulting in a
smoother transition through the bounce phase. With all param-
eters fixed, we can control how close one gets to the cyclic
solutions by increasing the value of αb. One can also see in the
figure, by comparing set 1 with set 2, that a larger σ induces a
faster bounce.

FIG. 11. Evolution of the 1=x2 term given four sets of
parameters, set 1, set 2, set 3, and set 4, appearing in Table III.
The distance between peaks is controlled by the σ parameter,
while its height is determined by how much the background
bouncing trajectory gets close to the cyclic solutions presented in
Fig. 5, which in turn is defined by the value of αb.
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different times and are controlled by distinct parameters.
The consequences of that for non-Gaussianities are some-
thing that are yet to be investigated.
Concerning the amplitude growth in the classical regime,

a known result is that they grow more substantially during a
matter epoch then during the stiff-matter one. This can be
seen by looking at the super-Hubble approximations in
Eqs. (80) and (81). During the matter domination,
N=a3 ≈ τ=a3=2, while for stiff matter N=a3 ≈ τ, where
we are using that N ¼ τ=H, and H ∝ a−3=2 in the matter
phase and H ∝ a−3 at the stiff phase. Since this part of the
amplitude growth is determined by the matter epoch
duration, it is closely connected with the parameters d
and Xb, which also control the bounce depth.
We emphasize that the parameter choices are implicit

determinations of the background model initial conditions

(including the wave function parameters), as already
mentioned. The results for the power spectra at the pivotal
mode k� are

set 1∶ Δζk jk¼k�
¼ 1.4 × 10−10; r ¼ 1.9 × 10−7;

set 2∶ Δζk jk¼k�
¼ 4.6 × 10−11; r ¼ 1.3 × 10−5;

set 3∶ Δζk jk¼k�
¼ 1.2 × 10−14; r ¼ 56;

set 4∶ Δζk jk¼k�
¼ 1.7 × 10−14; r ¼ 59:

The time evolution for this same pivotal mode is shown in
Fig. 15. Observe that for set 1 and set 2 the extra
enhancement of the scalar amplitude due to the quantum
effects takes it to a value close to the observed one
Δζk jk¼k�

≈ 10−10. On the contrary, the power spectra
obtained from set 3 and set 4 have an amplitude smaller
than that required by observations, even though their
bounces are deeper (Xb ≈ 1036 for set 1 and set 2 and X b ≈
1037 for set 3 and set 4). In principle, one could choose the
parameters in order to make the bounce deeper, hoping to
get the right amplitude. Nevertheless, we must take care to
not go beyond the scale of validity of these models. One
should verify that the energy scale of the bounce is not
dangerously close to the Planck energy scale, where our
simple approach would not be appropriate. The curvature
scale at the bounce is given by the Ricci scalar,

R ¼ 12H2 þ 6 _H; LR ¼ 1=
ffiffiffiffi
R

p
; ð82Þ

and Ricci scale LR should not be smaller than the Planck
length. Figure 14 displays the Ricci scale evolution for all
parameter sets. This figure shows that the absolute value of
d controls the minimum scale LR attained around the
bounce. This means that we could not increase the
amplitudes of set 3 and set 4 by increasing jdj without
violating the validity of our approach.

FIG. 13. Integrand of the super-Hubble approximation for the tensor modes (left panel) and scalar modes (right panel). It is worth
noting that the presence of the 1=x2 term in the scalar mode integrals, which goes through zero during the bounce phase, overcomes any
possible additional contribution to the amplitude from the peak in the lapse function N ¼ τ=H. Nevertheless, the tensor modes are
sensitive to the peaks in N.

FIG. 14. Time evolution of the Ricci scale for all sets appearing
in Table III. The parameter d controls how close the scale gets to
the Planck length, and set 3 and set 4 are in the limit of validity of
our model. Thus, a large (in module) value of d would violate this
constraint. Note also that faster bounces (for instance, set 2) result
in stronger oscillations of LR near the bounce. This means that
faster bounces must take place at even higher scales in order to
avoid a violation of LR=lP > 1 during the oscillations.
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In what concerns the spectral index, our modes of
interest cross the potential during the matter-domination
phase. As such, their spectra are very close to scale
invariant. Again, this can be changed using a slight negative
value for the matter phase EoS.

VIII. CONCLUSION

We have studied the evolution of cosmological pertur-
bations of quantum mechanical origin in a nonsingular
cosmological model containing a single scalar field with
exponential potential. The bounce is driven by quantum
corrections of gravity in high-energy scales, but still
smaller than the Planck energy scale, in which the canoni-
cal quantization of gravity may be applied.
In Secs. II, III, and IV, we presented two possibilities

for the homogeneous and isotropic background dynamics:
case A, which contains a DE epoch only in the contracting

phase, and case B, in which the DE epoch happens only in
the expanding phase. In both cases, the scalar field
behaves like a dust fluid in the asymptotic past and future.
The free parameters at our disposal were mapped to
quantities with physical significance, as the duration of
the matter contraction, the energy scales of the DE epoch,
and of the bounce phase, and their selection was equiv-
alent to choosing initial conditions for the numerical
integration, hence allowing a better physical control of
the whole scenario.
We restricted our attention mainly to case B, which is a

matter bounce model with a DE epoch in the expanding
phase, offering a complete background solution in which
the DE epoch arises naturally in the expanding phase by
means of the same scalar field that drives the bounce
and the matter contraction. This is a bouncing model with
DE in which its presence does not cause any trouble in
defining adiabatic vacuum initial conditions in the far

FIG. 15. Evolution of the mode functions ζ̃k and h̃k for set 1, set 2, set 3, and set 4. In the detail, we can see the results of the integration
of the two peaks in Fig. 11 for the scalar mode in the upper panels and the single peak of Fig. 13 integration for the tensor mode in the
lower panels. For example, in the upper-left figure, the first peak around −0.1 increases the amplitude of ζ̃a, and the second peak atþ0.1
doubles this value. In contrast, since the tensor perturbations amplitude does not depend directly on the evolution of x, it is not modified
by these peaks. Nonetheless, the tensor amplitude is sensible to peaks in the lapse function N. Hence, for set 3 and set 4 in which these
peaks are pronounced, we have an increase in the amplitude of tensor perturbations at the bounce, which is otherwise overcome by scalar
perturbations in the cases in which the 1=x2 term becomes relevant.
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past of the contracting phase (as described in Ref. [41])
because it is dominated by dust. We numerically calcu-
lated the evolution of cosmological perturbations of
quantum mechanical origin in such backgrounds. Scalar
and tensor perturbations result to be almost scale invari-
ant, and the parameters of the background can be adjusted
to yield the good amplitudes for scalar and tensor
perturbations, producing r < 0.1. We have also seen that
it was in the quantum bounce that the scalar perturbations
were amplified with respect to tensor perturbations.
Hence, the same quantum effects which produce the
background bounce also induce the property r < 0.1.
Our result shows that when GR is violated around the
bounce the influence of this phase on the evolution of
cosmological perturbations can be nontrivial and must be
evaluated with care. Since we have only one scalar field,
the perturbations were solved numerically for the whole
background history, without approximations and match-
ing conditions. Using the AA variables, we were able to
construct a robust code in which the details of the bounce
effects on the perturbations could be appreciated for
different background features. We have also found that
the longer the dust contraction, the bigger the amplitudes
are, a fact that was not noticed in other investigations.
We have thus obtained a bouncing model with a single

canonical scalar field which produces the observed fea-
tures of cosmological perturbations at linear order.
Usually, canonical scalar fields in the framework of GR
produce r ≥ 1 for symmetric bounces [10,48]. We should
emphasize that, in our model, we get r < 1, not because it
is asymmetric but because of violations of GR around the
bounce due to quantum effects. The next step should be to
evaluate non-Gaussianities in this model. Note that, as
long as GR is not satisfied around the bounce, arguments
based on the full validity of GR even at the bounce
suggesting that non-Gaussianities should be huge in
single scalar field bouncing models do not apply
[95,96]. The evaluation of the non-Gaussianities must
be made with care through the quantum bounce, as long as
GR is not valid there. A consistent framework must be
developed in order to perform this calculation correctly.
Without the complications resulting from the quantum
cosmological phase, the non-Gaussianities for bouncing
cosmologies are already significantly different (both in
shape and amplitude) from the inflationary cosmology
[97]. In our framework, we need to extend the action to
third and fourth orders while not imposing a dynamics for
the background. For the second-order action, this was
done using point transformations in the Lagrangian,
which generate new third- and higher-order terms. For
this reason, the higher-order terms of the action in this
formalism may differ significantly from the semiclassical
approach, leading potentially to different results. This is
one of our future investigations. Another interesting
possibility is to investigate the effects of modifications

of dispersion relations in the present model, along the
lines studied in Ref. [49].
Note that this is a very simple model, with a single scalar

field, but it is astonishing that it can produce alone the right
amount of cosmological perturbations and also yield a
future DE phase. Hence, it is quite reasonable to pursue this
route and try to complete the model in order to obtain more
accurate scenarios for the real Universe. One possibility is
to perform the same calculations when other fluids are
present, as the classical extension of this model presented in
Ref. [58]. This is a much more involved calculation, in
which entropy perturbations must be considered.
In a future work, we will also more deeply study case A,

which is a very interesting theoretical laboratory to more
precisely investigate the influence of DE in a contracting
phase. In that scenario, the cosmological perturbations evolve
in a situation in which usual adiabatic vacuum initial con-
ditions can be posed normally, since DE behavior is transient
and the background is matter dominated in the far past.
Finally, let us emphasize that the present model can

accommodate non-negligible primordial gravitational
waves, which might be detected in the near future.
Hence, these models are observationally testable.
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APPENDIX: ACTION ANGLE VARIABLES

For general oscillatory systems with generalized variable
and associated momenta ζ̃k and Πζ̃k

, respectively, the
Hamiltonian can be written as

H ¼
Π2

ζ̃k

2m
þmν2

2
ζ̃2k; ðA1Þ

where m is the associated mass of the system and ν is the
frequency.
The Hamilton equations are

ζ0k ¼
Πζk

m
; Π0 ¼ −mν2ζk: ðA2Þ

AA variables are based on the adiabatic invariant of
oscillatory systems [98]. A real solution for the
Hamilton equations above can be rewritten in terms of
the variables ðI; θÞ, implicitly defined by

ζ̃ak ¼
ffiffiffiffiffiffi
2I
mν

r
sinðθÞ; ðA3Þ
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Πa
ζ̃k
¼

ffiffiffiffiffiffiffiffiffiffiffi
2Imν

p
cosðθÞ: ðA4Þ

Deriving the above expressions and using the Hamilton
equations, we find the equation of motion in terms of the
new variables θ and I are, respectively,

I0 ¼ −I
ðmνÞ0
mν

cos ð2θÞ; ðA5Þ

θ0 ¼ νþ 1

2

ðmνÞ0
mν

sin ð2θÞ: ðA6Þ

The second real solution ζb introduces another pair of AA
variables, ðJ;ψÞ, again implicitly defined by

ζ̃bk ¼
ffiffiffiffiffiffi
2J
mν

r
sinðψÞ; ðA7Þ

Πb
ζ̃k
¼

ffiffiffiffiffiffiffiffiffiffiffi
2Jmν

p
cosðψÞ: ðA8Þ

They follow the same equations of motion:

J0 ¼ −J
ðmνÞ0
mν

cos ð2ψÞ; ðA9Þ

ψ 0 ¼ νþ 1

2

ðmνÞ0
mν

sin ð2ψÞ: ðA10Þ

The final complex solution is defined by

ζ̃k ¼
ζ̃ak þ iζ̃bk

2i
;

with the real and imaginary parts satisfying the normali-
zation condition imposed by the initial quantum vacuum
perturbations, i.e.,

ffiffiffiffiffi
IJ

p
sin ðψ − θÞ ¼ 1: ðA11Þ

We will define the variables ϵ, θ̄, and Δθ in order to rewrite
the above equations so the constraint will be automatically
satisfied all along the evolution. Defining

sinhðϵÞ ¼ cot ðΔθÞ; ðA12Þ

Δθ ¼ ψ − θ; ðA13Þ

θ̄ ¼ ψ þ θ

2
; ðA14Þ

we can easily demonstrate the relations

ffiffiffiffiffi
IJ

p
¼ coshðϵÞ; ðA15Þ

sin ðΔθÞ ¼ 1

coshðϵÞ ; ðA16Þ

cos ðΔθÞ ¼ tanhðϵÞ: ðA17Þ

Differentiating Eqs. (A14) and (A15) and using Eqs. (A16)
and (A17) to rewrite ψ and θ in terms of ϵ and θ̄, we find

θ̄0 ¼ νþ ðmνÞ0
mν

tanhðϵÞ sinðθ̄Þ cosðθ̄Þ; ðA18Þ

ϵ0 ¼ −
ðmνÞ0
mν

cos ð2θ̄Þ: ðA19Þ

The system is not yet fully described, since we have only
the dynamics for a composition of I and J through ϵ.
Introducing γ by the relation

eγ ¼
ffiffiffi
I
J

r
; ðA20Þ

we easily obtain

γ0 ¼ −2
ðmνÞ0
mν

sinðθ̄Þ cosðθ̄Þ
coshðϵÞ ; ðA21Þ

and I and J can be recovered using

I ¼ eγ coshðϵÞ; ðA22Þ

J ¼ e−γ coshðϵÞ: ðA23Þ

Finally, the complete set of equations that replaces
Eqs. (A5), (A6), (A9), and (A10), already taking into
account constraint (A11), is

θ̄0 ¼ νþ ðmνÞ0
mν

tanhðϵÞ sinðθ̄Þ cosðθ̄Þ; ðA24Þ

ϵ0 ¼ −
ðmνÞ0
mν

cos ð2θ̄Þ; ðA25Þ

γ0 ¼ −2
ðmνÞ0
mν

sinðθ̄Þ cosðθ̄Þ
coshðϵÞ : ðA26Þ

Using these new variables, the two real linearly indepen-
dent solutions can be recast as
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ζ̃ak ¼
eγ=2ffiffiffiffiffiffi
mν

p ½eϵ=2 sinðθ̄Þ − e−ϵ=2 cosðθ̄Þ�; ðA27Þ

ζ̃bk ¼
e−γ=2ffiffiffiffiffiffi
mν

p ½eϵ=2 sinðθ̄Þ þ e−ϵ=2 cosðθ̄Þ�: ðA28Þ

Now, we have to rewrite the adiabatic vacuum initial
conditions; for that purpose, we use the adiabatic limit
ðmνÞ0=mν → 0. Expanding in the leading order in
ðmνÞ0=mν, the set of equations provides

ϵ ≈ ϵ0; ðA29Þ

γ ≈ γ0; ðA30Þ

θ̄ ≈ θ̄0 þ kη: ðA31Þ

Using the above approximations to calculate the complex
ζ̃k, we have, as an initial condition, that the following
choice recovers the leading-order WKB approximation,
Eqs. (73) and (74),

ϵ0 ¼ γ0 ¼ 0; ðA32Þ

which, naturally, satisfies the Eq. (A11). The real solutions
using this choice are

ζ̃ak ¼
ffiffiffiffiffiffi
2

mν

r
sin

�
θ̄ −

π

4

�
;

ζ̃bk ¼
ffiffiffiffiffiffi
2

mν

r
cos

�
θ̄ −

π

4

�
;

then, consequently, the complex solution is

ζ̃k ¼
e−iðθ̄−π=4Þffiffiffiffiffiffiffiffiffi

2mν
p :

Because it is just a phase, we can choose θ̄0 ¼ π=4.
The same treatment follows through in the case of the

dimensionless tensor perturbation, with the only difference
being the mass definition

mh ¼ 4κ2RHz2h ¼
a3RH

N
; νh ¼

Nk
aRH

: ðA33Þ
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