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The gravitational entropy and no-hair conjectures seem to predict contradictory future states of our
Universe. The growth of the gravitational entropy is associated with the growth of inhomogeneity, while the
no-hair conjecture argues that a universe dominated by dark energy should asymptotically approach
a homogeneous and isotropic de Sitter state. The aim of this paper is to study these two conjectures. The
investigation is based on the Simsilun simulation, which simulates the universe using the approximation of
the Silent Universe. The Silent Universe is a solution to the Einstein equations that assumes irrotational,
nonviscous, and insulated dust, with vanishing magnetic part of the Weyl curvature. The initial conditions
for the Simsilun simulation are sourced from the Millennium simulation, which results with a realistically
appearing but relativistic at origin simulation of a universe. The Simsilun simulation is evolved from the
early universe (t ¼ 25 Myr) until far future (t ¼ 1000 Gyr). The results of this investigation show that both
conjectures are correct. On global scales, a universe with a positive cosmological constant and nonpositive
spatial curvature does indeed approach the de Sitter state. At the same time it keeps generating the
gravitational entropy.
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I. INTRODUCTION

Gravitational systems with their long range gravitational
interactions have different properties than thermodynamic
systems that we typically encounter on Earth. For example,
a typical sequence of events for a gas injected into an empty
box is to evolve from clumpiness towards homogeneity.
However, for a system that is dominated by gravity, a
reverse sequence of events is typically observed, and so the
system evolves from homogeneity towards clumpiness [1].
It is still debatable, whether one can define a gravitational
entropy, i.e. a quantity that is analogous to the thermody-
namic entropy, which would encapsulate a typical behavior
of all gravitational systems [2]. The issue of gravitational
entropy is inevitably related to the issue of the cosmological
arrow of time.
When in 1980s Penrose postulated the Weyl curvature

hypothesis [1,3], the debate started whether this could
serve as a meaningful measure of the cosmological arrow
of time. The Weyl curvature hypothesis states that the
universe starts with zero Weyl curvature and evolves to a
state dominated by the Weyl curvature. The magnitude of
the Weyl Curvature could thus be related to the arrow of
time. However, the first attempt to link the Weyl curvature
with the gravitational entropy was not fully successful, as
such a definition of the gravitational entropy has problems
with decaying modes [4]. Similarly, the definition of the

gravitational entropy based on the ratio of the Weyl to
Ricci curvatures has problems with radiation [5].
However, when Senovilla showed that the Bel-Robinson

tensor can be used to construct a reasonable measure of the
“energy” of the gravitation field [6], this promoted attempts
to define the gravitational entropy based on the Bel-Robinson
tensor [7,8]. Recently, Clifton, Ellis, and Tavakol showed how
using the Bel-Robinson tensor one can construct an “effective
energy-momentum tensor” of the gravitational field [2]. This
allowed them to derive the formula for the gravitational
entropy. The derivation was obtained in a similar way to a
derivation of the thermodynamic entropy based on the energy-
momentum tensor [2]. This new formula seems to meet
requirements for the gravitational entropy, such as: (i) suitable
limit for the Bekenstein-Hawking entropy of black holes
[9,10], and (ii) for cosmological systems the increase of the
gravitational entropy is associated with the growth of cosmic
structures [2,11–15].
The procedure of defining the gravitational entropy

based on the Bel-Robinson tensor requires a procedure
of defining a square root of the Bel-Robinson tensor, which
can only be done within spacetime of Petrov type D and N
[6], and so this limits the applicability of such a procedure.
However, this is not the only approach to the gravitational
entropy that is being considered in the literature. Another
approach, which seems quite promising for cosmological
systems, is the one based on the Kullback-Leibler relative
information entropy. Such a procedure has been suggested
by Hosoya, Buchert, and Morita [16]. The gravitational*krzysztof.bolejko@sydney.edu.au
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entropy which is defined in this way is conjectured to grow
in generic situations due to negative feedback of open
gravitational systems, which is proved to hold for linear
perturbations of an Einstein–de Sitter background model,
and exact Lemaître-Tolman models [17]. It has also been
shown that in the cosmological context the Kullback-
Leibler relative information entropy can be well approxi-
mated by the Rényi relative entropy [18], and that it can be
linked to Weyl curvature [19]. To distinguish this approach
from the other, let us denote the entropy defined based on
the information entropy as the Hosoya-Buchert-Morita
(HBM) gravitational entropy and the gravitational entropy
that is derived from the Bel-Robinson tensor as the Clifton-
Ellis-Tavakol (CET) gravitational entropy.
In parallel to the gravitational entropy and Weyl curvature

hypothesis, the idea of cosmic inflationwas being developed
[20–22]. During the cosmic inflation the dynamics of the
universe is dominated by the scalar field and the universe
rapidly evolves towards the de Sitter state. This observation,
together with a number of other studies [23–25], formed
foundations for the cosmic no-hair conjecture. The cosmic
no-hair conjecture states that a universe with a positive
cosmological constant evolves towards the de Sitter state.
Although, for some configurations this does not occur [26,27],
in general it is expected that our Universe will eventually
evolve towards the de Sitter state. This is in contrast with what
one expects based on the requirement of the growth of the
gravitational entropy. This apparent contradiction motivates
the research of this paper. The structure of this paper is as
follows: Sec. II describes the Silent Universe; Sec. III sketches
a derivation of the cosmological no-hair conjecture; Sec. IV
derives the formula for the gravitational entropy of the silent
universe; Sec. V presents and applies the Simsilun simulation
to investigate the production rate of the gravitational entropy
and future properties of the universe that is dominated by the
cosmological constant; Sec. VI concludes the results.

II. SILENT UNIVERSE

A. Relativistic evolution of irrotational and
insulated cosmic dust

We first assume that the gravitational field is sourced by
the irrotational (no vorticity) and insulated (no heat transfer)
dust with a cosmological constant. We then thread the
spacetime with lines that are tangent to the flow of matter
ua, and slice the spacetime with surfaces that are orthogonal
to ua. This results with 1þ 3 split and comoving coordinates
[28,29]. Applying the energy-momentum conservation
equations Tab

;b ¼ 0, the Ricci identities ua;d;c − ua;c;d ¼
Rabcdub, and the Bianchi identities Rab½cd;e� ¼ 0, the evolu-
tion of the system is given by

_ρþ Θρ ¼ 0; ð1Þ

_Θ ¼ −
1

3
Θ2 −

1

2
ρ − 2σ2 þ Λ; ð2Þ

_σhabi ¼ −
2

3
Θσab − σchaσcbi − Eab; ð3Þ

_Ehabi ¼ −ΘEab −
1

2
ρσab þ curlHab þ 3σhacEbic; ð4Þ

_Hhabi ¼ −ΘHab − curlEab þ 3σhacHbic: ð5Þ
In addition there are spatial constraints that follow from the
spatial parts of the Ricci and Bianchi identities:

Dbσab ¼
2

3
DaΘ; ð6Þ

Hab ¼ curlσab; ð7Þ

DbEab ¼
1

3
Daρþ ϵabcσ

b
dHcd; ð8Þ

DbHab ¼ −ϵabcσbdEcd: ð9Þ
The above set of equations is equivalent to the Einstein

equations Gab − Λgab ¼ Tab. However, instead of solving
the Einstein equations directly, we deal with equations
that describe properties of dust (i.e. ρ), its velocity field
(i.e.Θ, Σ), and spacetime geometry (i.e. Eab andHab). Note
that the constant κ ¼ 8πG=c4 is assumed to be 1, which for
a pressureless and insulated dust is equivalent to rescaling
of density, i.e. κρ → ρ.

B. Silent universe

The above equations describe a general relativistic
evolution of irrotational and insulated cosmic dust. In
the absence of pressure gradients, there are no sound
waves making this universe almost “silent.” In order to
enforce strict “silence” and prevent any communication
between the worldliness, we need to put Hab ¼ 0, which
will prevent propagation of gravitational waves. In such a
case the above system of equations is expected to describe
spacetimes that are Petrov D [30] with the shear and electric
part of the Weyl tensors taking the form

σab ¼ Σeab; Eab ¼ Weab; ð10Þ
where eab ¼ hab − 3zazb, where za is a spacelike unit
vector aligned with the Weyl principal tetrad. As a result
the fluid equations (1)–(5) reduce only to four scalar
equations [30,31]:

_ρ ¼ −ρΘ; ð11Þ

_Θ ¼ −
1

3
Θ2 −

1

2
ρ − 6Σ2 þ Λ; ð12Þ

_Σ ¼ −
2

3
ΘΣþ Σ2 −W; ð13Þ

_W ¼ −ΘW −
1

2
ρΣ − 3ΣW; ð14Þ
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with the spatial constraints

Dbσab ¼
2

3
DaΘ; ð15Þ

DbEab ¼
1

3
Daρ: ð16Þ

III. COSMOLOGICAL NO-HAIR CONJECTURE

This section presents a heuristics derivation of the
cosmological no-hair conjecture. This derivation should
not be treated as a mathematically complete derivation,
rather it should be treated as a point of reference for a
further discussion. For a more strict derivation, the Reader
is referred to Refs. [25,27,32,33].
Assuming a nonpositive spatial curvature

R ≤ 0; ð17Þ

it follows from Eq. (12) that

_Θ ≤ −
1

3
Θ2 þ Λ ≤ 0: ð18Þ

The first inequality follows from the fact that ρ ≥ 0 and
Σ2 ≥ 0, and the second follows from the Hamiltonian
constraint,

−
1

3
Θ2 þ Λ ¼ −ρ − 3Σ2 þ 1

2
R; ð19Þ

which shows that forR ≤ 0 the left-hand side of the above
equation cannot be positive. Thus, from Eq. (18) it follows
that the expansion rate decreases and

Θ →
ffiffiffiffiffiffi
3Λ

p
: ð20Þ

If this happens then, as follows from the Hamiltonian
constraint (19),

ρþ 3Σ2 →
1

2
R:

However, since R ≤ 0, this implies that

ρ → 0; Σ2 → 0; R → 0;

and from (14)

W → 0:

As a result, the universe asymptotically approaches the de
Sitter space—spatially flat, homogeneous and isotropic
FLRW model, with the expansion rate Θ ¼ ffiffiffiffiffiffi

3Λ
p

.

Conjecture 1 (cosmological no-hair conjecture).—
A universe with a nonpositive spatial curvature and positive
cosmological constant asymptotically evolves towards the
de Sitter universe.

IV. GRAVITATIONAL ENTROPY

A. CET gravitational entropy

In analogy to thermodynamic and relativistic systems,
one can define an “effective” energy-momentum tensor of
the free gravitational field [2]

T ab ¼ ρgravuaub þ pgravhab þ Πab
grav þ 2qðagravubÞ; ð21Þ

which for Petrov D spacetimes is [2]

qagrav ¼ 0;

pgrav ¼ 0;

Πab
grav ¼

α

4π
jΨ2jðxaxb þ yayb − zazb þ uaubÞ;

ρgrav ¼
α

4π
jΨ2j ¼

α

4π
WsgnðWÞ;

Tgrav ¼
1

2π

�
1

3
Θ − 2Σ

�
; ð22Þ

where Ψ2 is the conformal Newman-Penrose invariant,
α is a constant, and sgnðWÞ is the sign ofW, i.e. sgnðWÞ ¼
jWj=W.
The growth of the gravitational entropy is thus

_sCET ¼ 1

Tgrav
ðρgravδv _Þ; ð23Þ

where δv is the local volume element. Since the rate of
change of volume is proportional to the expansion rate

δ _v ¼ δvΘ; ð24Þ

thus

_sCET ¼ δv
Tgrav

ð_ρgrav þ ρgravΘÞ: ð25Þ

Finally using Eq. (14),

_sCET ¼ −α
3

4

ρΣþ 6ΣW
jΘ − 6Σj sgnðWÞδv: ð26Þ

Below, out of convenience, the arbitrary constant α is
set to

α ¼ 4

3H2
0

;
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where H0 is the Hubble constant (H0 has the same units as
Θ and Σ and ρ1=2). Thus, for the silent universe, the growth
of the gravitational entropy is

_sCET ¼ −
Σ
H2

0

ρþ 6W
jΘ − 6Σj

W
jWj δv: ð27Þ

Integrating over the whole domain D, the change of rate of
the gravitational entropy of the silent universe is

_SCET ¼ −
Z
D
δv

Σ
H2

0

ρþ 6W
jΘ − 6Σj

W
jWj : ð28Þ

B. HBM gravitational entropy

In analogy to information entropy when the relative
entropy measures how one distribution diverges from the
other, Hosoya, Buchert, and Morita suggested to define
the gravitational entropy as a measure of divergence of the
matter density field from its global average [16],

SHBM ¼
Z
D
δvρ ln

ρ

hρiD
; ð29Þ

where hρiD is the volume average density

hρiD ¼ 1

VD

Z
D
δvρ: ð30Þ

To make the units of SHBM the same as of SCET we scale it
by H3

0 and so the rate of change of the HBM gravitational
entropy can be written as [16]

_SHBM ¼ −
1

H3
0

�Z
D
δvρΘ

�
þ 1

H3
0VD

�Z
D
δvρ

��Z
D
δvΘ

�
:

ð31Þ

C. Gravitational entropy in the early universe,
i.e. small perturbations around the

Einstein–de Sitter model

The early universe is often described using the Einstein–
de Sitter model. The reason for that is that the contribution
for spatial curvature R and the cosmological constant Λ is
negligible small compared to the contribution from matter
energy density ρ. In addition, if the distribution of matter is
sufficiently uniform (standard assumption in cosmology)
then it seems that the application of the Einstein–de Sitter
model to describe the properties of the early universe is
justified. In such a case, the Hamiltonian constraint (19)
reduces to

3ρ̄ ¼ Θ̄2; ð32Þ
where the bar is used to denote the Einstein–de Sitter model.
The early universe is not strictly spatially homogeneous

and isotropic, but there are perturbations around the
Einstein–de Sitter background,

ρ ¼ ρ̄þ Δρ and Θ ¼ Θ̄þ ΔΘ:

If the perturbations are small and dominated by the growing
mode then [34]

Δρ ¼ ρ̄δ and ΔΘ ¼ −
1

3
Θ̄δ:

Inserting (10) to (15) and (16),

eabDbΣþ ΣDbeab ¼
2

3
DaΘ ¼ −

2

9
Θ̄2Daδ; ð33Þ

eabDbW þWDbeab ¼
1

3
Daρ ¼ 1

3
ρ̄Daδi ¼

1

9
Θ̄2Daδ:

ð34Þ

Comparing the right-hand sides of the above equations and
neglecting higher order terms, such as Σδ we arrive at

W ¼ −
1

2
Θ̄Σ ¼ −

3

2

Σ
Θ̄
ρ̄: ð35Þ

Inserting above to (28),

_SCET ¼
Z
D
δv

3

2

Σ2

H2
0

ρ̄þ 6W
jΘ̄ − 6Σj

ρ̄

jWjΘ̄ ≈
Z
D
δv

3

2

Σ2

H2
0

ρ̄2

Θ̄2jWj ;

ð36Þ

where the higher order terms have been dropped. The above
formula, despite appearance of a second order quantity
(i.e. Σ2), is first order in perturbations (W ∼ Σ), however,
unlike a first-order quantity it does not vanish after averaging
over the whole domain, as the integrand is positive.
In the case of the HBM gravitational entropy, for small

and compensated perturbations, the integral (31) reduces to

_SHBM ¼ −
1

H3
0

Z
D
δvΔρΔΘ ≈

1

9

Θ̄3

H3
0

Z
D
δvδ2: ð37Þ

Unlike the CET, this is truly the second-order quantity (the
first order quantities have been integrated out) and within
the applicability of the above assumptions, the growth rate
of the HBM gravitational entropy is positive.

D. Gravitational entropy conjecture

In both cases (CET and HBM), the growth of the
gravitational entropy vanishes in the FLRW case. In the
FLRW case the shear Σ andWeyl curvatureW vanish and so
the integrand (28) vanishes leading to _SCET ¼ 0. For the
HBMcase, in the FLRWregime, the first term in (31) is equal
to the second one and so _SHBM ¼ 0. Thus, as expected, the
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FLRW models do not produce the gravitational entropy.
Treating this as a logical proposition, the negation of the
reverse is also a logically correct statement.
Proposition 1.—Any universe that generates gravita-

tional entropy cannot belong to a family of spatially
homogeneous and isotropic FLRW models.
As shown in Sec. IV C, for small perturbations around

the Einstein–de Sitter model the production rate of the
gravitational entropy is positive. Thus, it seems that it is
reasonable to expect that a realistic model of a universe can
be characterized with a positive rate of change of the
gravitational entropy. Therefore, the following conjecture is
postulated.
Conjecture 2 (cosmological gravitational entropy

conjecture).—The evolution of the universe proceeds in
such a way that it keeps generating the gravitational entropy.
The above is just a conjecture as it is based on properties

of small perturbations. In the next section we will test this
conjecture by performing a simulation that will allow us to
trace the evolution far into the nonlinear regime.

V. RESULTS

Conjecture 2 (the cosmological gravitational entropy
conjecture) together with Proposition 1 seem to be in
contradiction with Conjecture 1 (the cosmological no-hair
conjecture), which postulates that a universe with a positive
cosmological constant will end up as a homogeneous and
isotropic de Sitter model. In this section we will test these
conjectures using the Simsilun simulation [35].

A. The Simsilun simulation

The Simsilun simulation is based on the code SIMSILUN

[36]. The description of the code, equations, and its appli-
cations are described in the “Methods Paper” [35]. The
Methods Paper describes how one can use the Millennium
simulation [37–39] to set up the initial conditions for the code
SIMSILUN. The Simsilun simulation is based on solving
Eqs. (11)–(14), with the initial conditions given by

ρi ¼ ρ̄þ Δρ ¼ ρ̄ð1þ δiÞ; ð38Þ

Θi ¼ Θ̄þ ΔΘ ¼ Θ̄
�
1 −

1

3
δi

�
; ð39Þ

Σi ¼ −
1

3
ΔΘ ¼ 1

9
Θ̄δi; ð40Þ

Wi ¼ −
1

6
ρ̄δi; ð41Þ

where the subscript i denotes the initial values, and δi is the
initial density contrast sourced from the Millennium
Simulation [37–39]. Here we use the MFIELD, which stores
the matter distribution smoothed with a Gaussian kernel of
radius 2.5h−1 Mpc. Since the MFIELD consists of 2563 cells

thus the resulted simulation, referred to as the Simsilun
simulation, consists of 16 777 216 worldlines. In addition,
the virialization mechanism number 1 is implemented,
whose technical details are as described in Sec. III in the
Methods Paper [35]. The Millennium Simulation is based
on the ΛCDM model with ΩM ¼ 0.25, ΩΛ ¼ 0.75, and
H0 ¼ 73.0 km s−1Mpc−1. This background model meets all
the requirements for the applicably of the cosmic no-hair
conjecture: it contains a positive cosmological constant
and nonpositive spatial curvature [25], and it should asymp-
totically approach the de Sitter solution.

B. Gravitational entropy and the cosmological
“no-hair” conjectures

We calculate the evolution of the universe as described
in the Methods Paper [35], but instead of stopping at the
present day, the evolution of the system is followed until
t ¼ 1000 Gyr. Also, in addition to the evolution equa-
tions (11)–(14), the volume of each element (cell) δv is
evolved using

δ _v ¼ δvΘ: ð42Þ

Finally, the average properties of the Simsilun simulation
are evaluated using the volume averages,

ρD ¼ hρiD ¼
P

jδvjρjP
jδvj

; ð43Þ

ΘD ¼ hΘiD ¼
P

jδvjΘjP
jδvj

; ð44Þ

ΣD ¼ hΣiD ¼
P

jδvjΣjP
jδvj

; ð45Þ

WD ¼ hWiD ¼
P

jδvjWjP
jδvj

; ð46Þ

where ρj, Θj, Σj, and Wj are quantities evaluated at each
cell, whose volume is δvj. The volume of the domain of
averaging D is the total volume of the Simsilun simulation
and is evaluated as

VD ¼
X
j

δvj: ð47Þ

The volume averaged properties of the Simsilun simu-
lation and their evolution is presented in Fig. 1. The
evolution has been evaluated until t ¼ 1000 Gyr (for
clarity of presentation, Fig. 1 presents only evolution until
t ¼ 100 Gyr). Also, the evolution of shear Σ is multiplied
by −1 so that it can be presented in the log-y plot. The
presented results show that the volume averaged properties
of the Simsilun simulation asymptotically approach the
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de Sitter state, i.e. ρD→0, ΣD→0,WD→0, and Θ→
ffiffiffiffiffiffi
3Λ

p
.

Thus, these results seem to confirm the no-hair conjecture.
However, the results presented in Fig. 2 also confirm the

gravitational entropy conjecture as they show the positive
rate of change of both CET and HBM gravitational
entropies. The rate of change of the gravitational entropy
peaks a few billion years after the big bang, at the similar
time scale when the shear and Weyl curvature reach their
maximum amplitude (cf. Fig. 1). Thus, both formulas for
the gravitational entropy (CETand HBM) provide a similar
picture. This is not surprising as it has been shown that
these two formulas are correlated [19]. However, what is
surprising is that when the universe approaches the de Sitter
stage, the rate of change decreases, but does not vanish and
after approximately 100 Gyr remains constant.

The CET gravitational entropy features a number of
spikes. The origin of these spikes is explained in Fig. 3,
which presents the rate of change of the CET gravitational
entropy for a single underdense and a single overdense
cell. The initial conditions for the underdense and over-
dense regions are δi ¼ −0.02 and δi ¼ 0.02 respectively
[cf. (38)–(41)] and the rate of change of their gravitational
entropies follows from (27).
For the overdense region (upper panel in Fig. 3),

approximately after 3 Gyr of evolution the expansion
rate slows down and Θ − 6Σ → 0. This results with a spike
(due to a finite numerical step of integration, the spike
does not reach ∞, however in reality it does). After the
overdensity becomes virialized, the production rate of its
gravitational entropy becomes constant. This is in contrast
with the no-hair conjecture, but as stated in Sec. III, the
cosmological no-hair conjecture does not apply if the
spatial curvature is positive. For the region with a positive
spatial curvature, which undergoes collapse and eventu-
ally virialization, the future asymptotic state is not the de
Sitter state and the production rate of the gravitational
entropy does not asymptomatically vanish. The rate of
change of the gravitational entropy does asymptotically
vanish for the underdense region (lower panel in Fig. 3),
where the spatial curvature is negative and where the
cosmological no-hair conjecture does apply, which is also
in agreement with results presented in Ref. [14] where the
evolution of cosmic voids and their gravitational entropy
was investigated using the Lemaître–Tolman model.

1e-08
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0
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D

/Θ
0
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1e+04

ρ D
/ρ

0

FIG. 1. The evolution of the volume averages of the density
field normalized by the present-day density (upper most panel);
expansion rate normalized by the present-day expansion rate
(second upper panel); shear normalized by the one-sixth of the
present-day expansion rate [cf. (27)] and multiplied by −1 so that
is can be presented in the log-y plot (second lower panel); the
Weyl curvature normalized by the one-sixth of the present-day
density (lower most panel). As seen, asymptotically the system
approaches the de Sitter state, i.e. ρD → 0, ΣD → 0, WD → 0,
and Θ →

ffiffiffiffiffiffi
3Λ

p
. Also, the product of the shear and Weyl curvature

is negative ΣW < 0 which as follows from (27) should imply a
non-negative rate of change of the gravitational entropy.
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FIG. 2. The rate of change of the gravitational entropy within
the whole domain of the Simsilun simulation. Upper panel:
change of rate of the HBM gravitational entropy; lower panel:
change of rate of the CET gravitational entropy.
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The results of Fig. 3 allow one to understand the results
of Fig. 2, which shows that the rate of change of the
gravitational entropy does not asymptotically vanish even
though (as seen from Fig. 1) the Simsilun simulation
asymptotically approaches the de Sitter state. The reason
for this is following: the virialized overdense regions
occupy little volume, and since they do not expand, thus
with time, their contribution to the total volume is
negligibly small, and therefore their contribution to the
volume averages (cf. Fig. 1) is negligibly small. The
Simsilun simulation consists of overdense and underdense
regions. As a result, the volume of the Simsilun simulation
is asymptotically dominated by underdense regions, but
the production of the gravitational entropy is asymptoti-
cally dominated by overdense regions. The reason why
overdense regions produce the gravitational entropy is
linked to the fact that in the expanding universe virialized
regions have nonzero shear [which is the source of the
CET gravitational entropy, Eq. (28)] and their density
does not asymptotically approach the de Sitter limit [i.e.
ρ=hρiD ≠ 1 and asymptotically diverges, which sources
the HBM entropy, Eq. (29)]. Therefore, even though the
volume averaged properties of the Simsilun simulation
asymptotically approach the de Sitter state, the rate of
change of the gravitational entropy does not asymptoti-
cally vanish.

VI. CONCLUSIONS

This paper investigated the cosmological no-hair and
gravitational entropy conjectures. The investigation was

based on the Simsilun simulation [35]. The Simsilun
simulation simulates the universe using the approximation
to the Einstein equations, which is based on the silent
universes [30,31]. In addition, the Simsilun simulation uses
the initial data sourced from the Millennium simulation
[37–39].
The obtained results show that the global properties of

the Simsilun universe asymptotically approach the de Sitter
state (cf. Fig. 1). This result confirms the cosmological
no-hair conjecture, which stipulates that a universe with a
nonpositive spatial curvature and positive cosmological
constant asymptotically approaches the de Sitter state. On
the other hand, the results obtained within the Simsilun
simulation also confirm the gravitational entropy conjec-
ture (cf. Fig. 2), which states that the evolution of the
universe should be associated with the production on the
gravitational entropy.
Within the Simsilun simulation, the production of the

gravitational entropy is related to the evolution of cosmic
structures and the presence of virialized objects (cf. Fig. 3).
For underdense regions the gravitational entropy saturates
(i.e. the production rate asymptomatically vanishes,
cf. Ref. [14] which studied the evolution of cosmic voids
and their gravitational entropy). The Simsilun simulation
consists of 16 777 216 cells with the average cell’s size
(at the present-day instant) of a few Mpc. Increasing the
resolution and decreasing the size of the cells would require
inclusion of several phenomena, which are not included in
the Simsilun simulation but are non-negligible on sub-Mpc
scales such as rotation and pressure gradients.
In the Simsilun simulation there is no rotation, nor

gradients of pressure which could prevent the collapse [40],
and so the virialization needs to be externally implemented
(cf. [41–43]). This is a weak part of the Simsilun simulation
and thus the nonzero production rate of the gravitational
entropy of the virialized structures should be treated
qualitatively. For quantitative results, more realistic simu-
lations are needed, for example the one based on the
relativistic Zeldovich approximation (RZA) [44–49]. The
RZA is a general-relativistic approximation that extends
the standard perturbation theory. Recently, it has been
shown that the RZA can successfully describe collapsing
structures and is comparable with Newtonian simulations
but includes the relativistic effects [50].
In addition, it should be noted that the Simsilun

simulation is based on the Silent Universes which are
Petrov type D. This means that there are no gravitational
waves within the Simsilun simulation. Since recent
detections of gravitational radiation [51–54] we know
that our Universe should have a large number of sources of
gravitational radiation. For gravitational waves the for-
mula (28) (the CET case) which was derived for Petrov D
does not apply [2], however formula (31) (the HBM case)
should still hold. In addition the gravitational waves
deform the spacetime producing the so-called memory
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FIG. 3. The rate of change of the CET gravitational entropy for
a single overdense cell (upper panel), and a single underdense cell
(lower panel).
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effect [55–60], which will also contribute to the gravita-
tional entropy. Thus the presence of gravitational waves
does affect the rate of change of the gravitational entropy.
For example, in the case of Petrov D spacetimes, inside
cosmic voids the production rate of the gravitational
entropy asymptomatically vanishes. Yet, with the inclu-
sion of the gravitational waves and the memory effect this
may change and lead to a nonzero production rate of the
gravitational entropy inside cosmic voids. Thus more
work is required in the context of the gravitational entropy
generated by the gravitational waves.
In summary, even though the cosmological no-hair and

gravitational entropy conjectures appear, at first sight, in
contradiction, they both correctly capture properties on a
universe with a positive cosmological constant and non-
positive spatial curvature. Therefore, we should expect that
our own universe will keep producing the gravitational

entropy, even though in the far future its global properties
will approach the de Sitter state.
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