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We propose a hybrid type of the conventional Higgs inflation and new Higgs inflation models. We
perform a disformal transformation into the Einstein frame and analyze the background dynamics and the
cosmological perturbations in the truncated model, in which we ignore the higher-derivative terms of
the Higgs field. From the observed power spectrum of the density perturbations, we obtain the constraint on
the nonminimal coupling constant ξ and the mass parameter M in the derivative coupling. Although the
primordial tilt ns in the hybrid model barely changes, the tensor-to-scalar ratio r moves from the value in
the new Higgs inflationary model to that in the conventional Higgs inflationary model as jξj increases.
We confirm our results by numerical analysis by ADM formalism of the full theory in the Jordan frame.
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I. INTRODUCTION

Inflation was first proposed to solve the flatness and the
horizon problem as well as the monopole problem in the
early Universe [1–3]. It also predicts the origin of cosmo-
logical perturbations [4–7], which turns out to be the most
important outcome for the observational confirmation of
the idea. Since the generic predictions of the inflationary
scenario have matched observations, inflation has now
become a standard model of the early Universe.
Many inflation models have been proposed so far [8], but

the constraints from the recent CMB observations are very
severe. The density perturbations are almost scale invariant,
while the tensor-to-scalar ratio should be very small. As a
result, some inflation models already have been excluded.
In most inflationary scenarios, we assume the existence

of a scalar field, called an inflaton, that is responsible for
inflation. However we still do not know what the inflaton
is. Since we know only one scalar field in the standard
model, which is the Higgs particle, many models have
looked for an inflaton beyond the standard model of
particle physics because the Higgs field cannot be an
inflaton to explain the observed density perturbations.
However, there is one loophole, which is the introduction

of gravitational couplings to the Higgs field. When we
quantize matter fields in a curved spacetime, we may find
nonminimal coupling of the fields with a curvature.
Including such a coupling term ξϕ2R, where ξ is a non-
minimal coupling constant and R is a scalar curvature,
some inflationary scenarios have been discussed [9–11].
Assuming this scalar field is the Higgs particle, which is
only one scalar field in the standard model, the so-called

Higgs inflation has been proposed [12–16]. We call it the
conventional Higgs inflation model. If ξ is large negative,
e.g., ξ ∼ −104, this model provides a consistent inflationary
scenario with observations.
New Higgs inflation was also proposed in 2010, which

has a derivative coupling of the Higgs field with the
Einstein curvature as 1

2M2 Gμν∇μϕ∇νϕ [17,18]. When
M ∼ 10−7MP, where MP is the reduced Planck mass, this
model is still consistent with observations. Although this
model produces a rather large amount of the gravitational
waves, the predicted tensor-to-scalar ratio is still just on the
border of the observational constraints.
The common feature of both Higgs inflation models is

no introduction of any additional degrees of freedom.
Although we still do not know the physics at the very
high-energy scale around the Planck scale (∼1018 GeV),
the above coupling terms may appear at the high-energy
scale [19]. Hence, it may be natural to consider a hybrid
type of the above two inflation models.
Since the typical energy scale of inflation is very high, we

have to take into account the quantum loop effects, which
may destabilize the Higgs field [20–30]. Whether it is really
unstable or stable may depend highly on the top quark mass.
Even if it is stable, since the running coupling constants via
renormalization depend on the energy scale, the effective
potential will be modified much [14,15,31–36].
Moreover, the loss of unitarity in the tree-level scattering at

the high-energy scale is also a serious problem. It is believed
that it means the theory is nonrenormalizable and some new
physics is required at such a scale. In general relativity, the
scale is around the Planck scale. However, nonrenormaliz-
able terms such as the nonminimal gravitational coupling
terms in the conventional and new Higgs inflation would
lower this scale. See for example the conventional Higgs
inflation [37–43] and new Higgs inflation [44–46].
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Although we may have to analyze our model with the
loop corrections and find the solution of the unitarity
problem, since the discussion on the quantum corrections
is still in a fog, we will analyze the original tree model in
this paper to show how the tensor-to-scalar ratio depends on
the coupling parameters.
This paper is organized as follows. After introduction of

the hybrid type Higgs inflation, we present our truncated
model based on a disformal transformation into the Einstein
frame and analyze the background cosmological dynamics
in Sec. II. We confirm the validity of our truncation by the
results calculated in the original full theory. In Sec. III,
we analyze the cosmological perturbations and give the
primordial tilt ns and the tensor-to-scalar ratio r. We then
show the accuracies of our results obtained in the truncated
model, which confirm our approach. Summary and dis-
cussion follow in Sec. IV. In Appendix A, we present the
explicit forms of the disformal transformation and the
higher-derivative terms of the Higgs field. We then give
the basic equations for the background universe in the
original Jordan frame in Appendix B. We also describe how
to calculate the cosmological perturbations in the full
theory by use of ADM formalism.
In this paper we use the reduced Planck units of MP ≔

ð8πGÞ−1=2 ¼ 1 as well as ℏ ¼ c ¼ 1.

II. HYBRID HIGGS INFLATION

First we summarize the original two Higgs inflation
models and then extend them to a hybrid type.

A. Two original Higgs inflation models

The action of the conventional Higgs inflation based
on nonminimal coupling of the Higgs field with a scalar
curvature [12] is given by

SJ ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1 − ξϕ2

2
RðgÞ − 1

2
ð∇ϕÞ2 − VðϕÞ

�
;

where the potential of the Higgs field ϕ is given by

VðϕÞ ¼ λ

4
ðϕ2 − v2Þ2:

λ is the Higgs self-coupling and vð≈246 GeVÞ is the Higgs
vacuum expectation value (VEV) [12]. When we discuss
inflation, which energy scale may be much higher than
100 GeV, we can approximate the potential as

VðϕÞ ¼ λ

4
ϕ4:

For the successful Higgs inflation, we assume ξ < 0. Note
that the sign of the nonminimal coupling ξ is different from
that in [12].

Performing a conformal transformation

gμν ¼ ð1 − ξϕ2Þ−1ḡμν;

we find the Einstein frame action

SE ¼
Z

d4x
ffiffiffiffiffiffi
−ḡ

p �
1

2
RðḡÞ − 1

2
ð∇̄ΦÞ2 −UðΦÞ

�
;

where the variables with a bar denote those in the Einstein
frame. Φ is the canonically normalized Higgs field,
defined by

dΦ
dϕ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ξð1 − 6ξÞϕ2

p
ð1 − ξϕ2Þ ;

and

UðΦÞ ¼ λϕ4

4ð1 − ξϕ2Þ2

is the potential in the Einstein frame.
When jξj ≫ 1, we find

Φ ≈
ffiffiffi
3

2

r
ln ð1 − ξϕ2Þ;

which gives

UðΦÞ ≈ λ

4ξ2
ð1 − e−

ffiffi
2
3

p
ΦÞ2:

This model is almost equivalent to the Starobinsky inflation
with the curvature squared term [1]. When we perform the
conformal transformation [47,48], the model is described
by the Einstein gravity plus a scalar field with the same
potential.
This potential approaches a constant exponentially as

Φ → ∞, which guarantees de Sitter expansion. Assuming
λ ≃ 0.1, if ξ ∼ −104, we obtain the cosmological pertur-
bations consistent with observations as the primordial
tilt ns ∼ 0.96 and the tensor-to-scalar ratio r ∼ 10−3 as
well as the power spectrum of the density perturbations
Pζ ∼ 10−9 [12].
An alternative approach, called new Higgs inflation,

adds a coupling between derivatives of the Higgs field with
the Einstein curvature, which action is given by

SJ ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

2
RðgÞ

−
1

2

�
gμν −

Gμν

M2

�
∇μϕ∇νϕ − VðϕÞ

�
:

where Gμν is the Einstein tensor and M is a coupling
constant described by a characteristic mass scale [16–18].
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Like the conventionalHiggs inflation, this does not introduce
extra degrees of freedom. The new coupling constant takes
on a value M ≃ 5 × 10−8λ−1=4 when normalized with CMB
data. We find ns ∼ 0.97 and r ∼ 0.1 [44].

B. Hybrid Model

Here we propose a hybrid type of the previous two Higgs
inflation models [49]. The action we assume is

SJ ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1 − ξϕ2

2
RðgÞ

−
1

2

�
gμν −

Gμν

M2

�
∇μϕ∇νϕ − VðϕÞ

�
; ð2:1Þ

which we call a hybrid Higgs inflation model.
This type of model is classified into more general model

proposed in [19], which they called generalized Higgs
inflation. They discussed the model in the original Jordan
frame. Since the basic equations are complicated, some
limiting case was discussed to present a simple formula for
the cosmological perturbations. However it turns out that
their approximation cannot be applied to the conventional
Higgs inflation model (see later).
Hence in this paper we shall perform a disformal

transformation to the Einstein frame and ignore the
higher-derivative terms[50], which may be justified during
the slow-rolling inflationary period as we will show the
detail later. We show how to get the Einstein frame via a
disformal transformation in Appendix A.
The action (2.1) in the Einstein frame is described as

SE ¼
Z

d4x
ffiffiffiffiffiffi
−ḡ

p �
1

2
R̄ −

1

2
ð∇̄ΦÞ2 −UðΦÞ

þ higher derivative terms

�
; ð2:2Þ

where the variables with a bar denote those in the Einstein
frame. New canonically normalized scalar field Φ is
defined by

dΦ
dϕ

¼ ð1 − ξϕ2Þ−1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ξð1 − 6ξÞϕ2 þ V

M2

r
:

The effective potential in the Einstein frame UðΦÞ is
given by

UðΦÞ ¼ VðϕÞ
ð1 − ξϕ2Þ2 ;

in the form of the parametric representation by the original
Higgs field ϕ. Fig. 1 shows the schematic shape of UðΦÞ.
In the transformed action (2.2), there are many higher

derivative terms such as ð∇ϕÞ4 and□ϕ. In Appendix A, we
present the higher-derivative terms explicitly. However,

since we discuss the inflationary period, in which the
inflaton changes slowly, we may be able to ignore those
terms. The resultant truncated action is now

SðTÞE ¼
Z

d4x
ffiffiffiffiffiffi
−ḡ

p �
1

2
R̄ −

1

2
ð∇̄ΦÞ2 − UðΦÞ

�
: ð2:3Þ

If this action approximates the original one well, we can
easily analyze the inflationary stage just by the potential
UðΦÞ. This is the great advantage of the use of a disformal
transformation. This potential is expanded in the large field
limit as

UðΦÞ ¼ λ

4ξ2

�
1 −

λ

2jξj3M2

1

Φ2
þ � � �

�
:

This inflation potential shape is favored by the CMB
observation because it is concave. This potential asymptoti-
cally converges to be a flat plateau in the large field region
as Φ−2 unlike the conventional Higgs inflation, which

approaches a constant exponentially as exp
�
−2

ffiffi
2
3

q
Φ
�
.

In what follows, we analyze this truncated model and
then justify this approach by comparing with the results
obtained without truncation in the original Jordan frame.

C. Background Dynamics

In this subsection, we first analyze an isotropic and
homogeneous universe model. We assume that the metric
form is given by the flat FLRW (Friedmann-Lemâitre-
Robertson-Walker) spacetime as

ds̄2 ¼ −dt̄2 þ ā2dx̄2:

When we ignore the higher-derivative terms, the basic
equations in the Einstein frame are given by

H̄2 ¼ 1

3

�
1

2

�
dΦ
dt̄

�
2

þ UðΦÞ
�

ð2:4Þ

_̄H þ H̄2 ¼ −
1

3

��
dΦ
dt̄

�
2

−UðΦÞ
�

ð2:5Þ

FIG. 1. The effective potential UðΦÞ in the Einstein frame for
the coupling parameters M ¼ 10−7; ξ ¼ −104 and λ ¼ 0.1.
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d2Φ
dt̄2

þ 3H̄
dΦ
dt̄

þ dU
dΦ

¼ 0; ð2:6Þ
where the Hubble expansion parameter is defined by

H̄ ¼ 1

ā
dā
dt̄

:

Since the potentialUðΦÞ in the Einstein frame has a very
flat plateau at the large field range, we will have a slow-roll
inflation. Once the scalar field starts to roll the potential
very slowly, the higher-derivative terms can be ignored.
As a result, we expect the truncated model (2.3) may
approximate an inflationary period very well.
In order to justify this expectation, we solve both cosmo-

logical dynamics in the original model and in the truncated
model, and compare those results. Since the full equations in
the Einstein frame are too complicated, we solve them in the
original Jordan frame, which basic equations are given in
Appendix B 1. Equations (B1), (B2), and (B3) in the original
Jordan frame correspond to Eqs (2.4), (2.5), and (2.6),
respectively.
Note that the cosmic time t̄ in the Einstein frame is

different from the cosmic time t in the Jordan frame. Since
two metrics are related as

ds2 ¼ gμνdxμdxν ¼ −dt2 þ a2dx2

¼ ð1 − ξϕ2Þ−1
�
ds̄2 þ∇μϕ∇νϕ

2M2
dxμdxν

�

¼ ð1 − ξϕ2Þ−1
�
−dt̄2 þ ā2dx̄2 þ

_ϕ2

2M2
dt2

�
;

where a dot denotes the derivative with respect to the
cosmic time t in the Jordan frame, we find the relations
between two cosmic times (t and t̄) and two scale factors
(a and ā) as

dt̄2 ¼
�
1 − ξϕ2 þ

_ϕ2

2M2

�
dt2

ā2 ¼ ð1 − ξϕ2Þa2;
respectively.
We numerically solve the basic equations, and compare

both dynamics. Fig. 2 shows the time evolution of the
Hubble expansion parameter H in the Jordan frame. In
stead of the cosmic time to describe the evolution, we use
the e-folding number N to the end of inflation, which is
defined by

N ¼ ln

�
aend
a

�
;

where aend is the scale factor at the end of inflation. In order
to compare the numerical solutions, the solution of the
truncated model in the Einstein frame is transformed to the
Jordan-frame variables.
Although there exists some small deviation at the end of

inflation (N ¼ 0), when the scalar field starts to move

rapidly, the truncated model approximates the original one
very well until N ≈ 20. Especially around N ¼ 50–60,
when the observed density perturbations are produced, the
agreement is quite good.

FIG. 2. The background dynamics for the coupling parameters
M ¼ 10−7; ξ ¼ −104. We show the evolution of the Hubble
expansion parameterH with respect to the e-folding number N in
the Jordan frame. The orange curve denotes the evolution of the
full theory in the Jordan frame, while the blue dotted curve shows
the results obtained by the truncated model in the Einstein frame.
We transform its solution into the Jordan frame variables. We also
show the reference e-folding number of N ¼ 50–60 by the dotted
light-gray lines.

FIG. 3. The evolution of the Higgs field ϕ with respect to the
e-folding number N. The coupling parameters, the colored
curves, and the dotted light-gray lines are the same setting as
those in Fig. 2.

FIG. 4. The phase-space evolution of the Higgs field (ϕ − _ϕ).
The coupling parameters, the colored curves, and the dotted light-
gray lines are the same setting as those in Fig. 2.
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We also depict the evolution of the Higgs field ϕ and
its phase diagram (the ϕ − _ϕ diagram) in Figs. 3 and 4,
respectively. These also support the validity of our
truncation. In the early stage of inflation, both back-
ground solutions are almost the same. At the end of
inflation, the deviation appears since the higher-derivative
terms seem no longer negligible.
In the next section, we will discuss the cosmological

perturbations and the validity of the truncated model.

III. COSMOLOGICAL PERTURBATIONS

A. Perturbations in the truncated model

In order to confirm our inflationary model, we have to
evaluate the cosmological perturbations and compare them
with the observed data. As shown in [51–56], a disformal
transformation as well as a conformal transformation will
not change the cosmological perturbations. There exists the
invariance of the cosmological perturbations under such
transformations. Hence, we can evaluate the perturbations
either in the Einstein frame or in the Jordan frame. Since the
full equations in the Einstein frame are very complicated, we
usually analyze the dynamics in the original Jordan frame. In
fact, in generalized Higgs inflation model, which includes
ours, they have analyzed the perturbations in the Jordan
frame [19]. Since the full analysis of perturbations is tedious,
they have also provided one simple formula under some
approximation [19].
However, as shown in the subsection II C, during the

inflationary stage when the scalar field changes very
slowly, the background dynamics in the truncated model
well approximates that in the original full model. Hence we
expect that the cosmological perturbations in the truncated
model may also provide a good approximation to the
original ones.
Here we first evaluate the cosmological perturbations in

the truncated model in the Einstein frame, in which the
perturbations can be obtained easily just by the effective
potential UðΦÞ. This is a great advantage of the present
method.
The potential slow-roll parameters are defined by

ϵ ¼ 1

2

�
1

U
dU
dΦ

�
2

;

η ¼ 1

U
d2U
dΦ2

:

The power spectrum of the density perturbations Pζ, its
spectral index ns and the tensor-scalar ratio r are given by
the slow-roll parameters as

Pζ ≃
1

24π2
U
ϵ
;

ns ≃ 1 − 6ϵþ 2η;

r ≃ 16ϵ:

Applying them to the present model, the power spectrum
of the density perturbations is written by

Pζ ≃
λϕ6ð4M2 þ 4ξM2ð6ξ − 1Þϕþ λϕ4Þ

3072π2M2ð1 − ξϕ2Þ2 : ð3:1Þ

Since UðΦÞ is not explicitly given by Φ but by some
parametric representation of ϕ, we have also used the
original Higgs field ϕ as a “parameter” when we solve the
dynamics.

FIG. 5. The constraint on the coupling parametersM and ξ. The
color dots with numbers or letters correspond to the coupling
parameters given in Table. I.

FIG. 6. The colored lines show the numerical results of the
hybrid Higgs inflation withN ¼ 50–60. The numbers or letters of
lines correspond to the colored dots in Fig. 5 and the coupling
parameters in Table I. Ⓝ and Ⓒ correspond to new Higgs inflation
model with M ¼ 1.41 × 10−8 and the conventional Higgs in-
flation with ξ ¼ −104, respectively. Ⓟ shows the case with
positive nonminimal coupling (ξ ¼ 1=6), which line is over-
lapping with the line Ⓝ. Ⓒ and ④ are almost the same. The
observational constraints on ns and r by Planck 2015 [57] are
also shown.
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The e-folding number N is given by

N ≃ −
Z

ΦN

Φend

U
dU=dΦ

dΦ ≃ −
ϕ2
Nξf8M2ξ2ð6ξ − 1Þ þ λð2þ ϕ2

NξÞg þ 2ðλþ 24M2ξ3Þ ln ½1 − ξϕ2
N �

64M2ξ3
; ð3:2Þ

whereΦN and ϕN are the values ofΦ and ϕ at the e-folding
number N, and Φend and ϕend are those values at the end of
inflation (ϵ ¼ 1).
From the Planck CMB observation [57], we have the

constraint on the power spectrum Pζ ∼ 2.2 × 10−9. Here
we assume that Φend;ϕend are much smaller than ΦN;ϕN ,
and then we set Φend;ϕend ¼ 0. From Eq. (3.2), we obtain
the value of the inflaton at N ¼ 50–60. Substituting these
values into Eq. (3.1), we obtain the constraint on ξ and M,
which is shown by the black curve in Fig. 5.
We then calculate ns and r, which results are plotted by

the colored lines with numbers or letters in Fig. 6. We
choose 7 sets of the coupling parameters:

Ⓟ (orange), Ⓝ (blue), ① (yellow), ② (pink),
③ (green), ④ (purple), Ⓒ (red),

which parameter values are given in Table I. The numbers
or letters also correspond to the colored dots in Fig. 5. Ⓒ, Ⓝ,
and Ⓟ give the models of the conventional Higgs inflation,
of new Higgs inflation, and with a positive nonminimal
coupling (ξ ¼ 1=6), respectively.
We find that the predicted point (ns, r) in the hybrid

Higgs inflation model moves from the values in new
Higgs inflation model to those in the conventional Higgs
inflationary model as jξj increases. The tensor-to-scalar
ratio r changes drastically, while the primordial tilt ns
barely changes. Hence once we know the tensor-scalar

ratio r by the future observations, we can fix the coupling
parameters M and ξ.
As found in Fig. 6, when we have the derivative

coupling, even if there exists a positive nonminimal
coupling constant ðξ > 0Þ, e.g., a conformal coupling
(ξ ¼ 1=6), an inflationary scenario consistent with obser-
vations becomes possible[10,11]. The results are almost
the same as new Higgs inflation model because non-
minimal coupling does not play any important role except
for the constraint on the initial value of the Higgs field
(ϕin < ξ−1=2). The large positive coupling may not give a
successful inflation.

B. Comparison with the “exact” results

In order to justify our results calculated in the trun-
cated model, we have to evaluate the perturbations in
the original full theory. Since the basic equations in
the Einstein frame is too complicated, we perform the
calculation of perturbations in the original Jordan
frame by use of the ADM formalism, which is summa-
rized in Appendix B 2. We suppose that this numerical
result gives the correct values. We then compare our
results with those “exact” ones. In Table I, we show the
“accuracies” of our results, which are evaluated by the
following deviations;

TABLE I. The coupling parameters for which we evaluate the cosmological perturbations in the hybrid Higgs inflation model.
We also show the accuracies of our results in our truncated model in the Einstein frame (THD) and those in the large friction limit (LFL)
in Jordan frame. The accuracies in THD are always fairly good, while the accuracy in LFL becomes much worse as the
coupling parameters approach the “conventional” Higgs inflation model, e.g. the model ④, because the approximation is no longer
valid.

Coupling parameters Approximation
methods

Δns=ns Δr=r

M ξ N ¼ 60 N ¼ 50 N ¼ 60 N ¼ 50

Ⓟ 1.41 × 10−8 1=6 THD 7.1 × 10−4 1.0 × 10−3 3.5 × 10−2 4.5 × 10−2

LFL 5.5 × 10−4 7.5 × 10−4 3.1 × 10−2 3.1 × 10−2

Ⓝ 1.41 × 10−8 0 THD 5.8 × 10−2 9.3 × 10−4 3.4 × 10−2 4.2 × 10−2

LFL 5.0 × 10−2 7.6 × 10−4 3.1 × 10−2 3.8 × 10−2

① 1.41 × 10−8 −102 THD 7.5 × 10−2 1.1 × 10−3 3.6 × 10−2 4.5 × 10−2

LFL 6.0 × 10−2 7.9 × 10−4 3.1 × 10−2 3.8 × 10−2

② 1.70 × 10−8 −103 THD 7.6 × 10−2 1.1 × 10−3 3.6 × 10−2 4.6 × 10−2

LFL 6.5 × 10−4 8.6 × 10−4 3.2 × 10−2 3.9 × 10−2

③ 3.98 × 10−8 −104 THD 1.2 × 10−3 1.8 × 10−3 5.1 × 10−2 6.5 × 10−2

LFL 2.8 × 10−3 3.8 × 10−3 9.0 × 10−2 1.0 × 10−1

④ 10−4 −4.27 × 105 THD 3.6 × 10−3 9.3 × 10−4 3.5 × 10−2 4.4 × 10−2

LFL 4.1 × 103 5.1 × 103 1.1 × 105 1.1 × 105
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Δns
ns

≔
jns − ns;ADMj

ns;ADM
;

Δr
r

≔
jr − rADMj

rADM
;

where ns;ADM and rADM are the values obtained in the full
theory by use of the ADM formalism.
Our model is included in the class of generalized Higgs

inflation models[19]. In their model, they provide one
simplified formula under some approximation. Using it, we
also calculate ns and r in our model, which are given in
Appendix B 3. The accuracies of the perturbations are
summarized in Table I. As the coupling parameters
approach the region near the “conventional” Higgs infla-
tion, the deviations from the “correct” values increase. The
approximation used in [19] is broken near the “conven-
tional” Higgs inflation model. On the other hand, our
approximation method is still valid even in such parameter
regions.

IV. SUMMARY AND DISCUSSION

In this paper we propose a hybrid type of the conven-
tional Higgs inflation and new Higgs inflation models.
Performing a disformal transformation into the Einstein
frame and truncating the higher-derivative terms of the
Higgs field, we analyze the inflationary background
dynamics and the cosmological perturbations. From the
observed power spectrum of the density perturbations, we
show the constraint on the nonminimal coupling constant ξ
and the mass parameter M in the derivative coupling.
Although the primordial tilt ns in the hybrid model barely
changes, the tensor-to-scalar ratio r moves from the value
in new Higgs inflationary model to that in the conventional
Higgs inflationary model as jξj increases. r varies in the
range of the observationally arrowed region. Hence once
we know the tensor-scalar ratio r by the future observa-
tions, we can fix the coupling parameters M and ξ. We
confirm our results by numerical analysis by ADM for-
malism of the full theory in the Jordan frame. The higher-
derivative terms of the Higgs field appeared in the Einstein
fame can become negligible because of the slow-rolling
evolution during inflation.
As we mentioned in Introduction, our studied model is

no more than the tree level. At the high-energy scale, such
as an inflationary stage, we should take into account the
quantum loop effects to obtain the effective potential. Since
the loop corrections significantly change the effective
Higgs potential via the running of the coupling constants,
the conventional Higgs inflation model has been analyzed
including in the loop corrections [14,29,58]. The frame
dependence of the effective potential has also been dis-
cussed [15,58]. This problem is caused by which frame
(either in the Jordan frame or in the Einstein frame) we use
to quantize the Higgs field and calculate the effective

potential. They found that r would be enhanced so much
that some parameter regions can be excluded by the
observations. However, as we expect, the result should
not depend on the frame choice [41,59]. Since we also have
the stability problem of the Higgs field, we have to consider
the loop corrections more carefully. We expect not only the
Higgs coupling λ but also the nonminimal coupling ξ as
well as the derivative coupling M are running via renorm-
alization. Such a calculation could be performed by the
asymptotic safety approach [60–63]. These problems are
under investigation.
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APPENDIX A: TOWARDS THE EINSTEIN
FRAME VIA DISFORMAL TRANSFORMATION

1. Disformal transformation

We first consider the following disformal transformation,

gμν ¼ Ω̄2ðḡμν þ ūμūν;Þ ðA1Þ

from the original metric ḡμν with a vector field ūμ, which is
either timelike or spacelike, i.e.,

ūμūμ ¼ ϵū2;

where ϵ ¼ �1. This transformation leads to

ffiffiffiffiffiffi
−g

p ¼ Ω̄Dð1þ ϵū2Þ12 ffiffiffiffiffiffi
−ḡ

p

gμν ¼ Ω̄−2
�
ḡμν −

1

1þ ϵū2
ūμūν

�
Γμ
νρ ¼ Γ̄μ

νρ þ γ̄μνρ;

where D is the spacetime dimension, and the deviation of
the connection γ̄μνρ is given by

γ̄μνρ ¼ f̄μνρ þ ω̄μ
νρ; ðA2Þ

with
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f̄μρσ ≔
1

2

�
ḡμν −

1

1þ ϵū2
ūμūν

�
× ½∇̄ρðūνūσÞ þ ∇̄σðūνūρÞ − ∇̄νðūρūσÞ�

ω̄μ
ρσ ≔ δμρ∇̄σ ln Ω̄þ δμσ∇̄ρ ln Ω̄ −

�
ḡμν −

1

1þ ϵū2
ūμūν

�
× ðḡρσ þ ūρūσÞ∇̄ν ln Ω̄;

where ∇̄μ denotes the covariant derivative with respect to
the metric ḡμν.
The Riemann, Ricci, and scalar curvatures are given by

Rμ
νρσ ¼ R̄μ

νρσ þ ∇̄ργ̄
μ
νσ − ∇̄σγ̄

μ
νρ þ γ̄μασγ̄ανρ − γ̄μαργ̄ανσ

Rρσ ¼ R̄ρσ þ ∇̄μγ̄
μ
ρσ − ∇̄σγ̄

μ
μρ þ γ̄μμαγ̄αρσ − γ̄βαργ̄αβσ

R¼ Ω̄−2
�

2þ ϵū2

2ð1þ ϵū2Þ R̄−
1

1þ ϵū2
Ḡμνūμūν þ ∇̄μðḡρσγ̄μρσÞ

− ∇̄ργ̄μμρ þ ḡρσγ̄αρσγ̄
μ
μα − ḡρσγ̄βαργ̄αβσ −

1

1þ ϵū2
ūρūσ

× ð∇̄μγ̄
μ
ρσ − ∇̄σγ̄

μ
μρ þ γ̄μμαγ̄αρσ − γ̄βαργ̄αβσÞ

�
:

Hence, we obtain the Einstein tensor as

Gμν ¼ Ḡμνþ
1

2ð1þ ϵū2Þ ðḡμνþ ūμūνÞūαūβḠαβ

þ ϵū2

4ð1þ ϵū2Þðḡμνþ ūμūνÞR̄−
1

2
ūμūνR̄

þ ∇̄ργ̄
ρ
μν− ∇̄νγ̄

ρ
ρμþ γ̄ρρσγ̄σμν− γ̄σρμγ̄

ρ
σν−

1

2
ðḡμνþ ūμūνÞ

×

�
∇̄αðḡρσγ̄αρσÞ− ∇̄ργ̄σσρþ ḡρσγ̄αρσγ̄

β
βα − ḡρσγ̄βαργ̄αβσ

−
1

1þ ϵū2
ūρūσð∇̄αγ̄

α
ρσ − ∇̄σγ̄

α
αρþ γ̄ββαγ̄

α
ρσ − γ̄βαργ̄αβσÞ

�
:

2. Towards the Einstein frame

Now we consider the following action,

S ¼
Z

dDx
ffiffiffiffiffiffi
−g

p ½F4ðϕÞRðg̃Þ þ F5ðϕÞGμνðgÞ∇μϕ∇νϕ�;

ðA3Þ
where F4ðϕÞ and F5ðϕÞ are arbitrary functions of a scalar
field ϕ. This gives a gravity sector of some simple scalar-
tensor gravity theory.
Performing the disformal transformation (A1) with

ūμ ¼ β∇̄μϕ, we find

R ¼ Ω̄−2
�

2þ ϵū2

2ð1þ ϵū2Þ R̄ −
1

1þ ϵū2
Ḡμνūμūν þ � � �

�

Gμν ¼ Ḡμν þ
1

2ð1þ ϵū2Þ ðḡμν þ ūμūνÞūαūβḠαβ

−
ū2

4ð1þ ϵū2Þ ðḡμν þ ūμūνÞR̄ −
1

2
ūμūνR̄þ � � � ;

where � � � describes some functions of ϕ and its derivatives.
Since ∇μϕ ¼ ∂μϕ ¼ ∇̄μϕ, we find the action (A3) as

S ¼
Z

dDx
ffiffiffiffiffiffi
−ḡ

p ½AðΩ̄; βÞR̄ðḡÞ þ BðΩ̄; βÞ

× ḠαβðḡÞ∇̄αϕ∇̄βϕþ � � ��;

where

A ¼ Ω̄D−4ð1þ ϵū2Þ−3=2
4β2

½2β2Ω̄2ð1þ ϵū2Þð2þ ϵū2Þ

× F4 − ðϵū2Þ2F5�

B ¼ Ω̄D−4ð1þ ϵū2Þ−3=2
2

½−2β2Ω̄2ð1þ ϵū2ÞF4

þ ð2þ ϵū2ÞF5�:

In order to find only the Einstein-Hilbert action in the ḡ
frame, we have to impose A ¼ 1

2
and B ¼ 0. We then find

the equations for Ω̄ and β as

2β2Ω̄2ð1þϵū2Þð2þϵū2ÞF4−ðϵū2Þ2F5¼2β2Ω̄4−Dð1þϵū2Þ3=2
−2β2Ω̄2ð1þϵū2ÞF4þð2þϵū2ÞF5¼0:

These equations fix Ω̄ and β as

Ω̄D−2 ¼ ð2þ ϵū2Þ
4ð1þ ϵū2Þ1=2F4

ðA4Þ

β2 ¼ ð2þ ϵū2ÞF5

2ð1þ ϵū2ÞF4

Ω̄−2: ðA5Þ

Since ϵū2 ¼ β2ð∇ϕÞ2, we have to solve the coupled
equations (A4) and (A5) to describe Ω̄ and β explicitly
in terms of ϕ and ∇ϕ.
As a result, the disformal transformation (A1) with (A4)

and (A5) gives the Einstein gravity in the ḡ frame, which we
call the Einstein frame.

3. Hybrid Higgs inflation

Next we apply the above result to the hybrid Higgs
inflation model in four dimensions (D ¼ 4), which is
given by
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S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1 − ξϕ2

2
R

−
1

2

�
gμν −

Gμν

M2

�
∇μϕ∇νϕ − VðϕÞ

�
:

Since we are interested in a cosmological dynamics, for
the disformal transformation,

gμν ¼ Ω̄2ðḡμν þ β2∇̄μϕ∇̄νϕÞ;

we choose a timelike vector ūα ¼ β∇̄μϕ with ūαūα ¼
−ū2 (ϵ ¼ −1).
To find the Einstein gravity in the transformed ḡ frame,

we choose

Ω̄2 ¼ ð2 − ū2Þ
2ð1 − ū2Þ12ð1 − ξϕ2Þ

β2 ¼ 1

ð1 − ū2Þ12M2
:

Introducing the canonical kinetic term of the Higgs field,

X̄ ≔ −
1

2
ḡμν∇̄μϕ∇̄νϕ;

since ū2 ¼ −ūαūα ¼ 2β2X̄, we find the relation between ū
and X̄ as

ū2ð1 − ū2Þ12 ¼ 2X̄
M2

: ðA6Þ

The gravity action is now given by the Einstein-Hilbert
term. How about the action of the Higgs field? Apart from
the standard action in the original frame, we have the
additional contribution Ldisformal from the disformal trans-
formation as

SHiggs ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
−
1

2
gμν∇μϕ∇νϕ − VðϕÞ þ Ldisformal

�
;

where

Ldisformal ¼
1 − ξϕ2

2Ω̄2

�
∇̄μðḡρσγ̄μρσÞ − ∇̄ργ̄μμρ þ ḡρσγ̄αρσγ̄

μ
μα − ḡρσγ̄βαργ̄αβσ

−
β2

1 − ū2
∇̄ρϕ∇̄σϕð∇̄μγ̄

μ
ρσ − ∇̄σγ̄

μ
μρ þ γ̄μμαγ̄αρσ − γ̄βαργ̄αβσÞ

�

þ ḡμλḡνκ∇̄λϕ∇̄κϕ

2M2
½∇̄ργ̄

ρ
μν − ∇̄νγ̄

ρ
ρμ þ γ̄ρρσγ̄σμν − γ̄σρμγ̄

ρ
σν

−
1

2
ðḡμν þ β2∇̄μϕ∇̄νϕÞ½∇̄αðḡρσγ̄αρσÞ − ∇̄ργ̄σσρ þ ḡρσγ̄αρσγ̄

β
βα − ḡρσγ̄βαργ̄αβσ

−
β2

1 − ū2
∇̄ρϕ∇̄σϕð∇̄αγ̄

α
ρσ − ∇̄σγ̄

α
αρ þ γ̄ββαγ̄

α
ρσ − γ̄βαργ̄αβσÞ�:

In order to obtain the action in the Einstein frame, we
have to rewrite the variables in the g frame to those in the ḡ
frame. Since Ldisformal is already given by the variables in
the ḡ frame, we easily find the action of the Higgs field in
the Einstein frame as

SHiggs ¼
Z

d4x
ffiffiffiffiffiffi
−ḡ

p
Ω̄4ð1 − ū2Þ12

×

�
−
1

2
Ω̄−2ḡμν∇̄μϕ∇̄νϕ − VðϕÞ þ Ldisformal

�
:

Since the above additional term Ldisformal is very com-
plicated, it seems not to be useful for a practical purpose.
However, since we are interested in an inflationary era, at
which the scalar field changes very slowly, the kinetic term
X̄ is small in the slow-rolling phase and then we may be
able to ignore the higher-derivative terms such as □̄ϕ and
X̄2. The resultant action becomes much simpler. We shall
show below what we find as the lowest order.

Expanding Eq. (A6) in terms of X̄, we find

ū2 ¼ 2X̄
M2

�
1þ X̄

M2
þ � � �

�
:

The kinetic term and the potential term in the standard
Higgs action are rewritten by the similar expansion as

−
1

2

ffiffiffiffiffiffi
−g

p ð∇ϕÞ2¼−
1

2

ffiffiffiffiffiffi
−g

p ð∇̄ϕÞ2×
h
1− ð∇̄ϕÞ2

2M2 þ���
i

1−ξϕ2

−
ffiffiffiffiffiffi
−g

p
VðϕÞ¼−

ffiffiffiffiffiffi
−ḡ

p VðϕÞ
ð1−ξϕ2Þ2

�
1þð∇̄ϕÞ2

2M2
−
ð∇̄ϕÞ4
8M4

���
�
:

The additional term Ldisformal, in which both f̄μνρ and ω̄μ
νρ

are the functionals of ϕ and its derivatives, is very
complicated. However, f̄μνρ consists only of the derivatives
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of ūμ ¼ β∇̄μϕ, which are the higher-derivative terms of ϕ.
We may neglect such terms. On the other hand, ω̄μ

νρ contains
the derivative of the conformal factor Ω̄. Hence, its con-
tribution provides the square of the first derivative term of the
scalar field ϕ, which gives the lowest order in the expansion.
Hence,we have to pick up the relevant contributions from the
terms with ω̄μ

νρ. Since the derivatives of ω̄
μ
νρ are the higher

derivatives of ϕ, only algebraic terms remain.
We then find

ffiffiffiffiffiffi
−g

p
Ldisformal ¼

ffiffiffiffiffiffi
−ḡ

p
Ω̄4ð1 − ū2Þ12 1 − ξϕ2

2Ω̄2

× ½ḡρσω̄α
ρσω̄

μ
μα − ḡρσω̄β

αρω̄α
βσ þ � � ��

¼ ffiffiffiffiffiffi
−ḡ

p �
−3

ξ2ϕ2

ð1 − ξϕ2Þ2 ð∇̄ϕÞ2 þ � � �
�
:

As a result, the effective lowest-order action for the
Higgs field in the Einstein frame is given by

SHiggs ¼ −
Z

d4x
ffiffiffiffiffiffi
−ḡ

p �
1

2

�
1 − ξð1 − 6ξÞϕ2 þ VðϕÞ

M2

ð1 − ξϕ2Þ2
�
ð∇̄ϕÞ2

þ VðϕÞ
ð1 − ξϕ2Þ2 þ � � �

�

≈ −
Z

d4x
ffiffiffiffiffiffi
−ḡ

p �
1

2
ð∇̄ΦÞ2 þ UðΦÞ þ � � �

�
;

where

dΦ
dϕ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ξð1 − 6ξÞϕ2 þ VðϕÞ

M2

q
1 − ξϕ2

UðΦÞ ¼ VðϕÞ
ð1 − ξϕ2Þ2 :

APPENDIX B: ANALYSIS IN JORDAN FRAME

1. The basic equations for a Friedmann universe
in the Jordan frame

We shall derive the basic equations for a background
universe in the Jordan frame. We adopt the flat FLRW
metric, as

ds2 ¼ −N 2dt2 þ aðtÞ2dx2;

where N is a lapse function and a is a scale factor of the
Universe. The action (2.1) is written as

S ¼
Z

d4xN a3
�
−3

H2

N 2
ð1 − ξϕ2Þ þ

�
1þ 3H2

N 2M2

�
_ϕ2

2N 2

þ 6ξ
Hϕ _ϕ

N 2
− VðϕÞ

�
;

where H ≔ _a=a is the Hubble expansion parameter and
a dot denotes the derivativewith respect to the cosmic time t.
Taking the variation with respect to the lapse functionN ,

we find

H2 ¼ 1

3ð1 − ξϕ2Þ
��

1þ 9H2

M2

�
_ϕ2

2
þ 6ξϕ _ϕH þ VðϕÞ

�
;

ðB1Þ
where we have set N ¼ 1. This is just the Friedmann
equation in the Jordan frame. The variation with respect to
the scale factor a gives

ð3H2 þ 2 _HÞð1 − ξϕ2Þ þ
�
1 −

3H2

M2
− 4ξ

�
_ϕ2

2
− VðϕÞ

−
1

M2

d
dt

ðH _ϕ2Þ − 2ξϕϕ̈ − 4ξϕ _ϕH ¼ 0: ðB2Þ

The equation of motion of the Higgs field is given by
variation with respect to ϕ as

�
1þ 3H3

M2

�
ϕ̈þ 3H

�
1þ 3H2 þ 2 _H

M2

�
_ϕþ 6ξð _H þ 2H2Þϕ

þ dV
dϕ

¼ 0: ðB3Þ

Equations (B1), (B2), and (B3) are the basic equations for a
Friedmann universe in the Jordan frame.

2. Cosmological perturbations in the Jordan frame
by use of the ADM formalism

In order to check the accuracy of the perturbations
calculated in the truncated model in the Einstein frame, we
have to analyze the perturbations in the full theory. Although
the disformal transformation provides the equivalent cosmo-
logical perturbations [51–56], the full action in the Einstein
frame is too complicated to be analyzed. Hence, we perform
the perturbations in the original Jordan frame by use of the
ADM formalism [64]. We expect that this approach gives the
correct perturbations.We then compare thosewith our results
evaluated by the truncated model in the Einstein frame.
We use the unitary gauge, in which the Higgs field is

uniform ϕ ¼ ϕðtÞ. The perturbed metric is written as

ds2 ¼ −N 2dt2 þ γijðdxi þN idtÞðdxj þN jdtÞ;

where

N ¼ 1þ α; N i ¼ ∂iβ;

γij ¼ a2ðtÞe2ζ
�
δij þ hij þ

1

2
hikhkj

�
:

α, β, ζ, and hij are the scalar modes and the tensor mode of
perturbations, respectively. hij satisfies the transverse-
traceless conditions hii ¼ hij;j ¼ 0,
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First we consider the scalar perturbations. Varying the
action with respect to the lapse α and the shift β, we find
two constraint equations,

α ¼ 1 − ξϕ2 − _ϕ2

2M2

Hð1 − ξϕ2 − 3 _ϕ2

2M2Þ − ξϕ _ϕ
_ζ;

∂2
i β

a2
¼ −

1 − ξϕ2 − _ϕ2

2M2

Hð1 − ξϕ2 − 3 _ϕ2

2M2Þ − ξϕ _ϕ

∂2
i ζ

a2

þ
	
3þ 1 − ξϕ2 − _ϕ2

2M2

½Hð1 − ξϕ2 − 3 _ϕ2

2M2Þ − ξϕ _ϕ�2

×

�
_ϕ2

2
þ 6Hξϕ _ϕ − 3H2

�
1 − ξϕ2 −

3 _ϕ2

M2

��

_ζ:

Replacing α and β with ζ by these constraints, we obtain the
quadratic action for the scalar perturbations as

Sð2ÞS ¼
Z

dtd3xa3
�
GS

_ζ2 −
FS

a2
ð∂iζÞ2

�
;

where

GS ¼ 3

�
1 − ξϕ2 −

_ϕ2

2M2

�
þ ð1 − ξϕ2 − _ϕ2

2M2Þ2

½Hð1 − ξϕ2 − 3 _ϕ2

2M2Þ − ξϕ _ϕ�2

×

�
−3H2

�
1 − ξϕ2 −

3 _ϕ2

M2

�
þ

_ϕ2

2
þ 6Hξϕ _ϕ

�

FS ¼
1

a
d
dt

�
að1 − ξϕ2 − _ϕ2

2M2Þ2

Hð1 − ξϕ2 − 3 _ϕ2

2M2Þ − ξϕ _ϕ

�

−
�
1 − ξϕ2 þ

_ϕ2

2M2

�
:

The sound speed cS is given by

c2S ¼
FS

GS
:

We assume the following conditions during inflation:

ϵ ≔ −
_H
H2

≃ const

fS ≔
_FS

HFS
≃ const

gS ≔
_GS

HGS
≃ const;

which are confirmed by numerical analysis. The power
spectrum of the scalar perturbations is given by

Pζ ¼
γS
2

ffiffiffiffiffiffi
GS

F3
S

s
H2

4π2

����
horizon

; ðB4Þ

where

γS ¼ 2
2ð3−ϵþgSÞ

2−2ϵ−fS=2þgS=2
−3
����Γð

3−ϵþgs
2−2ϵ−fS=2þgS=2

Þ
Γð3

2
Þ

����
2�

1−ϵ−
fSþgS

2

�
2

:

Γ is the Gamma function. The subscript “horizon”means
that the perturbations are evaluated at the crossing of the
sound horizon. The spectrum index is obtained by

ns − 1 ¼ 3 −
2ð3 − ϵþ gsÞ

2 − 2ϵ − fS=2þ gS=2
:

The tensor perturbations are also calculated in the same
manner as the scalar perturbations. The quadratic action for
the tensor perturbations is

Sð2ÞT ¼ 1

8

Z
dtd3xa3

�
GTð _hijÞ2 −

FT

a2
ð∂khijÞ2

�
;

where

GT ¼ 1 − ξϕ2 −
_ϕ2

2M2

FT ¼ 1 − ξϕ2 þ
_ϕ2

2M2
:

We also assume the following conditions:

fT ¼
_FT

HFT
≃ const

gT ¼
_GT

HGT
≃ const;

which are also confirmed numerically.
The power spectrum for tensor perturbations is given by

PT ¼ 8γT

ffiffiffiffiffiffi
GT

F3
T

s
H2

4π2

�����
horizon

; ðB5Þ

where

γT ≔ 2
2ð3−ϵþgT Þ

2−2ϵ−fT =2þgT=2
−3
����Γð

3−ϵþgT
2−2ϵ−fT=2þgT=2

Þ
Γð3

2
Þ

����
2�

1− ϵ−
fT þgT

2

�
2

:

As a result, we obtain the tensor-to-scalar ratio r by

r ¼ PT

Pζ
: ðB6Þ

We expect that those values give the correct ones,
although we have to perform numerical calculation. We
compare the results obtained by some approximations with
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the above “correct” values and then judge the validity of the
approximations.

3. Large friction limit

Equations (B4) and (B5) are still complicated to evaluate.
Hence, in [19], taking the large friction limit, they have given
a simplified formula. Since our model is one of the
generalized Higgs inflation models, we may apply their
formula to our analysis.
Here we show the results for the hybrid Higgs inflation

model by use of their formula. The power spectra of the
scalar and tensor perturbations are given by

Pζ ≃
λϕ6

768π2ð1 − ξϕ2Þ
�
1þ λϕ4

4M2ð1 − ξϕ2Þ
�
;

while the primordial tilt ns and the tensor-to-scalar
ratio r are

ns − 1 ≃ −
8ð3 − 2ξϕ2Þ
ϕ2ð1 − ξϕ2Þ

�
1þ λϕ4

4M2ð1 − ξϕ2Þ
�−1

− 2
λϕ2ð2 − ξϕ2Þ
M2ð1 − ξϕ2Þ2

�
1þ λϕ4

4M2ð1 − ξϕ2Þ
�−2

r ≃
128

ϕ2ð1 − ξϕ2Þ
�
1þ λϕ4

4M2ð1 − ξϕ2Þ
�−1

:

The e-folding N is given by solving Eqs. (B1), (B2),
and (B3). Based on these formulas, we show the accuracies
of the cosmological perturbations in Table I.
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