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We test both the Friedmann-Lemaître-Robertson-Walker geometry and ΛCDM cosmology in a model-
independent way by reconstructing the Hubble functionHðzÞ, the comoving distanceDðzÞ, and the growth
of structure fσ8ðzÞ using the most recent data available. We use the linear model formalism in order to
optimally reconstruct the above cosmological functions, together with their derivatives and integrals. We
then evaluate four of the null tests available in the literature that probe both background and perturbation
assumptions. For all the four tests, we find agreement, within the errors, with the standard cosmological
model.
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I. INTRODUCTION

The late-time accelerated expansion of the Universe has
led cosmologists to revise the theory according to which the
cosmos evolves either by introducing a new form of matter
called dark energy [1] or by modifying directly the laws of
gravity [2]. Within the framework of Friedmann-Lemaître-
Robertson-Walker (FLRW) cosmologies, a phase of accel-
erated expansion can be produced by a simple cosmological
constant Λ. Although the above gives rise to severe coinci-
dence and fine-tuning problems, observations seem in agree-
ment with such an explanation [3–5].
In order to make progress and understand what is causing

the Universe to accelerate, one has, generally speaking, two
options. One can assume that the ΛCDM model is correct
and work out its consequences. If inconsistencies with data
are found, then physics beyond the standard model is
necessary. The other complementary approach is to assume
a specific model beyond ΛCDM and work out if it has
advantages with respect to the standard paradigm. The
second approach may be more powerful and may trigger
new ideas and methodologies. The first approach is simpler
so that it is possible to study and understand the model
phenomenology in much greater details. The methodology
of this paper belongs to the first approach. In particular, we
will analyze null tests of the standard model.
Null or consistency test analyses do not aim at finding

the parameters of the model in question. Rather, they aim at
uncovering possible tensions in data, which could be due to
unaccounted-for systematics or a failure of the model itself.
These tests are model independent in the sense that they use
directly the data and have the added advantage that, if
violated, one knows which set of theoretical assumptions
have to be reanalyzed. Equivalently, null tests have the ability
to extract information that one may miss if restricting to

parameter estimation. It isworth stressing that it is imperative
to corroborate the underlying cosmological model in such
a way in view of future experiments that will collect an
enormous amount of data, spanning over a wide range of
redshift; see, for example, DES [5], eBOSS [6], J-PAS [7],
DESI [8], LSST [9], Euclid [10], and SKA [11].
Here, we consider four null tests that have been proposed

during the past ten years: theOm1 diagnostic by Sahni et al.
[12], theOm2 diagnostic by Zunckel and Clarkson [13], the
Ok diagnostic by Clarkson et al. [14], and the ns diagnostic
by Nesseris and Sapone [15]. In order to evaluate these
tests, we reconstruct the Hubble function HðzÞ, the comov-
ing distanceDðzÞ, and the growth of structure fσ8ðzÞ using
the most recent data available. We use the linear model
formalism in order to optimally reconstruct the above
cosmological functions. This method is simple and power-
ful as one can obtain an exact statistical description of the
reconstructed functions, including their derivatives and
integrals. Furthermore, it is an analytical approach which
is suitable to be used with large data sets. Therefore, we
propose this method as a possible alternative to methods
previously used in the literature, to list a few, binning data
and discrete derivatives, principal component analysis,
genetic algorithms, the Padé approximation, Gaussian
processes, nonparametric smoothing, and machine learning
[16–21].
This paper is organized as follows. In Sec. II, we review

basic equations and the notation adopted in this paper, and
in Sec. III, we briefly present the four null tests considered
in this work. We describe the data we use in Sec. IV and
detail our methodology in Sec. V. The results of Sec. VI
show that the standard cosmological model passes all the
tests. The busy reader can jump to Fig. 4. We conclude in
Sec. VII.
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II. BASIC EQUATIONS

Here, we review the basic equations upon which all the
null tests are built. The evolution of the dark-energy
component can be expressed in terms of its present energy
density parameter Ωde0 and its equation-of-state parameter
wðzÞ ¼ p=ρ, with p and ρ being the pressure and energy
density, respectively. The subscript 0 will denote the
present-day value of the corresponding quantity. The
Hubble parameter is then

H2ðzÞ
H2

0

¼ Ωm0
ð1þ zÞ3 þ Ωde0ð1þ zÞ3ð1þŵÞ þ Ωk0ð1þ zÞ2;

ð1Þ

where

ŵðzÞ ¼ 1

logð1þ zÞ
Z

z

0

wðz0Þ
1þ z0

dz0; ð2Þ

and Ωm0
and Ωk0 are the matter and curvature density

parameters, respectively. If we are dealing with the cos-
mological constant, then wðzÞ ¼ −1 and ŵðzÞ ¼ −1 at all
redshifts. Furthermore, the relation Ωm0

þΩde0 þ Ωk0 ¼ 1

has to be satisfied.
In a general FLRW model with curvature, the angular

diameter distance can be written as

DAðzÞ ¼
c

1þ z
1

H0

ffiffiffiffiffiffiffiffiffiffiffi
−Ωk0

p sin

� ffiffiffiffiffiffiffiffiffiffiffi
−Ωk0

q Z
z

0

dz0

Hðz0Þ
�
: ð3Þ

The angular diameter distance is related to the luminosity
distanceDL and the dimensionless comoving distanceD by
the relations

DLðzÞ ¼ ð1þ zÞ2DAðzÞ; ð4Þ

DðzÞ ¼ H0

c
ð1þ zÞDAðzÞ: ð5Þ

In the Universe, matter clusters, forming perturbations
δρðt; xÞ to the underlying background energy density
ρðtÞ. The growth of matter perturbation in the ΛCDM
model is given by (assuming homogeneity and isotropy)

δ00ðzÞþ
�

5

1þ z
−
H0ðzÞ
HðzÞ

�
δ0ðzÞ−3

2

ΩmðzÞ
ð1þ zÞ2 δðzÞ¼ 0; ð6Þ

where a prime refers to the derivative with respect to z, and
the time evolving matter energy density is

ΩmðzÞ ¼
Ωm0

ð1þ zÞ3
H2ðzÞ=H2

0

: ð7Þ

III. NULL TESTS OF THE STANDARD MODEL

In this section, we list the null tests that we consider in
this paper; we refer to the corresponding literature for
further details.

A. Om diagnostic

The Om diagnostic was introduced to test deviations
with respect to the flat ΛCDM scenario. Setting w ¼ −1
and Ωk0 ¼ 0 in Eq. (1), one can solve for Ωm0

and obtain
the following diagnostic [12]:

Om1ðzÞ ¼
HðzÞ2=H2

0 − 1

ð1þ zÞ3 − 1
: ð8Þ

Equivalently, one can solve for Ωm0
in Eq. (3) and obtain

the alternative diagnostic [13]:

Om2ðzÞ ¼
1=D0ðzÞ2 − 1

ð1þ zÞ3 − 1
: ð9Þ

Clearly, within the flat ΛCDM model, one has

Om1ðzÞ ¼ Om2ðzÞ ¼ Ωm0
; ð10Þ

which has to be valid at any redshift. Any violation of the
above relation will falsify the flat ΛCDM model. As
discussed below, we will obtain the luminosity distance
DLðzÞ (and so D) from supernova Ia data and the Hubble
function HðzÞ from the cosmic chronometer data.

B. Ok diagnostic

The following constant-curvature test can falsify not
only the flat ΛCDM model but all the FLRW models at
once. The Ok diagnostic is defined according to Ref. [14]
(see also Ref. [22]):

OkðzÞ ¼ D0ðzÞ2HðzÞ2=H2
0 − 1

DðzÞ2 : ð11Þ

If the FLRW models are the correct background models,
one has

OkðzÞ ¼ Ωk0 : ð12Þ

Any violation not caused by standard-model perturbations1

would have profound implications as the FLRWmodel is at
the basis of almost any cosmological model (except
inhomogeneous [26] and backreaction models; see the
Classical Quantum Gravity special issue [27] and also
Ref. [28]).

1Standard-model perturbations can produce an additional
systematic error on H0 [23] and on the dark-energy equation
of state [24,25].
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C. ns diagnostic

While the previous tests probe the background structure
of the Universe, the test proposed in Ref. [15] (and deeply
investigated in Ref. [29]) is sensitive to both background
and perturbation observables. The ns diagnostic is able to
test the validity of the growth of matter perturbations under
the assumption of an FLRW metric with a cosmological
constant (which has no perturbations). In brief, the ns
diagnostic is obtained from Eq. (6): first, the corresponding
Lagrangian is found, and, then, with the help of Noether’s
theorem, the associated conserved quantity is obtained. The
conserved quantity is the ns diagnostic that is found to be

nsðzÞ¼ 1

1þ z
HðzÞ
Hð0Þ

fσ8ðzÞ
fσ8ð0Þ

×exp

�
3×104

2
ωm

Z
z

0

ð1þxÞ2
σ8;0−

R
x
0
fσ8ðyÞ
1þy dy

HðxÞ2fσ8ðxÞ
dx

�
;

ð13Þ
where σ8;0 is the normalization of the power spectrum
(present-day mass fluctuation on a scale of 8 h−1Mpc; this
refers to linear perturbation theory), and

fσ8ðzÞ ¼ fðzÞGðzÞσ8;0; ð14Þ
in which GðzÞ is the growth function of matter perturba-
tions normalized to unity today [GðzÞ ¼ δðzÞ=δð0Þ, from
(6)] and the growth factor is f ¼ d lnG=d lnð1þ zÞ þ 1.
In order to be robust against systematics of a particular

experiment, we need to reconstruct the nsðzÞ test by using
four independent observables: the Hubble parameter HðzÞ,
the growth of structure fσ8ðzÞ, σ8;0, and ωm ¼ Ωm0

h2.
As discussed below, we will obtain fσ8 from the Redshift-
Space Distortion (RSD) measurements collected by differ-
ent experiments. The Hubble data come from the cosmic

chronometers; instead, for σ8;0, we will use alternatively the
results from the SDSS-III BOSS [30] and KiDS [31]
surveys, and for ωm, the results come from the Planck
satellite [4].
Within any (not necessarily flat) ΛCDM model, one has

nsðzÞ ¼ 1: ð15Þ
Any violation of the above relation may imply a deviation
from the FLRW model, nonzero dark-energy perturbations
and/or a deviation from GR.

IV. DATA

The four tests above use three cosmological functions:
HðzÞ, DðzÞ, and fσ8ðzÞ. We will estimate these functions
using three distinct data sets. Wewill use the full covariance
matrix when available.

A. Cosmic chronometers

The so-called cosmic chronometers are passively evolv-
ing galaxies from which it is possible to obtain in a model-
independent way the Hubble parameter HðzÞ at various
redshifts [32]. Here, we use the 31 independent data points
given in Table I. This is the most up-to-date collection of
HðzÞ data; see Fig. 1 for a plot. The linear-model best fit to
the data (Sec. V) is also shown in the plot.

B. Supernovae Ia

We obtain the luminosity distance (in Mpc) from the
distance modulus μ:

DLðzÞ ¼ 10
μðzÞ−25

5 : ð16Þ
The distance modulus can be obtained from supernova Ia
data. We will consider the compressed Joint Light-curve
Analysis (JLA) compilation (Ref. [3], Appendix E) so that

TABLE I. The 31 cosmic chronometer data points used in this analysis.

z HðzÞ σHðzÞ References z HðzÞ σHðzÞ References

0.07 69.0 19.6 [33] 0.4783 80.9 9.0 [34]
0.09 69.0 12.0 [35] 0.48 97.0 62.0 [36]
0.12 68.6 26.2 [33] 0.593 104.0 13.0 [37]
0.17 83.0 8.0 [35] 0.68 92.0 8.0 [37]
0.179 75.0 4.0 [37] 0.781 105.0 12.0 [37]
0.199 75.0 5.0 [37] 0.875 125.0 17.0 [37]
0.2 72.9 29.6 [33] 0.88 90.0 40.0 [36]
0.27 77.0 14.0 [35] 0.9 117.0 23.0 [35]
0.28 88.8 36.6 [33] 1.037 154.0 20.0 [37]
0.352 83.0 14.0 [37] 1.3 168.0 17.0 [35]
0.3802 83.0 13.5 [34] 1.363 160.0 33.6 [38]
0.4 95.0 17.0 [35] 1.43 177.0 18.0 [35]
0.4004 77.0 10.2 [34] 1.53 140.0 14.0 [35]
0.4247 87.1 11.2 [34] 1.75 202.0 40.0 [35]
0.4497 92.8 12.9 [34] 1.965 186.5 50.4 [38]
0.47 89.0 49.6 [39]
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μðzÞ ¼ μbðzÞ −M; ð17Þ
where μbðzÞ is the binned distance modulus and M is an
unknown offset (a nuisance parameter). Figure 2 shows the
JLA data.

C. Redshift-space distortion data

In order to reconstruct fσ8ðzÞ, we will consider the
robust and independent measurements given in the “Gold”
RSD compilation from Ref. [40]; see Fig. 3.

The three sets of data used in this paper come from
several surveys that span different angular and redshift
ranges. Therefore, it should be justified to assume that we
are considering a fair sample of the Universe.

D. Addition parameters

For the parameterωm, necessary for the ns test, we use the
results from Planck (Ref. [4], Table 4, TT,TE,EE+lowP):

ωm ¼ 0.1427� 0.0014: ð18Þ

For the parameter σ8;0, also necessary for the ns test, we use
three different values from two surveys. Indeed, the Planck
cosmological constraints on σ8;0 are in tension with those
from Planck clusters [41] and from weak lensing measure-
ments, and it is important to test how different values of
σ8;0 impact our results. We will consider results from the
SDSS-III BOSS [30] and KiDS [31] surveys, which are
independent from Planck. SDSS is a spectroscopic galaxy
survey, while KiDS is a survey that uses cosmic shear,
galaxy-galaxy lensing, and redshift-space distortion galaxy
clustering measurements. The values we consider are

σ8;0 ¼ 0.804� 0.051 SDSS-III BOSS;

σ8;0 ¼ 0.832� 0.080 KiDS;

σ8;0 ¼ 0.747� 0.109 KiDS ðconservative cutÞ: ð19Þ

The Hubble constant H0 can be determined using the
reconstructed HðzÞ function at z ¼ 0. However, it may also
be interesting to consider an independent prior on H0. This
could be useful to test for systematics. We will consider
results from local measurements [42] and from the cosmic
microwave background (CMB) (Ref. [4], Table 4, TT,TE,EE
+lowP), respectively:

H0;loc ¼ 73.24� 1.74
km=s
Mpc

; ð20Þ
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FIG. 1. The 31 cosmic chronometer data points and the
corresponding linear model best fit (in light blue) that we use
in this work. See Table I for the numerical values.

FIG. 2. The compressed JLA compilation (Ref. [3], Appen-
dix E) and the corresponding linear model best fit (in light blue)
that we use in this work. For this plot, we have adopted M ¼ 0.

FIG. 3. The 18 fσ8 data points [40] and the corresponding
linear model best fit (in light blue) that we use in this work.
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H0;cmb ¼ 67.27� 0.66
km=s
Mpc

: ð21Þ

The parameter M enters in the determination of the dimen-
sionless comoving distance D that is used in the tests Om2

and Ok. As M is degenerate with −5 log10H0, we leave
M free.

V. METHOD

In order to reconstruct the cosmological functions, and
also their derivatives and integrals, we will use the linear
model formalism; see, for instance, Ref. [43].

A. Linear model analysis

Let us choose a set of base functions gαðzÞ of which the
linear combination will constitute the template function
tðz; cαÞ,

tðz; cαÞ ¼
Xαmax

α¼0

cαgαðzÞ; ð22Þ

where α is an integer. The assumption is that tðz; cαÞ can
describe the actual functions that we want to reconstruct:
HðzÞ, μðzÞ or fσ8ðzÞ. Clearly, this is conditional to an
appropriate choice of gαðzÞ and αmax, for each of the
functions HðzÞ, μðzÞ, and fσ8ðzÞ. We call αmax the “order”
of the template, which will then have αmax þ 1 coefficients.
Let us then assume that the data are given by

di ¼ ti þ ei; ð23Þ
where ti ¼ tðzi; cαÞ and ei are Gaussian errors with
covariance matrix Cij.
Next, we fit the template t to the data and use the linear

model formalism to calculate the Fisher matrix relative to
the parameters cα. This gives an exact description of the
likelihood as the template is linear in its parameters. The
Fisher matrix is

Fαβ ¼ gβiC−1
ij gαj; ð24Þ

where gαi ¼ gαðziÞ, and the best-fit values of cα are

cα;bf ¼ F−1
αβBβ; ð25Þ

where Bα ¼ diC−1
ij gαj.

Summarizing, we have propagated the covariance matrix
Cij into the covariance matrix F−1

αβ on the parameters.

B. Error propagation

Let us denote with ϕðz; θαÞ either Om1, Om2, Ok, or ns.
ϕðz; θαÞ will be a nonlinear function of the various
templates tðz; cαÞ [one for each HðzÞ, μðzÞ, and fσ8ðzÞ]
and their derivatives and integrals. The parameter vector
fθαg comprises the template parameters of Sec. VA and the

additional parameters of Sec. IV D that enter ϕðz; θαÞ.
The corresponding covariance matrix Σαβ is obtained by
forming an appropriate block diagonal matrix using the
covariance matrices of the corresponding parameters.
We have chosen independent data (see Sec. IV) so that
correlations among different sets of data are not expected
to be important.
In order to compute the error on ϕðz; θαÞ due to the

uncertainty encoded in the covariance matrix Σαβ, a
straightforward approach is to apply a change of variable
from fθαg to ϕ. At the first order, the error is then given by

σ2ϕ ¼ JαΣαβJβ; ð26Þ

where

Jα ¼
∂ϕðz; θαÞ

∂θα
����
θα;bf

: ð27Þ

Equation (26) is exact if ϕðz; θαÞ is tðz; cαÞ, its derivative or
integral. Indeed, in this case, it will depend linearly on the
parameters fθαg.

C. Choice of base functions

We will adopt the following base functions:

HðzÞ → gαðzÞ ¼ zα with 0 ≤ α ≤ αmax;

μðzÞ → gβðzÞ ¼ ðln zÞβ with 0 ≤ β ≤ βmax;

fσ8ðzÞ → gγðzÞ ¼ ð1þ zÞγ with 0 ≤ γ ≤ γmax:

We have chosen the latter as they can reproduce the fiducial
ΛCDM functions with not too high orders αmax, βmax, and
γmax, that is, with not too many parameters. Furthermore,
the base functions chosen for fσ8ðzÞ allow us to compute
analytically the inner integral in Eq. (13).
In order to choose the orders αmax, βmax, and γmax on

which the template functions tðz; cαÞ depend, see (22), we
use the following strategy:
(1) We pick values for fαmax; βmax; γmaxg. Each order

has to be within 0 and N − 1, where N is the number
of data of the corresponding catalog.2

(2) We reconstruct HðzÞ, μðzÞ, and fσ8ðzÞ using the
method of Sec. VA with mock catalogs created
using a fiducial ΛCDM cosmology. These mocks
share the same redshift values and covariance matrix
of the real data but do not have fluctuations. In other
words, the corresponding HðzÞ, μðzÞ, and fσ8ðzÞ
values are exactly the fiducial ones. Mock catalogs
without fluctuations are often used when one wants
to consider the average behavior of a large number
of “real life” mocks with fluctuations.

2With N points, one can fit up to N coefficients so that, for
example, the order αmax cannot exceed N − 1.
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(3) We evaluate the four null tests of Sec. III.
(4) We obtain the sigma bands of the null test functions

using the results of Sec. V B.
(5) We calculate the following vector,

Δϕ ¼
�jϕðzi; θα;bfÞ − ϕfidðziÞj

σϕðzi; θα;bfÞ
	
; ð28Þ

with i ¼ 1;…; N.
(6) We set a reconstruction accuracy Q, and we repeat

the steps (1)–(5) until we find the smallest values
fαmax; βmax; γmaxg so that the following condition is
satisfied:

maxfΔOm1
;ΔOm2

;ΔOk;Δnsg < Q: ð29Þ

By setting Q ¼ 0.1, we find

fαmax; βmax; γmaxg ¼ f3; 6; 4g: ð30Þ

Figures 1–3 show the reconstruction of the cosmological
functions that we obtained.
The above strategy guarantees that the template func-

tions can replicate the fiducial ΛCDM functions without
inserting modeling biases in the analysis, while, at the same
time, keeping the template order as low as possible. It is
worth stressing that within our methodology a unneces-
sarily high order would lead to higher uncertainties in the
Fisher matrix of Eq. (24), thus degrading the constraining
power of the null tests.

VI. RESULTS

A. Om diagnostic

Figure 4 (left panels) shows the reconstruction of the
diagnostics Om1 and Om2. The 1σ gray bands are obtained
using Eq. (26). The Om1 test is, within its error, consistent
with the reference value of about 0.3. Figure 4 was obtained
adopting the H0;cmb value of Eq. (21) (solid line and gray

FIG. 4. The four null tests considered in this work with 1σ bands. The flat ΛCDMmodel is falsified if theOm diagnostics of Sec. III A
do not give a constant value; a reference value of Ωm0

¼ 0.3 is shown (solid line) to guide the eye. All the FLRW models are ruled out if
the Ok diagnostic of Sec. III B is not compatible with a constant value (the solid line shows the reference value Ωk0 ¼ 0). Finally, the
(possibly curved)ΛCDMmodel is falsified if the ns diagnostic of Sec. III C is incompatible with a constant value of unity. As these plots
show, the latest cosmological data pass all the standard-model null tests. For the Om1 and Ok tests, we adopted the following values of
the Hubble constant: theH0;cmb value of Eq. (21) (solid line and gray bands),H0 ¼ 70 Km s−1 Mpc−1 (dashed line), and theH0;loc value
of Eq. (20) (dot-dashed line). For the ns test, we adopt the values given in Eq. (19): σ8;0 ¼ 0.804 (black solid line), σ8;0 ¼ 0.832 (black
dashed line), and σ8;0 ¼ 0.747 (black dotted line). See Sec. VI for more details.
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bands), H0 ¼ 70 Kms−1Mpc−1 (dashed line), and the
H0;loc value of Eq. (20) (dot-dashed line).
In order to evaluate the Om2 test, we need to specify the

value of the nuisance parameter M, on which D depends.
As discussed in Sec. IV D, M is degenerate with
−5 log10H0. Therefore, we can fix H0 to an arbitrary value
such as H0 ¼ 70 Kms−1Mpc−1 and adopt the value of M
for which Om2 is closest to a constant. If such a value ofM
does not exist, then the flat ΛCDM model is falsified. The
lower left panel of Fig. 4 shows the Om2 diagnostic for the
value M ¼ 0. Also, this test is passed. It is worth stressing
that this test (and also the Ok test discussed in the next
section) will be more constraining when the comoving
distance D will be reconstructed using data which do not
need unconstrained nuisance parameters such asM. Future
Baryon Acoustic Oscillations data could be useful in this
respect.
The Om1 test (and also the Ok test) diverges at z ¼ 0 as

it involves a 0=0 limit. Because of the noise in the data,
this limit is not well behaved, and it does not follow the
theoretical behavior. Nonetheless, this is not a problem as
also the errors diverge so that this singular behavior is
correctly taken into account and does not bias the result.

B. Ok diagnostic

In Fig. 4 (top right panel), we show the results of the
reconstruction of the Ok diagnostic of Eq. (11). As with
the Om2 test of the previous section, one has to specify
the value of the nuisance parameter M. Moreover, in this
case, the Hubble constant H0 appears directly in Eq. (11).
In the plot, we show the Ok diagnostic that is obtained
when adopting the H0;cmb value of Eq. (21) (solid line and
gray bands), H0 ¼ 70 Kms−1Mpc−1 (dashed line), and
the H0;loc value of Eq. (20) (dot-dashed line). It is clear
that the reconstruction is consistent with Ωk0 ¼ 0. The
results found are consistent with those presented
in Ref. [16].

C. ns diagnostic

In Fig. 4 (lower right panel), we show the results relative
to the ns null test of Eq. (13). Present-day data again
confirm within 1σ errors that the ΛCDM model is viable.
In this case, for consistency [15], Hð0Þ is Hðz ¼ 0Þ, where
the latter is the Hubble function reconstructed from cosmic

chronometer data. We could also use theH0 values used for
the other tests; however, the effect is an overall shift of the
entire curve as Hð0Þ enters as a multiplicative factor. The
σ8;0 adopted (black solid line) is from the SDSS-III BOSS
survey, but we also plotted the ns test for the σ8;0 values
from KiDS; see Sec. IV D.
Next-generation surveys are expected to be able to

accurately reconstruct this test; for example, HðzÞ data
will be obtained via galaxy clustering, and fσ8ðzÞ data will
be obtained via independent weak lensing observations.

VII. CONCLUSIONS

In this paper, using HðzÞ, supernova Ia, and fσ8 data, we
have reconstructed four null tests, that can be used to probe
deviations from either ΛCDM or the assumption of homo-
geneity and isotropy in the Universe. The reconstruction has
been performed by fitting the data with the linear model
formalism which provides an exact statistical description of
the reconstructed functions together with their derivatives
and integrals.We find that all four tests are in agreement with
the standard cosmological model, and no interesting devia-
tions were found. This also implies that we have not found
any tension on the data. However, special attention goes to
the value of H0 used. As shown, the Om1 test is the most
sensitive to H0 due to its direct dependence; from Fig. 4, we
understand that lower values of H0 favor a larger value of
Om1. The other tests are less affected by the value of H0.
Current data give results that are far from the cosmic

variance limit, and future data will revolutionize the
usefulness of the null tests. The availability of hundreds
of thousands of supernovae Ia, hundreds of millions of
galaxy spectra, billions of galaxy shape measurements and
21-cm data to high redshifts will enable us to accurately use
the null tests to assess the viability of the standard model of
cosmology. In order to be ready for these large data sets, it
is important to develop and explore alternative method-
ologies to reconstruct the relevant cosmological functions.
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