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We investigate the observed galaxy power spectrum for the thawing class of scalar field models taking
into account various general relativistic corrections that occur on very large scales. We consider the full
general relativistic perturbation equations for the matter as well as the dark energy fluid. We form a single
autonomous system of equations containing both the background and the perturbed equations of motion
which we subsequently solve for different scalar field potentials. First we study the percentage deviation
from the ΛCDM model for different cosmological parameters as well as in the observed galaxy power
spectra on different scales in scalar field models for various choices of scalar field potentials. Interestingly
the difference in background expansion results from the enhancement of power from ΛCDM on small
scales, whereas the inclusion of general relativistic (GR) corrections results in the suppression of power
from ΛCDM on large scales. This can be useful to distinguish scalar field models from ΛCDM with future
optical/radio surveys. We also compare the observed galaxy power spectra for tracking and thawing types
of scalar field using some particular choices for the scalar field potentials. We show that thawing and
tracking models can have large differences in observed galaxy power spectra on large scales and for smaller
redshifts due to different GR effects. But on smaller scales and for larger redshifts, the difference is small
and is mainly due to the difference in background expansion.
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I. INTRODUCTION

Since the first observational evidence of the late time
acceleration of the Universe [1,2], it has been the biggest
challenge in theoretical as well as observational cosmology to
find the source of the repulsive gravitational force that causes
this acceleration. We still do not have confirmatory evidence
whether this is due to some extra dark component in the
energy budget of the Universe (commonly known as “dark
energy”) [3–5] or due to some modification of Einstein
gravity on cosmological scales [6]. Although the Planck-
2015 result [7] shows that the concordance ΛCDM universe
(containing cosmological constantΛ and cold dark matter) is
consistentwith awhole set of observational data, still there are
some recent observational results that indicate inconsistency
with the ΛCDM model [8–11]. This is in addition to the
theoretical inconsistencies such as fine-tuning [3] and cosmic
coincidence problems [3] that are present in the ΛCDM
model. This motivates people to go beyond the ΛCDM
paradigm and consider models with evolving dark energy.
But one needs to distinguish this evolving dark energy

from a cosmological constant (Λ) which does not change
throughout the history of the Universe. To do so, we need to
study the effect of dark energy on different cosmological
observables related to the background expanding universe as

well as to the process of growth of structures in our Universe.
This can be done throughobservationswith SupernovaType-
Ia as standard candles [12], or by observing the fluctuations
in the temperature of cosmic microwave background radi-
ation [7] or looking at the galaxies and their distribution over
different distance scales as well as at different redshifts [13].
The latest Planck results in 2015 together with data from
Supernova Type-Ia and also data related to baryon acoustic
oscillations from different redshift surveys have put unprec-
edented constraints on different cosmological parameters
including those related to dark energy properties [7,14]. But
as far as the dark energy is concerned, we have mainly
constrained its background evolution till now.This is because
most of the observations mentioned above are related to
either the background universe or the perturbed universe on
subhorizon scales where Newtonian treatment is sufficient
and one can safely ignore the fluctuations in dark energy.
Hence it has not been possible till now to probe the
inhomogeneity in dark energy which can be very useful in
distinguishing different dark energy models.
Future optical as well as radio/infrared surveys, such as

LSST [15] and SKA [16], have the potential to cover a larger
sky area and to extend to much higher redshifts probing
horizon scales and beyond. This will give us a whole lot of
information about our Universe on such large length scales
which is not known yet. Crucially on these scales, one needs
to consider the full general relativistic (GR) treatment to
study how fluctuations grow and dark energy perturbation
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cannot be neglected any more. This can be a smoking gun to
distinguish evolving dark energy model from ΛCDM as Λ,
being a constant, is not perturbed, whereas any other
evolving dark energy component should be perturbed and
hence affects the growth ofmatter fluctuations on large scales
in a different way than the ΛCDM model.
Apart from this extra effect coming from the dark energy

perturbations on large scales, there are other GR effects on
galaxy overdensity on large scales [17–25]. Primarily there
are two sources of GR effects on large scales. One is related
to the gravitational potential [24] which can be local or at
the observed galaxies or along the line of sight, and the
other is related to the peculiar velocities due to the motion
of galaxies relative to the observer. In recent years, there
has been a number of studies related to the calculation of
the power spectrum of galaxy overdensity on large scales
taking into account the dark energy perturbation as well as
various GR effects on large scales. This has been done
mostly in the context of the ΛCDM universe [24].
The simple way to consider the evolving dark energy

model is a canonical scalar field rolling over its potential.
The first such model considered was the “tracker” scalar
field model [26–31] with some particular types of potential
that causes the scalar field to track the background
radiation/matter component until the recent past when
the slope of the potential changes so that it can behave
as Λ and causes the Universe to accelerate. This tracker
behavior helps to evade the cosmic coincidence problem
that is present in the ΛCDM model. The full observed
galaxy power spectrum that incorporates various GR
corrections on horizon scales has been studied recently
by Duniya et al. [32] for tracker scalar field models.
There is another kind of scalar field models, “the thawer

class” [33], where the scalar field is initially frozen at some
flat part of the potential due to large Hubble friction in the
early time and behaves as a cosmological constant with
w ≈ −1. Later on, as the Hubble friction decreases, the
scalar field slowly thaws away from its initial frozen state
and evolves away from cosmological constant type behav-
ior. In this case, the scalar field never evolves much from its
initial frozen state, and the equation of state always remain
very close to w ¼ −1. Thawer scalar fields are very similar
to the inflaton that drives the acceleration in the Universe in
the early time. It is also interesting to note that the thawer
canonical scalar field model has a generic analytical
behavior for its equation of state for nearly flat potentials
[34]. (Also see [35] for the generalization of this result for
the noncanonical scalar field.) The thawing model in the
context of the tachyon field [36] as well as the Galileon field
[37] has also been considered in the recent past. To best of
our knowledge, there has been no study till date on observed
galaxy power spectrum for the thawer class of models that
incorporates various GR corrections on large scales.
In this paper we study the full general relativistic

treatment for the growth of linear fluctuations in

cosmological models with the thawing scalar field as dark
energy. We form a single set of an autonomous system of
eight coupled equations involving both the background and
the perturbed equations of motion and solve it for various
scalar field potentials. Subsequently we study the power
spectrum for the observed galaxy overdensity taking into
account various GR corrections for different scalar field
potentials and compare them with the ΛCDM model. We
also study the difference in the observed galaxy power
spectrum for the thawing and tracking/freezing class of
models for some specific choices of potential.
The paper is organized as follows: in Sec. II, we briefly

describe the background equations for the thawing dark
energy models; in Sec. III, we describe the full general
relativistic perturbation equation for linear fluctuations in
both dark energy and matter, form a single set of autono-
mous equations involving both background evolution and
evolution for the fluctuations, and study various cosmo-
logical quantities; in Sec. IV, we calculate the observed
galaxy power spectrum taking into account various GR
correction terms for different scalar field potentials and
compare them with the ΛCDM model; in Sec. V, we study
the difference between thawing and tracking class models;
finally in Sec. VI, we write our conclusions.

II. BACKGROUND EVOLUTION

We consider flat Friedmann-Robertson-Walker back-
ground geometry for our Universe with aðtÞ being the
scale factor. The Lagrangian density for a minimally
coupled canonical scalar field ϕ is given by

L ¼ 1

2
ð∂μϕÞð∂μϕÞ − VðϕÞ: ð1Þ

Here VðϕÞ is the potential for the field ϕ. The background
energy density and pressure of the scalar field are given by

ρ̄ϕ ¼ 1

2
_ϕ2 þ VðϕÞ; P̄ϕ ¼ 1

2
_ϕ2 − VðϕÞ; ð2Þ

where the overdot represents the derivative with respect to
the cosmic time t. The equation of motion for the scalar
field is given by

ϕ̈þ 3H _ϕþ Vϕ ¼ 0; ð3Þ
where H is the Hubble parameter and subscript ϕ is the
derivative with respect to the field ϕ. The background
Friedmann-Robertson-Walker equation is given by

3M2
plH

2 ¼ ρ̄m þ ρ̄ϕ; ð4Þ

where Mpl ¼ ð8πGÞ−1=2, G being Newton’s gravitational
constant, is Planck’s mass. ρ̄m is the energy density of the
background matter component which includes a contribu-
tion from dark matter and baryons.
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III. RELATIVISTIC PERTURBATIONS
WITH SCALAR FIELD

We assume conformal Newtonian gauge with vanishing
anisotropic stress for the perturbed space-time,

ds2 ¼ a2ðτÞ½ð1þ 2ΦÞdτ2 − ð1 − 2ΦÞdx⃗:dx⃗�; ð5Þ

where τ is the conformal time, Φ is the gravitational
potential, and x⃗ are the comoving coordinates. The linear-
ized Einstein equations are now given by [38]

∇2Φ − 3HðΦ0 þHΦÞ ¼ 4πGa2
X
i

δρi; ð6Þ

Φ0 þHΦ ¼ 4πGa2
X
i

ðρ̄i þ P̄iÞvi; ð7Þ

Φ00 þ 3HΦ0 þ ð2H0 þH2ÞΦ ¼ 4πGa2
X
i

δPi; ð8Þ

where the prime is the derivative with respect to the
conformal time τ, H is the conformal Hubble parameter,
ρ̄i and P̄i are the background energy density and pressure
for the individual fluid i (here i stands for either “m” for
matter or “ϕ” for scalar field), and δρi, δPi, and vi are the
perturbation to individual component’s background energy
density, pressure, and velocity field, respectively. The
irrotational part of the individual velocity field is given

by v⃗i ¼ −∇⃗vi. Combining Eqs. (6) and (7) we can get the
relativistic Poisson equation as

∇2Φ ¼ 4πGa2
X
i

ρ̄iΔi; ð9Þ

where Δi ¼ δi þ 3Hð1þ wiÞvi is the comoving energy
density contrast for individual components, and they are the
correct tracer of the gravitational potential on large scales.
From the conservation of the stress-energy tensor we can
get relativistic continuity and Euler equations as

δ0 þ 3H
�
δP
δρ

−
P̄
ρ̄

�
δ ¼

�
1þ P̄

ρ̄

�
ðθ þ 3Φ0Þ ð10Þ

and

θ0 þ 3H
�
1

3
−
P̄0

ρ̄0

�
θ ¼ ∇2δP

ρ̄þ P̄
þ∇2Φ; ð11Þ

respectively, where θ ¼ −∇⃗ · v⃗ and δ is defined as δρ ¼ ρ̄δ.
Note that the above continuity and Euler equations are valid
for individual components (e.g., matter or scalar field) and
also for the combined (matter plus scalar field) one.
For the scalar field ϕ, the perturbed energy density,

pressure, and velocity (at linear order) are given by

δρϕ ¼ ϕ0ðδϕ0Þ
a2

−
ϕ02Φ
a2

þ Vϕδϕ; ð12Þ

δPϕ ¼ ϕ0ðδϕ0Þ
a2

−
ϕ02Φ
a2

− Vϕδϕ; ð13Þ

and

aðρ̄ϕ þ P̄ϕÞvϕ ¼ ϕ0

a
ðδϕÞ; ð14Þ

where δϕ is the perturbation to the background field ϕ.
We now define the following dimensionless quantities

related to the background [34] as well as the perturbed
universe:

x ¼ ðdϕdNÞffiffiffi
6

p
MPl

; y ¼
ffiffiffiffi
V

p
ffiffiffi
3

p
HMPl

;

λ ¼ −MPl
Vϕ

V
; Γ ¼ V

Vϕϕ

V2
ϕ

;

Ωϕ ¼ x2 þ y2; γ ¼ 1þ wϕ ¼ 2x2

x2 þ y2
;

q ¼ ðδϕÞ= dϕ
dN

; ð15Þ

where N ¼ logðaÞ is the number of e-folding. The x here is
different from the comoving coordinates in Eq. (5). Here
Ωϕ is the density parameter related to the scalar field, wϕ

is the equation of state for the scalar field. With these
quantities, one can now form a single set of an autonomous
system of equations involving quantities related to both the
background [34] and the perturbed universe as follows:

dγ
dN

¼ 3γðγ − 2Þ þ ffiffiffiffiffiffiffiffiffiffiffi
3γΩϕ

p ð2 − γÞλ;
dΩϕ

dN
¼ 3ð1 − γÞΩϕð1 − ΩϕÞ;

dλ
dN

¼ ffiffiffiffiffiffiffiffiffiffiffi
3γΩϕ

p
λ2ð1 − ΓÞ;

dH
dN

¼ −
1

2
ð1þ 3ðγ − 1ÞΩϕÞH;

dΦ
dN

¼ Φ1;

dq
dN

¼ q1;

dΦ1

dN
¼ −ð1þ BÞΦ1 − ð2B − 3þ 1.5γΩϕÞΦ
þ 1.5γΩϕ½q1 þ ð2g − BÞq�;

dq1
dN

¼ −ð2g − BÞq1 − Bqqþ 4Φ1 þ 2gΦ: ð16Þ

Here B ¼ 1.5ð1 − ðγ − 1ÞΩϕÞ, Bq ¼ 6g − dB
dN − 2Bgþ k2

H2,

and g ¼ ffiffiffiffiffiffiffi
1.5

p
λy2=x where x and y can easily be written in

terms of γ and Ωϕ using Eq. (15).
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Note that in the above set of equations, equations
involving Φ and q are written in Fourier space where
for simplicity we have taken the same notations in the
Fourier space for corresponding entities. Using the Fourier
version of Eqs. (6) and (12) and changing the τ derivative to
the derivative with respect to N, we get the matter density
contrast as given by

δm ¼ −
2

Ωm

�
dΦ
dN

þ
�
1 − x2 þ k2

3H2

�
Φþ x2

�
dq
dN

− Bq

��
:

ð17Þ
Similarly, using the Fourier version of Eqs. (7) and (14), we
get a peculiar velocity for matter as

ym ¼ 3Hvm ¼ 2

Ωm

�
dΦ
dN

þΦ − 3x2q

�
: ð18Þ

Using Eqs. (17) and (18), we get a comoving matter density
contrast as Δm ¼ δm þ ym which is a gauge invariant
quantity.

A. Initial conditions

To solve the system of Eqs. (16), we need initial
conditions for (γ, Ωϕ, λ, H) for the background universe

and (Φ, dΦ
dN, q,

dq
dN) for the perturbed universe. We set our

initial condition at decoupling (z ¼ 1000), which ensures
that there is a negligible dark energy contribution at that
time and the Universe is matter dominated.
As we are considering the thawing class of models where

the scalar field is initially frozen due to large Hubble
friction at wϕ ∼ −1, γi ∼ 0 initially. We set it at 10−7. Our
results are not very sensitive to this value as long as γi ≪ 1.
The initial value for Ωϕ is also negligible (at z ¼ 1000, we
do not expect any contribution from dark energy). The
initial value for λ, the slope of the potential, is an important
quantity. It determines the subsequent evolution of the
scalar field. For λin ≪ 1, the scalar field does not evolve
much from its initial frozen state and always stays very
close to the cosmological constant behavior. For large
values of λi, the scalar field can thaw away substantially
from its initial frozen state w ∼ −1. In our case, we fix the
initial values for Ωϕ and H to set Ωϕ, and H0 at present
(z ¼ 0) to their desired values.
For the scalar field perturbation, we assume it is

negligible initially as there is hardly any contribution from
dark energy at z ¼ 1000 and we set q ¼ dq

dN ¼ 0 initially.
To set the initial condition for the gravitational potential

Φ, we know that, during matter domination, Φ is constant
and hence dΦ

dN ¼ 0 initially. Also during matter domination,
Δm ∼ a, and using the Poisson equation, one can easily
show

Φin ¼ −
3

2

H2
in

k2
ain: ð19Þ

B. Behavior of cosmological parameters

With the system of autonomous equations given in (16)
and the initial conditions described above, we solve the set
of equations and study various cosmological parameters.
For this purpose we concentrate on power-law potentials,
more specifically the linear, squared, and inverse-squared
potentials. It is straightforward to generalize our study
for more exotic potentials. We also fix the following
quantities for our purpose: Ωm0 ¼ 0.28, λi ¼ 0.7, and
H0 ¼ 70 km=s=Mpc.
In Fig. 1, we show the behavior of the equation of state as

a function of redshift for different potentials. Remember
the equation of state for the scalar field wϕ ¼ γ − 1 where γ
is solved using the autonomous system of Eq. (16) for
different potentials. As a thawing model, for every poten-
tial, wϕ starts from −1 at z ∼ 1000 and all of them are fixed
at λi ¼ 0.7. This sets the identical initial conditions for all
the potentials.
Next we study the behavior of the gravitational potential.

In Fig. 2, we show the deviation in the gravitational
potential for scalar field models with different potentials
from the ΛCDMmodel. In this plot and in subsequent plots
%ΔX ¼ 100ðXde − XΛCDMÞ=XΛCDM for any cosmological
parameter X. For lower redshifts and smaller scales there is
a suppression from theΛCDMmodel which is solely due to
the difference in background expansion as on smaller scales
the dark energy perturbation does not contribute. On larger
scales the enhancement in the scalar field model is due to
the extra contribution in the gravitational potential from the
dark energy perturbation. For larger redshifts, the deviation
decreases as the dark energy contribution diminishes with
redshifts and all models including ΛCDM start behaving as
matter-only models.
In Fig. 3, we show the same behavior for the gauge

invariant matter density contrast Δm. As one can see, the
deviation from ΛCDM is less than 1% for all scales and
redshifts. Also, except for very low redshifts, there is hardly
any scale dependence, showing that the effect of dark

FIG. 1. Behavior of the equation of state for the scalar field wϕ

as a function of redshift for different potentials. Ωm0 ¼ 0.28 and
λi ¼ 0.7 in these plots.
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FIG. 2. Percentage deviation in Φ from the ΛCDM model: negative values in the y axis means they are all suppressed from ΛCDM.
Ωm0 ¼ 0.28 and λi ¼ 0.7 in these plots. Here and in subsequent plots, %ΔX ¼ ðXde=XΛ − 1Þ × 100.

FIG. 3. Percentage deviation in comoving density contrast Δm from the ΛCDM model.
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energy perturbation is very small and whatever deviation
from ΛCDM is present, it is due to the background
expansion only.
Next we define the quantity related to the velocity

perturbation that gives rise to redshift space distortion,

f ¼ −
k2vm
HΔm

: ð20Þ

In Fig. 4, we show the deviation in f from ΛCDM for
various scalar field potentials. As in Δm, here also the
deviation is not large and is scale independent for most
of the redshifts showing that the deviation is due to the
background expansion only.
Hence the effects of dark energy perturbation in comov-

ing density contrast Δm and in redshift space distortion
parameter f are negligible at all scales. Subsequently for
Δm and f, the differences between the ΛCDM model and
any scalar field model are mostly dominated by their
differences in background evolution.

IV. THE OBSERVED GALAXY
POWER SPECTRUM

Distribution of galaxies in our Universe is one of the best
possible probes to study the evolution of our Universe and
its contents. Observed galaxy distribution is related to the
underlying dark matter distribution, and hence by observ-
ing various features in the galaxy distribution at different

scales, one can study the growth in dark matter fluctuations
which in turn can help us to distinguish various dark energy
and modified gravity models.
In the late 1980s, Kaiser [39] argued that we do not

see galaxies in real space but in redshift space and its
distribution in redshift space is influenced also by the
peculiar velocities of the galaxies in addition to the dark
matter fluctuations. This gives rise to what is known as the
Kaiser redshift space distortion, a measure of the large scale
velocity field. This contains valuable information about the
underlying cosmology.
In addition, the observed galaxy distribution is also

affected by gravitational lensing through an effect known as
magnification bias [40], allowing the faint galaxies to be
detected through the magnification due to the lensing
effect. This depends on the gravitational potentials in the
metric integrated along the photon geodesics.
In recent years, people have shown the presence of other

effects in the observed galaxy distribution on larger scales.
These are purely general relativistic effects and depend on
how the gravitational potential, velocity fields, as well as
the matter density affect the observed number density of
galaxies on large cosmological scales [17–25]. On sub-
horizon scales, these GR effects are negligible in compari-
son to other effects such as redshift space distortion.
However, on large cosmological scales, one needs to
consider these GR effects as they can be important in
distinguishing different dark energy models.

FIG. 4. Percentage deviation in f from the ΛCDM model.
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In a galaxy survey, we observe the fluctuations in the
number of galaxies across the sky and at different redshifts
and angles. The galaxy number overdensity Δobs is given
by [20,24,32,41]

Δobs ¼
�
bþ fμ2 þA

�
H
k

�
2

þ iμB
�
H
k

��
Δm; ð21Þ

where b is the scale independent bias on linear scales that
relates the dark matter density contrast to the galaxy density
contrast, f the redshift space distortion parameter that is

defined in the previous section, μ ¼ − n⃗:k⃗
k with n⃗ denotes the

direction of observation, k⃗ being the wave vector, and k
being the wave number. The parametersA and B, which are
related to the GR corrections, are defined as

A ¼ 3f þ
�
k
H

�
2
�
3þ H0

H2
þ Φ0

HΦ

�
Φ
Δm

; ð22Þ

B ¼ −
�
2þ H0

H2

�
f: ð23Þ

Here we assume the magnification bias to be equal unity
[41] and also assume a constant comoving galaxy number
density for which the galaxy evolution bias is zero. We
assume the scale independent linear bias b ¼ 1 throughout
our calculations. We also neglect the time delay, integrated
Sachs-Wolfe, and weak lensing integrated terms. The first
term inside the square brackets in Eq. (21) is related to
galaxy bias, and the second term is the Kaiser redshift
space distortion term. A is related to the peculiar velocity
potential and the gravitation potential, whereas B is related
to the Doppler effect. Using (21), one can now write the
power spectrum for the observed galaxy overdensity (the
real part) as [21,24,32,41]

Pðk; zÞ ¼
�
ðbþ fμ2Þ2 þ 2ðbþ fμ2Þ

�
A
y2

�

þA2

y4
þ μ2

�
B2

y2

��
Psðk; zÞ; ð24Þ

where y ¼ k
H and Ps is the standard matter power spectra

given by

Psðk; zÞ ¼ Akns−4TðkÞ2
�jΔmðk; zÞj
jΦðk; 0Þj

�
2

: ð25Þ

In the above equation for Ps, we fix the constant A using σ8
normalization, and we use the Eisenstein-Hu transfer
function for TðkÞ [42]. In Fig. 5, we plot the line of sight
(μ ¼ 1) observed galaxy power spectrum given by Eq. (24)
for the linear potential only. We assume the spectral index
for the initial power spectrum ns ¼ 0.96, σ8 ¼ 0.8,
h ¼ 0.7, and Ωb0 ¼ 0.05 for our calculation. The behavior

of the total power spectrum clearly shows the enhancement
of power on larger scales due to GR corrections as
compared to the standard matter power spectrum or when
one includes only the Kaiser redshift space distortion term.
Looking at the expression for observed galaxy over-

density P in Eq. (24) and from our discussion in the
previous section, one can get an idea about the effect of
dark energy at different scales and redshifts in P. The first
term in the square brackets in (24) is due to Kaiser redshift-
space distortion and depends on f (related to the peculiar
velocity). We have already shown that the effect of dark
energy perturbation in this term is negligible and the only
difference that a scalar field dark energy can have from
the ΛCDM model through this term is solely due to the
difference in background expansion. The fourth term inside
the square brackets in (24) is related to the Doppler effect,
and it also depends on f as well as the background
expansion through H and its derivative. Hence in this term
also we expect the difference from ΛCDM solely due to
background expansion. The second and third terms inside
the square brackets in (24) depend on both f and the
gravitational potential Φ and its variation. As Φ contains an
extra contribution from dark energy perturbation for large
scales and smaller redshift, the effect of dark energy
perturbation comes mostly due to these two terms.
Moreover in the standard power spectrum Ps, we have
the gravitational potential in the denominator which contains
the contribution from the dark energy perturbation on large
scales and smaller redshifts. This will also contribute to the
deviation from ΛCDM for scalar field dark energy models.
In Fig. 6, we show the deviation in different power

spectra from the ΛCDM for different scalar field potentials.
We show it for the standard power spectrum Ps, for the
power spectrum with the Kaiser term only Pks, and for the
full observed galaxy power spectrum P containing GR

FIG. 5. Dash-dotted, dashed, and continuous lines are for the
usual matter power spectrum Ps [given by Eq. (25)], the galaxy
power spectrum taking only Kaiser term Pks [taking only the first
term inside the square brackets in Eq. (24)], and the full observed
galaxy power spectrum P given by Eq. (24), respectively. The
vertical line is the horizon scale at z ¼ 0.
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corrections. We show the deviation as a function of scales k
for four different redshifts.
From the expression of Psðk; zÞ in Eq. (25), one can see

that it depends on Δm and Φ. As shown in Fig. 3, the effect
of dark energy perturbation is negligible inΔm; henceΔm is
largely dominated by the background expansion. InΦ there
is a contribution from dark energy perturbation on large
scales that suppresses Ps on large scales in scalar field
models compared to ΛCDM. Keeping this in mind, one can
conclude from Fig. 6 that, for standard power spectra Ps, on

smaller scales the difference from ΛCDM is dominated by
background expansion which increases with redshifts and
saturates at 2%–3% enhancement from ΛCDM at redshift
z ¼ 3 and higher. For large scales, there is an extra
contribution for dark energy perturbation in the gravita-
tional potential Φ that suppresses the PsðkÞ at large scales
and this suppression is highest (around 4%–5%) at smaller
redshifts and decreases with redshifts.
When we add the Kaiser redshift distortion term and

calculate Pksðk; zÞ, there is an extra effect due to the growth

FIG. 6. Percentage deviation in PðkÞ from the ΛCDM model for different potentials as a function of K for four different redshifts:
negative values in the y axis means they are all suppressed from ΛCDM. The leftmost column is standard matter power spectra Ps given
by Eq. (25), the middle column is for power spectra with the Kaiser redshift space distortion term included, and the right column is for
full observed galaxy power spectra P given by Eq. (24) with GR corrections.
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function f. But in Fig. 4, we show that the effect of dark
energy perturbation is also very small in f and it is mostly
dominated by the background expansion only. Because of
the added effect of f, the overall behavior shifts slightly up
or down depending on the redshifts without any extra
k-dependence. This is because only background expansion
affects f and it does not result in any extra k-dependence.
When we add the GR correction terms given in Eqs. (22)

and (23) and calculate the full observed galaxy power
spectrum Pðk; zÞ, there are large suppressions at large

scales. At smaller redshifts, the suppression from ΛCDM
is now around 12%–15% depending on the potentials.
Comparing this to the difference in Pks, one can conclude
that the effect of GR corrections alone on large scales is
around 9%–10%. This is indeed a large effect. On smaller
scales, the GR corrections are negligible, and one can see
that the full observed Pðk; zÞ has similar behavior as
in Pksðk; zÞ.
Let us now discuss the reason for this large deviation

from the ΛCDM model in the full observed galaxy power
spectrum Pðk; zÞ for smaller redshifts (z ¼ 0) and large
scales. As one can see from Eq. (24), the GR effect is
present through second, third, and fourth terms inside the
square brackets. As shown in Eqs. (22) and (23), these
terms depend on the growth factor f, the gravitational
potential Φ and its variation with time, the Hubble
parameter H and its variations, and the gauge invariant
matter overdensity Δm. We have shown in Figs. 2, 3, and 4
that the deviations from ΛCDM for f, Φ, and Δm for
different potentials are not substantial to result in a large
deviation in full observed galaxy power spectrum Pðk; zÞ
for smaller redshifts (z ¼ 0) and large scales. But we still
need to check the deviations in the variations in dΦ

dN and H0.
In Fig. 7, we show the variations from ΛCDM for dΦdN and

B ¼ 2þ H0
H2 for different potentials. As one can clearly see,

FIG. 7. Percentage deviation in BðzÞ (see text) as a function of z and in dΦ
dN as a function of k at z ¼ 0 from the ΛCDM model for

different potentials.

FIG. 8. Behavior of the equation of state for the scalar field for
both thawing and tracker models, respectively. The vertical blue
line represents the present time.

FIG. 9. Behavior of the energy density of the scalar field and matter energy density. The left panel is for the thawing model, and the
right panel is for the tracker models. The vertical blue lines represent the present time.
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there are large deviations from ΛCDM for these two
parameters at smaller redshifts (z ¼ 0) and large scales.
In particular, the deviation in dΦ

dN is very large for z ¼ 0 and
at large scales. This is mainly responsible for the large
deviation we can see in the full observed galaxy power
spectrum Pðk; zÞ for smaller redshifts (z ¼ 0) and large
scales.

V. THAWING VS TRACKER

Till now, we consider the thawing class of scalar field
models. As we mention in Sec. III 1, in thawer models the
scalar field is initially frozen due to large Hubble damping
resulting in the equation of state of the scalar field to be
close to −1. With expansion of the Universe, Hubble
damping decreases, the scalar field thaws away from the

FIG. 10. Percentage deviation in PðkÞ from the ΛCDM model as the function of redshifts for both thawing and tracker models,
respectively. The topmost plots are standard matter power spectra Ps given by Eq. (27), the middle plots are for power spectra with the
Kaiser redshift space distortion term included, and the bottom ones are for full observed galaxy power spectra P given by Eq. (26) with
GR corrections.
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frozen state, and the equation of state of the scalar field
slowly increases toward w > −1. In the future, these
models can also exit the accelerating period as the equation
of state increases toward more higher values. Hence
thawing models can also in principle give transient
acceleration.
There is another class of models, known as the tracker

models, where initially the scalar field mimics the back-
ground matter density (wϕ ∼ 0) which can be achieved
by fast rolling of the field in a steep part of the potential. In
late times, the scalar field potential flattens and the scalar
field finally freezes to w ∼ −1 behavior. The large scale
structuring in such a tracker model has been studied by
Duniya et al. [32].
In this section, we compare the large scale structuring

in thawer and tracker models. A broad class of potentials
can give the thawing behavior but to have proper tracking
behavior of the scalar field, the form of the potential is very
much restricted. Here we consider a double exponential
type of potential that has been considered earlier [43]:

VðϕÞ ¼ M4½e−μ1
ϕ

Mpl þ e
−μ2

ϕ
Mpl �; ð26Þ

where M is a constant having dimension of mass. The
autonomous system of equations in Eq. (16) is independent
of the value of the M. To get the tracker behavior for the
double exponential potential, we set γi ¼ 1, λi ¼
19.999985 with μ1 ¼ 20 and μ2 ¼ 0.1; we assume
Ω0

ϕ ¼ 0.72, the same as in Sec. III, to fix Ωi
ϕ. The initial

conditions for the perturbations are the same as mentioned
in Sec. III 1. For such potential, the equation of state for the

scalar field always freezes to the value−1þ μ2
2

3
in late times.

To compare with the thawing behavior, we take the linear
potential for the thawer model as discussed in earlier
sections as this has the highest deviation from the
ΛCDM model as shown in Fig. 6.
In Figs. 8 and 9, we compare the behavior of the equation

state and the energy density for the scalar field for tracker
and thawer models. As one can see, for the tracker case, the
scalar field behaves as matter (w ¼ 0) in the past, and its
energy density tracks that of the matter in the past. At late
times, it exits the tracking behavior and starts dominating
the matter energy density, and its equation of state
asymptotically freezes to w ≈ −1.
In Fig. 10, we have shown percentage deviation of both

thawing and tracker models in the standard matter power
spectrum, in the power spectrum with the Kaiser term only,
and in the full relativistic observed galaxy power spectrum,
respectively, from the ΛCDM model taking all the cos-
mological parameters the same as in Sec. V. As one can see,
in the thawer model, the deviation from ΛCDM is larger
than the corresponding deviation in the tracking model on
larger scales and for smaller redshifts. This is purely due to
different GR corrections in these models. This difference

between thawer and tracker models can be as large as
5%–12% depending upon the scales and redshifts. On
smaller scales and for larger redshifts, this difference
between thawer and tracker models reduces substantially
and is mostly due to the difference in background evolution
in these two models.
We should stress that these plots are obtained using

specific choices of the parameters in both thawer and
tracker models. The numbers can vary depending upon the
values of the parameters. In an ideal scenario, one should
first constrain these parameters in both the models from
background observations and then use those constrained
parameter spaces to see the difference between thawer and
tracker models for the observed galaxy power spectrum.
But this is beyond the scope of this paper and will be
addressed in a separate paper.

VI. CONCLUSION

Future surveys, such as LSST and SKA, have the
potential to probe our Universe on very large scales and
also at very high redshifts. This will give us the opportunity
to probe the general relativistic effects on large scale
structure formations. As we start probing the Universe
on very large scales, we cannot ignore the dark energy
perturbations, and hence all the GR corrections in the
observed galaxy power spectrum contain the contribution
from dark energy perturbations. This is indeed very
promising as it will be possible to distinguish the
ΛCDM model (where there is no dark energy perturbation)
from other evolving dark energy models (where dark
energy perturbations are present) in a completely new
way with new generation future surveys. Hence it is
important to study the observed galaxy power spectra with
relevant GR corrections for different non-ΛCDM dark
energy models.
For tracking/freezing models, this has been done earlier

by the authors of [32]. In this work we extend this for
thawing scalar field models for dark energy which is also a
natural alternative to the ΛCDMmodel. Interestingly, these
models can also give rise to transient acceleration.
We set up a very general autonomous system of

equations involving both the background and the perturbed
universe. This is valid for any form of the potential
irrespective of whether it is a thawer model or a tracker
model. This set of equations is the first of its kind and can
easily be generalized to include other forms of matter, such
as radiation and neutrinos. Subsequently we solve this
system of equations with thawing type initial conditions for
the scalar field evolution for various forms of scalar field
potential. Our main aim is to see the effect of thawing scalar
fields on observed galaxy power spectrum on large scales
with different GR corrections and compare it to the
ΛCDM model.
The gravitational potential in the scalar field model is

enhanced from the ΛCDM value on large scales due to an
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extra contribution from dark energy perturbation as deter-
mined by the Poisson equation. This extra contribution
from dark energy perturbation is not present on small
scales. Hence the small scale deviation from ΛCDM in the
scalar field model is always driven by the difference in
background expansion. Because of the interplay of these
two effects, in Ps and Pks, there is always suppression of
power at large scales and enhancement of power on small
scales in scalar field models in comparison to ΛCDM.
Once we add the GR correction term in the observed

galaxy power spectra, the small scale behavior remains the
same (which comes only due to background expansion),
but on large scales, the suppression of power is increased
by 9%–10% due to extra effect from the GR correction,
specifically from the term A which involves both the
peculiar velocity and the gravitational potential. This
deviation is expected to be probed by upcoming experi-
ments such as SKA.
We also compare the observed galaxy power spectra for

thawing and tracking models on large scales assuming two
specific potentials. We show that on large scales and for
smaller redshifts, the thawer model can have a larger
suppression of power from ΛCDM than the tracker models.

This shows that the GR corrections in these two models can
be substantially different. On smaller scales and for larger
redshifts, where the effect from background expansion
dominates, the difference between these two models is not
substantial. But we should stress that this difference
between thawing and tracking models depends on the
choice of the parameters in the potentials, and unless we
have specific constraints on these parameters, it is difficult
to say anything conclusively.
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