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We study the generation of helical magnetic fields in a model of inflationary magnetogenesis which is
free from the strong coupling and backreaction problems. To generate helical magnetic fields, we add an
f2F̃μνFμν term to the Lagrangian of the Ratra model. The strong coupling and backreaction problems are
avoided if we take a particular behavior of coupling function f, in which f increases during inflation and
decreases postinflation to reheating. The generated magnetic field is fully helical and has a blue spectrum,
dρB=d ln k ∝ k4. This spectrum is obtained when coupling function f ∝ a2 during inflation. The scale of
reheating in our model has to be lower than 4000 GeV to avoid backreaction postinflation. The generated
magnetic field spectrum satisfies the γ-ray bound for all the possible scales of reheating. The comoving
magnetic field strength and its correlation length are ∼4 × 10−11 G and 70 kpc respectively, if reheating
takes place at 100 GeV. For reheating at the QCD scales of 150 MeV, the field strength increases to ∼ nano
gauss, with coherence scale of 0.6 Mpc.
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I. INTRODUCTION

Cosmic magnetic fields have been detected from plan-
etary scales [1] to galaxy cluster scales [2–4]. γ-ray
observations of blazars suggest their presence in the voids
as well [5,6]. However, the origin of these fields does not
have a fully satisfactory explanation. Astrophysical scenar-
ios [7–11] for generating these fields involve battery effects
to create a seed field which is later amplified to the
observed strength by the dynamo action [12–15].
However, the presence of coherent magnetic fields in void
regions favors primordial scenarios of generation. Several
possible scenarios for this have been suggested in the
literature [16–37] (for reviews, see [38–42]).
Inflationary magnetogenesis is one of the possible

scenarios to generate fields that are coherent over large
scales. However, the generation of the magnetic field
during inflation in the standard physics is not possible
due to the conformal invariance of the electromagnetic field
[43]. A breaking of conformal invariance is necessary. This
has been done in many models by taking a time dependent
function coupled with the kinetic energy term of the
electromagnetic (EM) field. This time dependent coupling
term can arise through the coupling between inflaton field
and EM field in the form f2FμνFμν (Ratra model) [18] or by

taking a nonminimal coupling of the EM field to the
gravitational field [16].
Although the Ratra model generates sufficient strength

of the magnetic field, it potentially suffers from strong
coupling and backreaction problems [44]. These problems
have been resolved by further modification of the Ratra
model [29,31,45]. In Ref. [45], to resolve these problems f
is assumed to increase during inflation and decrease back to
its initial value post inflation. First, this behavior of f
circumvents the strong coupling problem. Moreover, for a
small enough inflationary and reheating scales, the model
also does not suffer from the backreaction problem. Indeed
demanding no backreaction post inflation, bounds on the
inflationary scale and reheating scale have been obtained.
The generated magnetic field strength in this model can
also explain the magnetic field strength suggested by γ-ray
observation, below a certain reheating scale.
In the model discussed above, the generated magnetic

field is of nonhelical nature. In this paper we look at the
possible generation of helical magnetic fields. The nonlinear
evolution of the magnetic field in the helical case differs
from the nonhelical one. Due to the helicity conservation,
the magnetic field strength decreases at a slower rate and the
correlation length increases at a higher rate compared to the
nonhelical case. Helicity conservation gives us a more
optimistic evolution of the magnetic field and this can relax
the bound on the reheating scale given in [45] further.
Moreover, it has been claimed in the literature that gamma

ray observations of the blazars indicate the presence of the
helical magnetic field in the intergalactic medium [46,47].
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Anumber ofmagnetogenesis scenarios have been suggested
to generate helical magnetic fields. For example, such fields
can be generated in models where a parity breaking term
FμνF̃μν is coupled to an axion (χ) [16,48] or pseudo-
Goldstone boson [49]. Here F̃μν is the dual electromagnetic
field tensor. A hybrid of the Ratra and axionmodels has also
been considered by adding a term g2FμνF̃μν to the
Lagrangian of the Ratra model [30,50]. In this work, we
also consider the effects of adding a similar parity breaking
term. Further, we compare our generated magnetic field
strength with the constraints from γ-ray observation.
This paper is organized as follows. In Sec. II we discuss

the generation of the helical magnetic field during inflation.
Section III discusses the generation of the field postin-
flation to reheating and we obtain a relation between
inflationary scale and reheating scale by demanding no
backreaction postinflation. Section IV incorporates the
nonlinear evolution of the magnetic field and its correlation
length after generation. Results of our model are also given
there. In Sec. V, we compare our results with the γ-ray
observation. Our conclusions are presented in Sec. VI.

II. GENERATION OF HELICAL MAGNETIC
FIELD DURING INFLATION

We start with the action for the electromagnetic field in
which the conformal invariance is explicitly broken by
introducing a time dependent function f2 multiplying
FμνFμν in the action. To generate the helical magnetic
field, we also add a f2FμνF̃μν in the action. Thus we take
the action to be of the form

S ¼ −
Z ffiffiffiffiffiffi

−g
p

d4x

�
f2ðϕÞ
16π

ðFμνFμν þ FμνF̃μνÞ þ jμAμ

�

−
Z ffiffiffiffiffiffi

−g
p

d4x

�
1

2
∂νϕ∂νϕþ VðϕÞ

�
: ð1Þ

Here Fμν ¼ ∂μAν − ∂νAμ and F̃μν ¼ ð1=2ÞϵμναβFαβ, where
Aμ is the EM 4-potential and ϵμναβ is the fully antisym-
metric tensor defined as ϵμναβ ¼ 1=

ffiffiffiffiffiffi−gp
ημναβ. ημναβ is the

Levi-Cività symbol whose values are �1 only. The term
jμAμ represents the interaction where jμ is the four current
density. The remaining part of the action incorporates
the evolution of the inflaton field. In this paper we adopt
the following nomenclature. Greek indices μ; ν… are for
space-time coordinates and Roman indices i; j; k… are
for spatial coordinates. Our metric convention is
gμν ¼ diagð−;þ;þ;þÞ. For further analysis we assume
negligible free charge density during inflation. Hence, we
neglect the interaction term. To obtain the equation of
motion of 4-potential Aμ we vary the action with respect to
the Aμ:

½f2ðFμνþ F̃μνÞ�;ν¼ 0

1ffiffiffiffiffiffi−gp ∂
∂xν

� ffiffiffiffiffiffi
−g

p
f2ðϕÞ

�
gμαgνβFαβþ

1

2
ffiffiffiffiffiffi−gp ημναβFαβ

��
¼ 0:

ð2Þ

Varying the action with respect to the scalar field we obtain
the equation governing the evolution of the scalar field as

1ffiffiffiffiffiffi−gp ∂
∂xν ½

ffiffiffiffiffiffi
−g

p
gμν∂μϕ� −

dV
dϕ

¼ f
2

df
dϕ

ðFμνFμν þ FμνF̃μνÞ:

ð3Þ

Here the EM field is assumed to be a test field. Hence, it
will not affect the geometry of spacetime. In the infla-
tionary era the universe is dominated by scalar field ϕ
which is a time dependent homogeneous field. We assume
a homogeneous and isotropic universe, described by the
Friedmann-Robertson-Walker line element:

ds2 ¼ −dt2 þ a2ðtÞ½dx2 þ dy2 þ dz2�
¼ a2ðηÞ½−dη2 þ dx2 þ dy2 þ dz2�: ð4Þ

In this new coordinate system ðη; x; y; zÞ, we can define
fundamental observers with 4-velocity ð1a ; 0; 0; 0Þ. It is
convenient to work in Coulomb gauge,

∂jAj ¼ 0; A0 ¼ 0:

For μ ¼ i, Eq. (2) is

A00
i þ 2

f0

f
ðA0

i þ ηijk∂jAkÞ − a2∂j∂jAi ¼ 0: ð5Þ

Here primeð 0Þ denotes derivative with respect to η and ∂j is
defined as ∂j ≡ gjk∂k ¼ a−2δjk∂k. ηijk represents the three-
dimensional Levi-Cività symbol. To quantize the EM field,
we calculate the conjugate momentum (Πi) of the Ai field,
promote these fields to operators and impose the canonical
quantization condition,

Πi ¼ δL

δ _Ai

; ð6Þ

½Ai;Πj� ¼ i
Z

d3k
2π3

ek⃗·ðx⃗−y⃗ÞPi
jðkÞ: ð7Þ

Here Pi
j ¼ δij − δjmðkikm=k2Þ is used to ensure the

Coulomb gauge condition. We Fourier transform Ai using
the momentum space operators (bλ and b†λ):
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Aiðx⃗; ηÞ ¼
ffiffiffiffiffiffi
4π

p Z
d3k
2π3

X
λ¼1;2

ϵiλ½Aλðk; ηÞbλðk⃗Þeik⃗·x⃗

þ A�
λðk; ηÞb†λðk⃗Þe−ik⃗·x⃗�: ð8Þ

Here ϵiλ represents the polarization vector which can be
written in terms of the three-dimensional orthonormal unit
vectors as

ϵiλ ¼
ϵ̂iλ
a
; ϵi3 ¼

k̂
a
: ð9Þ

Here ϵ̂iλ are unit 3-vectors, orthogonal to k̂ and each other. It
is useful to define a new variable Āλ as, Āλ ¼ aAλðk; ηÞ.
Substituting Eq. (8) in Eq. (5),

X
λ

bλ

�
ϵ̂iλ

�
Ā00
λ þ 2

f0

f
Ā0
λ þ k2Āλ

�
þ 2f0

f
ηijmϵ̂mλkjĀλ

�
¼ 0:

ð10Þ

To simplify this equation further let us choose a different
set of basis vectors defined as ϵ̂þ ¼ ðϵ̂1 þ iϵ̂2Þ=2 and
ϵ̂− ¼ ðϵ̂1 − iϵ̂2Þ=2. In terms of these new basis vectors,P

λĀλϵ̂λbλ ¼ Āþϵ̂þbþ þ Ā−ϵ̂−b−. This set of basis vectors
is known as the helicity basis. Then Eq. (10) reduces to

Ā00
h þ 2

f0

f
ðĀ0

h þ hkĀhÞ þ k2Āh ¼ 0: ð11Þ

Here h ¼ �1 represents the helicity sign. The equation of
motion in terms of Ah ¼ fĀhðk; ηÞ turns out to be

A00
hðk; ηÞ þ

�
k2 −

f00

f
þ 2hk

f0

f

�
Ahðk; ηÞ ¼ 0: ð12Þ

Before we solve the above equation for a particular fðϕÞ, it
will be of interest to calculate the energy density of the EM
field. To do this we calculate the energy momentum tensor
of the EM field:

Tμν ≡ −
2ffiffiffiffiffiffi−gp δ

ffiffiffiffiffiffi−gp
L

δgμν

¼ f2

4π

�
gαβFμαFνβ − gμν

FαβFαβ

4

�
: ð13Þ

We define the electric and magnetic field 4-vectors
as Bμ ≡ F̃μνuν and Eμ ≡ Fμνuν. For the observer
uμ ¼ ð1=a; 0; 0; 0Þ, the time component of these vectors
is zero. The spatial components are given by Bi ¼
ð1=aÞηijkδjmδkn∂mAn and Ei ¼ −ð1=aÞ∂ηAi. Then the
EM energy densities of ground state measured by the
observer with 4-velocity uμ ¼ ð1=a; 0; 0; 0Þ are given by

ρB ¼ h0jTB
μνuμuνj0i and ρE ¼ h0jTE

μνuμuνj0i; ð14Þ

where we have separated the total energy density into the
magnetic part and the electric part. We express these parts
in terms of Ai as

ρB ¼ h0j f
2

8π
½∂iAn∂jAlðgijgnl − gilgnjÞ�j0i ¼ h0j f

2

8π
BiBij0i

ð15Þ

and

ρE ¼ h0j f
2

8π
½A0

iA
0
jg

ij�j0i

¼ h0j f
2

8π
EiEij0i: ð16Þ

After substituting Ai from Eq. (8) into Eqs. (16) and (17),
and using the helicity basis, we reduce the energy densities
in terms of Aþ and A−:

ρB ≡
Z

dk
k
dρBðk; ηÞ
d ln k

¼
Z

dk
k

1

ð2πÞ2
k5

a4
ðjAþðk; ηÞj2

þ jA−ðk; ηÞj2Þ ð17Þ

ρE ≡
Z

dk
k
dρEðk; ηÞ
d ln k

¼
Z

dk
k

f2

ð2πÞ2
k3

a4

�����
�
Aþðk; ηÞ

f

�0����2

þ
����
�
A−ðk; ηÞ

f

�0����2
�
: ð18Þ

In deriving the above expressions we have used the
following properties:

bhj0i ¼ 0 h0jbhðk⃗Þb†h0 ðk⃗0Þj0i ¼ ð2πÞ3δhh0δ3ðk⃗ − k⃗0Þ:

In our analysis, we work with the spectral energy densities
of magnetic and electric fields given by ðdρBðk; ηÞ=d ln kÞ
and ðdρEðk; ηÞ=d ln kÞ, respectively. These spectral den-
sities represent the energy contained in the logarithmic
interval in k-space.
We now turn to calculation of the magnetic and electric

spectral energy densities for a particular type of coupling
function. Let us assume the form of the coupling function to
be a simple power law as

f1ðaÞ ¼ fi

�
a
ai

�
α

: ð19Þ

We assume that during inflation fðϕÞ has a form such that f
evolves with a as given in (19). Here ai represents the value
of the scale factor at the beginning of inflation and α is a
real constant. By assuming the background to be purely de
Sitter during inflation (a ∝ η−1), we get the following:
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f001
f1

¼ αðαþ 1Þ
η2

: ð20Þ

For this form of coupling function Eq. (12) reduces to

A00
hðk; ηÞ þ

�
k2 −

αðαþ 1Þ
η2

− 2hk
α

η

�
Ahðk; ηÞ ¼ 0: ð21Þ

To solve Eq. (21), we rewrite it by defining some new
variables, μ2 ≡ αðαþ 1Þ þ 1

4
; κ ≡ iαh; z≡ 2ikη. Then the

equation takes the form

∂2Ahðk; ηÞ
∂z2 þ

�
1

z2

�
1

4
− μ2

�
þ κ

z
−
1

4

�
Ahðk; ηÞ ¼ 0: ð22Þ

The solutions of this equation are Whittaker functions [51],

Ah ¼ c1Wκ;μðzÞ þ c2W−κ;μð−zÞ: ð23Þ

To determine the coefficients c1 and c2, we havematched the
solution with the bunch Davies vacuum in the subhorizon
limit j−kηj ≫ 1, Ah ¼ e−ikηffiffiffiffi

2k
p . After matching we get

Ah ¼
e
iπκ
2ffiffiffiffiffi
2k

p Wκ;μðzÞ ¼
e
−hπα
2ffiffiffiffiffi
2k

p Wiαh;αþ1
2
ð2ikηÞ:

At the end of the inflation, all the modes of cosmological
interest will be outside the horizon. To get the spectral
magnetic energy density of these modes, we need to write
the above expression in the superhorizon limit:

Ah ¼
Chffiffiffiffiffi
2k

p ½ð−kηÞ−α þ hð−kηÞ−αþ1�

þ Dhffiffiffiffiffi
2k

p
�
ð−kηÞ1þα −

hα
1þ α

ð−kηÞ2þα

�
: ð24Þ

Here

Ch ¼ e
−hπα
2
ð−2iÞ−αΓð1þ 2αÞ
Γð1þ αþ ihαÞ ;

Dh ¼ e
−hπα
2
ð−2iÞ1þαΓð−1 − 2αÞ

Γð−α − ihαÞ : ð25Þ

Substituting Eq. (24) into Eq. (17) the spectral magnetic
energy density comes out to be

dρB
d ln k

¼ 1

8π2
H4

f½ðjCþj2 þ jC−j2Þð−kηÞ−2αþ4

þ ðjDþj2 þ jD−j2Þð−kηÞ2αþ6�: ð26Þ

Similarly the spectral electric energy density is given by

dρE
d ln k

¼ 1

8π2
H4

f½ðjCþj2 þ jC−j2Þð−kηÞ−2αþ4

þ ðjDþj2 þ jD−j2Þð1þ 2αÞ2ð−kηÞ2αþ4�: ð27Þ

For the expressions in Eqs. (26) and (27), we have only kept
the dominant terms.
The reason for two branches in the above expressions is

that α can be positive or negative. In the magnetic field
spectrum the first branch dominates when α > 1=2 and the
other branch dominates when α < 1=2. For the electric
field spectrum the first branch dominates when α > −1=2
and the other branch dominates when α < −1=2. There are
two possible values of α (namely, α ¼ 2;−3) for which the
magnetic field spectrum is scale invariant.
For the case α ¼ −3, when the magnetic field is scale

invariant the electric field spectrum diverges as ð−kηÞ−2.
This implies that the electric field energy density may
overshoot the inflaton energy density during inflation in
this case and our assumption of the EM field being a test
field would no longer be valid. This problem is known as
the backreaction problem [44].
However, for the case α ¼ 2, both the magnetic and the

electric field spectrum are scale invariant, and this avoids
the backreaction problem. For this case the coupling
function f is proportional to a2, which means that f will
be very large at the end of inflation compared to its initial
value. If we assume that f becomes a constant at the end of
inflation, then the effective EM charge ef ¼ 1=f2. Suppose
we demand that at the end of inflation ef should have the
observed value, then it will be very large at the beginning of
inflation. Due to this large value of ef, our perturbative
analysis of field theory would no longer be valid. This
problem is known as the strong coupling problem [44]. On
the other hand, if ef has the observed value at the beginning
of inflation, it will have a very small value at the end of
inflation, avoiding the strong coupling problem. This case
is further explored in the next section.
The branch α ¼ 2 is also preferred, as we discussed in

detail in Ref. [45], because it evades the constraints
imposed by the possibility of increased conductivity due
to the Schwinger effect [31]. The magnetic energy spec-
trum at the end of inflation for α ¼ 2,

dρB
d ln k

≈
9e4π

320π3
H4

f: ð28Þ

We note that this value is larger than the nonhelical case by
a factor of ðe4π=80πÞ ≈ 103.

III. EVOLUTION AFTER INFLATION

As discussed in the last section, there are two possible
scenarios for obtaining a scale invariant magnetic spectrum.
The case in which f is increasing during inflation avoids
the backreaction problem. Moreover, if we assume that f
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begins with a value of unity at the onset of inflation and
increases during the inflationary phase, there will be no
strong coupling problem. At the end of inflation, however,
the EM field will be very weakly coupled to the charged
particles as f is much larger than unity. We address this
issue in [45] by postulating that from the end of inflation
onwards f decreases and attains a value of unity at
reheating and remains unity thereafter. This ensures that
EM action is again in the standard conformally invariant
form after the reheating era. Thus the deviation from the
standard form is onset of inflation to the reheating.
We assume the universe to be matter dominated from the

end of inflation to reheating. We consider α > 1=2 for
further analysis. In this era the evolution of the scale factor
is as follows:

a ¼ a3fH
2
f

4

�
ηþ 3

afHf

�
2

and the coupling function f is assumed to evolve as

f ∝
�
a
af

�
−β
:

Here af is the value of the scale factor at the end of
inflation. We calculate the constant of proportionality by
demanding the continuity of f at the end of inflation:

f2 ¼ fi

�
af
ai

�
α
�
a
af

�
−β
:

To estimate the EM energy densities in this era, we need to
solve Eq. (21) for this new coupling function. The solution
is given by

A2h ¼ d1M2iβh;−ð2βþ1
2
Þð2ikζÞ þ d2M2iβh;2βþ1

2
ð2ikζÞ: ð29Þ

Here ζ ¼ ηþ 3=ðafHfÞ andM2iβh;−ð2βþ1
2
Þð2ikζÞ represents

the second kind of Whittaker function [51]. To calculate d1
and d2, we need the above expression in the superhorizon
limit. In this limit Eq. (29) becomes

A2h ¼ d1ð2iÞ−2β½ðkζÞ−2β − hðkζÞ−2βþ1�

þ d2ð2iÞ2βþ1

�
ðkζÞ2βþ1 þ 2hβ

1þ 2β
ðkζÞ2βþ2

�

and

Ā2h ¼
A2h

f2
¼

�
k
Hf

�
−2β

�
d3ð1 − hðkζÞÞ

þ d4

�
ðkζÞ4βþ1 þ 2hβ

1þ 2β
ðkζÞ4βþ2

��
: ð30Þ

Here d3 and d4 are two new constants. They can be
expressed in terms of d1 and d2. We demand that at the
end of the inflation both Āh, Ā2h and their derivatives have
to be matched. After matching we get

d3 ¼
Chffiffiffiffiffi
2k

p
�

k
Hf

�
−αþ2β

�
1þ 3h

�
k

afHf

��

and

d4 ¼
Chffiffiffiffiffi
2k

p
�

k
Hf

�
−αþ2β 3h2

2ð4β þ 1Þ
�

2k
afHf

�
−4βþ1

�
1 −

2hβ
1þ 2β

4β þ 2

4β þ 1

�
2k

afHf

��
−1
:

In d3 and d4 expressions, we only take the contribution of dominant terms. Energy densities after inflation evolve as

dρB
d ln k

¼ C1

8π2
k4

a4
f22ðaÞ

�
k
Hf

�
−2α

�
1þ 9

4ð4β þ 1Þ2
�

2k
afHf

�
−8βþ2

�
2k
aH

�
8βþ2

þ 3h2

ð4β þ 1Þ
�

2k
afHf

�
−4βþ1

�
2k
aH

�
4βþ1

�
dρE
d ln k

¼ 1

8π2
k4

a4
f22ðaÞ

�
k
Hf

�
−2α

�
C1 þ

9

4
C1

�
2k

afHf

�
−8βþ2

�
2k
aH

�
8β

þ 3C2

�
2k

afHf

�
−4βþ1

�
2k
aH

�
4β
�
:

Here C1 ¼ jCþj2 þ jC−j2 and C2 ¼ jCþj2 − jC−j2. At the
end of inflation, the first term inside the bracket in the
expressions of dρB=d ln k dominates for all the modes
outside the horizon and gives a scale invariant magnetic
field spectrum for α ¼ 2. As f decreases postinflation, this
term also decreases and becomes very small at reheating.
Although the second and third terms are very small
compared to the first term for the mode ki ¼ aiHf at the
end of inflation, the contribution from these terms compared
to the first term increases as f decreases postinflation.

Consequently, the second and third terms overshoot
the first term before reheating. The second term is
36=ðð4β þ 1Þ2a4fÞ × ðar=afÞ4βþ1 times larger than the first

term and 6=ðð4β þ 1Þa2fÞ × ðar=afÞ2βþ1=2 times larger than
the third term at reheating for the mode which exits the
horizon at the beginning of inflation (ki ¼ aiHf). It is even
larger for all other modes of interest. After taking the
contribution of the dominant term at reheating in the above
expressions, we get the following expression for EM energy
densities at reheating:
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dρB
d ln k

����
r
¼ 9

32π2
k4

a4r
f22ðarÞ

�
k
Hf

�
−2α

C1

1

ð4β þ 1Þ2
�

2k
afHf

�
−8βþ2

�
2k

arHr

�
8βþ2

ð31Þ

dρE
d ln k

����
r
¼ 9

32π2
k4

a4r
f22ðarÞ

�
k
Hf

�
−2α

C1

�
2k

afHf

�
−8βþ2

�
2k

arHr

�
8β

: ð32Þ

Here ar andHr are the scale factor and Hubble parameter at
reheating, respectively.
Figure 1 shows the evolution of EM and the inflaton

energy densities with the scale factor, both during and after
inflation. From Fig. 1 one can see that EM energy densities
are increasing after inflation. It is necessary that the EM

energy density does not overshoot the energy density of the
universe before the coupling function f reaches its preinfla-
tionary value. Since EM energy density has a monotonically
increasing behavior, if ρE þ ρB < ρϕ is satisfied at reheat-
ing, it will be valid throughout the postinflationary era prior
to reheating. The total EM energy density at reheating is

ρE þ ρBjr ¼
Z

kr

aiHf

d ln k

�
dρEðk; ηÞ
d ln k

����
r
þ dρBðk; ηÞ

d ln k

����
r

�

¼
Z

kr

aiHf

d ln k

�
9

32π2
k4

a4r
f22ðarÞC1

�
k
Hf

�
−2α

�
2k

afHf

�
−8βþ2

�
2k

arHr

�
8β
�
1þ 1

ð4β þ 1Þ2
�

2k
arHr

�
2
��

¼ 9

32π2
f22ðarÞ
a4r

C1

�
kr
Hf

�
−2α

�
2kr
afHf

�
−8βþ2

�
2kr
arHr

�
8β

k4r

�
1

6 − 2α
þ 1

ð8 − 2αÞð4β þ 1Þ2
�

2kr
arHr

�
2
�
: ð33Þ

For further analysis we have used two new variables
defined as

N ¼ ln

�
af
ai

�
and Nr ¼ ln

�
ar
af

�
:

After substituting kr ¼ arHr ¼ afHfe−Nr=2 in Eq. (33) and
using the definition of N and Nr, we get

ρE þ ρBjr ¼ C3H4
fe

αð2NþNrÞ−7Nr : ð34Þ

Here

C3 ¼
9C1

8π2

�
1

6 − 2α
þ 4

ð8 − 2αÞð4β þ 1Þ2
�
:

In the above expression, we also use β ¼ αN=Nr which is
obtained by demanding fðarÞ ¼ 1.
In order that ρE þ ρBjr < ρϕjr, we require

2αðN þ NrÞ − ð7þ αÞNr < ln

�
π2gr
30C3

�
− 4 ln

Hf

Tr
: ð35Þ

Herewe use ρϕjr ¼ grðπ2=30ÞT4
r , where Tr and gr represent

reheating temperature and relativistic degree of freedom,
respectively, at reheating. We have several variables in the
above expression but they are all not independent. To reduce

the expression in terms of the minimum number of variables
(independent variables), we use the following constraint.
From the isotropy of the cosmic microwave background

radiation, we find the following relation:

N þ Nr > 66.9 − ln

�
Tr

Hf

�
−
1

3
ln
gr
g0

: ð36Þ

FIG. 1. In this figure we have taken α ¼ 2 and Tr ¼ 100 GeV.
It shows the evolution of ρϕ, ρE and ρB with scale factor. The first
vertical bold black line is for the value of af and the second is for
the value of ar. This figure shows that the energy of the EM field
does not overshoot the energy of the scalar field ϕ which decides
the background geometry if the scale of inflation and reheating
satisfies the bound in Eq. (38).
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Here, g0 is the relativistic degree of freedom in the universe
at present. The above relation has been derived from the
fact that the present observable universe has to be inside the
Hubble radius at the beginning of inflation. In the above
expression, we also assume a radiation dominated era from
reheating until today.
By the assumption of matter dominance postinflation to

reheating, Nr can be written in terms of Hf and Tr:

Nr ¼
1

3
ln
ρϕjinf
ρϕjr

¼ 1

3
ln

�
90H2

f

8πGπ2grT4
r

�
: ð37Þ

Substituting Eqs. (36) and (37) into Eq. (35) and writingNr
in terms of Hf and Tr, the bound in Eq. (35) reduces to

ln

�
C3

gr

�
g0
gr

�2α
3

�
grπ2

30

�7þα
3

�
þ 134αþ ð2αþ 4Þ lnHf

Tr

−
4ð7þ αÞ

3
ln

0
@

ffiffiffiffiffiffiffiffiffi
3H2

f

8πG

4

s
1

Tr

1
A < 0: ð38Þ

If reheating temperature and the scale of inflation satisfy the
above bound, there will not be any backreaction and strong
coupling problem in our prescribed model until reheating.
For further analysis, we assume a particular value of α and

calculate the possible inflationary scales (Hf) for different
reheating scales (Tr) using the bound in Eq. (38). For these
Tr andHf, we calculate N and Nr. We have also calculated
correlation length of magnetic field and its strength at this
scale at reheating using the following expressions:

Lc ¼ ar

R kr
0

2π
k

dρBðk;ηÞ
d ln k d ln kR kr

0
dρBðk;ηÞ
d ln k d ln k

B½Lc� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8π

dρBðk; ηÞ
d ln k

r �����
k¼2πar

Lc

: ð39Þ

In Fig. 2, we plot the evolution of the jAhj=a2 [which
appears in Eq. (17) for ρB], with scale factor for different
helicity modes from the beginning of inflation to the epoch
of reheating. The black solid curve and the red dotted curve
show the evolution of the negative helicity and positive
helicity mode, respectively. The blue dot-dashed curve
shows the evolution of jAhj=a2 if the parity breaking term
is not present in the action (nonhelical case) and for future
purpose we name this mode the zero helicity mode. If f had
been a constant equal to 1, the red solid curve would have
represented the evolution. The black dotted curve shows the
jAhj=a2 for the Bunch Davies vacuum. In the left panel, the
first vertical line is for the epoch of horizon crossing during
inflation and the second vertical line is for the end of
inflation. It is evident from the figure that negative helicity
mode has a larger value than the zero helicity mode and the
positive helicity mode. This means that in the helical case,
the magnetic energy density is larger compared to the
nonhelical case at the end of inflation and it is almost fully
helical because the strength of the positive helicity mode is
negligible compared to the negative helicity mode. It is also
evident from this panel that without the coupling between
inflaton and the EM field, the strength of the magnetic field
is very small for the modes which have crossed the horizon
much earlier than end of the inflation.
The right panel of Fig. 2 also follows the same color

coding and it shows the postinflationary evolution until
reheating. In this panel, the first vertical line is for epoch of
end of inflation and the second vertical line is for the epoch
of reheating. This panel shows that the strength of the mode
decreases postinflation. Subsequently there is a transition
and the mode starts to increase until reheating. The reason
for the transition is as follows. The branch which domi-
nated during inflation leads to both an initially dominant
decaying mode and a subdominant growing mode after the
transition to the matter dominated era postinflation. The

FIG. 2. In this figure we have plotted the jAhj=a2 vs scale factor (a). Here we have assumed α ¼ 2, Tr ¼ 100 GeV and k ¼ 105Hf . In
the left panel, we have shown how vector potential evolves for positive helicity, negative helicity, zero helicity and for the case of
constant coupling (f ¼ 1) during inflation. In the second plot, we have shown the evolution of the same modes postinflation to
reheating.
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initially dominant mode decreases as f decreases, while the
initially subdominant one increases with time. In further
evolution, naturally there is a point where both branches
cross each other, this point is the transition point in the right
panel. Subsequent growth of the field continues until the
reheating epoch (indicated by the second vertical line).
Finally on reheating the electric field gets damped by the
increased plasma conductivity. The magnetic field evolves
further as discussed below.

IV. EVOLUTION OF MAGNETIC
FIELD AFTER REHEATING

To determine the magnetic field strength and its corre-
lation length at present, we need to evolve the magnetic
field from the epoch of reheating to today. As we have seen
in the last section, our generated magnetic field has a blue
k4 spectra on superhorizon scales at the time of generation.
After reheating, the universe is dominated by radiation and
in radiation dominance the Hubble radius increases faster
than the wavelength of a mode. Due to this, modes start to
reenter the horizon. As the Alfvén crossing time for a mode
becomes smaller than the comoving Hubble time, nonlinear
effects due to the magnetic field coupling to the plasma
come into picture.
If we consider only the flux frozen evolution of the

magnetic field B ∝ 1=a2, then magnetic field strength and
its correlation length at present are given by the following
expressions:

Lc0 ¼ Lc

�
a0
ar

�
;

B0½Lc0� ¼ B½Lc�
�
a0
ar

�
−2
: ð40Þ

However, if we incorporate the nonlinear effects and the
consequent turbulent decay of themagnetic field, its strength
and correlation scale have different scaling behavior.
Because of magnetic helicity conservation, inverse cascade
takes place and magnetic energy transfers from smaller
length scales to larger scales. This phenomenon has been
discussed in [42,52,53] and also confirmed by the numerical
simulations [52–57]. After using the results discussed in
[42,52,53], we get the following scaling laws for the
correlation scale LNL

c0 and the strength of the field at this
scale BNL

0 ½LNL
c0 �:

LNL
c0 ¼ Lc0

�
am
ar

�
2=3

;

BNL
0 ½LNL

c0 � ¼ B0½Lc0�
�
am
ar

�
−1=3

: ð41Þ

Here am represents the scale factor at the matter radiation
equality. As discussed in [45] there is no significant change
in the comoving coherence length and field strength in the
matter dominated era after am. Thus Eq. (41) gives reason-
able estimates of the present day comoving field strength and
correlation length. To estimate the maximum possible value
of themagnetic field at different reheating scale, first we take
the lowest possible scale of reheating (5 MeV) allowed by
the big bang nucleosynthesis (BBN) bound [58]. We have
also considered reheating scales around QCD phase tran-
sition, electroweak phase transition and at 1000 GeV. For
each of these reheating temperatures we calculate the bound
on the scale of inflation using Eq. (35). Further we calculate
the magnetic field strength and its correlation length both
assuming frozen field evolution Eq. (40) and with turbulent
decay using Eq. (41). The results are given in Table I.
The bound obtained in Eq. (38) suggests that as we

increase the reheating scale (Tr), inflationary scale (Hf)
decreases. Since reheating occurs after the end of inflation,
the above behavior suggests that the highest possible
reheating scale is≈4000 GeV forα ¼ 2.We consider several
reheating scales below this highest possible reheating scale.
If we consider reheating at 1000GeV, themaximumpossible
magnetic field strength is 7.1 × 10−12 G and its correlation
length is 0.03 Mpc. We also calculate magnetic field
strength and its correlation length for Tr ¼ 100 GeV, Tr ¼
150 MeV and Tr ¼ 5 MeV and the results are shown in
Table I. It is evident from the table that as we decrease the
reheating temperature, themaximum possible magnetic field
strength as well as its correlation length increases.
Specifically, we have BNL

0 ∼3.9×10−11G, ∼9.9×10−10G,
6.4×10−9G for respectively Tr¼ 100GeV, Tr ¼ 150 MeV
and Tr ¼ 5 MeV and LNL

c0 ¼ 0.07 Mpc, 0.6 Mpc and
1.6 Mpc, respectively, for the same reheating temperatures.
In the above estimates, we have assumed that the

EM energy density reaches a value equal to the energy
density in the inflaton field at reheating. Suppose
ðρE þ ρBÞjr ¼ ϵρϕjr, then for a particular Tr, the above
estimated magnetic field strength will be decreased by a

TABLE I. Present day magnetic field strength and correlation length for different reheating scales (Tr).

Scale of inflation
(in GeV)

Reheating
temperature Tr α

Correlation length
Lc0 (in Mpc)

Magnetic field strength
B0½Lc0� (in G)

Correlation length
LNL
c0 (in Mpc)

Magnetic field strength
BNL
0 ½LNL

c0 � (in G)

1.14 × 1010 5 MeV 2 2.59 × 10−5 1.60 × 10−7 1.62 6.41 × 10−9

2.84 × 108 150 MeV 2 6.46 × 10−7 9.34 × 10−7 0.58 9.90 × 10−10

3.88 × 105 100 GeV 2 8.84 × 10−10 3.43 × 10−7 0.068 3.92 × 10−11

3.58 × 104 1000 GeV 2 8.84 × 10−11 1.35 × 10−7 0.032 7.12 × 10−12
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factor of
ffiffiffi
ϵ

p
but the correlation scalewill remain the same. In

this case, the maximum allowed value of reheating temper-
ature is also decreased by a modest amount. For example
with ϵ ¼ 10−4, the maximum Tr becomes ≈1300 GeV.

V. γ-RAY CONSTRAINTS

We now consider the constraints from the γ-ray obser-
vation. Nondetection of GeV photons in blazar observation
by the Fermi telescope puts a lower bound on the magnetic
field strength [5,6]. Emitted photons of TeV energy from
blazars interacts with the extragalactic background light
and gives rise to pair production. These produced particles
interact with the cosmic microwave background and gen-
erate the GeV energy photons by inverse Compton scatter-
ing. If a magnetic field is present in the intergalactic
medium, it can affect the trajectories of these charge
particle and observed surface brightness of GeV emission
due to inverse Compton scattering can be suppressed.
Further, if we consider that the size of the secondary emitting
region is larger than the point spread function of the
telescope then this gives a lower bound of B ∼ 10−15 G
strength at the coherence scale ≥ 1 Mpc. If the flux
suppressionmechanism is due to the timedelay of secondary
emission then one gets a lower bound of B ∼ 10−17 G at the
same coherence scale. Below 1Mpc as the coherence length
decreases the lower bound on the magnetic field strength
increases as L−1=2

c in both cases. Here Lc is the comoving
correlation length of the magnetic field.
In Fig. 3,we haveplotted themaximumpossiblemagnetic

field strength generated in our model for different reheating
scales as a dashed red curve and the two bounds on the
magnetic field strength obtained from the nondetection
of γ-rays from blazars respectively as a solid black curve
and as a dot-dashed blue curve for the two different

mechanisms. In the left panel we have only considered
the flux frozen evolution of the magnetic field after gen-
eration and estimated magnetic field strength and its
correlation length. In the right panel we have estimated
the magnetic field strength and its correlation length by
incorporating the nonlinear evolution. It is evident from the
figure that the generated magnetic field strength satisfies the
γ-ray observation for all possible reheating scales in our
model. The shaded region in the figure represents the
allowed values of magnetic fields from γ-ray observation.
In Fig. 3, we have shown the constraints only for a

certain range of the reheating temperature. BBN gives us a
lower bound of 5 MeV for the scale of reheating. The
reason for the upper bound is discussed in the previous
section. For the α ¼ 2 case, it is at 4000 GeV. We see from
Fig. 3 that all our allowed models with Tr < 4000 GeV
lead to magnetic fields well above the lower bound required
by the γ-ray observations.

VI. CONCLUSION

Wehave studied here thegenerationof thehelicalmagnetic
field during inflation. The generation of the magnetic field
within standard physics during inflation is not possible
because of the conformal invariance of the EM field. To
generate magnetic field during inflation, we have adopted the
Ratra model in which a coupling between the EM field and
the inflaton field is assumed.Wehave added a parity violating
termwith the same coupling in our action to generate a helical
magnetic field. However, this model has the well-known
strong coupling and backreaction problems during inflation.
We have described these problems and attempted to resolve
them by adopting a particular behavior of coupling function
f. In our model f starts with a value of unity and increases
during inflation so that there are no strong coupling and

FIG. 3. We have assumed α ¼ 2 in plotting these figures. The black curve and dot-dashed blue curve in both parts correspond to the
lower bound on observed magnetic field strength constrained by the gamma ray observations for two different mechanisms. These
bounds are estimated at the correlation length of the generated magnetic field. The red dashed curve in the left panel represents the
maximum magnetic field strength (B0½Lc0�) that can be generated in our model by taking flux freezing evolution. The red dashed curve
in the right panel represents the maximum magnetic field strength (BNL

0 ½LNL
c0 �) that can be generated by taking the nonlinear evolution of

helical magnetic fields. The shaded region in both parts represents all the allowed magnetic field strengths from γ-ray constraints.
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backreaction problems. After inflation and before reheating it
decreases such that it attains the preinflationary value at
reheating to match with the observed coupling constant
between the charged fields and the EM field. By demanding
that there is no backreaction of the generated fields post-
inflation, we get a bound on inflationary and reheating scales.
For this type of evolution, the magnetic field spectrum at
reheating is blue and cannot be shallower than dρb=d ln k ∝
k4 spectra. This spectra is obtained when f ∝ a2 during
inflation. We have discussed this case in detail and estimate
themagnetic field energydensity and its correlation length for
different reheating scales. If reheating happens at 100 GeV
then the comoving magnetic field strength is 3.4 × 10−7 G
and its correlation length is 8.8 × 10−10 Mpc if we only
consider the flux frozen evolution. Magnetic field strength
and correlation length change to3.9 × 10−11 Gand0.07Mpc
if we incorporate the nonlinear evolution whereby the helical
field decays due to the generated magnetohydrodynamics
turbulence, conserving magnetic helicity. The generated
magnetic field is almost fully helical.
The generated magnetic field strength at the end of

inflation is larger compared to the nonhelical case consid-
ered in Ref. [45]. Moreover, the maximum possible
reheating scale in the helical case is ≈4 × 103 GeV which
was ≈104 GeV in the nonhelical case. We have also shown
that the generated magnetic field in our model satisfies the
γ-ray constraints for all the allowed reheating scales.
The behavior of coupling function which we have

adopted could be obtained in hybrid inflationary scenarios
[59]. In hybrid inflation, one has two scalar fields with one
dominating during inflation and providing the necessary
condition for inflation and other field ends the inflation. We

can consider our coupling function as a function of both
fields such that when the first field rolls down the potential
during inflation, f increases and f decreases when the other
field evolves.
To summarize, we have suggested a viable scenario for

inflationary generation of helical magnetic fields, which
does not suffer from the backreaction or strong coupling
problems. In our model the generated field is almost fully
helical. Aswe increase the reheating scale both themagnetic
field strength and its correlation length decrease. However,
they satisfy the γ-ray constraints for all the allowed values of
reheating scales. The generated magnetic field strength and
its correlation length are larger for the helical case compared
to the nonhelical case. For a reheating scale at 100 GeV the
magnetic field strength and its correlation length were 6.8 ×
10−13 G and 7.3 × 10−4 Mpc for the nonhelical case [45]
but 3.9 × 10−11 Gand 0.07Mpc for the helical case. Cosmic
microwave background and structure formation havemainly
focused on nearly scale invariant spectra [39,42,60–67]. It
would be of interest to revisit these effects for the blue
spectra (see for example [68]) predicted by our consistent
models of inflationary magnetogenesis.

ACKNOWLEDGMENTS

R. S. and T. R. S. acknowledge the facilities at IUCAA
Resource Center, University of Delhi, as well as the
hospitality and resources provided by IUCAA, Pune, where
part of this work has been done. R. S. acknowledges CSIR,
India, for the financial support through Grant No. 09/045
(1343)/2014-EMR-I. T. R. S. acknowledges SERB for
Project Grant No. EMR/2016/002286.

[1] D. J. Stevenson, Space Sci. Rev. 152, 651 (2010).
[2] R. Beck, Space Sci. Rev. 99, 243 (2001).
[3] T. E. Clarke, P. P. Kronberg, and H. Boehringer, Astrophys.

J. 547, L111 (2001).
[4] L. M. Widrow, Rev. Mod. Phys. 74, 775 (2002).
[5] A. Neronov and I. Vovk, Science 328, 73 (2010).
[6] A. M. Taylor, I. Vovk, and A. Neronov, Astron. Astrophys.

529, A144 (2011).
[7] L. Biermann, Z. Naturforsch. Teil A 5, 65 (1950).
[8] K. Subramanian, D. Narasimha, and S. M. Chitre, Mon.

Not. R. Astron. Soc. 271, L15 (1994).
[9] R. M. Kulsrud, R. Cen, J. P. Ostriker, and D. Ryu, As-

trophys. J. 480, 481 (1997).
[10] N. Y. Gnedin, A. Ferrara, and E. G. Zweibel, Astrophys. J.

539, 505 (2000).
[11] M. J. Rees, Astron. Nachr. 327, 395 (2006).
[12] The Fluid Mechanics of Astrophysics and Geophysics,

Vol. 3, edited by I. B. Zeldovich, A. A. Ruzmaikin, and

D. D. Sokolov (Gordon and Breach Science Publishers,
New York, 1983), p. 381.

[13] A. Shukurov, inMathematical Aspects of Natural Dynamos,
edited by E. Dormy and A. M. Soward (Chapman & Hall/
CRC, London, 2007), pp. 313–359.

[14] A. Brandenburg and K. Subramanian, Phys. Rep. 417, 1
(2005).

[15] R. M. Kulsrud and E. G. Zweibel, Rep. Prog. Phys. 71,
046901 (2008).

[16] M. S. Turner and L. M. Widrow, Phys. Rev. D 37, 2743
(1988).

[17] T. Vachaspati, Phys. Lett. B 265, 258 (1991).
[18] B. Ratra, Astrophys. J. 391, L1 (1992).
[19] G. Sigl, A. V. Olinto, and K. Jedamzik, Phys. Rev. D 55,

4582 (1997).
[20] L. S. Kisslinger, Phys. Rev. D 68, 043516 (2003).
[21] Z. Berezhiani and A. D. Dolgov, Astropart. Phys. 21, 59

(2004).

SHARMA, SUBRAMANIAN, and SESHADRI PHYS. REV. D 97, 083503 (2018)

083503-10

https://doi.org/10.1007/s11214-009-9572-z
https://doi.org/10.1023/A:1013805401252
https://doi.org/10.1086/318896
https://doi.org/10.1086/318896
https://doi.org/10.1103/RevModPhys.74.775
https://doi.org/10.1126/science.1184192
https://doi.org/10.1051/0004-6361/201116441
https://doi.org/10.1051/0004-6361/201116441
https://doi.org/10.1093/mnras/271.1.L15
https://doi.org/10.1093/mnras/271.1.L15
https://doi.org/10.1086/303987
https://doi.org/10.1086/303987
https://doi.org/10.1086/309272
https://doi.org/10.1086/309272
https://doi.org/10.1002/asna.200610540
https://doi.org/10.1016/j.physrep.2005.06.005
https://doi.org/10.1016/j.physrep.2005.06.005
https://doi.org/10.1088/0034-4885/71/4/046901
https://doi.org/10.1088/0034-4885/71/4/046901
https://doi.org/10.1103/PhysRevD.37.2743
https://doi.org/10.1103/PhysRevD.37.2743
https://doi.org/10.1016/0370-2693(91)90051-Q
https://doi.org/10.1086/186384
https://doi.org/10.1103/PhysRevD.55.4582
https://doi.org/10.1103/PhysRevD.55.4582
https://doi.org/10.1103/PhysRevD.68.043516
https://doi.org/10.1016/j.astropartphys.2003.11.002
https://doi.org/10.1016/j.astropartphys.2003.11.002


[22] K. Takahashi, K. Ichiki, H. Ohno, and H. Hanayama, Phys.
Rev. Lett. 95, 121301 (2005).

[23] R. Gopal and S. Sethi, Mon. Not. R. Astron. Soc. 363, 521
(2005).

[24] A. G. Tevzadze, L. Kisslinger, A. Brandenburg, and T.
Kahniashvili, Astrophys. J. 759, 54 (2012).

[25] J. Martin and J. Yokoyama, J. Cosmol. Astropart. Phys. 01
(2008) 025.

[26] L. Campanelli, P. Cea, G. L. Fogli, and L. Tedesco, Phys.
Rev. D 77, 043001 (2008).

[27] R. Durrer, L. Hollenstein, and R. K. Jain, J. Cosmol.
Astropart. Phys. 03 (2011) 037.

[28] I. Agullo and J. Navarro-Salas, arXiv:1309.3435.
[29] R. J. Z. Ferreira, R. K. Jain, and M. S. Sloth, J. Cosmol.

Astropart. Phys. 10 (2013) 004.
[30] C. Caprini and L. Sorbo, J. Cosmol. Astropart. Phys. 10

(2014) 056.
[31] T. Kobayashi, J. Cosmol. Astropart. Phys. 14 (2014) 040.
[32] K. Atmjeet, I. Pahwa, T. R. Seshadri, and K. Subramanian,

Phys. Rev. D 89, 063002 (2014).
[33] K. Atmjeet, T. R. Seshadri, and K. Subramanian, Phys. Rev.

D 91, 103006 (2015).
[34] L. Sriramkumar, K. Atmjeet, and R. K. Jain, J. Cosmol.

Astropart. Phys. 09 (2015) 010.
[35] L. Campanelli, Eur. Phys. J. C 75, 278 (2015).
[36] G. Tasinato, J. Cosmol. Astropart. Phys. 15 (2015) 040.
[37] D. Chowdhury, L. Sriramkumar, and R. K. Jain, Phys. Rev.

D 94, 083512 (2016).
[38] D. Grasso and H. R. Rubinstein, Phys. Rep. 348, 163

(2001).
[39] R. Durrer and A. Neronov, Astron. Astrophys. Rev. 21, 62

(2013).
[40] K. Subramanian, Astron. Nachr. 331, 110 (2010).
[41] A. Kandus, K. E. Kunze, and C. G. Tsagas, Phys. Rep. 505,

1 (2011).
[42] K. Subramanian, Rep. Prog. Phys. 79, 076901 (2016).
[43] L. Parker, Phys. Rev. Lett. 21, 562 (1968).
[44] V. Demozzi, V. Mukhanov, and H. Rubinstein, J. Cosmol.

Astropart. Phys. 08 (2009) 025.
[45] R. Sharma, S. Jagannathan, T. R. Seshadri, and K.

Subramanian, Phys. Rev. D 96, 083511 (2017).
[46] H. Tashiro, W. Chen, F. Ferrer, and T. Vachaspati, Mon. Not.

R. Astron. Soc. 445, L41 (2014).

[47] H. Tashiro and T. Vachaspati, Mon. Not. R. Astron. Soc.
448, 299 (2015).

[48] P. Adshead, J. T. Giblin, T. R. Scully, and E. I. Sfakianakis,
J. Cosmol. Astropart. Phys. 10 (2016) 039.

[49] W. D. Garretson, G. B. Field, and S. M. Carroll, Phys. Rev.
D 46, 5346 (1992).

[50] K.-W. Ng, S.-L. Cheng, and W. Lee, Chin. J. Phys. (Taipei)
53, 110105 (2015).

[51] I. S. Gradshteyn, I. M. Ryzhik, A. Jeffrey, and D. Zwillinger,
Table of Integrals, Series, and Products, 7th ed. (Elsevier
Academic Press, New York, 2007).

[52] R.Banerjee andK. Jedamzik, Phys.Rev.D70, 123003 (2004).
[53] M. Christensson, M. Hindmarsh, and A. Brandenburg,

Phys. Rev. E 64, 056405 (2001).
[54] T. Kahniashvili, A. G. Tevzadze, A. Brandenburg, and A.

Neronov, Phys. Rev. D 87, 083007 (2013).
[55] T. Kahniashvili, A. Brandenburg, and A. G. Tevzadze, Phys.

Scr. 91, 104008 (2016).
[56] A. Brandenburg and T. Kahniashvili, Phys. Rev. Lett. 118,

055102 (2017).
[57] A. Brandenburg, T. Kahniashvili, S. Mandal, A. R. Pol, A. G.

Tevzadze, andT.Vachaspati, Phys.Rev.D 96, 123528 (2017).
[58] P. F. de Salas, M. Lattanzi, G. Mangano, G. Miele, S. Pastor,

and O. Pisanti, Phys. Rev. D 92, 123534 (2015).
[59] A. Linde, Phys. Rev. D 49, 748 (1994).
[60] S. K. Sethi and K. Subramanian, Mon. Not. R. Astron. Soc.

356, 778 (2005).
[61] P. Trivedi, T. R. Seshadri, and K. Subramanian, Phys. Rev.

Lett. 108, 231301 (2012).
[62] P. Trivedi, K. Subramanian, and T. R. Seshadri, Phys. Rev.

D 89, 043523 (2014).
[63] P. A. R. Ade et al. (Planck Collaboration), Astron. As-

trophys. 594, A19 (2016).
[64] K. L. Pandey, T. R. Choudhury, S. K. Sethi, and A. Ferrara,

Mon. Not. R. Astron. Soc. 451, 1692 (2015).
[65] K. E. Kunze and E. Komatsu, J. Cosmol. Astropart. Phys. 06

(2015) 027.
[66] K. E. Kunze and M. Vzquez-Mozo, J. Cosmol. Astropart.

Phys. 12 (2015) 028.
[67] J. Chluba, D. Paoletti, F. Finelli, and J.-A. Rubio-Martn,

Mon. Not. R. Astron. Soc. 451, 2244 (2015).
[68] J. M. Wagstaff and R. Banerjee, Phys. Rev. D 92, 123004

(2015).

GENERATION OF HELICAL MAGNETIC FIELD IN A … PHYS. REV. D 97, 083503 (2018)

083503-11

https://doi.org/10.1103/PhysRevLett.95.121301
https://doi.org/10.1103/PhysRevLett.95.121301
https://doi.org/10.1111/j.1365-2966.2005.09442.x
https://doi.org/10.1111/j.1365-2966.2005.09442.x
https://doi.org/10.1088/0004-637X/759/1/54
https://doi.org/10.1088/1475-7516/2008/01/025
https://doi.org/10.1088/1475-7516/2008/01/025
https://doi.org/10.1103/PhysRevD.77.043001
https://doi.org/10.1103/PhysRevD.77.043001
https://doi.org/10.1088/1475-7516/2011/03/037
https://doi.org/10.1088/1475-7516/2011/03/037
http://arXiv.org/abs/1309.3435
https://doi.org/10.1088/1475-7516/2013/10/004
https://doi.org/10.1088/1475-7516/2013/10/004
https://doi.org/10.1088/1475-7516/2014/10/056
https://doi.org/10.1088/1475-7516/2014/10/056
https://doi.org/10.1103/PhysRevD.89.063002
https://doi.org/10.1103/PhysRevD.91.103006
https://doi.org/10.1103/PhysRevD.91.103006
https://doi.org/10.1088/1475-7516/2015/09/010
https://doi.org/10.1088/1475-7516/2015/09/010
https://doi.org/10.1140/epjc/s10052-015-3510-x
https://doi.org/10.1103/PhysRevD.94.083512
https://doi.org/10.1103/PhysRevD.94.083512
https://doi.org/10.1016/S0370-1573(00)00110-1
https://doi.org/10.1016/S0370-1573(00)00110-1
https://doi.org/10.1007/s00159-013-0062-7
https://doi.org/10.1007/s00159-013-0062-7
https://doi.org/10.1002/asna.200911312
https://doi.org/10.1016/j.physrep.2011.03.001
https://doi.org/10.1016/j.physrep.2011.03.001
https://doi.org/10.1088/0034-4885/79/7/076901
https://doi.org/10.1103/PhysRevLett.21.562
https://doi.org/10.1088/1475-7516/2009/08/025
https://doi.org/10.1088/1475-7516/2009/08/025
https://doi.org/10.1103/PhysRevD.96.083511
https://doi.org/10.1093/mnrasl/slu134
https://doi.org/10.1093/mnrasl/slu134
https://doi.org/10.1093/mnras/stu2736
https://doi.org/10.1093/mnras/stu2736
https://doi.org/10.1088/1475-7516/2016/10/039
https://doi.org/10.1103/PhysRevD.46.5346
https://doi.org/10.1103/PhysRevD.46.5346
https://doi.org/10.6122/CJP.20150909
https://doi.org/10.6122/CJP.20150909
https://doi.org/10.1103/PhysRevD.70.123003
https://doi.org/10.1103/PhysRevE.64.056405
https://doi.org/10.1103/PhysRevD.87.083007
https://doi.org/10.1088/0031-8949/91/10/104008
https://doi.org/10.1088/0031-8949/91/10/104008
https://doi.org/10.1103/PhysRevLett.118.055102
https://doi.org/10.1103/PhysRevLett.118.055102
https://doi.org/10.1103/PhysRevD.96.123528
https://doi.org/10.1103/PhysRevD.92.123534
https://doi.org/10.1103/PhysRevD.49.748
https://doi.org/10.1111/j.1365-2966.2004.08520.x
https://doi.org/10.1111/j.1365-2966.2004.08520.x
https://doi.org/10.1103/PhysRevLett.108.231301
https://doi.org/10.1103/PhysRevLett.108.231301
https://doi.org/10.1103/PhysRevD.89.043523
https://doi.org/10.1103/PhysRevD.89.043523
https://doi.org/10.1051/0004-6361/201525821
https://doi.org/10.1051/0004-6361/201525821
https://doi.org/10.1093/mnras/stv1055
https://doi.org/10.1088/1475-7516/2015/06/027
https://doi.org/10.1088/1475-7516/2015/06/027
https://doi.org/10.1088/1475-7516/2015/12/028
https://doi.org/10.1088/1475-7516/2015/12/028
https://doi.org/10.1093/mnras/stv1096
https://doi.org/10.1103/PhysRevD.92.123004
https://doi.org/10.1103/PhysRevD.92.123004

