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3École Polytechnique, Université Paris-Saclay, F-91128 Palaiseau, France
4Sorbonne Universités, UPMC Univ Paris 6, CNRS, UMR 7095, 75005 Paris, France and Institut

d’Astrophysique de Paris—UMR 7095 du CNRS, Université Pierre & Marie Curie, 98bis Boulevard Arago,
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If the symmetry breaking responsible for axion dark matter production occurs during the radiation-
dominated epoch in the early Universe, then this produces large amplitude perturbations that collapse into
dense objects known as axion miniclusters. The characteristic minicluster mass, M0, is set by the mass
inside the horizon when axion oscillations begin. For the QCD axion M0 ∼ 10−10 M⊙, however, for an
axionlike particle, M0 can approach M⊙ or higher. Using the Press-Schechter formalism we compute the
mass function of halos formed by hierarchical structure formation from these seeds. We compute the
concentrations and collapse times of these halos and show that they can grow to be as massive as 106M0.
Within the halos, miniclusters likely remain tightly bound, and we compute their gravitational microlensing
signal taking the fraction of axion dark matter collapsed into miniclusters, fMC, as a free parameter. A large
value of fMC severely weakens constraints on axion scenarios from direct detection experiments. We take
into account the non-Gaussian distribution of sizes of miniclusters and determine how this affects the
number of microlensing events. We develop the tools to consider microlensing by an extended mass
function of nonpointlike objects, and we use microlensing data to place the first observational constraints
on fMC. This opens a new window for the potential discovery of the axion.
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I. INTRODUCTION

Models of particle dark matter (DM) can be broadly
classified into two types: thermal and nonthermal. The
prototypical thermal candidate is the weakly interacting
massive particle [1,2]. The prototypical nonthermal candi-
date is the axion [3,4].
In this paper, we explore astrophysical implications and

constraints on axion DM in the so-called “miniclusters”
scenario [5]. In this scenario, dense lumps of axionDM form
from the dynamics of symmetry breaking which leads to
the axion production in the first place. Both the mass and the
mass function of the miniclusters are determined by the
axion particle mass, ma, and in some cases miniclusters can
be massive enough, dense enough, and abundant enough to
impact astrophysical observables such as gravitational
microlensing. Thus, searches for axion miniclusters are
related to searches for nonparticle DM candidates including

massive compact halo objects (MACHOs) [6,7] and primor-
dial black holes (PBHs) [8–10].
The axion is a pseudo-Nambu-Goldstone boson of a

spontaneously broken global Uð1Þ symmetry, known as a
Peccei-Quinn (PQ) symmetry [11]. PQ symmetry breaking
occurs when the temperature of the Universe drops below
the symmetry breaking scale fa. The cosmology of the
axion, and consequent phenomenology of axion DM, is
determined by the cosmic epoch during which symmetry
breaking occurs. Miniclusters are formed if the PQ sym-
metry is broken after smooth cosmic initial conditions are
established (we refer from now on specifically to inflation
[12], but the distinction is not important). The minicluster
mass is determined by the axion Compton wavelength,
with larger minicluster masses for lighter axions.
The cosmology and astrophysics of miniclusters com-

prised of the QCD axion [13–18] was explored in depth in a
series of seminal papers by Kolb and Tkachev in the early
1990s [19–22]. At that time, microlensing observations were
not yet precise enough to constrain QCD axion miniclusters.
Modern observations are much improved, and here we
perform the necessary improved theoretical calculations of
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the event rate to compare to the data. Furthermore, interest
has been growing in the broader class of axion DM models,
or “axionlike particles,” inspired in part by the theoretical
observation that light (ma ≪ 1 eV) axions are abundant in
the string theory landscape [23,24]. It is thus timely to
reconsider the work of Kolb and Tkachev beyond the QCD
axion. We take on this task, following also the work of
Refs. [25–27].
The fraction of axion DM bound up in miniclusters is

fMC, and it is not known a priori from theoretical
calculations. If fMC ≈ 1 then axion DM direct detection
is severely limited, as encounters with a minicluster in our
own Galaxy will be exceedingly rare. This has profound
implications for axion direct detection. If fMC ≈ 1, then
direct axion detection with ADMX [28], MADMAX
[29,30], or the myriad other proposed experiments targeting
the QCD axion in the ma ∼ 1 μeV mass range would be
much more difficult. Null results could erroneously be
interpreted as excluding the axion, when in fact it was just
“hiding” in miniclusters. On the other hand experiments
like ARIADNE [31], which detect axions via the forces
they mediate [32], could still detect axions even if fMC ¼ 1
or axions are not the DM. In practice even if fMC ≈ 1
initially, tidal disruption will affect a few percent of
miniclusters allowing for some prospect of DM direct
detection, or even a measurement of fMC in the laboratory
[33,34]. In the present study we take fMC as a free
parameter that, if sufficiently constrained by observation,
could be used to rule out entire classes of models for axion
production. Our method proposes to measure the mini-
cluster fraction using gravitational microlensing.
In the course of considering this signal, we address

issues of structure formation with miniclusters and present
a series of possible models. A new consequence of this
investigation is the computation of the mass function of
minicluster halos (which we term “MCHs”). Depending on
the merging and tidal stripping of miniclusters, the MCH
mass function may or may not be the appropriate mass
function to consider for microlensing. There may be,
however, other observational consequences of the existence
of MCHs for which the mass function will be an important
quantity.
We begin in Sec. II, where we present some introductory

basics on miniclusters. There has been very little study in
the literature on the subsequent gravitational evolution of
axion miniclusters after their formation (although see [25]).
In Sec. III we therefore present a new computation of the
MCH mass function following the Press-Schechter [35]
formalism. The form of the mass function is seen to arise
simply from basic physical principles, and can be easily
parametrized.
Miniclusters are extended objects and cannot be con-

sidered as pointlike lenses (radius larger than the Einstein
radius). We discuss minicluster density profiles in Sec. IV.
Section V presents tools to compute the lensing signal from
a mass function of nonpointlike lenses.

We apply our minicluster lensing methodology to the
historical EROS survey [36] and to the very recent Subaru
Hyper Suprime Cam observations [37] in Sec. VI. We
conclude in Sec. VII.
Since miniclusters can only be produced if the PQ

symmetry is broken after inflation, the axion parameters
are constrained by the precise prediction for the axion DM
relic density in this scenario. In particular, the relic density
can be too large if the axion domain wall numberNDW > 1,
due to the late decay of domain walls. Thus, in the standard
QCD axion model, miniclusters are a generic prediction
only of the Kim-Shifman-Vainshtein-Zakharov (“KSVZ”)-
type models, with the scenario in the “Dine-Fischler-
Srednicki-Zhitnitsky”-type models being somewhat more
complicated.1 In this paper we consider only models with
NDW ¼ 1, where the minicluster scenario is simplest.
Appendix A collects results on the axion relic density,
early time cosmology and thermal history, and we deter-
mine the range of axion masses and decay constants for
which the minicluster scenario can occur.
Finding the relic density in general requires many

complex computational steps: lattice QCD for the temper-
ature dependence of the axion mass, and lattice field theory
for the classical evolution of the axion field. These
calculations have only been performed in the literature
for the QCD axion. Our relic density computation uses
analytic approximations to allow us to treat axion like
particle (ALPs), and to account for uncertainties in the
QCD calculation in a parametrized way. Our final con-
straints account for the uncertainties by allowing for a
window in the relation between minicluster mass and axion
mass for the QCD axion.
Appendix B presents the theoretical modeling of the

MCH mass function, and some analytic results.
Appendix C discusses how non-Gaussianity of the axion
initial conditions affects the MCH mass function.
Appendix D discusses how formation of “axion stars”
might modify our lensing results in the case of axionlike
particles with temperature-independent mass.
We use Planck (2015) [39] cosmological parameters

h ¼ 0.67, Ωm ¼ 0.32, Ωch2 ¼ 0.12, and zeq ¼ 3402, and
for particle physics quantities we use natural units where
c ¼ ℏ ¼ 1. Throughout this work we consider a standard
thermal history of the Universe after the inflationary epoch.

II. AXION MINICLUSTERS

This section gives the briefest outline of the minicluster
scenario to establish some important language and physical
scales. The main results are given in Fig. 1 and Eq. (3).
There are two energy scales that define the cosmological

evolution of the axion field: the decay constant, fa, and the

1A comprehensive discussion of the variations on these general
themes can be found in Ref. [38].
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mass, ma. These two energy scales determine the two most
important epochs in the life of a young axion.
The axion is the angular degree of freedom of a complex

scalar field, φ, with a global Uð1Þ symmetry that is
spontaneously broken by the potential:

VðφÞ ¼ λ

4!

�
jφj2 − f2a

2

�
2

: ð1Þ

Spontaneous symmetry breaking (SSB) occurs when the
temperature of the Universe cools to T ≲ fa.

2 After SSB,
the complex field is given by φ ¼ ðfa=

ffiffiffi
2

p Þeiϕ=fa, with ϕ
the (real) axion field.
If PQ symmetry is broken before or during inflation then

the axion field takes on a uniform value across the observed
Universe, with the addition of small isocurvature perturba-
tions from the finite temperature during inflation, and
density perturbations inherited from the adiabatic pertur-
bations in the hot big bang plasma. On the other hand, if
PQ symmetry is broken after inflation then topological
defects and large amplitude axion field fluctuations are
present on scales of order the horizon size at symmetry
breaking [5,41,42]. In this case, since each horizon volume
is causally disconnected, the axion field is uncorrelated
across different horizon volumes and drawn from the
distribution ϕ=fa ∈ U½−π; π�.

The Kibble mechanism [43] smoothes the axion field
on the horizon scale until such a time that the axion mass
becomes cosmically relevant, which defines the second
important epoch in the life of the axion. At this epoch,
the topological defects decay, and the axion field is left
with large amplitude isocurvature fluctuations on the
horizon scale.3 These fluctuations of order fa between
horizon volumes provide the initial conditions for the
axion field on small scales. It is these fluctuations that
subsequently evolve into gravitationally bound mini-
clusters. Thus, as long as fa is low enough that SSB
occurs during the normal thermal evolution of the
Universe, then miniclusters are a logical possibility.
The time t0 when the axion mass becomes significant is

given by 3Hðt0Þ ≈ma, with H the Hubble rate. The axion
acquires its mass due to nonperturbative effects such as
instantons [45], which evolve with temperature as ma ¼
ma;0ðT=μÞ−n. Therefore the critical time t0 depends on the
index n giving the temperature evolution. From this time
onwards the axion field oscillates about its own quadratic
potential minimum, and the equation of state for the
background axion energy density becomes the same as
that of pressureless matter [46–48]. The epoch when
axion oscillations begin thus determines the axion relic
density. Appendix A computes the range of ðma; faÞ for
various n for which axions provide the total DM relic
density while having fa small enough for SSB to occur
after inflation.
The initial axion fluctuations laid down by SSB remain

smooth up to scales of order the horizon size at t0. From
this point on the density perturbations grow under gravity
as usual, eventually collapsing into the gravitationally
bound objects known as miniclusters. The total mass of
axion DM contained within the horizon at time t0 sets the
characteristic minicluster mass, M0, given by

M0 ¼ ρ̄a
4

3
π

�
π

Hðt0Þ
�

3

; ð2Þ

where ρ̄a is the energy density in axions today, and we have
used the fact that the comoving wave number associated
with the horizon size at this time is k0 ¼ Hðt0Þ whereH ¼
aH is the conformal Hubble rate.

FIG. 1. The characteristic minicluster mass. We plot M0, as a
function of the axion mass, ma, for different temperature
evolutions of the axion mass parametrized by index n. Solid
lines show the most realistic assumptions about the relic density,
while dashed lines relax those assumptions (see Appendix A).
When the axion mass is temperature independent (n ¼ 0), the two
scenarios are equivalent for minicluster mass. The thin dotted line
shows the approximation Eq. (3). Lines terminate at a lower
bound on ma set by the relic abundance.

2The precise critical temperature for the phase transition from
thermal field theory is calculated in e.g. Ref. [40].

3It is important to realize that these minicluster isocurvature
fluctuations seeded by the PQ phase transition are unrelated to the
“axion isocurvature mode” constrained by large-scale CMB
anisotropies [44]. The axion isocurvature mode is produced by
vacuum fluctuations during inflation in the scenario when PQ
symmetry is broken before inflation. The fluctuations are thus
scale invariant and contribute to large angle anisotropies. The
minicluster isocurvature mode is not scale invariant: the power
dies off rapidly on scales larger than the horizon size at the QCD
phase transition (k < k0) and does not contribute to the observed
CMB anisotropies.
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In the case of a temperature-independent axion mass, and
approximating the number of relativistic degrees of free-
dom as constant in T, a reasonable approximation to M0

can be obtained by using ðH=H0Þ2 ¼ Ωmð1þ zeqÞ−1a−4 to
find aðt0Þ. A “fudge factor” of two leads to a good
agreement with the full numerical calculation using g⋆ðTÞ:

M0ðma; n ¼ 0Þ ≈ 2.3 × 10−7 M⊙
�

ma

10−10 eV

�
−3=2

×
�
Ωch2

0.12

��
Ωm

0.32

�
−3=4

�
1þ zeq
3403

�
3=4

:

ð3Þ
This approximation is shown as the thin dotted line
in Fig. 1.
In the general case, the characteristic minicluster mass

M0 is a function of the axion mass, the axion decay
constant, and the index n determining the temperature
evolution of the mass. Fixing the decay constant as a
function of the mass from the relic density, we show
M0ðma; nÞ for various n in Fig. 1. The lines in Fig. 1 for
axionlike particles terminate at a lower bound on ma. For
masses below this bound axions cannot produce the correct
relic density while maintaining a low enough fa to be of
relevance for miniclusters. The lower bound on ma trans-
lates into an upper bound on M0, which is around 103 M⊙
for n ¼ 6 temperature evolution.4

The QCD axion has a known temperature-dependent
mass with n ¼ 3.34 from the “interacting instanton liquid”
model for the QCD topological susceptibility [49], which
is consistent with the results from lattice simulations
(n ≈ 3.55� 0.30 [50,51]). The mass is given by ma;QCD ¼
6 μeVð1012 GeV=faÞ. For our modeling of the relic
density the decay constant must be fa ≈ 1010 GeV leading
to an axion mass 50 μeV≲ma ≲ 200 μeV. This implies a
characteristic minicluster mass M0 ≈ 1.8 × 10−10 M⊙, in
broad agreement with other estimates [20–22,26].
Our value of M0 differs from the characteristic mass

defined in e.g. Ref. [22], whose authors took the mass
within a cubic volume of size the inverse horizon wave
vector, rather than the spherical volume from the physical
wavelength. This makes our definition of M0 larger by a
factor of 4π4=3 ≈ 130. We believe our definition captures
the symmetries of minicluster formation better, and
also better represents their likely formation history (see
Sec. IV). In practice the constraints on miniclusters from
microlensing cover a broad range of masses and even a
factor of 102 in M0 does not have a large impact.
A far larger uncertainty is introduced if the axion string

length parameter, ξ, rather than the horizon size, defines

M0. This factor is historically uncertain in simulations: it is
currently favored to be ξ ¼ 1.0� 0.5 [52], but could be
much larger, with larger ξ leading to smaller M0. To an
extent the effect of the uncertainty in ξ onM0 is captured by
the uncertainty in the relic density (see Appendix A).
The minicluster characteristic density, ρMC, is another

important quantity, since it sets the typical radius of a
minicluster, and thus its concentration. The characteristic
density is given in terms of the initial overdensity param-
eter, δ, by [21]:

ρMC ¼ 140δ3ð1þ δÞρ̄aðzeqÞ; ð4Þ

which can be derived using spherical collapse and under-
stood by considering how regions of large δ collapse when
z ≫ zeq. The initial condition simulations of Ref. [22] show
that while the mass of miniclusters was approximately
fixed to M0, the characteristic density showed a wide, non-
Gaussian variation due to the anharmonicities in the axion
potential.
Figure 2 shows the cumulative mass fraction,F ðδ > δ0Þ,

taken from digitizing Fig. 2 of Ref. [22]. The non-Gaussian
distribution is well fit by a Pearson-VII-type distribution:

F ðδ > δ0Þ ¼
1

½1þ ðδ0=a1Þ�a2
; ð5Þ

with a1 ¼ 1.023 and a2 ¼ 0.462 found by a nonlinear least
squares fit.
We are not in possession of numerical simulations that

would allow us to fully characterize the non-Gaussianity of
the minicluster density field. In order to make some
progress we assume that the non-Gaussianity in over-
density and minicluster size given by F is a small-scale

FIG. 2. Minicluster overdensity distribution. We show the
cumulative mass fraction of miniclusters with overdensity
parameter δ > δ0. The black line shows the simulation results
of Ref. [22], which we have fit using a Pearson-VII distribution.
The overdensity distribution determines the halo concentration
parameter (i.e. compactness) of miniclusters.

4Constraints from the Lyman-α forest flux power spectrum
[25] affect miniclusters with massesM0 ≳ 104 M⊙, which can be
achieved in certain exotic scenarios for symmetry breaking [26].
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phenomenon affecting only the stochastic distribution of
minicluster sizes.
This approach to model the non-Gaussian effects on the

density profile can be partially justified by considering that
the non-Gaussianities that affect the density profile are
caused by the axion self-interactions. The large-scale
perturbations are of smaller amplitude (the dimensionless
power spectrum falls as k3 for small k < k0). Small density
perturbations mean small axion field perturbations. At
small field values the axion potential is quadratic, giving
free-field behavior that should be close to Gaussian.
Appendix C discusses non-Gaussian corrections to the
large-scale clustering of miniclusters and the minicluster
halo mass function induced by the white-noise fluctuations
of θ.

III. STRUCTURE FORMATION WITH
MINICLUSTERS

The discussion in the previous section asserts that the
initial conditions for the axion field on small scales caused
by SSB lead to the collapse of objects of mass M0 around
matter-radiation equality. In the following section we
consider how miniclusters, once initially formed, go on
to merge into larger bound structures, which we term
“minicluster halos,” or MCHs. This process has not been
studied in great detail before. It deserves attention because
the behavior will be quite different from cold dark matter:
the initial conditions are isocurvature, structure formation
begins much earlier, and the power spectrum is truncated.
We address this situation by computing the standard halo
mass function from linear growth of the minicluster initial
conditions.
MCHs are small-scale structures; they are substructures

within the larger-scale DM halos formed by the scale-
invariant adiabatic initial conditions on large scales (see
e.g. the combined power spectrum in Ref. [25]).
The logic of computing the mass function for the small-

scale minicluster isocurvature initial conditions independ-
ently from the usual adiabatic large-scale cosmology is the
following. As we will see, miniclusters collapse very early,
at z ≈ zeq. Galactic halos like the Milky Way are formed
from the dominant, but small amplitude, adiabatic pertur-
bations on large scales and collapse at much lower red-
shifts. These galactic halos are, however, still formed of
axion DM, and thus of the miniclusters formed early on.
We treat these two periods of gravitational collapse
independently, and we assume that the minicluster mass
function established early on provides the substructure
mass function on small scales within the larger galactic
halos. In other words, the minicluster mass function is
equivalent to the “field” mass function within the larger
patches that collapse later on into galaxies. Since mini-
clusters collapse and “freeze out” from the expansion early
on, they can be treated independently from the large scales.

In the explicit examples in this section we use a
Heaviside initial power spectrum to model the effects of
the Kibble mechanism and a Gaussian window function to
define the mass variance. We consider other possibilities,
and give analytic results, in Appendix B. The examples
also use the M0ðmaÞ relation for an axionlike particle with
T-independent mass.
We work in conformal time τ, with dt ¼ adτ and a the

scale factor of the Friedmann-Lemaître-Robertson-Walker
metric. For simplicity of presentation, we begin our
numerical calculations in the matter-dominated era once
all T-dependence of the axion mass and g⋆ can be
neglected. We comment briefly on the transfer function
in the radiation era.

A. Evolution of density perturbations

1. Initial conditions

We define the axion density perturbation as δaðr; τÞ ¼
½ρaðr; τÞ − ρ̄aðτÞ�=ρ̄aðτÞ. The power spectrum Pk is defined
as the Fourier transform of the two point correlation
function:

ξðrÞ ¼ hδðxÞδðxþ rÞi: ð6Þ
We wish to specify the value of the power spectrum at the
initial time of our study τ0: the time when the axion field
begins oscillating. At τ0, the Kibble mechanism assures us
that the axion field is fixed to a constant value over each
causal horizon, and randomly distributed (white noise)
over the different horizons. Hence, we can approximate the
power spectrum by a sharp-k function, cut at the typical
(comoving) size of a horizon at τ0:

Pkðτ0Þ ¼ P0Θðk0 − kÞ; ð7Þ
where k0 ¼ Hðτ0Þ and ΘðxÞ is the Heaviside function.
We must now find the normalization, P0. From Eq. (6) it

is easy to show that the integral of the power spectrum is
(e.g. Ref. [53])Z

PkðτÞ
d3k
ð2πÞ3 ¼ hjδaðx; τÞj2i: ð8Þ

From our ansatz for Pkðτ0Þ, the left-hand side is equal to
4
3
πk30P0. To find the value of

R jδaðx; τ0Þj2d3x, we note that
ρa ∝ θ2, where θ ∈ ½−π; π� is the uniformly distributed
axion field. Thus the mean value of jδaðx; τ0Þj2 is 4=5, and
we find

P0 ¼
24

5
π2k−30 : ð9Þ

This equation sets the initial condition on the modes of
the perturbations. These initial conditions are of isocurva-
ture type during the radiation-dominated epoch, and they
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can be normalized to have δaðτ0Þ ¼ 1 with all other
perturbations absent.5

2. The behavior in the radiation-dominated era

It is well known that subhorizon isocurvature perturba-
tions undergo only a very small amount of logarithmic
growth in the radiation-dominated era, and that the transfer
function up to matter-radiation equality is approximately k-
independent for large k [57]. The amplitude, i.e. the actual
amount of growth in the radiation era, is somewhat
cosmology dependent. For our cosmological parameters
using the analytic transfer function of Ref. [57] we find

δðzeqÞ
δi

≈ 1: ð10Þ

This approach is also taken in e.g. Refs. [5,25,26] for the
case of miniclusters. We have verified by full numerical
solution of the Boltzmann equations that the transfer
function indeed takes the form stated, and we use this
result in the following.

3. The behavior in the matter-dominated era

We consider the subhorizon limit, assuming that most of
the sizes we are interested in are subhorizon sized at matter-
radiation equality. The equation of motion for the axion
overdensity in an axion-dominated Universe at times τ ≫
τ0 is [4]

δ00a þ
a0

a
δ0a þ ðk2c2s − 4πGa2ρ̄aÞδa ¼ 0; ð11Þ

where primes denote derivatives with respect to conformal
time, and c2s ≈ k2=4m2

aa2 is the axion effective sound
speed. The sound speed leads to a Jeans scale, which
balances pressure and gravity [58]:

kJ ¼ ð16πGaρa0Þ1=4m1=2
a ;

¼ 66.5 × 106a1=4
�
Ωmh2

0.12

�
1=4

�
ma

10−10 eV

�
1=2

Mpc−1:

ð12Þ

The Jeans scale sorts the modes into three categories:
(i) k < kJðτeqÞ: These modes are already under the

Jeans mode at matter-radiation equality. Their
behavior is the usual growing/decaying as soon as
matter-radiation equality is reached, and it matches
the transfer function used in Ref. [25].

(ii) kJðτeqÞ < k < kJðτtodayÞ: These modes are bigger
(physically smaller) than the Jeans mode at matter-
radiation equality, and as kJ increases they cross the
Jeans scale. The behavior of thesemodes is to oscillate
at the beginning of thematter-dominated era, and then
to follow the usual growing/decaying mode.

(iii) k > kJðτtodayÞ: These modes are still today physi-
cally smaller (have larger k) than the Jeans mode,
and still follow the oscillating behavior.

The Jeans scale will affect the growth of linear perturba-
tions when kJ < k0. However, as can be seen in Fig. 3, we
notice that we always have kJ;eq > k0, which justifies
that the Jeans scale can be ignored in our case to a first
approximation when computing the variance and the
evolution of the mass function.

4. The rms mass fluctuation

Let us define the variance of density fluctuations on a
given scale by filtering the power spectrum with a window
function of physical radius R:

σ2ðRÞ ¼
Z

dk
k
Δ2ðkÞjWðkRÞj2;

¼
Z

dk
k
k3PðkÞ
2π2

jWðkRÞj2: ð13Þ

For ease of numerical integrals, we take the window
function to be a real-space Gaussian, which in Fourier
space gives

WðkRÞ ¼ e−k
2R2=2: ð14Þ

FIG. 3. Cutoffs in the power spectrum. We plot the wave
numbers that cut off the axion power spectrum, k0 and kJ;eq, as a
function of axion mass. For k0, this depends on the temperature
evolution of the mass as parametrized by n and on details of the
relic density computation. The Jeans wave number is fixed only
by the zero-temperature mass. We notice that we always have
kJ;eq > k0, which justifies that the Jeans scale can be ignored to a
first approximation.

5This is sufficient accuracy for our purposes of computing the
mass function in thematter era. For greater accuracy in the radiation
era at τ > τ0 for modes near the Jeans scale see the early-time
expansion ofRef. [54]. For the complete treatment including τ < τ0
see Refs. [55,56].
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We define the mass to be that contained within the
comoving volume of the radius R appropriate to the
Gaussian window function, such that

M ¼ ð2πÞ3=2ρ̄a;0R3: ð15Þ
Thus we have the mass variance, ðδM=MÞ2 ≡ σ2ðMÞ (see
also Ref. [59]). The time dependence of σðMÞ comes from
δa, so that

σ2ðM; τÞ ¼
Z

k3Pðk; τÞ
2π2

jWðk;MÞj2 dk
k

¼
Z

Pðk; τ0ÞT 2ðk; τÞjWðk;MÞj2 k
2dk
2π2

; ð16Þ

where we have defined the transfer function, T ðk; τÞ, to
contain the evolution of the power spectrum. The above
expression clearly separates the dependence of the mass
fluctuation on the initial conditions, which depend on k0,
the dynamics, given by the transfer function, and the
window function which we use to define the mass scale.
Our normalization for the initial power spectrum sets the

variance on the scale R0 ¼ π=k0 as

σ2ðR0Þ ¼
P0

2π2

Z
k0

0

k2 exp

�
−
π2k2

k20

�
dk; ð17Þ

giving σðR0Þ ≈ 0.18, which differs by a factor of two from
the normalization of Ref. [25], whose authors considered
quantum fluctuations of θ and found that the rms density
fluctuation on the scale k0 is σ ≈ 1=ð2 ffiffiffi

2
p Þ ≈ 0.35.

Figure 4 shows the behavior of the rms mass fluctuation
at several moments in the matter-dominated era.

It shows the white-noise behavior above M0, with
σðMÞ ∝ M−1=2, and a smooth convergence under M0,
due to the sharp-k shape of the initial power spectrum.
For this particular axion mass, the action of the Jeans scale
is invisible, since the shape of σðMÞ is constant in time.

B. The MCH mass function

We consider the formation of gravitationally bound
structures from linear density perturbations using the analytic
Press-Schechter formalism [35]. We use the original formal-
ism, rather than modern updates such as the Sheth-Tormen
[60] as we are interested in only an approximate description
of MCH formation and the mass function is subject to a
number of theoretical uncertainties, which we discuss.
The quantity δc is the critical overdensity threshold for

gravitational collapse and plays a key role in the Press-
Schechter formalism. In spherical collapse of cold dark
matter it is given by δc ≈ 1.686, and it is scale independent.
For every point in space, the probability to have δ > δc
using the filtered version of δ by WM is

pðδ > δcjWMÞ ¼
1

2

�
1 − erf

�
δcffiffiffi

2
p

σðMÞ

��
ð18Þ

where σðMÞ is the rms mass fluctuation that we defined. We
take the point of view where δc is time independent, and we
put the time dependence onto σðMÞ. Defining fðMÞ such
that fðMÞdM is the comoving number density of mini-
clusters in the range dM around M, the Press-Schechter
formalism gives

M2fðMÞ
ρ̄a0

¼
���� d ln σd lnM

����
ffiffiffi
2

π

r
δc

σðMÞ e
−1
2
ð δc
σðMÞÞ2 : ð19Þ

If nðMÞ is the number density of structures of mass M,
then the halo mass function (HMF), defined by
dn=d lnM ¼ MfðMÞ, is the comoving number density
of structures of mass M per logarithmic interval in masses.
The lowmass endof theHMF is subject to large theoretical

uncertainty. The density field on scales M < M0 (wave
numbers k > k0) is non-Gaussian, and so the Press-
Schechter formalism does not apply. The formalism can
be applied perturbatively, or for certain special types of
non-Gaussianity [61], though such a calculation is beyond
the scope of this work. The Press-Schechter mass function
wepresent forM < M0 applies only to “theGaussian part”of
the small-scale density field.
Even for a Gaussian field, on small scales there are

theoretical uncertainties in the mass function in the case
of a truncated power spectrum such as the axion power
spectrum. With a real-space window function the formula
Eq. (19) predicts that structures are formed on all scales
below the nonlinear scale even in the case of suppressed
density perturbations. This is due to the asymptotic behavior
of the variance. However, a number of considerationsmodify

FIG. 4. The rms density fluctuation. The curves show a σðMÞ ∝
M−1=2 above M0, which matches the rms of white noise, as in
Ref. [5]. The constant behavior at low masses is due to the
smoothed out axion field below the horizon at the phase
transition, the effect of the Jeans scale cannot be seen in this
diagram. The growth of the rms mass fluctuation through time is
due to the linear growing mode: δ ∝ a above the Jeans scale.
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this prediction and predict a cutoff in the mass function for
M ≲M0. These can be summarized as

(i) “Spurious structure”: Simulations with truncated
power spectra display effects due to numerical
discreteness on scales below the power spectrum
cutoff [62].

(ii) Filter dependence: With a truncated spectrum the
sharp-k window function used to derive the Press-
Schechter formula from the excursion set [63]
predicts a cutoff in the mass function [64].

(iii) Dynamical effects: The Jeans scale leads to a pressure
on small scales that modifies the collapse barrier
[65,66], the solution of the excursion set [67–69],
and the formation of structure on small scales [70,71].

Appendix B presents three different models for the mass
function for M < M0: a fit to remove structure below M0,
taken from the simulations of Ref. [72] (see also Ref. [73]);
a sharp-k filter, with mass normalized to the Gaussian filter
on large scales [64]; and a modified barrier at the Jeans
scale, following the approximate implementation in
Ref. [66]. We show later that, for the range of MCH
masses relevant for microlensing, and in particular for the
particle mass range of the QCD axion, the cutoff depend-
ence of the mass function forM < M0 has negligible effect
on the observables.
For the purposes of illustration, the MCH mass function

computed with the modified barrier is shown in Fig. 5. We
show the mass function evolving over time for a fixed axion
mass, and the mass function at z ¼ 0 for a range of axion
masses. The M0ðmaÞ relation used in these examples is for
a temperature-independent axion mass (n ¼ 0). The HMF
is centered near M0, and is cut off at high and low masses.
The mass function spreads over time as structure formation
progresses. For lower axion masses, the HMF is centered
around larger MCH masses.

C. Parametrization of the mass function

The HMF for miniclusters that we have obtained can be
parametrized by four quantities. We give an explicit para-
metrization of the HMF and show that (for arbitrary
normalization) it matches our numerical calculations well.
Since the parametric form is well understood, we can use
this mass function to describe DM substructure within
galactic halos, including the Milky Way. The substructure

FIG. 5. The MCH mass function. Left panel: HMF as a function of time for fixed axion mass. The initial miniclusters at M0 spread
over time to form more massive objects due to hierarchical structure formation. Lighter objects are also formed as the late-time Jeans
scale cutting off the mass function moves to scales smaller than M0. Right panel: Minicluster mass function today for various axion
masses.

FIG. 6. Parametrization of the MCH mass function. The mass
function can be well fit by two cutoffs and a single slope
parameter,M−1=2, derived from the white-noise initial conditions.
For the numerical calculation in the previous subsection (solid
line), the normalization is fixed to be per unit volume. For the
substructure mass function, we normalize by fMC (see text).
For M ≲M0=25 where the variance becomes flat, there is cutoff
dependence from the barrier, window function, and non-
Gaussianities. For illustration we take ma ¼ 10−7 eV and
n ¼ 0 to use the analytic formula for M0 and show the cutoff
from the Jeans scale only.
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mass function is normalized by the host galaxy mass and
has units ½dn=dM� ¼ ½M�−1.
Our parametrized HMF is shown in Fig. 6 and compared

to the numerical results from the previous subsection, for
which the normalization per unit volume is fixed.

1. Cutoffs in the HMF

Cutoffs in the HMF are driven by the Gaussian term
in Eq. (19), the argument of which depends on δcðMÞ=
σðM; zÞ, with the possible addition of a fit to remove spurious
structure at low masses discussed above. We parametrize
σðMÞ for the Heaviside initial power spectrum and Gaussian
window function following Fig. 4 as

σðM < M0=6.65Þ ¼ σ0 ≈ 103.4; ð20Þ

σðM > M0=6.65Þ ¼ σ0

�
25M
M0

�
−1=2

: ð21Þ

The high mass cutoff in the mass function depends on the
form of the initial power spectrum. At large M ≫ M0,
cutoff dependence vanishes, giving a Gaussian density field
suppressed as −δ2c=2σ2 ¼ −x2=2. Using δc ¼ 1.686 we
solve for xðMmaxÞ when the HMF has dropped by 0.01 for
the Heaviside cutoff initial power spectrum:

MmaxðzÞ ≈ 4.9 × 106M0 ×DðzÞ2; ð22Þ

where DðzÞ is the linear growth factor normalized to unity
at z ¼ 0. The coefficient of the Gaussian cutoff in the mass
function is modified slightly when the nonzero bispectrum
of the minicluster initial conditions is accounted for,
leading to a slight increase in Mmax. This is a small effect,
and depends on the model for non-Gaussian effects on the
mass function. We do not account for it here. It is discussed
in detail in Appendix C.
The maximum minicluster mass is fixed by M0 and so

depends strongly on the temperature evolution of the axion
mass (see Fig. 1). MCHs of mass M > M0 are formed by
hierarchical structure formation from the seeds of mass
M ≈M0 present at matter-radiation equality. We discuss the
mergers and density profiles of MCHs in Sec. IV.
We derive the low mass cutoff for the modified barrier

(for the fit and Heaviside filtering cases the corresponding
derivation is trivial). At small M ≪ M0, σðMÞ ¼ σ0,
and we use the asymptotic behavior of δcðM < MJÞ ∝
exp½1.8ðM=MJÞ−1=2�, where MJ is the Jeans mass, to find
when the Gaussian argument xðMminÞ ¼ 1:

MminðzÞ ≈MJ ×

�
1.8

7.5þ logDðzÞ
�
2

: ð23Þ

There is only a logarithmic dependence of the minimum
minicluster mass on the growth rate, and so the minimum
mass varies very little over time.

2. Slope

From the dependence of σ on the mass scaleM, Eq. (21),
we can deduce the dependence of the HMF on M far from
either cutoff. Using Eq. (19) we have

dn
d lnM

¼ MfðMÞ ∝ M−1=2; for ðMmin < M < MmaxÞ:
ð24Þ

Our parametrization sets the HMF to zero outside these
boundaries.
We see in Fig. 6 that the slope of the mass function

changes below M0=6.65, where the variance becomes flat.
The slope of the mass function in this regime is window
function and cutoff dependent.

3. Normalization

The normalization of the substructure mass function is
simply fixed by the total mass of the host galaxy, Mhost.
While we assume that all of the DM is composed of axions,
we take the fraction collapsed into miniclusters, fMC, as a
free parameter. The normalization condition is

fMC ¼ 1

Mhost

Z
dn

d lnM
dM ¼

Z
ψðMÞdM; ð25Þ

where we have introduced the normalized mass function
ψðMÞ.
In principle, fMC can be determined by numerical

simulation of minicluster formation and the subsequent
formation of galaxies from miniclusters. Such simulations
will involve at least some modeling uncertainty. We take
the alternate view that fMC is a phenomenological quantity
that can be used to constrain models of axion DM via
astrophysical observations. Thus the mass function nor-
malization, fMC, is a free parameter in our constraints.

IV. MINICLUSTER AND MCH DENSITY
PROFILES

A. Hierarchical structure formation

The scale of miniclusters is fixed by k0 ≪ kJ and so we
expect density profiles to be well described by cold dark
matter (CDM). Density profiles formed by hierarchical
structure formation of CDM are described by the famous
Navarro-Frenk-White (NFW) profile [74]:

ρNFWðrÞ ¼
ρcritδchar

r=rsð1þ r=rsÞ2
; ð26Þ

where rs is the scale radius, which is specified in terms of
the virial radius, r200, and concentration, c, as rs ¼ r200=c.
The mass is defined as that contained within the virial
radius, where the average density is 200 times the critical
density. Thus the characteristic density is given in terms of
the concentration as
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δchar ¼
200

3

c3

lnð1þ cÞ − c=ð1þ cÞ : ð27Þ

Using our analytic result for the variance with a
Heaviside filtering and Gaussian initial power spectrum,
Eq. (B10), we first compute the collapse redshift, zcoll.
Following NFW, this is defined using the extended Press-
Schechter formalism as the redshift when half the mass of
the halo was first contained in progenitors more massive
than 1% of the final mass. The result is plotted in Fig. 7.
The collapse redshift is maximized at M ≈M0, indicating
that objects of this characteristic mass are the first bound
structures to form shortly after equality at z ≈ 103. We note
that this appearance of M0 justifies our choice in Eq. (2).
That is, the first objects to form are consistent with the
spherical wavelength volume and are somewhat heavier
than the cubic volume estimate.
It is these first bound structures which are “true” axion

miniclusters, that is, MCHs with M ¼ M0. Due to the
nonlinear dynamics of axion interactions in the instanton
potential, these miniclusters display a spectrum of sizes and
characteristic densities given by Eq. (4) and Fig. 2. The
concentration is a stochastic function, which for the initially
formed miniclusters has a large non-Gaussian tail.
We use Eq. (4) to define the characteristic density of

miniclusters, ρMCðδÞ ¼ ρcritδcharðδÞ, which defines a
δ-dependent concentration for miniclusters, cMCðδÞ. Due
to the large spread in values of δ, there are miniclusters with
concentrations far exceeding that expected from ordinary
hierarchical structure formation. The physical reason for this
is, as discussed, the nonlinear interactions in the axion
potential, and the result is confirmed in numerical simulation.
The concentration-mass relation, cðMÞ, specifies the

spatially averaged density profile of a MCH. Assuming

MCHs are formed hierarchically from the (assumedly)
Gaussian large-scale white-noise density fluctuations of
miniclusters in mergers that are described entirely by CDM
we can adopt the analytic model for cðMÞ proposed by
NFW (related approaches include e.g. Ref. [75]):

δchar ¼ 3000Ωmð1þ zcollÞ3: ð28Þ

The resulting concentration-mass relation, cNFWðMÞ, is
plotted alongside cMCðδÞ in Fig. 8. We notice that mini-
clusters of mass M0 maximize cNFWðMÞ (since they have
the largest zcoll) and that furthermore the NFW concen-
tration agrees with the minicluster concentration for δ ¼ 1:
cNFWðM0Þ ≈ cMCð1Þ. This is a pleasing coincidence that
further validates our use of M0 as the characteristic mass.

B. Minicluster mergers?

The NFW profile describes the average density profile of
a halo. The Press-Schechter mass function (as we have used
it) also simply groups all progenitors together into a single
parent mass. Neither accounts for substructure. Using only
the average density profile and ignoring the substructure
is equivalent to the case where halo mergers completely
disrupt the progenitors. Because observables, in particular
microlensing, may be sensitive to the substructure of
MCHs, and minicluster mergers may not be totally dis-
rupting, we must be careful how the mass function and
NFW density profile are used.
We will satisfy ourselves with some estimates. We begin

with considering the Hill sphere:

rHill ¼ að1 − eÞ
�

Msat

3Mhost

�
1=3

; ð29Þ

FIG. 7. MCH collapse redshift. The collapse redshift is com-
puted following NFW (see main text). The earliest objects to
collapse do so shortly after equality at zcoll ≈ 103. The vertical
line shows M0 ¼ ρcritð4π=3Þðπ=k0Þ3. Miniclusters at the charac-
teristic mass M0 are the first bound structures to form.

FIG. 8. Concentration of miniclusters and (diffuse) MCHs. For
miniclusters we show cMCðδÞ derived for a NFW profile with
characteristic density fixed by Eq. (4). For MCHs we show the
concentration-mass relation assuming hierarchical structure for-
mation. The vertical line shows the location of M0, which almost
maximizes the concentration near cMCð1Þ.
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whereMsat is the satellite mass, Mhost is the host mass, and
the satellite has an elliptical orbit of semimajor axis a and
eccentricity e.
Consider a minicluster satellite of mass M0 inside a

MCH of mass Mhost. The minicluster will be disrupted
by tidal forces if the minicluster radius [calculated from
cMCðδÞ] is larger than the Hill radius. In other words
stripping is significant if

rHill
rMC

> 1; ð30Þ

where we consider the minicluster radius to be given by the
scale radius, rMCðδ;M0Þ ¼ r200ðM0Þ=cMCðδÞ.
For simplicity we consider the minicluster to be located

at the scale radius of the host, where the majority of the
mass is concentrated, with the concentration of the host
given by cNFWðMÞ. Figure 9 demonstrates that only the
least concentrated miniclusters with the most eccentric
orbits in relatively light MCHs are likely to undergo any
significant tidal stripping as given by the Hill criterion.
A more complete analysis of stripping uses the tidal

radius rt for a satellite of massMsat orbiting at radius rsat in
a host halo of mass Mhost [76]:

rt ¼
�
GMsatð< rtÞ
ω2 −Φ00ðrsatÞ

�
1=3

ð31Þ

where Φ00 is the second derivative with respect to the radius
of the gravitational potential in the host halo and ω is the
angular velocity of the satellite. A full semianalytic merger
tree calculation including tidal stripping (e.g. with
GALACTICUS [77]) is beyond the scope of the present work.
For simplicity we consider the satellite to be an initial

minicluster of mass M0 located at the scale radius of the
host (where most of the mass is) and take both satellite and
host to have a concentration-mass relation given by
cNFWðMÞ (equivalent to only the least dense minicluster
satellites with δ ¼ 1). We find, similarly to the case with the
Hill radius, that the tidal radius is always small compared to
the minicluster radius, indicating that miniclusters do not
undergo significant stripping within MCHs.We discuss this
further in Sec. V C.

V. MICROLENSING WITH MINICLUSTERS

A. Microlensing basics

Microlensing is the fugitive amplification of a back-
ground star which occurs when a compact object passes
close to the line of sight to that star [78].
The magnitude of the effect of microlensing by point

objects is relatively simple to calculate and uses the normal
equations for gravitational lensing [7]. The miniclusters
that we are considering are not however point sources, and
while they are very small, the deflection of light which they
give rise to is also very small, so the extended nature of
these objects is important to take into account.
For the configuration where observer, lens and source lie

on the same line, the Einstein radius corresponds to the
radius of closest approach of photons to the point mass lens
as they pass by it:

RE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4GM
c2

DLDLS

DS

s
¼ 4 × 1013

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M
M⊙

DS

kpc

s
cm ð32Þ

where the enumeration assumes that DS ¼ 2DL ¼ 2DLS
and the quantities DL and DS etc. are shown in Fig. 10.
Taking benchmark values of 10−8 M⊙ mass halos at the
distance of Andromeda, the Einstein radius will correspond
to tens of nanoparsecs.6

A microlensing event occurs when a compact object
passes through the microlensing “tube,” which has a radius
of uTRE where uT ≈ 1 is the minimum impact parameter
for which the amplification of the background star is above
the required threshold and RE is the Einstein radius:

REðxÞ ¼ 2

�
GMxð1 − xÞDS

c2

�
1=2

; ð33Þ

where M is the lens mass, DS ¼ L is the distance to the
source, and x ¼ DL=DS is the distance of the lens from the
observer [78]. In our case, the distance to the sources
[Large Magellanic Cloud (LMC) or Andromeda (M31)] is
much greater than their line of sight depth, so all of the

FIG. 9. The Hill radius. When the ratio of the Hill radius to the
minicluster radius is larger than unity (horizontal dashed line),
tidal stripping is significant. We consider minicluster satellites of
massM0 in hosts of massM located at the scale radius of the host.
Solid, dashed, and dotted lines are for orbits of eccentricity e ¼ 0,
0.5, 0.9 respectively.

6This expression differs from that in Ref. [22] by a factor of
100 due to considering local rather than cosmological sources,
and using the modern values of the cosmological densities. This
leads us to find that larger values of δ are necessary for lensing.
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source stars can be assumed to be at the same distance
(∼50 kpc for LMC and ∼770 kpc for M31) and the angular
distribution of sources can be ignored.
The differential event rate for lenses of massM in a halo

with projected density profile ρðxÞ along the line of sight is
given by [7]7

dΓ
dt̂

¼ 32Lu4T
t̂4vc2

1

M

Z
xh

0

ρðxÞR4
EðxÞe−QðxÞdx; ð34Þ

where t̂ is the time taken by the lens to cross the Einstein
diameter, xh is the extent of the halo and QðxÞ ¼
4R2

EðxÞu2T=ðt̂2v2cÞ, where vc ¼ 220 km s−1 is the local
circular speed. The factor uT ≈ 1 defines the critical
magnification for the lensing survey, which we take as μ ¼
1.34 (see below). The factor e−Q emerges by approximating
the Bessel function in the lensing integral [7,79].
The expected number of events, Nexp, is given by

Nexp ¼ E
Z

∞

0

dΓ
dt̂

ϵðt̂Þdt̂; ð35Þ

where E is the exposure in star years and ϵðt̂Þ is the
probability that a microlensing event with duration t̂ is
detected (detection efficiency).

B. Miniclusters as nonpointlike objects

1. Lensing tube for nonpointlike objects

We are interested in the case where there is a magnifi-
cation of 1.34, which is the threshold adopted by the EROS
and HSC surveys. This magnification is not arbitrary, it
corresponds precisely (in the pointlike mass case) to the
outer ray passing the lens at a radius of 1.618 × RE where
1.618 is the golden ratio and RE is the Einstein radius.
The second image passes on the other side at a distance

0.618 × RE, i.e. the inverse golden ratio. The magnification
of the two images is given in terms of the distance at which
the light rays pass the lens x ¼ r=RE and the magnifica-
tions μ are given by

μ� ¼
�
1 −

�
1

x�

�
4
�
−1
: ð36Þ

The sum of the magnification of the two images is 1.34, the
majority of which comes from the outer image which gives
a magnification of 1.17.
We need to repeat the calculation for situations where the

lens is potentially diffuse relative to the scales of interest,
such that the enclosed mass is not a constant when δ is
small.
We start by taking the characteristic density given by

Eq. (4).We consider two functional forms for theminicluster
density profiles. The NFW profile is a universal feature of
CDM simulations emerging from hierarchical structure
formation. However, miniclusters at the characteristic mass
do not form from hierarchical structure formation, but
probably from a more direct collapse. It has been suggested
[34] that a more suitable profile for the initial seed mini-
clusters be given by that due to self-similar infall [80]:

ρðrÞ ¼ ρs

�
rs
r

�
9=4

: ð37Þ

Such a power-law profile also appears in the minicluster
N-body simulations of Ref. [25].
For both the NFW and self-similar profiles we need to

make an identification with the density ρMC and the
characteristic density. For the NFW profile we simply
say that ρMC ¼ ρcritδchar as above, and rescale rs until
we obtain the correct mass of the halo at rmax. If we were to
calculate the virial radius for these objects, they would
be hugely larger than the scale radius by many orders of
magnitude, but since the halos are within a galactic halo, we
make the approximation that the NFW profile is cut off at a
radius rmax ¼ 100rs. This simplifies the numerical lensing
calculation by reducing the dynamic range.
The situation is slightly more complicated for the self-

similar profile [Eq. (37)] because rs is completely degen-
erate with ρs due to the scale invariance. The overall mass
of such a halo which is truncated at a radius rmax is

M ¼ 16π

3
ρsr

9=4
s r3=4max ð38Þ

and the average density of such a halo is

ρav ¼ 4ρs

�
rs
rmax

�
9=4

ð39Þ

or

FIG. 10. The lensing of a source by a point mass at the origin.
DS is the distance from the observer (us) to the source, DL is the
distance to the lens and DLS ¼ DS −DL.

7This expression assumes a spherical halo with an isotropic
velocity distribution and ignores the transverse velocity of the
microlensing tube, which has a small effect on the differential
event rate [7].
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rmax ¼
�

3M
4πρav

�
1=3

ð40Þ

and then we make the identification ρav ¼ ρMC.
We then want to turn the three-dimensional density into a

surface density by collapsing it onto the lensing plane. We
do this by integrating the three-dimensional density profile
along the line of sight towards the center of the halo. In the
situation where rmax is larger than the lensing radius we are
probing, we only integrate the mass within the two cones

defined by the radius of interest and the distance between
the lens and the source and the lens and the image.
Once we have surface mass as a function of radius we

can calculate the magnification using the expression for an
axisymmetric mass distribution (this can be derived from
the equations in Ref. [81])

μ ¼ ½ð1 − BÞð1þ B − CÞ�−1 ð41Þ

C ¼ 1

Σcπr
dMðrÞ
dr

; B ¼ MðrÞ
Σcπr2

; Σc ¼
c2DS

4πGDLDLS
:

ð42Þ
What we need to do is to define the “lensing tube” [7] as
being the tube within which a lens would create a
magnification of at least 1.34.
We do this by starting at large r and zooming into the

radius at which the magnification is the same as the outer
image in the point mass case, i.e. μ ¼ 1.17. When a halo is
diffuse, this will occur at a radius much less than the radius
at which a point mass would give rise to the same lensing.
The lightcurves for lensing computed as a function of δ for
fixed minicluster mass are shown in Fig. 11. An interesting
feature occurs as one increases the parameter δ in that the
magnification rises above that for a point mass before
settling down to the same value as the point mass. This is
because there is an intermediate regime where there are
multiple paths for photons from the same source to pass the
lens at different radii and still arrive at the observer, adding
to the overall magnification. This is captured by the
gradient terms in the lens equations.
As δ increases and the halo becomes more compact it

behaves increasingly like a point mass until rmax is well

FIG. 11. Microlensing lightcurves. Magnification of source star
as a minicluster passes through the lensing tube for various values
of δ. The minicluster has a NFW profile, a mass of 10−9 M⊙, a
tangential velocity of 200 km s−1 and an impact parameter with
the line to the source of 1.6 milli-AU. The source star is assumed
to be in the Andromeda Galaxy (M31), with DLS ¼ DS=2. As we
increase the value of δ the lensing curve approaches the value for
a point mass, as described in the text.

FIG. 12. Minicluster microlensing tube. Rescaling factor, R, for a minicluster of mass M and overdensity δ with NFW radial profile.
The black contour shows the location ofR ¼ 0.5, while the red line shows the analytic result for δlensðMÞ defined by equating the point
mass Einstein radius to the hard-sphere minicluster radius.
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below any of the scales of interest, the lensing tube is the
same size as for the point mass case. One can check that for
large values of δ the radius for the distributed mass and the
radius for the point mass coincide.
For each value of M and δ we average the ratio between

the radius of magnification 1.17 for ten values of x between
0 and 1 in order to obtain a numerical correction factor
which we can then apply to the point mass lensing equation.
For small values of δ which give rise to diffuse halos, there
is no radius at which the magnification reaches 1.17 and
such halos cannot contribute to the lensing integral.
We define the correction factor R which corresponds

to the average radius of the lensing tube with the specific
magnification we are looking for divided by the average
radius for a point mass. We plot values of R for the NFW
and self-similar profiles in Figs. 12 and 13. It is clear
that for small values of δ the halos are diffuse and the
corresponding lensing is suppressed. For larger values of δ
the lensing increases and eventually when the vast majority
of the mass is inside the lensing tube, the objects are
indistinguishable from pointlike objects.
An estimate for the transition from R ¼ 0 to R ¼ 1 can

be obtained using the hard-sphere minicluster radius8:

rmc ¼ 4 × 1016
1

δððδþ 1ÞΩmÞ1=3
�
M0

M⊙

�
1=3

cm: ð43Þ

We equated this to the Einstein radius and solved for
δlensðMÞ; the value of δ when microlensing will be large.

The result is plotted in Figs. 12 and 13 as a red line. For the
NFW case, the estimate is close to the contour forR ¼ 0.5
from the full numerical lensing calculation (black line) and
accurately estimates the transition in the microlensing
behavior.
It should be noted that we expect greater lensing if

we adopt the self-similar profile rather than the NFW
profile. The reason for this is that the majority of the mass
contributing to the overall profile is greatest at the scale
radius for the NFW profile, but reaches a maximum
towards the center of the scale-invariant profile, so in
the situation where only a fraction of the halo is within the
normal lensing tube, the self-similar profile will give rise to
a bigger lensing effect than the NFW profile. This can be
seen in Fig. 13, where the transition in lensing behavior
occurs at a smaller value of δ than for the NFW case, and
the estimate for δlens from treating miniclusters as hard
spheres is an overestimate.

2. Microlensing event rate for nonpointlike objects

From the previous numerical lensing calculations, we find
that the shape of themicrolensing tube is still reasonablywell
described by the Einstein radius, REðx;MÞ, but with a
rescaling factor, R, that depends on M and δ, such that
the minicluster lensing tube is given by

RMCðx;M; δÞ ¼ Rðδ;MÞREðx;MÞ: ð44Þ
When amincluster/MCH is diffuse, the tube is smaller. There
is a minimum value of δ below which there is no existing
value of impact parameter l for which A ≥ 1.34, i.e.Rðδ <
δminÞ ¼ 0 with δmin ¼ δminðMÞ given approximately by
rmc=RE > 1. As we will see, this treatment reduces signifi-
cantly the expected number of microlensing events for
miniclusters compared to point masses (MACHOs,
PBHs). For δ ≫ δmin the limiting behavior is that of a point
mass, R → 1.
Miniclusters of mass M0 treated as nonpointlike objects

have a rate of microlensing events of duration t̂ given by

dΓ
dt̂

¼ 32Lu4T
t̂4v2c

1

M0

Z
∞

0

dn
dδ

�Z
1

0

ρðxÞREðxÞ4e−QðREÞdx
�
dδ;

ð45Þ

which is a modified version of Eq. (34) where the Einstein
radius has been replaced by the minicluster lensing tube
radius RMC. The partition function dn=dδ is deduced from
Fig. 2 of Ref. [22], which we showed earlier in Fig. 2 and
the fit Eq. (4).

C. Mergers and the meaning of the mass function
for microlensing

In the case of an extended mass function, Eq. (34) should
be replaced by [82]

FIG. 13. As Fig. 12 for M31 in the case of the self-similar infall
density profile, ρ ∝ r−9=4. This profile is more compact than the
NFW profile (or a hard sphere) leading to a larger effective
lensing tube at fixed M, δ.

8This differs by approximately a factor of three from the scale
radius obtained by setting ρMC ¼ ρchar and solving numerically
for cMCðδÞ.
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dΓ
dt̂

¼ 32Lu4T
t̂4v2c

Z
∞

0

ψðMÞ
M

�Z
1

0

ρR4
MCe

−QðRMCÞdx
�
dM; ð46Þ

where we have used the normalized mass function of
Eq. (25).
The assumption in Eq. (46) is that an object of massM in

the mass function contributes to the microlensing only on a
single time scale t̂. The integral over the mass function
ignores the possibility of microlensing events caused by
substructure within an object of massM. This is appropriate
for pointlike objects such as PBHs and MACHOs [82]. For
MCHs, which can have substructure, such an integral over
the mass function assumes a smoothing of the lensing
signal which is equivalent to assuming that miniclusters
merge completely upon formation of a MCH.
The estimates in Sec. IV B suggest that miniclusters are

dense enough to remain tightly bound within MCHs, like
“plums in a pudding,” and do not undergo significant
merging. In this case, there will always be lensing events
with time scale t̂ðM0Þ. A microlensing observation effec-
tively smooths the lightcurve of a lensing event over a time
scale given by the cadence [the lower limit of the efficiency
ϵðt̂Þ]. If the microlensing observation in question is
sensitive to t̂ðM0Þ, and miniclusters do not merge when
they form MCHs, then the effective mass function for
microlensing is a Dirac-delta function, δDðM −M0Þ. We
call this the “isolated miniclusters” scenario, and take it as
our default model for the lensing constraints in Sec. VI.9

However, we may be wrong about minicluster mergers
if scalar field dynamics plays an important part (i.e. if
miniclusters cannot be considered as pure CDM). In such a
case tunneling through the tidal radius can cause additional
effects that need to be accounted for [83]. Scalar field
dynamics also plays a significant role in axion star
formation and core mergers (see Appendix D). To account
for our inability to fully model these processes we consider
two additional ad hoc possibilities for minicluster mergers
into MCHs. Both scenarios assume complete merging of
miniclusters (the “plums” dissolve), and use the Press-
Schechter mass function to consider lensing by smooth
MCHs.

(i) “Dense MCHs”: Large non-Gaussian effects and
interactions could cause MCHs to remain very
dense. This scenario assumes that the concentration
of a MCH is independent of mass and follows the
same distribution with δ of miniclusters, cMCðδÞ.

(ii) “Diffuse MCHs”: Miniclusters could become com-
pletely stripped when they form MCHs. This sce-
nario assumes MCHs follow cNFWðMÞ with no
substructure.

In the dense MCH scenario, the MCHs themselves can
still be dense enough to contribute to the microlensing
signal, and so the lensing integral must account for both
dn=dδ and the mass function ψðMÞ, being10

FIG. 14. Cartoon showing the modeling of the mass function and density profiles applied to the computation of the expected number
of lensing events.

9In the isolated minicluster scenario MCHs can still play a role
in modulating the arrival of miniclusters leading to correlation in
the events of t̂ðM0Þ over the longer time scale t̂ðMÞ. Modeling
such multi-time-scale microlensing would be challenging, but it

could be used in the future to probe the MCH mass function and
improve sensitivity to lower values of M0.10For ease of notation in Ref. [27] we used dn=dM with
implicit normalization by the host mass.
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dΓ
dt̂

¼ 32Lu4T
t̂4v2c

Z
∞

0

�
dn
dδ

Z
∞

0

�
ψðMÞ
M

×
Z

1

0

ρR4
MCe

−Qdx

�
dM

	
dδ: ð47Þ

The spread of masses away from M0 can lead to a
significant amount of mass moving in or out of the
efficiency range of a given microlensing survey. In the
range of scales relevant to the HSCmicolensing survey, this
effect ends up reducing the signal for the QCD axion
minicluster masses and so (despite the vastly increased
density of MCHs) it is more pessimistic than the isolated
minicluster scenario (for lower minicluster masses than the
QCD axion the microlensing event rate is increased and
the dense MCH scenario is more optimistic).
In the diffuse MCH scenario we take only a small

window of masses M0=10 < M < 10M0 to be described
by cMCðδÞ, i.e. those objects that have not undergone any
mergers. We throw out all MCHs with M > 10M0 from
the mass function integral, since cNFWðM > M0Þ <
cMCðδÞ for all M, and thus such diffuse MCHs will have
R ≪ 1 and contribute negligibly to lensing. The diffuse
MCH scenario is equivalent to a huge reduction in fMC
caused by structure formation and is the most pessimistic
scenario for microlensing.
A cartoon depicting our three models for the micro-

lensing signal of miniclusters and MCHs is shown in
Fig. 14.

VI. RESULTS: MICROLENSING
CONSTRAINTS ON AXIONS

A. The EROS microlensing survey

The EROS survey observed the LMC, at a distance
dLMC ¼ 50 kpc, considering only lensing events of LMC
stars by DM in the Milky Way (MW). EROS models the
MW as a cored isothermal sphere:

ρMW;EROSðrÞ ¼ ρ0
R2
c þ R2

⊕

R2
c þ r2

; ð48Þ

whereR⊕ ¼ 8.5 kpc is the radius of theEarth from the center
of the MW and the MW halo parameters are ρ0 ¼
0.0079 M⊙ pc−3 and Rc ¼ 5 kpc. A minicluster in the
MW at distance d from Earth on the line of sight to the
LMChas a radial coordinate in theMWhalo r2MWðdÞ¼R2

⊕−
2R⊕dcos lLMC cosbLMCþd2, where ðl; bÞ ¼ ð280°;−33°Þ
are the measured Galactic coordinates.
For the EROS-2 survey E ¼ 3.68 × 107 star years. We

extract the detection efficiency, in terms of Einstein radius
crossing time, from Fig. 11 of Ref. [36].11 The efficiency is

large (ϵ≳ 0.5) for time periods of between 1 day and
1000 days.

B. Microlensing survey of Subaru HSC

The major limiting factor that prevents the EROS data
from constraining MACHOs and miniclusters at low masses
is the small-time efficiency, driven by the cadence of the
observation. Very recently, observations in Ref. [37] used
data from the Subaru Hyper Suprime Cam (HSC) to place
constraints on low mass primordial black holes (PBHs)
with 10−13 M⊙ < MPBH < 10−6 M⊙. The HSC observa-
tions exclude a PBH fraction fPBH ≳OðfewÞ × 0.01. This
constraint was made by performing a microlensing survey
with a cadence of 2 minutes over a single night of 7 hours.
For the microlensing survey, HSC observed Andromeda

(M31). A major difference from the EROS survey, apart
from the target galaxy, is that for microlensing in M31, due
to the high DM density, one must account not only for
lensing by DM in the MW, but also for lensing by DM in
M31 itself. Thus the differential event rate is given
by dΓ ¼ dΓMW þ dΓM31.
HSC adopted NFW radial density profiles for the DM in

the MW and M31 with parameters from Ref. [84] of
rs ¼ 21.5 kpc, ρc ¼ 4.88 × 106 M⊙kpc−3 giving Mvir ¼
1012 M⊙ for the MW and rs ¼ 25 kpc, ρc ¼ 4.96 ×
106 M⊙kpc−3 giving Mvir ¼ 1.6 × 1012 M⊙ for M31.
The different host masses for the MW and M31 normalize
the minicluster mass function differently in each case.
The DM density profile along the line of sight is

ρDMðxÞ ¼ ρMWðxÞ þ ρM31ðxÞ, with x ¼ d=ds for source
distance ds ¼ 770 kpc. The line of sight distances are given
in terms of the radial coordinate r as

rMWðdÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
⊕ − 2R⊕ cos l cos bþ d2

q
; ð49Þ

rM31ðdÞ ¼ ds − d; ð50Þ

with R⊕ ¼ 8.5 kpc the radial coordinate of Earth from
the MW center and ðl; bÞ ¼ ð121.2°;−21.6°Þ the galactic
coordinates of M31.
HSC has a microlensing efficiency of ϵ ∼ 0.1–0.8 for

time periods 2minutes≲ t̂≲ 7 hours with a number of stars
Ns ∼ 107–109. The advanced treatment of the efficiency
and candidate selection employed in Ref. [37] is beyond
the scope of the present work. In order to get a sense for
the constraints that could be obtained with a dedicated
analysis, we model the HSC microlensing efficiency as a
step function with ϵ ¼ 0.5 in the given time scale (see
Fig. 14 of Ref. [37]). To normalize the exposure we
compute the expected number of events for PBHs, and
we rescale E to approximately match the constraints in
Fig. 29 of Ref. [37] without accounting for finite source

11We follow Ref. [36] by multiplying the efficiency by an extra
factor of 0.9 to take into account lensing by binary lenses.
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size and using the extrapolated number counts of source
stars (this is the most optimistic constraint).
It is the short cadence that gives HSC access to low

PBH masses, and for our purposes will allow constraints
on the minicluster fraction for the QCD axion. This is
because low mass objects create lensing events on shorter
time scales due to the smaller radius of the microlensing
tube. Thus detecting microlensing events by such objects
requires large efficiency on small time scales, i.e. a short
cadence.
HSC use pixel lensing and image subtraction to select

microlensing candidates. Using this technique, they identify
a large number of variable stars, eclipses, and other transient
events. They find a single event with a light curve consistent
with a PBHmicrolensing event, though the genuine nature is
not confirmed. Thus, the Poisson statistics 95% C.L. upper
limits on the expected number of microlensing events are

Nexp ≤
�
3 with out the PBH candidate

4.74 with the PBHcandidate
: ð51Þ

We takeNexp ≤ 3 as the conservative limit on theminicluster
lensing events. A dedicated analysis of theHSC datawith the
minicluster light curvewould be required to bemore precise,
and this is beyond the scope of the present work.

C. Results: Expected number of microlensing events

In Fig. 15 we show the expected number of microlensing
events in various minicluster scenarios as a function of M0

for HSC and EROS assuming fMC ¼ 1. The number of
events in HSC is generally far larger than for EROS due to
the huge volume of DM between the Earth and M31
leading to a larger optical depth to microlensing for HSC
[37]. In order to understand the effects of our modeling we
show four different calculations of Nexp for HSC.

In the first (solid gray line in Fig. 15), we compute the
event rate for pointlike objects (i.e. PBHs) of fixed massM0

(i.e. Dirac-delta-function mass distribution) to normalize
the exposure and efficiency.
We then compute the case of isolated miniclusters

(Dirac-delta-function mass distribution but nonpointlike
objects), with density profiles determined by dn=dδ
extracted from Fig. 2. This corresponds to the red solid/
dashed line in Fig. 15 for the HSC/EROS survey. This
additional treatment reduces the number of events by a
factor ofOð102Þ due to the requirement of large δ such that
R > 0. We consider this scenario as the most conservative:
miniclusters are too dense to suffer much disruption on
mergers, and MCHs are likely to be a “plum pudding” of
objects of massM0. In this case, the modulating role of the
MCH mass function is not relevant for the HSC cadence
and QCD axion.
The dense MCH case includes in addition the effects of

dn=dM i.e. an extended mass function. A microlensing
survey is sensitive to objects of fixed mass M. The mass
function spreads the MCHs to M > M0 (with more total
mass at largerM), shifting the centralM0 to smaller values.
The density profiles of the dense MCHs are also computed
using dn=dδ i.e. mergers forming MCHs are assumed to
preserve the distribution of halo concentrations. This
treatment corresponds to the blue solid/dashed line in
Fig. 15 for the HSC/EROS survey. This scenario is more
conservative for the HSC survey and the QCD axion since
it reduces the number of events by moving mass out of the
central region of sensitivity.
Finally, the diffuse minicluster case uses dn=dM, but

assumes that all MCHs with M outside the small window

FIG. 15. Expected microlensing events. Here we assume that all
the DM is composed of miniclusters on small scales. Lines show
the effects of our modeling of the minicluster mass function and
density profile for HSC and the EROS survey.

FIG. 16. Limits on the fraction of DM collapsed into mini-
clusters. The model adopted is for isolated miniclusters, which
we consider the most realistic. The shaded region shows the
allowed mass for the QCD axion with miniclusters. Where the
n ¼ 3.34 lines intersect this region, fMC is constrained for
the QCD axion. The inset shows a zoom-in. The magenta (blue)
line in the inset shows a hypothetical improved observation by
HSC of ten nights with an efficiency ϵ ∼ 1 in the case of isolated
miniclusters (dense MHCs).
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M0=10 ≤ M ≤ 10M0 have too low density for microlens-
ing. Mergers are assumed to disrupt the miniclusters and
the MCHs withM > 10M0 are uniform with concentration
cNFWðMÞ, far too low to lens. The cut in dn=dM reduces
significantly the number of events. This is the most
pessimistic model, corresponding to an effective reduction
in fMC caused by mergers. This scenario corresponds to the
purple line in Fig. 15 for the HSC survey.
Using the Poisson statistics 95% C.L. limit from above

we find constraints on fMC as a function of ma, the axion
mass, presented in Fig. 16 for the most realistic isolated
miniclusters case. The dashed black lines correspond to the
EROS limits in the n ¼ 0 or n ¼ 3.34 hypothesis. The solid
red lines correspond to the HSC limits in the n ¼ 0 or n ¼
3.34 hypothesis. We find that EROS does not place any
bound on fMC < 1; however HSC places very strong
bounds on fMC for an axionlike particle with n ¼ 3.34,
reaching as low as fMC ≈ 8.0 × 10−2 for ma ≈ 50 μeV.
The shaded green band shows the allowed mass for the

QCD axion fixed byma ¼ 6.6 μeVð1012 GeV=faÞ [13,14]
and the relic density: 50 μeV≲ma ≲ 200 μeV [40].
The n ¼ 3.34 lines represent temperature evolution of
the axion mass: where these lines intersect the shaded
band, fMC is bounded for the QCD axion, and we
find fMC < 0.083ðma=100 μeVÞ0.12.
As shown in the inset of Fig. 16, these results could be

improved. Indeed the magenta line shows a hypothetical
improved observation by HSC, extending the current one
night to ten nights with an efficiency ϵ ∼ 1, leading to a
forecast bound of fMC ≲ 0.004 for the QCD axion in the
isolated miniclusters case. The improved observation is
also able to bound fMC ≲ 0.1 in the more pessimistic (for
the QCD axion) dense MCH scenario. We advocate a
dedicated analysis of the HSC microlensing data to place
more rigorous bounds on fMC than we have approximated

here, and for a longer microlensing survey in order to
improve those bounds further. We are confident that a more
thorough analysis by the observing teams will show that
HSC, and microlensing in general, is now a powerful tool to
constrain the QCD axion and, more generally, axionlike
particles.

D. Theoretical uncertainties attached to our results

We now discuss various theoretical uncertainties and
modeling that can give small shifts in the constraints. As we
already discussed, an additional uncertainty comes from
our simplified modeling of the lensing efficiency.
In Fig. 17, we study the impact of the modeling of the

mass function on the computation of the expected number
of lensing events. We used the analytical formulations of
Appendix B. The solid blue line in Fig. 17 corresponds to
our simple parametric mass function discussed earlier in
Sec. III C.
For all combinations of initial power spectrum (Gaussian

or Heaviside) andwindow function (Gaussian or Heaviside),
we inject the variance σ2XY of Appendix B in the usual Press-
Schechter mass function also given in Appendix B in
order to estimate the expected number of microlensing
events. In the case of the Gaussian window function, we
used the half-mode models for the low-mass cutoff.
In order to isolate this source of theoretical uncertainty
from other mass-dependent effects (such as the rescaling
lensing tube factor) we considered in Fig. 17 the MCHs as
pointlike objects, which is quite an unrealistic scenario.
However we said previously that the additional treatment
of considering MCHs as nonpointlike objects reduces the
number of events by a factor of Oð102Þ due to the
requirement of large δ such that R > 0. Our result is
that our simple description of an extended mass function
is conservative since for some characteristic mass, M0,
a different choice of mass function could increase the
expected number of lensing events by up to a factor of
five.
The analytic results for the variance and associated

MCH mass functions (GG, GH, HG, and HH) have
generically a smaller upper limit compared to our simple
parametric approximation (see Fig. 21). This small differ-
ence starts to matter when this upper limit approaches the
critical value of the experiment. This critical value for
HSC is around M0=M⊙ ¼ 5 × 10−5 and corresponds to
the typical PBH mass when the lensing experiment loses
all sensitivity due to the finite observing time (grey line
in Fig. 15). At a particular moment, the parametric HMF
will have MCH masses outside the sensitivity region of
HSC; however for the other HMF all the masses would
remain in the sensitive region and would consequently
predict more lensing events. When every single HMF
has MCHs heavier than that critical value then the
discrepancy between them starts to shrink. This feature
explains why the lines associated to the more refined HMF

FIG. 17. Theoretical uncertainties in the mass function. Lines
show the effects of our modeling concerning the mass function
for the HSC survey. In order to isolate this effect from the effect of
the density profile we considered the MCHs as pointlike objects
(i.e. PBHs). The inset displays the various distributions normal-
ized to our default simple parametric mass function (blue line).
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are close to the parametric HMF for low and large values
of M0 and reach a maximum aroundM0=M⊙ ≃ 10−9. The
inset in Fig. 17 displays the various distributions normal-
ized to our default simple parametric mass function
(blue line).
In Fig. 18, we study the impact of the density profile

on the computation of the expected number of lensing
events for the HSC survey. The dashed red line assumes
a self-similar infall profile (cf. Sec. IV) while the solid
blue line assumes our default NFW profile. The inset
displays the two distributions normalized to the default
NFW line (blue line). As we can see, the self-similar
infall profile predicts a higher expected number of
lensing events by a factor of up to eight for M0 masses
below 10−6 M⊙. This is caused by the self-similar profile
being more compact, thus requiring lower threshold
values of δ for microlensing (see Fig. 13).

VII. SUMMARY AND CONCLUSIONS

The QCD axion remains one of the best-motivated dark
matter candidates some 40 years after it was originally
proposed. Unlike the case of thermal weakly inreacting
massive particle (WIMPs), the QCD axion parameter space
remains wide open in the face of direct constraints due to
the extraordinarily weak interactions between axions and
the standard model. All of that is about to change, with a
wide range of proposed experiments set to probe a large
part of the parameter space in the coming decades. It is
therefore timely to study more subtle aspects of axion DM
that may affect direct detection signals.
If PQ symmetry breaking occurs during the radiation-

dominated phase in the early Universe (or indeed during a
putative matter-dominated phase) then the axion DMmodel

is severely constrained and makes rather precise predic-
tions. One such prediction is the existence of miniclusters:
gravitationally bound lumps of axions with masses of the
order M0 ∼ 10−10 M⊙. There is no theoretical prediction
for the fraction of DM in miniclusters, fMC, but naively we
expect it to be of order unity. If fMC is large, the direct
detection signal for axions is reduced by 1 − fMC (assum-
ing that the probability of an encounter between the Earth
and a minicluster over the course of an experiment is
essentially zero).
Despite in some sense representing “half” of axion

parameter space, the minicluster scenario has attracted
relatively little attention over the years. In the present work
we have attempted to revive interest in it and to observa-
tionally bound fMC.
We began by computing the mass function of mini-

clusters. We predict the slope of the mass function should
be M−1=2 arising from the white-noise initial conditions.
This is the mass function on large scales, where we have
assumed Gaussianity of fluctuations. The minicluster halos
that we predict are composed of many individual mini-
clusters (up to 106) and would not be seen in simulations
such as Ref. [25] except in very large boxes with total mass
many times larger thanM0. We outlined uncertainties in the
MCH mass function due to the initial power spectrum and
window functions.
Our modeling of minicluster and MCH formation used

the simplest possible implementation of Press-Schechter in
an analytic form. More advanced semianalytic formulations
of extended Press-Schechter can be used to answer deeper
questions about the merger history and tidal effects and
will provide more accurate mass functions [85]. The public
code GALACTICUS is suitable for such a study [77]. Such
approaches can account for gravitational N-body-like
dynamics, but will not address issues associated to the
unique minicluster initial conditions, which can only be
answered by field theory simulations of the axion string
network.
By treating the hierarchical structure formation as

described by CDM on large scales, we computed the
concentrations and formation times of MCHs. We used
this to provide a simple estimate of the effect of tidal
stripping on the “seed” miniclusters, and we have con-
cluded that it is likely a minor effect. Thus, miniclusters
should be present as plums in a pudding in MCHs, a
scenario we dubbed isolated miniclusters. We also consid-
ered two other, less realistic, scenarios for mergers and their
effects on observations. In the isolated minicluster case we
concluded that the MCH mass function was irrelevant for
microlensing constraints.
In the case of the QCD axion we expect the individual

miniclusters to have masses very roughly comparable to
larger asteroids like Vesta or Pallas with radius of order
1 AU for δ ¼ 1. After structure formation, these mini-
clusters find themselves gravitationally bound up into
MCHs with typical masses up to that of Saturn and radii

FIG. 18. Theoretical uncertainties in the density profile. Here
we assume that all the DM is composed of miniclusters on small
scales and take the isolated minicluster scenario. Lines show the
effects of our choice concerning the density profile for the HSC
survey. The dashed red line assumes a self-similar infall profile
while the solid blue line assumes our default NFW profile. The
inset displays the distributions normalized to the default NFW
case (blue line).
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of approximately 104 AU (0.1 light years). We are left
wondering if there are other consequences of MCHs that
can be tested observationally.
We have not discussed the formation of miniclusters

themselves, where the assembly history will be very
different. Our mass function on scales smaller than M0

is also subject to large uncertainties. The shape of the mass
function for M < M0 (describing fragmentation and for-
mation of miniclusters) could be drastically different from
our estimates. We have tried to quantify this uncertainty
using different window functions and cutoff models. We
predict a cutoff in the mass function at least at the axion
Jeans scale, and probably not much below M0 itself.
The largest uncertainties relate to the non-Gaussianity of

the minicluster density field. The non-Gaussianity will also
affect the mass function on small scales. We have treated
the non-Gaussianity on scales of order M0 as giving the
distribution of minicluster concentrations, using a fit from
simulations [22] giving the distribution of overdensities
F ðδ > δ0Þ. This predicts that miniclusters come in a very
wide range of different sizes for a fixed initial mass. As we
have assumed a particular form for F , our results could
rather be interpreted as a constraint on the integrated tails of
this distribution with δ0 > δlens, where δlens is the critical
density parameter for efficient microlensing.
Numerically verifying the distribution F for large δ is a

necessary future project, since our later results rest on an
extrapolation of this function over a wide range.12

Simulations of the minicluster field in the absence of
gravity are not sufficient for this purpose: our results rely
on the size distribution being preserved to the present day
for bound objects of mass M0, which take some time to
assemble gravitationally. The numerical verification should
be done by performing a large number of small-box
simulations containing a mass of just a few M0.
We computed the microlensing “tube size” and event

rate for miniclusters. The distribution F was key to this
computation, since the densest miniclusters in the tail of
the distribution have the largest effective tube radius and
contribute dominantly to the expected number of events.
Using the recent HSC limit on the number of microlensing
events Nexp ≤ 3 over event time scales between 2 minutes
and 7 hours we were able to place the first observational
bound on miniclusters of fMC < 0.083ðma=100 μeVÞ0.12
over the range relevant to the QCD axion. We also
presented bounds for other axionlike particles.
In the event that observations are made which suggest

microlensing events caused by DM, we would be faced
with the pleasurable task of identifying the precise nature of
these microlenses. The formation of miniclusters is in some

sense one of the more conservative scenarios for compact
object formation, relying only on ordinary SSB leading to
standard axion production. There are various other possible
compact objects which could make up a significant fraction
of the dark matter. We have already pointed out that with
enough statistics we could tell the difference between
pointlike objects such as PBHs and extended density
profiles such as axion miniclusters. An interesting question
is whether we could tell the difference between axion
miniclusters and “ultracompact minihalos” that emerge as a
result, for example, of features in the inflationary spectrum
or a period of matter domination [87]. Just like in the case
of miniclusters, there is significant theoretical uncertainty
relating to the density profiles of such objects [88], and thus
microlensing alone might not distinguish these types of
compact object.
Ultracompact minihalo (UCMHs) can be composed of

any type of DM, but they are typically thought of as being
composed of WIMPs. Clearly, interactions distinguish
axions and WIMPs and could also be used to distinguish
miniclusters and UCMHs. A clear consequence of the high
UCMH density is in boosting the WIMP annihilation rate,
causing UCMHs to appear as luminous gamma ray sources
[89]. On the other hand, axion-photon conversion leads to
miniclusters acting as radio sources, with a possible relation
to fast radio bursts [90–92]. Finally, on distinguishing
different DM microlensing candidates, the early Universe
physics responsible for each (minicluster, PBH, and
UCMH) is in each case quite different (curvature pertur-
bations for PBHs and UCMHs, isocurvature and SSB for
miniclusters) and could lead to other indirect evidence
supporting either case.
An Oð1Þ uncertainty on the microlensing constraints

comes from the minicluster density profile. We treated
miniclusters as a NFW profile, which is close to a hard
sphere with mass located predominantly at a single radius.
In the case of a self-similar density profile, miniclusters are
somewhat denser, and we found tighter constraints on the
density fraction. Again, simulations are necessary to con-
firm which density profile is the correct one.
An observational bound on fMC can be seen two ways.

Firstly, observationally it is good to know that fMC is small,
since in the absence of other information this allows direct
detection constraints to be interpreted with more confi-
dence. Secondly, it allows the possibility to exclude or
discover evidence for axions if theoretical predictions can
be made. The same simulations that will provide us with
more information about the distribution of overdensities F
could also narrow down predictions on the possible range
of fMC and help us to investigate the minicluster density
profiles [86]. We hope that our preliminary investigations
motivate the need for such further study.
If the eventual theoretical predictions are in violation of

microlensing bounds, then microlensing constraints have
excluded the QCD axion with late-time symmetry breaking.

12The simulations of Niemeyer [86] will be able to investigate
this extrapolation. In the initial (no gravity) conditions some
extrapolation seems justified to at least δ≳ 100. We thank Javier
Redondo for discussion on this point.
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On the other hand, if theoretical predictions are within an
order of magnitude or so below our constraints, then future
microlensing surveys could expect to see evidence of a
subdominant population of miniclusters in the galactic DM.
Upcoming observational efforts such as the Zwicky
Transient Facility [93] and eventually the Large Synoptic
Survey Telescope [94] are expected to provide much more
sensitivity tomicrolensing events.We are excited to seewhat
these telescopes observe and the implications of those
observations for the nature of dark matter.
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APPENDIX A: THE AXION RELIC DENSITY

The following section uses known results concerning the
axion relic density to find the range of axion masses where
the minicluster scenario is possible. We reproduce and
extend the treatment of the relic density in Ref. [26], giving
more details on the computation.
In the minicluster scenario the breaking of the PQ

symmetry giving rise to axions must occur after any period
of cosmic inflation (or indeed any other smoothing mecha-
nism for the initial conditions). The axion relic density is
produced by the coherent oscillations of the highly inho-
mogeneous classical axion condensate in a thermal back-
ground. In principle, the calculation of the relic density
involves two computationally challenging pieces: the
thermal evolution of the axion mass in finite temperature
quantum field theory, and the classical evolution of the
inhomogeneous condensate. We do not perform such
calculations here, and in the literature results are only
generally available for the QCD axion. However, both of
these complexities can be parametrized into a much simpler
computation, allowing us to treat the more general ALP
models, and account for uncertainties in the numerical
results in the literature.
In order to avoid having to compute the inhomogeneous

field evolution, we make the standard assumption that there
are two sources of axion relic density: production of cold
axion particles via the decay of topological defects, and
vacuum misalignment production from the homogeneous
axion condensate. This separation of axion populations is

in fact artificial, the entire relic density being contained in
coherent oscillations of the same classical field. It is a
useful terminology, since the inhomogeneous calculation
has the same parametric scaling as the homogeneous
calculation, allowing a single fudge factor to be introduced,
and the parameter space can then be explored in the much
simpler homogeneous case.
In order to account for the finite temperature effects, we

parametrize the mass evolution as a power law. The power
law index can be computed either using an instanton model
or a lattice computation, and it depends on the particle
content (which is of course fixed only in the case of QCD).
Of the total axion relic density, some fraction of fMC

ends up bound in miniclusters. In principle this fraction can
be determined by proper simulation of PQ symmetry
breaking and axion production including the effects of
gravity up to matter-radiation equality. Instead, we take
fMC as a phenomenological free parameter to be con-
strained by the data, and so our constraints on fMC can be
used to constrain models of PQ symmetry breaking.
The relic density of axions of mass ma is determined by

the decay constant, fa, which for the minicluster scenario
must satisfy fa < 8.2 × 1012 GeV. The bound applies in an
inflationary scenario by imposing the observational con-
straint on the cosmic microwave background tensor-to-
scalar ratio r < 0.07 [95], which in turn constrains the
Hubble scale during inflation. The constraint arises by
imposing that the Gibbons-Hawking temperature, TGH ¼
HI=2π, must be higher than the PQ scale in order that the
PQ symmetry remain unbroken during inflation, and we
have assumed for simplicity that the phase transition occurs
at T ¼ fa. In a noninflationary scenario, if reheating is
allowed to occur to temperatures Treh: > 8.2 × 1012 GeV,
then the minicluster scenario could be extended to larger
values of fa. For definiteness, we consider only the
inflationary scenario from now on.
We must find the range of axion masses for which the

minicluster scenario is relevant. To do this we impose the
relic density constraint, Ωah2 ¼ 0.12 [39], with Ωah2

computed in the minicluster scenario with the necessary
requirement that fa < 8.2 × 1012 GeV.
Consider the homogeneous misalignment production of

axions. The equation of motion for the homogeneous axion
field, ϕ, is

ϕ̈þ 3H _ϕþ V 0ðϕÞ ¼ 0; ðA1Þ

where dots denote derivatives with respect to physical time
t. The axion potential is VðϕÞ, and the prime denotes
derivative with respect to ϕ. The precise form of VðϕÞ is not
important for the present treatment of the relic density. An
additional parameter NDW sets the periodicity of the axion
field and then determines the number of domain walls. For
the QCD axion,NDW is determined by the color anomaly of
the quarks carrying PQ charge and is NDW ¼ 1 for the
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KSVZ axion [15,16]. For simplicity of presentation we set
NDW ¼ 1, the NDW > 1 case having quite different cos-
mology [96].
Axion oscillations begin at temperature Tosc when the

potential term dominates over the friction provided by
the Hubble expansion. Thanks to the Kibble mechanism,
the axion field remains homogeneous on scales up to the
horizon size at this time. Once axion oscillations begin,
the axion number density naðTÞ ¼ ρaðTÞ=maðTÞ becomes
conserved (for slowma variation). The axion relic density at a
later time, when the temperature is T0 is then given by

ρmis
a ¼ maðT0ÞnðToscÞ

�
aðToscÞ
aðT0Þ

�
3

¼ 1

2
maðT0ÞmaðToscÞf2aθ2i

�
aðToscÞ
aðT0Þ

�
3

; ðA2Þ

where θi ¼ ϕi=fa ∈ ½−π; π� is the “initial misalignment
angle.” The fraction of the critical density is given by
Ωa ¼ ρa=ð3H2M2

plÞ. The scale factor is related to the
temperature by the condition of constant entropy:

aðTÞ ∝ g⋆;SðTÞ−1=3T−1; ðA3Þ

with the proportionality normalized by fixing matter radia-
tion equality at redshift zeq ¼ 3402 [39].We use the fit for the
entropic degrees of freedom, g⋆;SðTÞ, from Ref. [49].
In a harmonic potential, Tosc is given by

3HðToscÞ ¼ maðToscÞ: ðA4Þ
We allow temperature variation of the mass parametrized as

maðTÞ ¼ ma;0

�
T
μ

�
−n
; ðA5Þ

for T > μ ∝
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ma;0fa

p
and maðT < μÞ ¼ ma;0 ≡ma. Low-

temperature variation of the mass occurs for axions
acquiring their potential from a strongly coupled gauge
theory such as QCD, and the index n can be computed
given the particle content. As a representative of QCD we
take n ≈ 3.34 from the interacting instanton liquid model
[49], which is close to the results from lattice simulations
(n ≈ 3.55� 0.30 [50,51]) and the canonical dilute instan-
ton gas (n ¼ 4 [45]). For simplicity we neglect the case
μ ≠

ffiffiffiffiffiffiffiffiffiffiffi
mafa

p
. The QCD axion has μ ≈ ΛQCD ≈ 2.5

ffiffiffiffiffiffiffiffiffiffiffi
mafa

p
.

The very small effect of this factor on the relic density and
M0 is unimportant at our level of accuracy given the other
associated uncertainties that we include below. The case
μ ≫

ffiffiffiffiffiffiffiffiffiffiffi
mafa

p
is approximated by n ¼ 0 and occurs for some

string axions and “accidental axions” [97,98].
Assuming radiation domination, the Hubble rate is given

by the Friedmann equation:

3H2M2
pl ¼

π2

30
g⋆;RðTÞT4; ðA6Þ

where g⋆;RðTÞ is the number of relativistic degrees of
freedom at temperature T. The epoch when axion oscil-
lations begin is found by solving Eqs. (A4) and (A6), which
we do numerically using the fit for g⋆;RðTÞ from Ref. [49],
which includes all the standard model degrees of freedom
and the QCD phase transition.
Anharmonicities in the potential lead to flattening away

from the origin and delay the onset of oscillations for large
θ. The time that oscillations begin grows as [99]

tosc ¼ m−1
a ðtoscÞ ln½e=pðxÞ�; ðA7Þ

wherepðxÞ is apolynomial functionofx ¼ θi=π that is found
fromfitting toanumerical solutionofEq. (A1)witha specific
potential [100], and it does not depend on ma or fa as each
can be absorbed in an appropriate choice of units. For the
potential VðθÞ ¼ m2

af2að1 − cos θÞ we find that pðxÞ ¼ 1 −
x4 gives a good fit to our own numerical solutions for
axionlikeparticleswithT-independentmassandg⋆ ¼ const.
Using that t ∝ T−2 from the solution to the Friedmann

equation, Eq. (A7) can be solved for the correction to
ToscðθiÞ that is then substituted into Eq. (A2) to find the
relic density.
With the assumption of constant g⋆ during the epoch

over which anharmonic corrections affect Tosc, this solution
can be found analytically, leading to an anharmonic
correction to the relic density:

ρmis
a → fanðθiÞρmis

a ; ðA8Þ

with the anharmonic correction function fanðθiÞ ¼ fln½e=
pðxÞ�gq, and the power q ¼ 3=2 − n=ð2nþ 4Þ. With non-
constant g⋆, fanðθiÞ cannot be found analytically, and
furthermore it will in general depend on ma, fa, and n,
though this is not usually stated.
In the minicluster scenario the vacuum misalignment

relic density must be averaged over θi, reflecting the fact
that the current observable Universe is many times larger
than the horizon size when axion oscillations begin. One
must replace θ2i fanðθiÞ by

hθ2i fanðθiÞi ¼
1

2π

Z
π

−π
θ2fanðθÞdθ≡ can

π2

3
: ðA9Þ

The number can comes from the anharmonic corrections.
Assuming one can treat g⋆ as constant over the period in
which anharmonic corrections act, with pðxÞ ¼ ð1 − x4Þ
for the cosine potential and n ¼ ð0; 3.34; 6Þ we find can ¼
ð2.7; 2.1; 2.0Þ, which we term cn.
Now consider the population of axions from the topo-

logical defect decay. For NDW ¼ 1, the population of
axions produced by decay of the string-wall network at
Tosc can be parametrized by writing the total relic density as

Ωah2 ¼ ð1þ αdecÞΩmis
a h2: ðA10Þ
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The parameter αdec is computed from the numerical
solution of the decay of the axion string-wall network
[42,52,101–103]. The results can be expressed as a con-
stant of proportionality, since the scalings are fixed by Tosc,
with only weak dependence from nontrivial g⋆ðTÞ. The
simulations of Ref. [96] find that αdec ¼ 2.48.
For NDW > 1 the relic density cannot be expressed in

such a simple form. The domain wall network is long lived
and the relic density of axions produced by its decay is too
large (“overclosure”) unless some additional fine-tuning
on CP-violation is allowed [96]. We do not consider the
NDW > 1 case any further. It would be interesting to
consider in the future whether miniclusters or similar dense
DM objects are produced in this scenario.
Thus, our final expression for the relic density in the

minicluster scenario is

Ωtotal
a ¼ 1

6H2
0M

2
pl

ð1þ αdecÞ
canπ2

3
maðTCMBÞmaðToscÞf2a

×

�
aðToscÞ
aðTCMBÞ

�
3

; ðA11Þ

where Tosc is found from solving Eq. (A4) for oscillations
in a harmonic potential; TCMB ¼ 2.725 K is the CMB
temperature; aðTCMBÞ ¼ 1; and we vary the parameters n,
αdec and can. We have not allowed for any additional
entropy production or degrees of freedom beyond the
standard model, which could suppress the relic density
with an additional factor of γent < 1 [104]. Allowing for
γent < 1 would raise the lower bound on ma for axion
miniclusters.
The results of our relic density computation are shown in

Fig. 19. If axions are to provide the total DM relic density in
the minicluster scenario we find a lower bound on the axion
mass of ma ≳ 10−13 eV. This bound could be lowered
somewhat for largervaluesofn ≫ 6,whichcouldbe lowered
slightly more for more extreme large values of n. For n ¼ 0

we findma ≳ 10−8 eV.We find that theQCD axion is where
the dotted line ma;QCD ≈ 6.6 μeVð1012 GeV=faÞ intersects
n ≈ 3.34. Thus, when the PQ symmetry is broken post-
inflation, the QCD axion must have ma ≈ 100 μeV, con-
sistent with other estimates in the literature.
The relation between ðma; faÞ found from the relic

density affects the M0ðmaÞ relationship via the weak
dependence on fa for n ≠ 0. For n ¼ 0, the relic density
only affects this by imposing a lower limit on n. We have
verified the accuracy of the misalignment contribution to
Eq. (A11) using a direct numerical solution of the temper-
ature-dependent equations of motion following the method
of Ref. [50], confirming both the use of the estimate for Tosc
and the computation of can for the single cosine and chiral
axion potentials. The approximation only breaks down for
oscillation temperatures near ΛQCD, where the effects of g⋆
on the dynamics are nontrivial. For n ¼ 0 using the analytic

result does not affect M0, and thus does not affect our
microlensing results. For n ≠ 0 the use of the analytic
results has a smaller effect than the uncertainty in αdec
already accounted for.
The scenario discussed above does not apply to all

possible axion models. For example, the relationship
between fa and the scale of SSB can be drastically modified
in the “clockwork axion” theories [105,106]. Here a large
hierarchy can be generated between fa, which sets the
periodicity of the axion field, and the symmetry breaking
scale. For example, one could lower the symmetry breaking
scale tovsymm ≈ 1 TeVwhile keepingfa ≈ 1016 GeV.Thus,
lighter axions that require large fa > 8.2 × 1012 GeV could
still give rise to miniclusters. In the clockwork scenario
one must be careful that the additional axions involved in
realizing the clockwork do not produce dangerous relics
themselves. The additional axions also significantly com-
plicate the phase transition and subsequent production and
decay of topological defects [107].
Geometric string theory (and supergravity) axions cannot

give rise to miniclusters, as there is no notion of spontaneous
PQ symmetry breaking in 3þ 1 dimensions that could
produce the necessary large field fluctuations as initial
conditions. Accidental axions, where the Uð1Þ symmetry
is explicitly broken by Planck suppressed operators, and
which also arise in string theory, can undergo SSB and
produce miniclusters.13

FIG. 19. The axion relic density. Contours Ωah2 ¼ 0.12 are
shown for a variety of models. Solid (dashed) lines have αdec ¼
2.48ð1Þ and can ¼ cnð1Þ to account for uncertainty in the relic
density from the decay of topological defects and anharmonicities
in the axion potential. The shaded area indicates fa ≥ 8.2×
1012 GeV, where inflationary constraints on the tensor-to-scalar
ratio imply that miniclusters cannot be formed. The QCD axion is
indicated by the ellipse giving ma ≈ 100 μeV.

13We are grateful to Joseph Conlon, Matthew McCullough,
Andreas Ringwald, and Fuminobu Takahashi for discussion on
clockwork axions and string axions.
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APPENDIX B: THEORETICAL UNCERTAINTIES
IN THE MASS FUNCTION AND ANALYTIC

RESULTS

There are four main theoretical uncertainties in our
modeling of the MCH mass function:

(i) Non-Gaussianity of the minicluster density field.
(ii) The initial power spectrum, Pðk; τ0Þ.
(iii) The filtering function, WðkRÞ.
(iv) The cutoff of the mass function.
Non-Gaussianity is addressed in detail in Appendix C.

In this appendix we address the other three sources of
uncertainty. We first compute the variance, σ2ðMÞ, at the
initial time, τ0. We consider two simplified models for
the initial power spectrum:

PGðkÞ ¼ P0;G exp

�
−
1

2

�
k
k0

�
2
�
; ðB1Þ

PHðkÞ ¼ P0;HΘðk0 − kÞ; ðB2Þ
with G for Gaussian and H for Heaviside. The Gaussian
smoothing at k0 to model the effects of the Kibble
mechanism was used in Ref. [25]. We note that the
normalizations, P0, of each power spectrum must be
computed separately, and they are given by

P0;H ¼ 24

5
π2k−30 ; ðB3Þ

P0;G ¼ 8
ffiffiffi
2

p

5
π3=2k−30 : ðB4Þ

In addition to the power spectrum, we also consider two
choices of window function (see e.g. Ref. [108]):

W2
GðkRÞ ¼ e−k

2R2

; ðB5Þ

W2
HðkRÞ ¼ Θð1 − kRÞ: ðB6Þ

Since for all axion models considered we have
k0 < kJ;eq, the variance at z ¼ 0 is simply given by the
variance at z ¼ zeq (i.e. computed with the initial power)
divided by the CDM linear growth factor squared,
σ2ðz ¼ 0Þ ¼ σ2ðzeqÞ=D2ðzeqÞ. The CDM linear growth
factor is given by the integral (assuming flatness, ΩΛ ¼
1 − Ωm)

~DðzÞ ¼ Ωm
5

2

HðzÞ
H0

Z
∞

z
dz0

�
Hðz0Þ

ð1þ z0ÞH0

�
−3
: ðB7Þ

The growth factor is normalized to unity at z ¼ 0 such
that DðzÞ ¼ ~DðzÞ= ~Dð0Þ.
For all combinations of initial power and window

function the variance can be expressed analytically, in
terms of error functions where necessary. We write the
variance as σ2XY, where X and Y take on either of the values

G and H, with X labeling the window function and Y
labeling the initial power spectrum. The closed-form
expressions in terms of the dimensionless radius ~R ¼ Rk0
are

σ2GGð ~RÞ ¼
P0;Gk30

D2ðzeqÞð2π2Þ

ffiffiffiffiffiffiffiffi
π=2

p
ð1þ 2 ~R2Þ3=2 ; ðB8Þ

σ2GHð ~RÞ ¼
P0;Hk30

D2ðzeqÞð2π2Þ
1

4 ~R3
½−2 ~Re− ~R2 þ ffiffiffi

π
p

erfð ~RÞ�;

ðB9Þ

σ2HGð ~RÞ ¼
P0;Gk30

D2ðzeqÞð2π2Þ
�
−
e−1=ð2 ~R

2Þ

~R
þ

ffiffiffi
π

2

r
erf½ð

ffiffiffi
2

p
~RÞ−1�

	
;

ðB10Þ

σ2HHð ~RÞ ¼
P0;Hk30

D2ðzeqÞð2π2Þ
1

3

�
Θð ~R − 1Þ

~R3
þ Θð1 − ~RÞ

�
:

ðB11Þ

The mapping from radius to mass for the Gaussian
window function is MG ¼ ð2πÞ3=2ρ̄aR3. For the Heaviside
window function the mass is not well defined. We choose
a mass-radius relation that gives the same variance at large
M as the Gaussian case, which is easily shown to beMH ¼
ð4=3ÞMG. We express the variance in terms of the dimen-
sionless mass, ~M ¼ M=ðρ̄ak−30 Þ (the dimensionless char-
acteristic minicluster mass is ~M0 ≈ 130). The variance
σ2HHð ~MÞ has a particularly simple closed-form expression:

σHHð ~MÞ ¼ σ0

�
Θð ~M − cmÞ

�
~M
cm

�−1=2
þ Θðcm − ~MÞ

�
;

ðB12Þ

with cm ¼ ð4=3Þð2πÞ3=2 and σ0 ≈ 103.4. In terms of M0

defined in Eq. (2) this gives the cutoff in the variance at the
physical mass scale Mcut ¼ 23=2π−5=2M0 ≈M0=6.2.
The variances at z ¼ 0 as a function of ~M for all four

combinations of initial power spectrum and window
function are plotted in Fig. 20. Despite the different
normalizations of the power, P0, the variance has the same
normalization in every case, as it should. We observe that
the Gaussian initial power has a cutoff at lower ~M than for
the Heaviside initial power, and consequently the variance
on larger mass scales is smaller for the Gaussian case.
The effect of the window function is to give a flatter
variance as ~M → 0 for the Heaviside window compared to
the Gaussian window, a fact which has important conse-
quences for the cutoff in the mass function, which we now
turn to.
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The Press-Schechter mass function is given by

dn
d lnM

¼ 1

2

ρ̄a
M

���� d ln σ2d lnM

����
ffiffiffi
2

π

r
δc
σ
exp

�
−
1

2

�
δc
σ

�
2
�
: ðB13Þ

When the logarithmic derivative of the variance goes to
zero fast enough, this cuts off the mass function at low M.
This occurs for the Heaviside window function and was
advocated by the authors of Ref. [64] to explain the
downturn in the mass function seen in N-body simulations
with truncated initial power spectra for warm DM. In our
case, the flat variance with the Heaviside window also leads
to a cutoff at low M for the HMF using σHH and σHG, with
the cutoff for σHH being a step function at ~M ¼ cm.
For the Gaussian window, the logarithmic derivative of

the variance does not go to zero fast enough to cut off the
mass function. This is in conflict with simulations. We
expect the Jeans scale to physically cut the power off in a
simulation of the full axion field [71]. Even N-body
simulations that simply use a truncated initial power
spectrum see a downturn in the HMF after numerical
artifacts have been removed [72,73].
Therefore, for the Gaussian window HMF we consider

alternative cutoff procedures. The cutoff we adopt, as
described in the main text, simply replaces δc with
GðMÞδc in the Press-Schechter mass function. This is the
approximation to the action of the Jeans scale considered
in Refs. [66,109,110], which qualitatively agrees with the
excursion set calculation using the same barrier of
Ref. [69]. We refer to this cutoff as the “Jeans cutoff”: it
is physically motivated, and qualitatively matches

simulations. However, this cutoff requires one to know
the axion mass, as well as k0, and therefore it depends on
the M0ðmaÞ relation. In the examples we use the fit for an
n ¼ 0 ALP.
Another possibility is the fit to the cutoff seen in the

simulations of Ref. [72] (see also Ref. [73]):

dn
d lnM

→

�
1þ

�
2.4M
M1=2

�
−1.1

�
−2.2 dn

d lnM
; ðB14Þ

where we have rescaled the cutoff to be given by the “half-
mode mass,” M1=2, defined by the initial conditions cut at
k0 [72]. The half-mode masses are

~M1=2;H ¼ ð2πÞ3=2; ðB15Þ

~M1=2;G ≈ 0.2ð2πÞ3=2: ðB16Þ

The effects of all the modeling on the minicluster mass
function are shown in Fig. 21, where we show all four
combinations of initial power spectrum and window
function, and for the Gaussian window we show the uncut,
half-mode cutoff, and Jeans cutoffs.
The largest difference between different cutoff models

with the same initial power happens in the case of the
Heaviside initial power. The Heaviside window gives a
sharp cutoff at ~M=cm where the derivative of the variance
goes exactly to zero. The half-mode cutoff comes in shortly
after this, since we must identify the half-mode with k0 in
the absence of any other scale. The Jeans cutoff in this

FIG. 21. Theoretical modeling of the mass function. The
minicluster mass function is shown as a function of mass for
four different combinations of initial power spectrum and
window function. In this case of the Gaussian window function,
we also show the uncut (dotted), half-mode (dashed), and Jeans
(solid) models for the low-mass cutoff. The reduced mass
~M ¼ Mk30=ρ̄a.

FIG. 20. Theoretical modeling of the rms. The mass fluctuation,
σ, is shown as a function of mass for four different combinations
of initial power spectrum and window function. The Gaussian
initial power cuts off power earlier than the step function. The
Heaviside window function leads to a more pronounced flat-
tening of σ at low masses. The reduced mass ~M ¼ Mk30=ρ̄a.
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case gives considerably more low-mass halos, a number of
orders of magnitude below.
In the case of the Gaussian initial power, the different

cutoffs make far less difference to the mass function.
The Heaviside window leads to a cutoff around ~M ¼ 1,
due to the shallower flattening of the variance. The half-
mode is ~M1=2;G ≈ 3.1, and the Jeans scale is ~MJ ≈ 0.3, and
thus the cutoff dependence occurs over less than one order
of magnitude in ~M. For n ≠ 0 we generically have
k0 < kJ;eq, and the Jeans mass can be much smaller than
the characteristic minicluster mass. In this case the cutoff
caused by the Kibble mechanism should dominate over the
cutoff caused by the Jeans scale.
In the case of the barrier cutoff, the relation between

M0ðma; nÞ must be specified to derive an approximation to
the cutoff, since the Jeans mass is given in terms of ma
(see Fig. 3). Factoring out the linear growth, the argument
of the Gaussian e−x

2=2 is xðMÞ ¼ 1.686GðMÞ=σ0ðMÞ,
where GðMÞ is the fitting function of Ref. [110]. The
barrier GðMÞ depends on the Jeans mass, MJ, which itself
depends on the axion mass as

MJ ¼ 5.1 × 10−10 M⊙
�

ma

10−10 eV

�
−3=2

×

�
Ωm

0.32

�
1=4

�
h

0.67

�
1=2

: ðB17Þ

Figure 22 shows xðM=MJ;M0=MJÞ for 0 < R < 106.
Cutoffs in the HMF occur at small and large masses, when

xðMÞ exceeds a particular threshold. The threshold for a 1σ
cutoff is x ¼ 1. The scaleM0 is the largest scale to cross the
threshold shortly after zeq, and thus sets the characteristic
mass of miniclusters.
The Jeans mass depends only on the T ¼ 0 axion mass,

and so the mass function cutoff at low M is always at
approximately the same value for fixedma regardless of the
temperature dependence of the axion mass. However, as we
saw inFig. 1, asn is increased and the axionmass switches on
more sharply, the value M0 of the characteristic minicluster
mass is increased for fixed ma. When M0=MJ is large, the
spread of the minicluster mass function is increased. This
demonstrates that the barrier cutoff has the largest difference
in the low mass behavior of the mass function for different
values of n. Halos/miniclusters at the Jeans mass are formed
by “monolithic collapse” and in simulations are shown to be
composed of isolated “axion stars” [70].

APPENDIX C: NON-GAUSSIAN EFFECTS ON
THE MASS FUNCTION

We have already said something about the non-
Gaussianity in the main text. We implicitly assume that
on large scales k < k0 the fluctuations are close to Gaussian
and that Press-Schechter can be applied to compute the
MCH mass function for M > M0. In the main analysis we
account for non-Gaussianity in the distribution of density
profiles on small scales at M ∼M0 using the distribution
F ðδ > δ0Þ.
In the following we discuss how non-Gaussianity in

the white noise for k0 < k0 can alter the mass function.
In analogy to Eqs. (6), (8) we consider the three-point
correlation function of the overdensity:

ξ3ðr1; r2Þ ¼ hδðxÞδðxþ r1Þδðxþ r2Þi; ðC1Þ

from which it can be shown that the bispectrum, Bðk1; k2Þ,
satisfies

Z
d3k1
ð2πÞ3

d3k2
ð2πÞ3 Bðk1; k2Þ ¼ hδðxÞ3i: ðC2Þ

Another similar identity holds for the trispectrum,
Tðk1; k2; k3Þ.
We model the axion initial field distribution as a random

variable, θ, with uniform distribution on ½−π; π�. At early
times when the axion interactions can be neglected (the
potential has not switched on, T ≪ μ and n > 0), the
uniform distribution is enough to allow us to calculate
hδðxÞ3i ¼ 16=35. We note that we cannot use the numeri-
cally derived distribution F ðδ > δ0Þ to compute the cumu-
lants since it is not shown for negative δ, and the Pearson
distribution fit is not valid in this regime either.
Next we assume, just like for the power spectrum, that

the non-Gaussianity is constant on large scales but that the

FIG. 22. Jeans scale and cutoffs in the mass function. These are
driven by the argument of the Press-Schechter Gaussian, e−x

2=2

and the threshold for a 1σ cutoff is x ¼ 1. We plot x as a function
ofM=MJ with MJ the Jeans mass. As the ratioM0=MJ increases
from 1 to 106, the mass function remains centered near M0 but
continues to have support atMJ ≪ M0. The spread of minicluster
masses increases from a narrow distribution near M0 at zeq to a
much wider distribution today.
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Kibble mechanism erases all correlations on small scales.
Our ansatz for the bispectrum is thus

Bðk1; k2Þ ¼ B0Θðk1 − k0ÞΘðk2 − k0Þ: ðC3Þ

Plugging this ansatz into Eq. (C2) we can perform the
integrals and compute the normalization:

B0 ¼
576

35
π4k−60 : ðC4Þ

A number of authors have considered the effect of a
nonzero bispectrum on the mass function. For example, the
authors of Ref. [111] performed an exact calculation using
the path integral and excursion set theory. A simple formula
to model non-Gaussian effects on the mass function is
given in Ref. [112]:

ΠNLðMÞ ¼ exp

�
δ3cS3

6σ2

��
1

6

δcffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − δcS3=3

p dS3

d ln σ

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − δcS3=3

p �
; ðC5Þ

where ΠNL is the ratio of the non-Gaussian to Gaussian
mass function. We do not use the related formula given by
Ref. [113] because, for the large values of σ2 on scales in
our model, it gives rise to the unphysical values ΠNL < 0.
The non-Gaussian corrections depend on the normalized

skewness:

S3 ¼
hδ3i
½hδ2i�2 ≡

s3ðMÞ
½σ2ðMÞ�2 : ðC6Þ

We are interested in the MCH mass dependence of this
quantity. The denominator is simply the variance squared,
computed under filtering by the appropriate window
function. The bispectrum in the numerator must also be
filtered to compute s3ðMÞ. The filtered bispectrum is

s3ðRÞ ¼
Z

d3k1
ð2πÞ3

d3k2
ð2πÞ3 Bðk1; k2ÞW

2ðk1RÞW2ðk2RÞ: ðC7Þ

In the following we work with the Gaussian filter to be
explicit, but the results do not depend on this choice. Using
the results for P0 and B0 we find

σ2ð ~RÞ ¼ 12

5

Z
∞

1

dyy2e−y
2 ~R; ðC8Þ

s3ð ~RÞ ¼
144

35

�Z
∞

1

dyy2e−y
2 ~R

�
2

; ðC9Þ

and the normalized skewness is

S3 ¼
5

7
: ðC10Þ

It is important to note that the normalized skewness thus
computed is independent of scale.
Plugging this result into Eq. (C5) we find that ΠNL

diverges exponentially on large scales when σ2 → 0.
However, this is not a fundamental problem, since ΠNL
multiplies the mass function, which is cut off exponentially
on large scales. On such large scales, the skewness-
corrected nonlinear mass function goes like

dn
d lnM

∝ exp

�
δ2c
σ2

�
δcS3

6
−
1

2

��
≈ exp

�
−0.3

δ2c
σ2

�
ðC11Þ

and thus the mass function remains cut off on large scales and
gives sensible results in the presence of this type of non-
Gaussianity. The change in the mass function cutoff leads to a
small increase in the value ofMmax, the maximumMCHmass.
On intermediate and small scales ΠNL is approximately

constant and equal to 0.77. Thus we find that the bispec-
trum correction to the mass function leads to a small
Oð20%Þ suppression of the number density of intermediate
mass MCHs. The number of large MCHs is increased by a
much larger fraction, but their number density remains
exponentially small.
Under our approximations, we can also compute the

normalized excess kurtosis from the trispectrum:

K4 ¼
hδ4i − 3½hδ2i�2

½hδ2i�3 ¼ −
15

14
; ðC12Þ

which is also mass independent. A negative excess kurtosis
implies that the minicluster density field has a wider peak
than a Gaussian. We are not aware of any study of the effect
of kurtosis on the halo mass function.
We emphasize that the results presented here treat the

axion field as a free random field and model the large-scale
effects of the non-Gaussianity due to white noise on the
formation of MCHs. These results do not model the effects
of the potential or the gradient energy, and only account for
the purely random large-scale effects. On large scales the
gradients can be neglected and their effect on smoothing
the perturbations on small scales via the Kibble mechanism
is included in the ansatz for Bðk1; k2Þ. On large scales
the axion field values vary little, and the potential can be
neglected. On smaller scales and at times T ≈ μ, the
potential cannot be neglected and is important in establish-
ing the exact form of the distribution F ðδ > δ0Þ and the
formation of miniclusters and axion stars on scales
M ≲M0. Such effects can only be addressed by a combi-
nation of lattice field theory and N-simulations beyond the
scope of the present work. For us, these effects fall under
the umbrella of “cutoff dependence.”
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APPENDIX D: AXION STARS

We have treated minicluster density profiles as if axions
are entirely cold. On small scales, however, scalar field
dynamics becomes important [70,83,114–117] and the final
ingredient in any axion DMhalo is the central solitonic core,
or axion star. The axion star is formedwhen gradient pressure
in the axion field is sufficient to halt gravitational collapse,
leading to a stable (in the nonrelativistic limit) ground state
solution (for axion star formation in halos, see the simu-
lations of Ref. [114]; for relativistic corrections and stability
see Refs. [118–121]; for interactions of axion stars with
nuclearmatter see Ref. [122]).We now briefly assess the role
of axion stars inminiclusters, andwhether theymightmodify
any of our conclusions. We treat only the case where axion
self-interactions can be neglected: the stable branch of dilute
axion stars where collapse is driven by gravity.
The soliton is the ground state solution of the

Schrödinger-Poisson equations. For a given axion mass,
the soliton solution is specified entirely by the soliton mass.
The mass-radius relation is (e.g. Ref. [114])

rsol ≃ 1.54 × 105
�
M⊙
Msol

��
10−10 eV

ma

�
2

cm: ðD1Þ

When an axion density perturbation becomes large enough,
the axions inside will condense into the soliton solution
under the influence of gravity. We estimate the value of δ
for which a minicluster condenses to an axion star by
equating rsol to the hard-sphere minicluster radius, Eq. (43).
We setMsol ¼ M0ðmaÞ and find δsol such that rsolðmaÞ ¼

rmcðδsol; maÞ. Using the numerical results forM0ðma; nÞwe
solve numerically for δsol and plot the results for different n
in Fig. 23. For temperature-dependent axion masses with
n ¼ 3.34 (the QCD axion) and n ¼ 6, we find that
enormously large values of δ are required for soliton
formation. For such axions, since δsol > δlens giving the
transition in the behavior of the lensing tube parameter R,
soliton formation can be safely neglected in the lensing.
The solitons are deep inside the pointlike regime with
R ≈ 1. This implies that numerical simulations of mini-
clusters for these values of n will be free from large effects
due to scalar field dynamics.

The situation is quite different for axionlike particles
with a temperature-independent mass, n ¼ 0, where we
find δsol ≈ 102 approximately independent of axion mass.
This smaller value of δ compared to n ≠ 0 arises because
miniclusters with n ¼ 0 are much lighter for fixedma. Such
axions begin oscillating much earlier in cosmic history
when the horizon is smaller, and thus the mass contained
within the horizon is also much lower. The lighter mini-
clusters are closer to the soliton mass.
Using the analytic result for M0ðmaÞ for n ¼ 0 [Eq. (3)]

we can derive the value of δsol analytically. The axion mass
dependence drops out of the ratio rmc=rsol and we find
δsol ≈ 120 independent of axion mass. This value of δsol
is near the critical boundary for microlensing (Figs. 12
and 13) and implies that our results for axionlike particles
with n ¼ 0 could be altered by axion star formation.
Miniclusters composed of such axions cannot become
any denser without gaining mass, and this will reduce
the expected number of microlensing events by effectively
truncating the distribution F for δ≳ 120. Furthermore, this
implies that numerical simulations of miniclusters with
n¼ 0 initial conditions cannot neglect scalar field dynamics.
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