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The relation between the mass and integrated electron pressure of galaxy group and cluster halos can be
probed by stacking maps of the thermal Sunyaev-Zel’dovich (tSZ) effect. Perhaps surprisingly, recent
observational results have indicated that the scaling relation between integrated pressure and mass follows
the prediction of simple, self-similar models down to halo masses as low as 1012.5 M⊙. Hydrodynamical
simulations that incorporate energetic feedback processes suggest that gas should be depleted from such
low-mass halos, thus decreasing their tSZ signal relative to self-similar predictions. Here, we build on the
modeling of V. Vikram, A. Lidz, and B. Jain, Mon. Not. R. Astron. Soc. 467, 2315 (2017) to evaluate the
bias in the interpretation of stacked tSZ measurements due to the signal from correlated halos (the “two-
halo” term), which has generally been neglected in the literature. We fit theoretical models to a
measurement of the tSZ–galaxy group cross-correlation function, accounting explicitly for the one-
and two-halo contributions. We find moderate evidence of a deviation from self-similarity in the pressure-
mass relation, even after marginalizing over conservative miscentering effects. We explore pressure-mass
models with a break at 1014 M⊙, as well as other variants. We discuss and test for sources of uncertainty in
our analysis, in particular a possible bias in the halo mass estimates and the coarse resolution of the Planck
beam. We compare our findings with earlier analyses by exploring the extent to which halo isolation criteria
can reduce the two-halo contribution. Finally, we show that ongoing third-generation cosmic microwave
background experiments will explicitly resolve the one-halo term in low-mass groups; our methodology
can be applied to these upcoming data sets to obtain a clear answer to the question of self-similarity and an
improved understanding of hot gas in low-mass halos.
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I. INTRODUCTION

Simple models of cosmic structure formation based
on gravitation alone predict nearly self-similar relations
between halo mass and various thermodynamic quantities
characterizing the gas in a halo potential, including the
thermal gas pressure profile (e.g., [1,2]). A variety of
observations at galaxy cluster mass scales, where gravity
dominates the overall halo energy budget, has lent support
to this picture, particularly at large cluster-centric radii
(e.g., [3–5]). However, there are many physical processes
that could cause deviations from self-similarity, particularly
at lower mass scales, where energetic feedback from
supernovae and active galactic nuclei (AGN), as well as
other nongravitational processes (e.g., turbulent pressure
support, cosmic rays, or magnetic fields), significantly
influences the thermodynamic state of the halo gas (e.g.,
[6–11]). Indeed, x-ray observations have long indicated that

groups and low-mass clusters do not precisely follow self-
similar relations between, e.g., the x-ray luminosity and
temperature (e.g., [12–15]), although the x-ray data probe
the innermost group/cluster regions, where nongravita-
tional effects are most important. In the current picture,
these non-self-similar observations are primarily explained
by AGN feedback, which drives gas out of the inner cluster
regions, thus reducing the x-ray luminosity and gas fraction
(e.g., [16,17]). However, the distribution and thermody-
namic properties of the gas at large halo-centric radii, as
well as at subcluster mass scales, remain open questions.
The thermal Sunyaev-Zel’dovich (tSZ) effect is a power-

ful probe of the thermodynamic state of the gas in and
around halos. The tSZ effect is the inverse-Compton
scattering of cosmic microwave background (CMB) photons
off hot electrons, which leads to a characteristic distortion in
the spectrum of the CMB: at frequencies below (above)
≈217 GHz, a decrement (increment) is observed in the CMB
temperature at the location of the scattering electrons [18].
The amplitude of the CMB temperature shift is characterized*jch@ias.edu
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by the Compton-y parameter, which is given by a line-of-
sight integral of the electron pressure. Measurements of the
relation between the Compton-y signal and halo mass,
redshift, galaxy type, and other properties can thus shed
light on the questions related to structure formation
described above. In the simple, self-similar halo model,
the volume-integrated Compton-y parameter Y can be shown
to scale with the halo massM as Y ∝ M5=3. At galaxy cluster
mass scales, numerical simulations and observations have
generally yielded results fairly close to this prediction (e.g.,
[3,19–24]). At lower mass scales (e.g., M ≲ 1014 M⊙), this
simple prediction is expected to fail due to the importance of
nongravitational processes. This departure from self-simi-
larity can be quantified by a power-law Y-M relation with a
slope deviating from 5=3 or, more realistically, by a broken
power law (or other shape) in which the Y signal of halos
below some critical “break” mass is suppressed relative to
the self-similar expectation, while that at higher masses
remains consistent with self-similarity (or, more generally, a
power law near 5=3). We consider both the pure power law
and broken power law possibilities in what follows. Some
theoretical models predict noticeable deviations from self-
similarity in the Y-M relation below a mass scale ≈1014 M⊙
(e.g., [19,25,26]), which we adopt as a canonical break mass
in this paper.
In recent years, the combination of exquisite CMB data

and large galaxy surveys has led to several studies aiming to
use the tSZ signal of various halo samples to constrain the
Y-M relation, including stacking analyses (e.g., [27–31])
and cross-correlation measurements (e.g., [32–35]). A
noteworthy breakthrough was achieved by the Planck
Collaboration [29] (hereafter P13), who were able to detect
the tSZ signal of halos at unprecedentedly low-mass scales
(M ≈ 1012.5 M⊙) by stacking Planck data on a sample of
“locally brightest galaxies” (LBGs) extracted from Sloan
Digital Sky Survey (SDSS) data. Perhaps surprisingly, their
results indicated that self-similar predictions were consis-
tent with the inferred Y-M relation down to these low
masses. A subsequent analysis by Greco et al. [30] arrived
at essentially the same conclusions (while using a slightly
different methodology), although they found that some of
the tSZ signal for the lowest-mass halos may have in fact
been due to dust contamination. However, both Greco et al.
[30] and Le Brun et al. [25] pointed out that the analysis of
P13 did not in fact measure the tSZ signal within r500 (the
radius enclosing a mass within which the mean density is
500 times the critical density), as originally claimed, but
rather within a much larger aperture of radius 5r500. The
measurements within the larger aperture were rescaled to
the smaller aperture by assuming the validity of the Arnaud
et al. [3] pressure profile, despite the fact that this profile
was only measured/calibrated for massive galaxy clusters.
Le Brun et al. [25] explicitly showed that this rescaling
could introduce significant biases in the results. They
argued that the P13 measurements were, in fact,

inconsistent with a self-similar mass dependence, if a
realistic pressure profile based on simulations with AGN
feedback was adopted for the rescaling. Further develop-
ments were presented by Anderson et al. [36], who stacked
ROSAT All-Sky Survey x-ray data on the LBG sample,
finding a non-self-similar relation between the x-ray
luminosity and halo mass, as well as by Wang et al.
[37], who recalibrated the scaling relations for the LBG
sample using weak lensing data to obtain halo masses. In
particular, the latter study found that the weak lensing
calibration of the LBG sample still yielded a Y-M relation
consistent with the self-similar prediction, albeit subject to
the large-aperture caveat described above for the Y
measurements.
In this work, we point out a missing component in the

modeling of nearly all previous tSZ stacking studies,
including those mentioned above: an explicit accounting
for the two-halo term, i.e., the correlated tSZ signal due to
objects other than the halo of interest.1 Vikram et al. [35]
first explicitly measured the two-halo term in the tSZ–
galaxy group cross-correlation function, and they pointed
out that it could dominate the total tSZ signal around low-
mass halos, due to the strong mass dependence of the
Compton-y signal. P13 attempted to mitigate possible two-
halo contributions by applying “isolation criteria” to the
LBG sample extracted from SDSS. We revisit these criteria
in further detail below. Nevertheless, unless the isolation
criteria were near perfect, some residual two-halo contri-
bution is to be expected, which should be modeled in the
analysis—if not, a bias in the inferred Y-M relation or
pressure profile behavior will result. Indeed, recently
Jimeno et al. [31] presented a tSZ stacking analysis on a
sample of SDSS redMaPPer galaxy clusters, without
modeling the two-halo term. Although the two-halo term
likely does not dominate the signal for any objects in their
sample, it could be responsible for their claimed evidence
for a flatter pressure profile slope in the outer cluster
regions, compared to that expected from theoretical pre-
dictions (see, e.g., Fig. 1 below).
Similar analyses have also been presented for samples

of quasars, with the primary goal of using the tSZ effect
to detect or constrain any additional energy input due to
AGN feedback in these systems (beyond the gravitational
energy) [38–40].2 Claims of evidence for feedback have
been presented, but none of these studies has modeled the
two-halo term, which could thus be responsible for (at least
part of) the excess signal. Indeed, Cen and Safarzadeh [43]
explicitly showed that the excess feedback energy claimed
in the quasar tSZ stacking results of Ruan et al. [39] could

1Note that the two-halo term was explicitly modeled and
measured in all tSZ-lensing cross-correlations presented to date
[32–34]. Here, we are explicitly focused on tSZ stacking or cross-
correlation analyses on halo samples.

2Similar analyses have also been performed for massive
elliptical galaxies (rather than quasars) [41,42].
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be explained by two-halo contributions, by using the
Millennium Simulation to construct tSZ maps according
to various quasar halo occupation distributions.
Here, we present a method to analytically model the two-

halo (and one-halo) tSZ signal in terms of the y-galaxy
group cross-correlation function, following Vikram et al.
[35]. Using this methodology to fit various pressure profile
models to y-group correlation function measurements, we
find moderate evidence for a departure from self-similarity
in the Y-M relation, suggesting that the earlier results may
have been biased by their neglect of the two-halo term. We
point out that the inferred Y-M behavior can be sensitive to
the parametrization adopted in the theoretical model, with
simple power-law fits possibly obscuring evidence of non-
self-similar behavior at low masses. We investigate these
results further by measuring the y-LBG cross-correlation
function, while varying the LBG isolation criteria over
wide ranges. We find that the LBG signal in low-mass halos
is not extremely robust to such variations. We argue that
future measurements of the tSZ signal from any halo
samples should model and account for the two-halo term.

The remainder of this paper is organized as follows. In
Sec. II, we discuss the data sets used in this work and
describe our cross-correlation measurements. In Sec. III,
we review the theoretical halo models used to interpret the
measurements. Section IV presents the results of fitting
these models to the data, as well as an investigation of the
role of isolation criteria in removing the two-halo term from
stacked tSZ measurements. We discuss the results and
conclude with an outlook for upcoming measurements in
Sec. V. Throughout, we assume the following cosmological
parameters in our theoretical calculations: Ωm ¼ 0.27,
ΩΛ ¼ 0.73, Ωb ¼ 0.044, h ¼ 0.7, σ8 ¼ 0.8, and ns ¼ 1.

II. DATA AND MEASUREMENTS

Our analysis makes use of data from both the Planck
satellite and the Sloan Digital Sky Survey (SDSS). We
measure the y-group cross-correlation using the Compton-y
maps produced by the Planck Collaboration in 2015 [44]
and the Yang et al. [45] galaxy group catalog extracted
from SDSS Data Release 7. The group catalog contains

FIG. 1. Compton-y-group cross-correlation function measurements and theoretical models. The blue circles (red stars) show the
measurements for the MILCA (NILC) y map, with error bars computed from the diagonal elements of the covariance matrix. The black
curves are the fiducial Battaglia pressure profile model, with the one-halo and two-halo contributions shown as long-dashed and short-
dashed curves, respectively. The two-halo term completely dominates the signal in the two lowest mass bins, so it is hard to distinguish
the short-dashed and solid curves in these bins. The other curves correspond to the best-fit results (MILCA data only) for the three model
variants described in Sec. III: the UBmodel (magenta), the CBmodel (cyan), and PLmodel (yellow). The best-fit results for each model
lie very close to one another, making them hard to distinguish by eye on the plot. Note that the best-fit NILC results are similar to those
for MILCA, as seen in Table I. The lowest mass bin is not used in the fitting analysis, and thus we do not plot best-fit models for that bin.
The underlying Y-M relations inferred from these fits are shown in Fig. 2.
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316041 galaxy groups (after masking), which are identified
using a modified friends-of-friends algorithm that allows
“groups” with only a single member to be identified. The
redshifts of the groups are spectroscopically measured and
the halo masses are estimated through an iterative process
in which the group assignment and mass-to-light ratio are
updated at each step assuming that the galaxies follow
a Navarro-Frenk-White [46] distribution around each
group center. The Planck Collaboration has released two
component-separated Compton-y maps, one derived
from the Needlet Internal Linear Combination (NILC)
method, and one derived from the Modified Internal
Linear Combination Algorithm (MILCA). We measure
the y-group correlation using both maps, finding generally
consistent results.
Our procedure for measuring the y-group cross-

correlation is the same as that described by Vikram et al.
]35 ], and we refer the reader to that work for more details

(including tests for foreground contamination in the y
maps). Briefly, we use treecorr [47] to perform the
y-group cross-correlation measurement as a function of
transverse radius in six distinct group mass bins, using the
same binning scheme as Vikram et al. [35]. The covariance
matrix of the measurements, Ĉij

y;g (where i, j label each
radial bin), is determined using a spatial jackknife with 100
regions. The measured cross-correlation functions for both
the MILCA and NILC y maps are shown in Fig. 1. The
results are nearly identical to those presented by Vikram
et al. [35]. We fit theoretical models to these measurements
in Sec. IV.
We also revisit the data sets used in tSZ analyses

presented by P13 and Greco et al. [30]. These studies used
a stacking method to constrain the Compton-y signal from
halos over a wide mass range. A set of isolation criteria
were applied to galaxies selected from SDSS in order to
minimize the tSZ signal arising from any gas not asso-
ciated with the halo of interest. The subsequent modeling
and interpretation assumed that no such unassociated gas
was present in the data. To illustrate how such a meas-
urement is susceptible to contamination from the two-halo
term, in Sec. IV B we also measure the correlation
between the Planck y maps and catalogs of locally
brightest galaxies (LBGs), similar to the catalog selected
by P13. The catalogs used for this purpose were generated
from the New York University Value-Added Catalog [48].
LBGs are defined to be those galaxies with z > 0.03 that
are brighter in r-band magnitude than all other galaxies
within a projected distance Riso and within jcΔzisoj. The
fiducial values for these criteria are Riso ¼ 1 Mpc=h and
jcΔzisoj ¼ 1000 km=s, but we will explore several
choices. Additional photometric SDSS data are used to
further remove any galaxies that could violate the iso-
lation criteria. The construction of these catalogs is
described in more detail in Greco et al. [30]. We measure
the LBG-y cross-correlation using the same approach as

that employed to measure the y-group correlation
described above. We note that this is somewhat different
than the analyses performed by P13 and Greco et al. [30],
who relied on matched-filter or aperture photometry
stacking analyses, using the multifrequency Planck data
to separate the tSZ signal from dust emission and other
contaminants. In our analysis, the component separation
has already been performed on the full sky to produce the
Planck y maps.

III. HALO MODEL

A. Fiducial model

In order to interpret the y-group cross-correlation
measurements, we make use of the halo models described
by Vikram et al. [35] (see also, e.g., [49–51]). The fiducial
pressure profile model underlying these calculations is
that of Battaglia et al. [21], who provided a fitting function
to the results of their hydrodynamical simulations [20].
This model predicts a relation Y ∝ M1.72, i.e., a power law
somewhat steeper than the self-similar value (see [8] for a
full discussion of the Y-M relation in these simulations).
Note that because the Battaglia pressure profile model is
determined directly from cosmological hydrodynamics
simulations, no explicit specification of the “hydrostatic
mass bias” [often written as (1 − b) in the literature] is
required. As a rough estimate to provide context, we note
that comparing the Battaglia pressure profile to the
Arnaud et al. [3] pressure profile for the massive, low-
redshift population of clusters studied in the latter analysis
yields a hydrostatic mass bias of roughly 10%–15% [i.e.,
ð1 − bÞ ≈ 0.85–0.9]. However, the exact value varies with
cluster-centric radius—see Fig. 2 of Battaglia et al. [20].
Below, we consider variations around the Battaglia model
to test for evidence of departures from the fiducial
pressure profile behavior. A particular goal is to consider
models in which the hot gas content of low-mass halos
(M ≲ 1013.5 M⊙), which are unresolved in the Battaglia
et al. [21] simulations, is suppressed or modified as a
result of AGN and/or supernova feedback. Note that our
aim is thus not to calibrate the overall amplitude of the
Y-M relation, which is achieved most precisely via weak
lensing observations of tSZ-selected cluster samples, but
rather to constrain the mass dependence of this relation.
Specifically, we aim to test whether the mass dependence
shows evidence for departures from the self-similar
prediction (Y ∝ M1.67). In Appendix A, we consider an
extended analysis in which the overall normalization of
the pressure-mass relation (P0) is allowed to vary, which
yields constraints on the mass dependence generally
consistent with those presented in our fiducial analysis.
We refer the reader to Vikram et al. [35] for details

of the halo modeling and give only a brief summary
of the theoretical framework here. Note that our approach
includes both the one-halo and two-halo contributions
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to the y-group correlation, whereas earlier stacking
analyses have neglected the two-halo contribution (e.g.,
[29,30,38–41]).3 As shown in Vikram et al. [35], however,
the two-halo term can dominate the measured signal around
low-mass halos, and thus it cannot be neglected.

In the halo model, the excess Compton-y parameter
around a halo of mass M at redshift z is given by

ξh;yðr⊥jM; zÞ ¼ σT
mec2

Z
∞

−∞

dχ
1þ z

ξh;P
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

χ2 þ r2⊥
q

jM; z
�
:

ð1Þ

Here, σT is the Thomson scattering cross section; mec2

is the rest mass energy of an electron; χ and r⊥ are

FIG. 2. Inferred Ỹsph
500-M500 relations based on fitting the theoretical models described in Sec. III to the y-group cross-correlation

function measurements shown in Fig. 1. The top row shows results for the break models (UB and CB), while the bottom row shows
results for the power-law (PL) model. The left panels show Ỹsph

500 as a function of M500, while the right panels show

Ỹsph
500=ðM500=1015 M⊙Þ5=3 as a function of M500 (i.e., the scaling relation divided by the self-similar prediction). For clarity, we

show the MILCA y map results only; the NILC y map results are very similar, as seen in Table I. The solid black line shows the fiducial
Battaglia pressure profile model, which has been extended to mass scales well below those where it was calibrated in simulations
(roughly M200 ≳ 5 × 1013 M⊙=h) [21]. The dashed black curve is the theoretical prediction of the “AGN 8.5” model from the
hydrodynamical simulations of Le Brun et al. [25], as extracted directly from the simulated halo catalogs (i.e., no fitting function is
used). The cyan, red, and blue curves and shaded bands show the best-fit result and 1σ confidence region for the CB,UB, and PLmodels,
respectively. We present the break and power-law models in separate plots, as the PL fit is driven by the high signal-to-noise
measurements in the highest two mass bins (M > 1014 M⊙=h), which play essentially no role in the UB/CB model fits, due to the
models’ parametrization. We show only the CB model in the upper left panel for clarity. Note that the plots show M500, while our
calculations are in terms of M200 (see Sec. III), which is why the break in the UB and CB models occurs below 1014 M⊙ here.

3The modeling approach here is directly analogous to the
modeling of the excess surface mass density ΔΣ in stacked weak
lensing measurements.
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line-of-sight and transverse comoving distances, respec-
tively; and ξh;PðrjM; zÞ is the halo-pressure correlation
function for halos of mass M at redshift z.4 The halo-
pressure correlation function has a one-halo term from hot
gas in the halo on which one is stacking, as well as a two-
halo contribution from correlated neighboring systems:

ξtoth;PðrjM; zÞ ¼ ξone-haloh;P ðrjM; zÞ þ ξtwo-haloh;P ðrjM; zÞ: ð2Þ

The one-halo term is simply

ξone-haloh;P ðrjM; zÞ ¼ PeðrjM; zÞ; ð3Þ

where PeðrjM; zÞ is the electron pressure at a comoving
distance r from the halo of interest. The fiducial model of
Vikram et al. [35], which we also adopt here, utilizes the
fitting formulas from Battaglia et al. [21] for the electron
pressure profiles PeðrjM; zÞ. In the analysis below, we will
consider additional models, as we discuss subsequently.
The two-halo contribution to the halo-pressure correla-

tion function is the Fourier-transform of the halo-pressure
cross-power spectrum:

ξtwo-haloh;P ðrjM; zÞ ¼
Z

∞

0

dk
2π2

k2
sinðkrÞ
kr

Ph;PðkjM; zÞ; ð4Þ

where the halo-pressure power spectrum is computed
assuming linear halo bias as

Ph;PðkjM; zÞ ¼ bðMÞPlinðkÞ
Z

∞

0

dM0 dn
dM0 bðM0ÞuPðkjM0Þ:

ð5Þ

(For brevity of notation, we have suppressed the redshift
labels in the right-hand side of the equation.) Here,M refers
to the mass of the halo on which one is stacking, while the
integral over M0 describes the impact of correlated neigh-
boring halos. In addition, PlinðkÞ is the linear theory matter
power spectrum, dn

dM is the halo mass function, and bðMÞ is
the linear halo bias factor. The quantity uPðkjM0Þ is the
Fourier transform of the pressure profile around a halo of
mass M0:

uPðkjM0Þ ¼
Z

∞

0

dr4πr2
sinðkrÞ
kr

PeðrjM0Þ: ð6Þ

Given a model for the electron pressure profile, PeðrjM0Þ,
we can then compute the excess Compton-y parameter
around halos of mass M at redshift z using Eqs. (1)–(6).

Ultimately, the observationally accessible quantity of
interest is the average excess Compton-y parameter around
groups in various mass bins, smoothed at the angular
resolution of Planck’s component-separated y map. Several
additional steps are required to calculate this quantity from
the halo-y correlation function calculations outlined above.
First, we model the relation between the halo mass
estimates of the Yang et al. [45] groups and their true
underlying halo masses, allowing also for miscentering
errors in their estimated positions, which act to suppress the
observed signal. Second, we integrate over the redshift
distribution of the groups, assuming Limber’s approxima-
tion to compute the resulting correlation function. Third,
we smooth the model y-group cross-correlation function
with a FWHM ¼ 10 arcminute beam to account for the
resolution of the Planck Compton-y maps. We label the
smoothed y-group correlation function at transverse
comoving separation r (we use this notation in what
follows rather than r⊥ for brevity) as ξsy;gðrÞ.
We refer the reader to Vikram et al. [35] for a detailed

description of these steps. For the present purposes, we may
summarize these procedures by noting that the fiducial
model from Vikram et al. [35] assumes that a lognormal
distribution relates the estimated halo mass (referred to
hereafter as the “group mass”) and the true halo mass with a
scatter of 0.25 dex in the two lowest group mass bins,
0.40 dex in the middle three mass bins, and 0.30 dex in the
highest mass bin (see Fig. 1 for the mass bin definitions).
This fiducial model further assumes that the group mass
lies, on average, 10% above the true halo mass, as would
arise if the Yang et al. [45] group finder had a small, yet
systematic tendency to accidentally include interloping
foreground or background galaxies among the identified
groups. In order to model miscentering errors, the fiducial
model assumes that a fraction pc of the Yang et al. [45]
groups are positioned precisely at the center of their host
halos, while 1 − pc are miscentered according to the offset
distribution and fractions of Johnston et al. [52]. As in the
work of Vikram et al. [35], the fiducial values of the
correctly centered fraction in each mass bin are (from
lowest to highest mass bin) [0.53, 0.54, 0.58, 0.63, 0.72,
0.83].5 In what follows, we vary both the correctly centered
fraction pI

c and the average mass bias bIM in each mass bin
(labeled by index I). This is important for testing the impact
of uncertainties in the group catalog on our conclusions
about the electron pressure profile.

B. Alternative models

We explore three variations around the fiducial Battaglia
et al. [21] pressure profile:

4Unless explicitly stated otherwise, the halo mass M through-
out is taken to be M200, the mass contained within a halo-centric
radius r200 within which the mean enclosed density is 200 times
the critical density at the halo redshift.

5Very recently, a weak lensing analysis of the Yang et al. [45]
groups has appeared [53]; our fiducial assumptions about the
sample are generally consistent with their results.
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(i) Power law in mass (PL). In this case,
we multiply the Battaglia pressure profile
PeðrjM; zÞ by an overall power law in halo mass
∝ ðM=M0Þαpl , while fixing the pressure at
M0 ≡ 1014 M⊙:

PeðrjM; zÞ → PeðrjM; zÞ
�
M
M0

�
αpl
: ð7Þ

Note that this variation impacts both the
one-halo and two-halo terms [Eqs. (3) and (4)].
The self-similar case corresponds to αpl ¼
−0.05, since the Battaglia model predicts
Y ∝ M1.72.

(ii) Uncompensated break (UB). We also consider
models in which hot gas is depleted in halos
below M0 ¼ 1014 M⊙. This is meant to reflect
the plausible impact of AGN and/or supernova
feedback (as motivated by, e.g., [19,25,26]). In this
case, we assume the Battaglia pressure profile at
M ≥ M0 and multiply the pressure profile by
ðM=M0Þαub for lower mass halos6:

PeðrjM; zÞ →
�PeðrjM; zÞ; M ≥ M0

PeðrjM; zÞðMM0
Þαub ; M < M0:

ð8Þ

Here αub ≥ 0 hence corresponds to a thermal pressure
suppression in halos below the break mass M0. This
affects both the one-halo and two-halo terms [Eqs. (3)
and (4)] in general, though the contributions above
the break mass are unchanged from the fiducial
Battaglia model. Note that the mean Compton-y of
the Universe, hyi, is not conserved in this model, as
compared to the Battaglia pressure profile prediction
(the same is true for the PL model). This observable
presents another avenue for constraining gas pressure
profiles and feedback processes (e.g., [54,55]).

(iii) Compensated break (CB. In a variant of the above
model, we follow Horowitz and Seljak [56] and
assume that the “suppressed” portion of the gas in
low-mass halos [following ðM=M0Þαcb] is pushed
out to a large halo-centric radius, rather than
removed from the host halo entirely. The suppressed
gas is assumed to follow the Gaussian distribution
described in [56]7:

PeðrjM; zÞ →
�PeðrjM; zÞ; M ≥ M0

PeðrjM; zÞðMM0
Þαcb þ AðαcbjM; zÞe

−r2

2ð2rvir Þ2 ; M < M0;
ð9Þ

where AðαcbjM; zÞ is a normalization parameter
determined such that the total thermal energy (i.e.,
integrated pressure) of each halo is fixed. This model
varies the one-halo term [Eq. (3)] around the
Battaglia form at subbreak masses, while fixing
the two-halo contribution at large separations. This
is because the latter quantity depends only on the
total thermal energy of each halo and not the precise
pressure distribution [Eq. (4)]. Note that by con-
struction hyi is conserved in this model, as compared
to the Battaglia pressure profile prediction.

IV. ANALYSIS

A. Thermal SZ–galaxy group cross-correlation function

1. Pressure profile constraints

Here we present the results of fitting the theoretical
models described in the previous section to the y-group

cross-correlation function measured using the MILCA/
NILC y maps [44] and the Yang et al. [45] SDSS DR7
group catalog. For simplicity, we discard the lowest mass
bin in our fitting analysis, as we find that it contributes
negligibly to the final constraints, while possessing the
largest off-diagonal covariances with the other mass bins
(as estimated via jackknife in Sec. II). We include the off-
diagonal covariance matrix elements between radial bins
within each mass bin, but discard the off-diagonal blocks
between different mass bins. In terms of the correlation

matrix ρ̂ijy;g ≡ Ĉij
y;g=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ĉii
y;gĈ

jj
y;g

q
, we find that typical values

in the off-diagonal blocks between different mass bins are
≲25%, with significant noise fluctuations due to the
relatively small number of jackknife regions. Including
these blocks in the likelihood calculation yields best-fit
parameters consistent with those found when neglecting
them below, but the parameter error estimation is signifi-
cantly more robust when the block-diagonal covariance
matrix is used. We thus adopt this approach in the
following.
For each of the pressure profile models considered, there

is a free parameter (αpl, αub, or αcb) associated with the
mass dependence of the gas pressure profile. Priors on these
parameters are described below. In addition, each of the five
mass bins considered (labeled by I, J) has a free parameter

6Note that the power-law Battaglia prediction is close enough
to the self-similar model that the break models introduced here
are effectively testing departures from either at low masses.

7Horowitz and Seljak [56] took the width of this Gaussian
distribution to be 4rvir, while here we adopt 2rvir for the width.
Our main conclusions should be insensitive to this choice.
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pI
c characterizing the fraction of correctly centered halos

in this bin. For each model, we define a Gaussian
likelihood function (parameter arguments suppressed
for brevity):

−2 lnL≡ χ2 ¼
X
i;j

ðξ̂s;iy;g − ξs;iy;gÞ½Ĉ−1
y;g�ijðξ̂s;jy;g − ξs;jy;gÞ; ð10Þ

where ξ̂s;iy;g is the measured cross-correlation function in
the ith bin, ξs;iy;g is the theoretical prediction in this bin
(appropriately averaged over the radial extent of the bin),
and Ĉij

y;g is the block-diagonal covariance matrix
described above.8 Note that α is the only parameter in
the likelihood that affects multiple mass bins; the
correctly centered fraction pI

c affects only the Ith mass
bin. In combination with the block-diagonal nature of the
covariance, this allows the full likelihood to be computed
from the set of two-parameter likelihoods for ðα; pI

cÞ
constructed for each mass bin. Thus, we can rapidly
compute the full likelihood function and do not require
Monte Carlo Markov chain techniques to obtain param-
eter constraints.
In general, the correctly centered fractions pI

c are not
well constrained by the data, so we adopt uninformative
priors (pI

c ∈ ½0; 1�) on these parameters and marginalize
over them in order to obtain constraints on αpl, αub, and
αcb. We also use the Nelder-Mead algorithm to find global
best-fit points in the full parameter space for each model,
which are plotted in Fig. 1.

The results of the analysis for each pressure profile
model are given in Table I and summarized in the
following:

(i) Power law in mass (PL). For this model, we adopt
a flat prior αpl ∈ ½−1; 1�, centered on the fiducial
value αpl ¼ 0. Marginalizing over the correctly
centered fractions pI

c, the posterior yields con-
straints that are consistent with αpl ¼ 0 at ≈1σ for
MILCA, with approximately a 2σ indication of
αpl < 0 for NILC. These results are consistent with
self-similarity (αpl ¼ −0.05) and with the result
obtained for the same model by Greco et al. [30],
who used a different component-separation and
stacking approach.

(ii) Uncompensated break (UB). For this model, we
assume a flat prior αub ∈ ½−1; 1.25�. The margin-
alized constraints on αub indicate approximately a
2σ preference for αub > 0, corresponding to a
suppression of the electron pressure in halos below
the break mass M0 ≡ 1014 M⊙, with NILC prefer-
ring a slightly larger suppression than MILCA.

(iii) Compensated break (CB). For this model, we imple-
ment a flat prior αcb ∈ ½0; 2�. Note that the fiducial
model (αcb ¼ 0) lies at the edge of the prior range in
this case, because values αcb < 0 yield unphysical
negative pressure model predictions. We test the
effect of extending the prior range to αcb < 0 by
assuming the UB model for this range, and we find
that the marginalized constraints on αcb are nearly
unchanged. Thus, we conclude that the prior is not
strongly driving the results. As for theUBmodel, the
marginalized constraints on αcb yield approximately
a 2σ preference for αcb > 0, corresponding to a

TABLE I. Constraints on the mass dependence of the electron pressure profile for various theoretical models (see Sec. III
for model and parameter definitions). The fiducial Battaglia model in all cases corresponds to αpl ¼ αub ¼ αcb ¼ 0, with
χ2 ¼ 81.2 (MILCA) and χ2 ¼ 100.8 (NILC). The third column gives constraints after marginalizing over the correctly centered
fraction of halos in each of the five mass bins, with an uninformative prior on the centered fraction pI

c ∈ ½0; 1� for all bins. The
quoted values are the mean and 68% C.L. intervals computed from the marginalized posterior. The fourth column gives the
global best-fit point, including the centered fraction values in brackets (from the second-lowest mass bin to highest mass bin),
although these are not individually well constrained. The fifth column gives the χ2 values associated with the global best fit for
each case, as well as the improvement in χ2 with respect to the fiducial model. The fiducial and best-fit models (MILCA only)
are plotted in Fig. 1.

Model Parameter [prior range] Marginalized constraint Global best fit [pI
c] χ2 [Δχ2fid]

MILCA
PL αpl [−1, 1] −0.05� 0.04 −0.05 [0.22,0.001,0.44,0.72,0.69] 61.0 [20.2]

UB αub [−1, 1.25] 0.34þ0.20
−0.19 0.17 [0.43,0.06,0.55,0.74,0.66] 61.3 [19.9]

CB αcb [0, 2] 0.66� 0.34 0.36 [0.61,0.16,0.65,0.77,0.66] 60.5 [20.7]

NILC
PL αpl [−1, 1] −0.08� 0.04 −0.08 [0.21,0.11,0.47,0.66,0.68] 68.4 [32.4]

UB αub [−1, 1.25] 0.49þ0.23
−0.22 0.37 [0.10,0.41,0.70,0.69,0.61] 68.3 [32.5]

CB αcb [0, 2] 0.57� 0.29 0.38 [0.81,0.43,0.71,0.69,0.60] 71.4 [29.4]

8Note that we neglect the parameter dependence of the
covariance matrix, as it is dominated by contributions from noise
due to the CMB, instrument, and residual foregrounds.
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suppression of the electron pressure in halos below
the break mass scale. The MILCA and NILC results
are very similar.

In all cases, the best-fit models are a significantly better
fit than the fiducial Battaglia pressure profile model, as seen
in the final column of Table I. However, there is not a strong
preference for any of the particular pressure profile models
(PL, UB, or CB); the χ2 values for the best-fit parameter
values in each case are very similar. Higher-resolution,
lower-noise data will be needed in order to determine
whether the “break” models are preferred over the simple
power-law model, as well as whether the data prefer CB-
type models in which the total thermal energy is conserved
or UB-type models in which it is not.
For straightforward comparison with previous studies,

we compute the Y-M relation associated with each pressure
profile model, with the results plotted in Fig. 2. In
particular, we compute

Ỹsph
500ðM; zÞ≡ ðdAðzÞ=500 MpcÞ2

E2=3ðzÞ
σT

mec2

×
Z

r500

0

4πr2drPeðrjM; zÞ=dAðzÞ2; ð11Þ

where EðzÞ≡HðzÞ=H0 is the dimensionless Hubble
parameter and r500 is the radius enclosing a mass within
which the mean density is 500 times the critical density at
redshift z. We compute the results at a characteristic
redshift z ¼ 0.15, typical of the galaxy groups in the
Yang et al. [45] sample. Figure 2 shows the results for
the fiducial Battaglia model, which has been extended to
mass scales well below those where it was determined in
the original simulations (M200 ≳ 5 × 1013 M⊙=h). We also
show the pI

c-marginalized constraints for the PL, UB,
and CB models. We plot the latter two models (i.e., the
break models) separately from the power-law model, as
the data driving the fits in each case are somewhat
different. In particular, the αub and αcb fits receive
essentially no information from the cross-correlation
results for high-mass (M > 1014 M⊙=h) objects, due
to the models’ parametrization. These models explicitly
probe the pressure behavior in low-mass systems: as
seen in Fig. 2, there is moderate evidence (≈2σ) for a
suppression in the electron pressure in low-mass groups.
In contrast, the αpl fit is dominated by the high signal-
to-noise measurements for massive systems, which
overcome the preference for a suppression in the low-
mass data and lead to a preference for αpl values near
the self-similar value. The PL parametrization thus
obscures the moderate evidence for pressure suppression
seen in the UB and CB fits. As expected based on
previous studies (e.g., [4,30]), the Y-M relation for
massive objects is consistent with the Battaglia
(αpl ¼ 0) or self-similar (αpl ¼ −0.05) predictions.

For comparison, Fig. 2 also shows the simulation
predictions of the AGN 8.5 model from Le Brun et al.
[25] [scaled in redshift as in Eq. (11)], which suggest a
break near the mass scale assumed in our UB and CB
models (note that their AGN 8.0 model falls between the
dashed and solid black curves in Fig. 2, and it predicts a
break at a slightly lower mass than the AGN 8.5 model).
The AGN 8.5 data points are drawn directly from the
simulated halo catalogs, rather than calculated from a
fitting function (which is why small fluctuations are
visible). We note that although the feedback prescriptions
of Battaglia et al. [21] and Le Brun et al. [25] yield similar
predictions for most tSZ observables, the Le Brun et al.
[25] simulation resolves smaller halos, where the power-
law fitting function derived by Battaglia et al. [21] likely
breaks down (also, note that the AGN 8.0 model lies closer
to that of Battaglia et al. [21] than to AGN 8.5). The
inferred relations for the UB and CB models are in general
agreement with the AGN 8.5 prediction at low halo masses,
although the uncertainties are relatively large. Note that the
CB model has a nontrivial shape at low masses for large
values of αcb, as the compensated, Gaussian part of the
pressure profile becomes significant within r500 (see
Sec. III).

2. Mass bias constraints

In addition to the pressure profile model variations
described above, we also consider a model in which the
pressure profile is fixed to the fiducial Battaglia case, but
the mass bias bIM in each mass bin is allowed to vary. In our
fiducial model, the group mass is assumed to be 10% higher
than the true halo mass, i.e., bIM ¼ 0.1 in each mass bin.
Here, we assume a flat prior bIM ∈ ½0; 0.6� for the mass bias
in each mass bin. We also allow the correctly centered
fraction pI

c to vary in each bin, with an uninformative flat
prior, as in the analyses above. In this model, the likelihood
for each mass bin is completely independent, as the
parameters ðbIM; pI

cÞ are independent for each bin. For
consistency with the pressure profile analyses above, we do
not consider the lowest mass bin here.
The results of this analysis are given in Table II. In

general, the mass bias constraints are consistent at ≈1–2σ
with the assumed value bIM ¼ 0.1 in our fiducial model,
although the third [13.5 < log10ðM=ðM⊙h−1ÞÞ < 14] and
fifth [14.5 < log10ðM=ðM⊙h−1ÞÞ] bins prefer somewhat
larger biases at 2-3σ. The overall goodness of fit in this
model is better than that found for any of the pressure
profile model variations, with Δχ2fid ¼ 34.2 for MILCA and
Δχ2fid ¼ 47.7 for NILC (compare to the Δχ2fid values in
Table I). However, this comes at the cost of four additional
parameters in comparison to the pressure profile models
(ten vs. six). In addition, the fifth bin (highest mass bin) is
essentially insensitive to αub or αcb (apart from small two-
halo contributions), and thus it does not contribute to the
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evidence for αub > 0 and αcb > 0 found above. Overall, the
data do not obviously prefer large mass biases instead of a
suppression in the electron pressure profile.
Moreover, we can independently constrain possible

mass biases by measuring the group autocorrelation
function in each mass bin, wðθÞ, and comparing to
theoretical models constructed analogously to the
approach described in Sec. III.9 We focus in particular
on the second [13 < log10ðM=ðM⊙h−1ÞÞ < 13.5] and third
[13.5 < log10ðM=ðM⊙h−1ÞÞ < 14] mass bins, as these
drive the constraints on αub and αcb. If there is a large
mass bias in these bins, this should also show up in wðθÞ,
which depends quadratically on the halo clustering bias
(which is itself mass dependent); if instead the y-group
cross-correlation results are due to a suppression of the
electron pressure below M0, the wðθÞ results should be
consistent with the fiducial mass bias.
The measurements of wðθÞ for these two bins are shown

in Fig. 3. We also show two theoretical models: wðθÞ
calculated assuming the fiducial bias bIM ¼ 0.1, and wðθÞ
calculated assuming the mean posterior values of bIM from
Table II (i.e., b2M ¼ 0.32 and b3M ¼ 0.3). It is clear by eye
that the data do not favor the higher bias. Formally, this
model is disfavored at 1.9σ. Although there appears to be
some tension between the fiducial wðθÞ model and the
measurements shown in Fig. 3 (in the opposite sense to that

TABLE II. Constraints on the mass bias in each bin, assuming the fiducial Battaglia pressure profile model (see Sec. III for model
and parameter definitions). The fiducial model assumes bIM ¼ 0.1 in all bins, with χ2 ¼ 81.2 (MILCA) and χ2 ¼ 100.8 (NILC). The
third column gives constraints after marginalizing over the correctly centered fraction of halos in each mass bin, with an uninformative
prior on the centered fraction pI

c ∈ ½0; 1� for all bins. The quoted values are the mean and 68% C.L. intervals computed from the
marginalized posterior. The fourth column gives the best-fit point in the 2D parameter space for each mass bin, including the centered
fraction values in brackets, although these are not as tightly constrained as the mass biases. The fifth column gives the χ2 values
associated with the best-fit point for each mass bin. The overall χ2 and improvement with respect to the fiducial model (Δχ2fid) are given
above each table.

Mass bin Parameter [prior range] Marginalized constraint Best fit [pI
c] χ2

MILCA: Best-fit χ2 ¼ 47.0 [Δχ2fid ¼ 34.2]

12 < log10ðM=ðM⊙h−1ÞÞ < 13 b1M [0, 0.6] 0.33� 0.19 0.44 [0.48] 12.1

13 < log10ðM=ðM⊙h−1ÞÞ < 13.5 b2M [0, 0.6] 0.32� 0.16 0.22 [0.04] 5.7

13.5 < log10ðM=ðM⊙h−1ÞÞ < 14 b3M [0, 0.6] 0.30� 0.08 0.32 [0.78] 5.4

14 < log10ðM=ðM⊙h−1ÞÞ < 14.5 b4M [0, 0.6] 0.05� 0.04 0.0 [0.61] 17.6

14.5 < log10ðM=ðM⊙h−1ÞÞ b5M [0, 0.6] 0.26� 0.06 0.25 [0.73] 6.2

NILC: Best-fit χ2 ¼ 53.1 [Δχ2fid ¼ 47.7]
12 < log10ðM=ðM⊙h−1ÞÞ < 13 b1M [0, 0.6] 0.36þ0.18

−0.19 0.60 [1.0] 20.0

13 < log10ðM=ðM⊙h−1ÞÞ < 13.5 b2M [0, 0.6] 0.36þ0.16
−0.15 0.34 [0.35] 7.2

13.5 < log10ðM=ðM⊙h−1ÞÞ < 14 b3M [0, 0.6] 0.30þ0.08
−0.07 0.32 [0.85] 8.3

14 < log10ðM=ðM⊙h−1ÞÞ < 14.5 b4M [0, 0.6] 0.05� 0.04 0.0 [0.54] 11.4

14.5 < log10ðM=ðM⊙h−1ÞÞ b5M [0, 0.6] 0.28� 0.06 0.28 [0.71] 6.2

FIG. 3. Measurement of wðθÞ for groups with 13<
log10ðM=ðM⊙=hÞÞ<13.5 and 13.5< log10ðM=ðM⊙h−1ÞÞ< 14,
which are the mass bins that drive the constraints on αub and αcb
in Table I. The theory curves show our fiducial model (solid
blue), which assumes a mass bias bIM ¼ 0.1 in each mass bin, and
a model (dashed red) that assumes that the group masses
overestimate the true halo masses by 32% (top panel) or 30%
(bottom panel), i.e., bIM ¼ 0.32 or 0.30. The latter curves are
motivated by the results in Table II. The high-bias model is
disfavored relative to the fiducial model by 1.9σ. Thus, it is
unlikely that the evidence seen earlier for a suppression of
the electron pressure in low-mass groups is entirely due to
unaccounted-for mass biases.

9See also various tests presented by Yang et al. [45] that
indicate that large mass biases in the group catalog are unlikely.
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required for a higher mass bias), this tension is not
statistically significant (note that the error bars in the
different angular bins are highly correlated). Specifically,
the amplitude of the measured wðθÞ differs from the
fiducial model by only 1.4σ (0.7σ) in the lower
(higher) stellar mass bin. We thus conclude that the
fiducial model is acceptable, and it is unlikely that the
evidence for αub > 0 and αcb > 0 in the y-group cross-
correlation function interpretation is entirely due to
unaccounted-for mass biases. However, at the current
signal-to-noise level, it is possible that some of the evidence
can be attributed to larger mass biases than assumed in our
fiducial model.

B. Thermal SZ stacking on locally
brightest galaxies

As described in Sec. II, P13 used a stacking analysis
to measure the y signal around a sample of “locally
brightest galaxies” selected from SDSS data. To char-
acterize the y signal around these galaxies, P13 relied on
both aperture photometry and a matched filter technique.
The inferred y measurements for individual halos were
then stacked (i.e., averaged) across halos of similar
stellar mass. Finally, a stellar mass–halo mass relation
was used to infer the relationship between halo mass
and tSZ flux.
The results in Fig. 1 and our discussion of the halo

model fits make it clear that modeling the two-halo
contribution is essential in fitting the Y-M relation. At
halo masses below ≈1013h−1 M⊙, the two-halo term
dominates the signal at all scales in the Planck measure-
ment shown in Fig. 1. Consequently, a significant diffi-
culty associated with the stacking approach used by P13 is
that the measured y signal around a galaxy will be
contaminated by the y signal from nearby halos. To
prevent such contamination, P13 imposed an isolation
requirement on their halo catalog to remove galaxies with
nearby, bright neighbors (with some cost in the signal-
to-noise ratio), as described in Sec. II. The fiducial
isolation region imposed by P13 is a cylinder oriented
along the line of sight with transverse radius Riso ¼ 1 Mpc
and length viso ¼ cΔz ¼ 1000 km=s. LBGs are defined to
be galaxies brighter in r-band magnitude than all other
galaxies within this isolation region.
It is not obvious, however, that the isolation criterion

imposed by P13 is sufficient to ensure that the measured y
signal for a halo is uncontaminated by the signal from
neighbors (i.e., the two-halo term). The y signal for a
massive nearby halo can extend well beyond the 1 Mpc
isolation radius. As one considers halos of lower masses,
the isolation criterion becomes more suspect since the
amplitude of the y profile falls rapidly with decreasing
mass and the two-halo contribution becomes significant (or
even dominant) at small radii (e.g., see the lowest mass bins
in Fig. 1). Furthermore, the P13 isolation requirement

considers a galaxy to be isolated if it is brighter in r than
nearby galaxies within the exclusion volume. However,
the two-halo term around high-mass halos receives a
dominant contribution from lower-mass halos since
these are much more abundant (see, e.g., Fig. 11 of
Vikram et al. [35]). Consequently, the P13 isolation
requirement will not remove the two-halo contribution
for high-mass halos.
Figure 4 demonstrates how the isolation criterion

imposed by P13 may not be sufficient to ensure an
uncontaminated measurement of the y signal from a
low-mass halo. We plot the y-LBG correlation function
for two stellar mass bins as the isolation threshold is varied
from ðRiso; visoÞ ¼ ð1 Mpc; 1000 km=sÞ to ðRiso; visoÞ ¼
ð4 Mpc; 4000 km=sÞ. The left-hand panel of Fig. 4 makes
it clear that when the isolation threshold is increased to
ð2 Mpc; 2000 km=sÞ, the LBG-y correlation decreases at
small scales for galaxies with stellar mass 11.1 <
log10M� < 11.4 (corresponding roughly to halo masses
M500 ≈ 1012.5–1014 M⊙). This suggests that there is a
residual two-halo contribution to the y-profile around these
“isolated” galaxies for the fiducial isolation criterion. As
the isolation threshold is increased further, the y profile at
small scales remains roughly constant, suggesting that most
of the two-halo term has been removed for isolation radii
greater than 2 Mpc. We note that as the isolation criteria are
varied, the mean stellar mass of the LBG sample remains
approximately constant, suggesting that variation in the
mean mass of the LBGs is not responsible for the observed
change in y with varying isolation criterion.
The right-hand panel of Fig. 4 shows that for galaxies

with higher stellar mass (11.4 < log10M� < 11.7, corre-
sponding roughly to halo massesM500≈1013.5–1014.5 M⊙),
increasing the isolation radius has a negligible impact on
the y profile. This likely occurs because, in the case of the
more massive host halos in this LBG bin, the one-halo term
dominates over the two-halo contribution out to scales
close to that of the isolation radius. Further, we expect little
if any change to the y-group correlation function on scales
much larger than the isolation radius. However, as pointed
out above, for high-mass halos, the two-halo term can
receive a dominant contribution from less-massive halos.
To explore this possibility, we regenerate the LBG catalog
after modifying the isolation requirement such that galaxies
are considered isolated if they are the only galaxy more
than one magnitude brighter than all other galaxies within
the isolation volume. The LBG-y correlation for this
sample is shown as the purple curve in the right panel
of Fig. 4. We find that, for this enhanced isolation criterion,
the amplitude of the LBG-y correlation function decreases,
as expected if less massive halos contribute significantly to
the two-halo term for this bin.
We note that P13 also tested the effects of varying the

isolation criteria in their analysis, finding little change in
the inferred Y-M relation, although they only considered
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the ðRiso;visoÞ¼ ð2Mpc;2000 km=sÞ case.10 The difference
between our findings and those of P13 may be partially due
to the fact that they characterized the y signal using
matched filters and aperture photometry. These techniques
will act to reduce contamination from a two-halo term that
is fairly flat as a function of halo-centric distance. In
Appendix B, we consider this point in some detail.
However, as pointed out by Le Brun et al. [25], the
matched filter approach used by P13 can be quite sensitive
to assumptions about the profile shape below the angular
resolution limit of Planck. We emphasize that the meas-
urement presented here is intended only to demonstrate that
the isolation criterion imposed by P13 is likely insufficient
to remove all of the two-halo contributions to the y profile
for low-mass halos, even at small radii.
Finally, we emphasize that imposing an isolation require-

ment in an attempt to suppress the two-halo term is not
optimal in terms of the signal-to-noise ratio of the mea-
surements. By definition, an isolated catalog will contain

fewer objects and will therefore throw out potentially useful
signal. The approach of modeling the two-halo term, on the
other hand, can exploit all of the available information in
the full (nonisolated) catalog.

V. INTERPRETATION AND OUTLOOK

The results presented in Sec. IV indicate that the two-halo
term is non-negligible for stacked tSZmeasurements around
halos below the scale of massive galaxy clusters. Modeling
this term and accounting for it when fitting data to theoretical
predictions could significantly impact conclusions about the
Y-M relation and, thus, the influence of AGN and supernova
feedback on the hot gas distribution. Fitting various theo-
retical models (accounting for both the one-halo and two-
halo terms) to the y-group cross-correlation function, we
find moderate (≈2σ) evidence for a suppression in the
thermal gas pressure in low-mass (M ≲ 1014 M⊙) systems,
relative to the prediction of near-self-similar (break-free)
models. The inferredY-M relation in the context of the break
models (UB and CB) is qualitatively consistent with pre-
dictions from cosmological simulations incorporating ener-
getic feedback (e.g., [19,25]). Note that the evidence of
deviation from self-similar mass dependence presented here
can be explained by multiple effects (or combinations
thereof): the gas could simply be depleted from low-mass
halos, or the gas could be present but at unexpectedly low
temperatures in such halos, with a correspondingly large
amount of nonthermal pressure support required to counter-
act gravity (i.e., large hydrostatic mass bias, due to turbulent
motions, magnetic fields, etc.). All of these effects act to
reduce the observed tSZ signal. At the current level of
precision, it is beyond the scope of our analysis to make a
statement about the possible origin of the deficit, which
would furthermore require non-tSZ data. However, it is
worth noting that mass-dependent hydrostatic mass bias
could be a significant cause for concern in tSZ- and x-ray-
based cluster cosmology analyses, if its effects were non-
negligible at cluster mass scales.
A pure power-law Y-M relation also fits the data

well, with a slope consistent with the self-similar value—
however, the power-law fit is driven by the measurements
for the highest-mass halos in the sample, where (near-)self-
similarity is already known to be a good description. Our
fits to the break models show that evidence for deviations
from self-similarity may be present in existing data, but can
be obscured by fits to simple model parametrizations, such
as a pure power law. There are many additional model
variations that can be considered beyond the break models
considered here, but improved data will be necessary to
constrain models with more than one free parameter.
We also test for the impact of the uncertainty in the

group–halo mass relation on our results via the relationship
between the halo mass and the bias inferred from the group
clustering at large scales. The wðθÞ results in Fig. 3 suggest
that a bias in the halo mass estimates is not solely

FIG. 4. The measured LBG-y correlation for LBGs with stellar
mass 11.1 < log10M� < 11.4 (left panel) and 11.4 < log10M� <
11.7 (right panel). These correspond to halo masses of roughly
1012.5 M⊙ < M < 1014 M⊙ and 1013.5 M⊙ < M < 1014.5 M⊙,
respectively (see Fig. B.1 of P13). LBGs are considered isolated
if they are brighter in r than all other galaxies within the isolation
radius Riso and within a redshift range Δz ¼ viso=c. The different
curves show results for different choices of ðRiso; visoÞ. As
the exclusion region is increased in size, the y profile around
LBGs in the lower mass bin decreases. This suggests that
the two-halo term makes a non-negligible contribution to the y
profiles around LBGs with the nominal exclusion choice,
ðRiso; visoÞ ¼ ð1 Mpc; 1000 km=sÞ. The purple curve in the right
panel shows the effects of modifying the exclusion criterion so
that an isolated galaxy must be more than one magnitude brighter
in r than all other galaxies within the exclusion region.

10A detailed examination of Fig. A.1 of P13 suggests that
their inferred Y500 values do indeed decrease somewhat when
applying the stricter isolation criteria, for the halos corresponding
to the stellar mass bin in the left panel of Fig. 4 (corresponding
roughly to M500 ≈ 1012.5–1014 M⊙). However, the changes are
not statistically significant.
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responsible for the evidence we find for non-self-similarity
in the tSZ data. At the current level of precision, such
degeneracies are difficult to break: higher signal-to-noise
measurements at higher resolution will be needed to
definitively determine the behavior of the pressure-mass
relation below cluster mass scales. A promising avenue
for future work would be a joint analysis of the y-group
cross-correlation, group autocorrelation, and group-lensing
cross-correlation functions, which would further break
degeneracies in the current modeling.
Fortunately, there are excellent near-future prospects for

constraining the distribution of hot gas in low-mass halos
using an analysis similar to the approach developed here
(see also Vikram et al. [35]). In particular, the current
measurements are in large part limited by the relatively
coarse Planck beam. This is insufficient to resolve the one-
halo term in low-mass groups, which may reveal the
sharpest departures from self-similarity. It will therefore
be interesting to pursue stacking measurements around
low-mass groups using higher-resolution CMB data from
the Atacama Cosmology Telescope (ACT) and South Pole
Telescope (SPT), with beams of FWHM ≈ 1 arcmin com-
pared to the FWHM ¼ 10 arcmin resolution of the Planck
y maps. In addition, future high-resolution CMB experi-
ments such as Simons Observatory,11 CCAT-prime,12 and
CMB-S413 will contain additional frequency channels,
which will aid in separating the tSZ signal from the cosmic
infrared background and other potential contaminants. The
higher sensitivity of these measurements will also allow
more freedom in the modeling, such as simultaneously
fitting the break mass and power-law slope in the UB and
CB models considered here (rather than fixing the break
mass to M0 ¼ 1014 M⊙). Likewise, simultaneously fitting
additional tSZ statistics, such as the tSZ autopower spec-
trum (e.g., [49,57,58]); tSZ-lensing cross-correlations
[32–34,59]; hyi (e.g., [54,58]); and higher-order statistics
(e.g., [60–64]), will provide further constraints on feedback
models, with the additional benefit that direct halo mass
estimates will not be required. Joint analyses with kin-
ematic SZ measurements will also be informative in this
regard (e.g., [65]), using methodology similar to that
developed in this paper.
In order to illustrate the potential utility of these future

measurements, Fig. 5 shows the fiducial Battaglia model
and an example CB model at Planck and ACT/SPT angular
resolutions in our 12 < log10M=ðh−1 M⊙Þ < 13 mass
bin.14 Vikram et al. [35] also considered the benefits of
improved angular resolution in probing the hot gas in

low-mass halos, but here we further explicitly illustrate
the power of these measurements for studying departures
from self-similarity. At Planck resolution (FWHM ¼
10 arcminutes), the difference between the example models
is extremely subtle: in this case, even the inner radial bins
are dominated by the two-halo term from massive neigh-
bors. At the resolution of ACT/SPT, however, the inner
radial bins become one-halo-dominated even for these low-
mass halos, and it should therefore be possible to distin-
guish the example models at high statistical significance.
The results in Fig. 5 motivate the need for ∼ arcminute-
scale resolution in upcoming CMB experiments. In con-
junction with the improved CMB data, it will be important
to improve the calibration of the average group mass–halo
mass relation, its scatter, and miscentering errors. These
steps should be possible with galaxy-galaxy lensing and
clustering measurements, performed in tandem with

FIG. 5. Future prospects for constraining the distribution of
hot gas in low-mass groups. Here we contrast the predicted
y-group cross-correlation for our 12 < log10M=ðh−1 M⊙Þ < 13
mass bin for the fiducial Battaglia (break-free) model and an
example CB model, with an assumed sub-break power law of
αcb ¼ 0.375. We show results for Planck angular resolution
(FWHM ¼ 10 arcminutes) and ACT/SPT resolution (FWHM ¼
1.4 arcminutes). The solid curves show the total y-group cross-
correlations, while the dotted curves show the one-halo terms.
The blue and red curves show the Battaglia pressure profile
prediction at higher and lower angular resolution, respectively,
while the black and magenta curves are the CB models at higher
and lower resolution, respectively. The higher angular resolution
of ACT/SPT helps to partly resolve the one-halo term in these
low-mass systems. This should allow sharper tests of self-
similarity in the near future. Note that the models here ignore
any miscentering effects, assuming this may be well calibrated
using lensing measurements.

11http://www.simonsobservatory.org.
12http://www.ccatobservatory.org.
13http://www. cmb-s4.org.
14Note that the relevant resolution here is that of the compo-

nent-separated maps. This should be comparable to, but perhaps
slightly worse than, the value of FWHM ¼ 1.4 arcminutes
adopted here for ACT/SPT.
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additional modeling efforts. It will also be important to
cross-check several simplifying assumptions made in the
halo model, such as linear biasing and the neglect of halo
exclusion, with numerical simulations. Lastly, we note that
there have been few attempts since that of Yang et al. [45]
to build a halo catalog spanning the full range from galaxy-
to cluster-scale masses (see, however, the recent catalog of
Lim et al. [66]), and additional work to understand the
different systematics that could arise over a such a large
mass range may be necessary.
Overall, significant developments in the study of the

cosmic distribution of hot gas should be forthcoming in the
next few years. Deeper optical observations from the Dark
Energy Survey [67], Hyper Suprime-Cam Survey [68],
Kilo Degree Survey [69], and Large Synoptic Survey
Telescope [70], as well as application to quasar samples,
will allow these probes to be extended to much higher
redshifts. Given the expected improvement in experimental
sensitivity and resolution, precise modeling of the signal is
important. In this context, we have shown that the two-halo
term in tSZ cross-correlation or stacking measurements
cannot be neglected (except for perhaps the most massive
galaxy clusters) and should be included in future analyses.
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APPENDIX A: CONSTRAINTS ON
THE NORMALIZATION OF THE
PRESSURE-MASS RELATION

Here we consider a further extension of the models
presented in Sec. III, in which the overall normalization of
the pressure-mass relation (P0) is also allowed to vary. The
primary focus of our analysis above was to use the large
lever arm in mass of the Yang et al. [45] group sample to
probe the mass dependence of the tSZ signal and test
whether it follows self-similar predictions. However, the
y-group cross-correlation is also sensitive to the overall
normalization of the pressure-mass relation. Due to com-
plications discussed in Sec. III (e.g., miscentering, the
group mass–halo mass relation, etc.), this method of
calibrating the overall normalization is less direct and
precise than using gravitational lensing observations of
tSZ clusters. Thus, although we present quantitative results
here (in the context of the underlying Battaglia model), we
caution against a face-value interpretation of the results.
In these extended models, the equations describing the

pressure profile behavior take on the following forms (see
Sec. III for further background):

(i) PL model:

PeðrjM; zÞ → PeðrjM; zÞPpl
0

�
M
M0

�
αpl
: ðA1Þ

(ii) UB model:

PeðrjM; zÞ →
�PeðrjM; zÞPub

0 ; M ≥ M0

PeðrjM; zÞPub
0 ðMM0

Þαub ; M < M0:

ðA2Þ

(iii) CB model:

PeðrjM; zÞ →
8<
:

PeðrjM; zÞPcb
0 ; M ≥ M0

ðPeðrjM; zÞðMM0
Þαcb þ AðαcbjM; zÞe

−r2

2ð2rvir Þ2ÞPcb
0 ; M < M0:

ðA3Þ

The marginalized constraints on the amplitude and
mass-dependence parameters in these models are given
in Table III. In all cases, the amplitude constraints are
consistent with the fiducial model (P0 ¼ 1), although
the central values tend to lie slightly below unity,
implying a lower normalization than that in the Battaglia
model. Interestingly, the statistical uncertainty (≈5%) is

competitive with weak-lensing calibrations of the normali-
zation of the Y-M relation at cluster mass scales. However,
as emphasized above, we have not considered and mar-
ginalized over all relevant systematic effects here.
After marginalizing over P0, the error bars on α do not

dramatically increase, if at all. For the PL model, the error
bars on αpl increase by ≈50% compared to those in Table I,
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where Ppl
0 was fixed to unity. However, the central value of

αpl moves toward αpl ≈ 0, which brings the best-fit PL
model predictions somewhat closer to those for the UB and
CB models in the low-mass bins. Effectively, the free
amplitude absorbs some of the statistical constraining
power from the high-mass bins, allowing the αpl value
to move closer to the values preferred by the lower-mass
bins, which are closer to αpl ≳ 0. The resulting αpl values
are consistent with the Battaglia model or the self-similar
prediction.
For the UB and CB models, the error bars on α do not

increase compared to those in Table I. This is simply
because the highest two mass bins constrain P0 in these
models, while the lower-mass bins constrain α, effectively
independently of one another. However, the central values
of αub and αcb move toward zero compared to those in
Table I (i.e., the evidence of a departure from self-similar
mass dependence weakens somewhat). This is because the
high-mass bins’ slight preference for P0 < 1 implies that
less deviation from α ¼ 0 is needed in order to fit the signal
in the lower-mass bins. This result is seen for both the UB
and CB models. Lastly, we note that the surprisingly small
error bar on αcb for the NILC case is due to the influence of
the prior range for this parameter on the posterior (i.e., the
hard cutoff at αcb ¼ 0).

Overall, the analysis presented here serves as a
consistency check that our data are not fully explained
by self-similarity with a lower overall normalization
(which could be interpreted as a fixed, mass-independent
amplitude of nonthermal pressure) in the context of the UB
and CB models. However, allowing the normalization to
vary does slightly weaken the evidence of a departure from
self-similar mass dependence in these models.

APPENDIX B: ESTIMATE OF MATCHED
FILTER SUPPRESSION OF THE

TWO-HALO TERM

Here we investigate the efficacy with which tSZ matched
filters—applied to Planck Compton-y maps around galaxy
groups—suppress contributions from the two-halo term.
We consider applying a filter to a 2D y map centered on a
galaxy group, such that the data dðθÞ are the sum of
some known pressure profile, with a projected and
beam-smoothed Compton-y profile given by ysðθÞ, and
“noise” NðθÞ:

dðθÞ ¼ ysðθÞ þ NðθÞ: ðB1Þ

In this equation, the noise term is understood to include
everything in the map that is not part of the y-profile
associated with the galaxy group of interest. This includes
instrumental noise, y fluctuations from other systems, and
residual foregrounds. Note that the noise is assumed to have
zero mean, which is violated by the correlated noise from
the two-halo term. This effect has not been considered
explicitly in previous literature related to tSZ matched
filters, and it may produce a bias. On the other hand, the
filters as usually constructed may not, in practice, pass
much of the two-halo term. Our goal here is to assess this
quantitatively, particularly with regard to the analysis
of P13.15

Before proceeding, it is also important to note that P13
applies matched filters directly to the multifrequency
Planck temperature maps and not to the y map itself,
which is smoothed to the resolution of the coarsest high
frequency instrument (HFI) channel. Furthermore, the
isolation criteria applied in constructing the LBG sample
used in the P13 analysis will lessen the impact of the two-
halo term to some extent, as investigated in Sec. IV B.
Using the higher resolution multifrequency maps and
applying the isolation criteria should both act to reduce
the two-halo contamination studied here. We briefly con-
sider this point at the end of this appendix.
Under the standard assumptions, the optimal matched

filter is given by (e.g., [71,72])

TABLE III. Constraints on the mass dependence and overall
normalization of the electron pressure profile for various theo-
retical models (see Sec. III and Appendix A for model and
parameter definitions). The fiducial Battaglia model in all cases
corresponds to αpl ¼ αub ¼ αcb ¼ 0 and Ppl

0 ¼ Pub
0 ¼ Pcb

0 ¼ 1.
The final column presents constraints on α (P0) after marginal-
izing over P0 (α) and marginalizing over the correctly centered
fraction of halos in each of the five mass bins, with an
uninformative prior on the centered fraction pI

c ∈ ½0; 1� for all
bins. The tabulated values are the mean and 68% C.L. intervals
computed from the one-dimensional marginalized posteriors.

Model Parameter [prior range] Marginalized constraint

MILCA
PL αpl [−1, 1] −0.003� 0.06

Ppl
0 [0.2, 1.8] 0.93� 0.06

UB αub [−1, 1.25] 0.27þ0.23
−0.22

Pub
0 [0.2, 1.8] 0.97� 0.05

CB αcb [0, 2] 0.58� 0.34

Pcb
0 [0.2, 1.8] 0.97þ0.05

−0.04

NILC
PL αpl [−1, 1] −0.005� 0.06

Ppl
0 [0.2, 1.8] 0.88� 0.06

UB αub [−1, 1.25] 0.29þ0.22
−0.21

Pub
0 [0.2, 1.8] 0.92� 0.05

CB αcb [0, 2] 0.35� 0.23

Pcb
0 [0.2, 1.8] 0.91� 0.04

15We are grateful to Simon White and the anonymous referee
for suggesting this calculation.
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FðlÞ ¼ A
yðlÞBl

B2
l C

sky
l þ Nl

; ðB2Þ

where yðlÞ is the 2D Fourier transform of the assumed
(projected) pressure profile, Bl gives the Planck beam
profile in Fourier space, Csky

l describes the angular power
spectrum of emission fluctuations in the Compton-y map
(including residual foregrounds), and Nl is the instrumental
noise power spectrum. In the calculations that follow (apart
from estimating the power spectra of the Planck y maps),
we adopt the flat-sky approximation. In constructing tSZ
matched filters, we follow the Planck Collaboration [29]
and use the Arnaud et al. [3] pressure profile, truncated at
6r500, to calculate yðlÞ [according to, e.g., Eq. (2) of [49]].
We assume a Gaussian beam, Bl ¼ exp½−lðlþ 1Þσ2=2�,
where σ ¼ FWHM=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
8lnð2Þp

, with FWHM ¼ 10 arcmin,
as appropriate for the Planck Compton-y maps. The
matched filter downweights modes where the noise term,
B2
l C

sky
l þ Nl, is large compared to the template y-profile,

AyðlÞBl. In practice, we measure the autopower spectrum
of the Planck Compton-y maps (including the noise bias),
and deconvolve the beam such that the measured power
spectrum is Ctot

l ¼ Csky
l þ Nl=B2

l . The filter is then con-
structed from the total, beam-deconvolved power spectrum,
Ctot
l , as FðlÞ ¼ AyðlÞ=ðBlCtot

l Þ.
The normalization constant, A, may be set to preserve the

central, beam-smoothed value of the y-profile in configu-
ration space after applying the matched filter, provided the
observed pressure profile indeed follows the Arnaud et al.
[3] form (see Le Brun et al. [25] for a discussion of biases

that arise when this assumption is incorrect). This nor-
malization requirement sets

A ¼
�Z

ldl
2π

y2ðlÞB2
l

B2
l C

sky
l þ Nl

	−1 Z ldl
2π

yðlÞBl: ðB3Þ

One can also introduce an overall multiplicative constant in
front of the template y-profile, varying this constant and
perhaps the form of the profile itself to maximize the signal-
to-noise ratio. Here we confine our attention to the impact
of matched filtering on the two-halo term.
We construct the filter by measuring power spectra

directly from the Planck y maps, comparing NILC and
MILCA to test sensitivity to the tSZ reconstruction algo-
rithm. Before measuring the power spectra, bright regions
in the Planck 857 GHz map are masked (along with a
standard Planck point source mask) in order to remove
Galactic dust emission, and the resulting mask is apodized
using a Gaussian taper with FWHM ¼ 15 arcmin. We
consider the power spectra measured for two different
masked sky fractions, fsky ¼ 0.3 and fsky ¼ 0.5, in which
the brightest 70% and 50% of the 857 GHz pixels are
masked, respectively. The mask, beam, and pixel window
functions are deconvolved using a MASTER-based code
[73]. Our main results are insensitive to the choice of sky
fraction.
Two examples of the resulting matched filters [Eq. (B2)]

are shown in Fig. 6, both in Fourier space (left panel) and
configuration space (right panel). In the massive, lower-
redshift case, more large-scale (low-l) power is passed
through the filter, as expected. In general, the optimal

FIG. 6. Matched filters in Fourier space (left panel) and configuration space (right panel) for two example masses/redshifts, as labeled.
In the right panel, the filters are normalized to unity at θ ¼ 0.
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matched filters appear to pass some amount of low-l power,
which can thus include contributions from the two-
halo term.
We can then calculate the effect of the matched filters on

various models for the one- and two-halo terms. In practice,
we carry out these calculations in Fourier space (where the
configuration-space convolution is a simple product), and
then Fourier transform back into configuration space.
Denoting the y-halo cross-spectrum as Cx;l, the filtered
y-halo correlation function for a halo of mass M and
redshift z at separation θ is

ξFy;gðθjM; zÞ ¼
Z

ldl
2π

J0ðlθÞCx;lBlFðlÞ: ðB4Þ

Note that the matched filter acts on the Planck beam-
smoothed field; hence, two separate filters [FðlÞ and Bl]
are applied here to the intrinsic (i.e., unsmoothed)
cross-spectrum.
As a first characterization of the impact of the filter on

each of the one- and two-halo terms, we consider the θ → 0
limit. The fractional contamination from the two-halo term
depends strongly on the halo massM and somewhat on the
underlying pressure profile model. To explore this, we vary
M200 from 1012 M⊙ to 1014.5 M⊙ while fixing z ¼ 0.15.
Further, we consider models in which the pressure profile
follows either the fiducial Battaglia fitting formula [21] or
the UBmodel with αub ¼ 0.5. Because the pressure of low-
mass halos is suppressed in the UB model, the two-halo
term makes a larger fractional contribution than in the
Battaglia model. The results of these calculations are shown
in Fig. 7. Applying the matched filter suppresses the two-
halo term by almost a factor of ≈3, but it still comprises
≈50% of the total signal (i.e., it is comparable to the one-
halo contribution) in the αub ¼ 0.5 model and is ≈25% of
the total signal in the Battaglia model, for a representative
mass of M200 ¼ 1013 M⊙. At lower masses, the fractional
contribution of the two-halo term is, of course, larger.16

In the actual P13 analysis, a multifrequency matched
filter was adopted, for which the “effective” resolution is
somewhat better than the FWHM ¼ 10 arcmin resolution
of the all-sky Planck y maps, as the highest-resolution
Planck HFI channels have FWHM ≈ 5 arcmin. Thus, our
matched-filter results are not exactly analogous to those of
P13. However, constructing a new y map with FWHM ¼
5 arcmin resolution, measuring its noise properties, and
constructing the associated matched filter is beyond the
scope of our analysis. Instead, to capture some of the
improvement associated with the higher effective resolution
of the multifrequency matched filter approach used by P13,

we recompute Eq. (B4) for a theoretical y-profile convolved
with a FWHM ¼ 5 arcmin beam, rather than a FWHM ¼
10 arcmin beam, while leaving the filter unchanged. This is
optimistic in that P13 used a three-band multifrequency
matched filter with bands at 100, 143, and 217 GHz with
FWHM ¼ 9.68, 7.30, and 5.02 arcmin, respectively: the
“effective” beam is therefore coarser than the 5 arcmin
value we adopt here. But since we adopt a coarser-
resolution filter FðlÞ, we neglect the additional improve-
ment that would come from optimally modifying FðlÞ for
the higher-resolution channels. The result of this calcu-
lation for the UB model is the red, long-dashed curve in
Fig. 7. As expected, this further reduces the fractional
importance of the two-halo term. The only effect missing
here is that there should be a further suppression from
adjusting the matched filter for the finer beam. We leave a

FIG. 7. Fractional contamination due to the two-halo term as a
function of halo mass at z ¼ 0.15, with and without applying the
matched filter for different pressure profile models. Each curve
shows the fraction of the total y-halo cross-correlation signal
contributed by the two-halo term for an inner radial bin (with θ ≪
FWHM of the Planck beam). The black curves assume the
fiducial Battaglia pressure profile, while the blue and red
curves adopt the UB model with αub ¼ 0.5 (see Sec. III). The
solid curves are smoothed only by the Planck y-map beam
(FWHM ¼ 10 arcmin), while the dashed curves show the effect
of applying (in addition) the matched filter. The long-dashed, red
curve shows a modified matched-filter calculation in which the
beam is assumed to have FWHM ¼ 5 arcmin resolution (so as to
capture some of the improvement associated with using the
highest-resolution Planck HFI channels), but the filter itself is left
unchanged [see Eq. (B4)]. Our primary conclusion is that
although the matched filter suppresses the two-halo contamina-
tion, it is not entirely removed.

16Note that at very high masses, near M200 ≈ 1014 M⊙, the
fractional contribution of the two-halo term is reduced in the UB
model. This is because the two-halo term is slightly suppressed in
this model, while the one-halo term at high mass is preserved.
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full treatment of this issue (also including the isolation
criteria for the P13 analysis) to future work. Our primary
conclusion remains unchanged: non-negligible two-halo
contamination is still present, particularly at low masses.
Figure 8 further shows the impact of the matched filter

on the full y-halo cross-correlation functions for a halo of
massM200 ¼ 1013 M⊙ at z ¼ 0.15 in the αub ¼ 0.5 model.
The matched filter suppresses the relative strength of the
two-halo term, but in this model it is still dominant. Note
also that the fractional importance of the two-halo term
increases with θ, so the diagnostic of Fig. 7 is illustrative,
but incomplete.
An alternate choice of filter could be used to better

extract the one-halo term from the two-halo “contamina-
tion,” at the expense of increased variance. For example, the
two-halo term could be incorporated into the noise term in
the denominator of Eq. (B2) to downweight modes where it
is large relative to the one-halo contribution. Alternatively,
FðlÞ could be multiplied by a simple high-pass filter. For
example, multiplying FðlÞ by a high-pass filter that
completely nulls modes with l ≤ l0 reduces the fractional
two-halo contamination in the UB model with αub ¼ 0.5
(relative to the total cross-correlation function) at θ → 0
from 50% to 31% for l0 ¼ 300, to 18% for l0 ¼ 600, and to
10% for l0 ¼ 900 (at the expense of increased variance).

Provided the filters adopted by P13 are similar to those
shown in Fig. 6, it seems they still yield appreciable two-
halo contributions, although this may be diminished by
the isolation criteria used in defining the LBG sample.
For example, in the lower stellar mass bin considered in
the left-hand panel of Fig. 4, the small-scale y-group
cross-correlation function decreases by a factor of ≈2
when the isolation radius is increased from 1 to 2 Mpc,
and stabilizes at a larger isolation radius. This suggests
that the 1 Mpc-isolated sample receives comparable
contributions from the one- and two-halo terms at small
radii. Note that this analysis is applied to the full Planck
y map. If the matched filter indeed suppresses the two-
halo term by an additional factor of 3, then the isolated,
filtered two-halo contribution may be just ≈1=3 of the
one-halo term in the inner bins. The fractional importance
of the two-halo term increases with increasing radius/
angle, but this may be partly compensated by the stronger
suppression from the isolation. A ≈ 30% bias may not be
extreme cause for concern given the statistical errors of
P13 at low stellar mass, but this is only a rough estimate.
Our conclusion is that two-halo contributions should be
taken into account in future Compton-y stacking or cross-
correlation analyses, particularly those extending below
cluster mass scales.

FIG. 8. The y-halo cross-correlation function for a halo of mass M200 ¼ 1013 M⊙ at z ¼ 0.15 for the UB model with αub ¼ 0.5. The
left panel shows the one- (red dotted curve) and two-halo (blue dashed curve) terms before applying the matched filter, while the right
panel shows the same quantities afterward. In each case, the one-halo term is normalized to unity at θ → 0. The matched filter
diminishes the impact of the two-halo term, but it still makes a strong contribution in this model.
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