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The general solution of hydrostatic equilibrium equations for a two-component fluid of ions and
electrons without a local electroneutrality constraint is found in the framework of Newtonian gravity theory.
In agreement with the Poincaré theorem on analyticity and in the context of Dyson’s argument, the general
solution is demonstrated to possess a fixed (essential) singularity in the gravitational constant G at G ¼ 0.
The regular component of the general solution can be determined by perturbation theory in G starting from
a locally neutral solution. The nonperturbative component obtained using the method of Wentzel, Kramers
and Brillouin is exponentially small in the inner layers of the star and grows rapidly in the outward
direction. Near the surface of the star, both components are comparable in magnitude, and their nonlinear
interplay determines the properties of an electro- or ionosphere. The stellar charge varies within the limits
of −0.1 to 150 C per solar mass. The properties of electro- and ionospheres are exponentially sensitive to
variations of the fluid densities in the central regions of the star. The general solutions of two exactly
solvable stellar models without a local electroneutrality constraint are also presented.
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I. INTRODUCTION

Charged particles constitute an appreciable or dominant
fraction of the matter in stars. The electromagnetic inter-
action between particles is stronger than the gravitational
interaction by a factor of

λG ¼ e2

Gm2
u
≈ 1.25 × 1036; ð1:1Þ

where e denotes the proton charge in CGS units, G is the
gravitational constant, and mu ¼ 931.5 MeV=c2 is the
atomic mass unit, with c being the speed of light. Under
the assumption of the complete screening of electrostatic
interactions, gravitational forces should play the dominant
role in determining stellar structure. The hydrostatic
equilibrium (HE) equations are usually supplemented with
a local electroneutrality constraint (LEC); however, it is not
immediately clear how effective the screening is at com-
pensating for the enormous difference in the strengths of
the electromagnetic and gravitational forces.
Lebowitz and Lieb [1] showed that the LEC is required

for the existence of extensive thermodynamic potentials of
isolated systems. The stability of electrically neutral,
isolated systems of charged particles in the thermodynamic
limit was proven by Dyson and Lenard [2] and by Lieb and
Thirring [3].

The thermodynamic equilibrium in an external potential
field is determined by Gibbs’ condition [4]:

μþ VðxÞ ¼ const; ð1:2Þ

where μ is the chemical potential and VðxÞ is the external
potential. A generalization of Eq. (1.2) for a multi-
component fluid within the framework of general relativity
theory (GRT) was given by O. Klein [5] and, in a broader
context, by Kodama and Yamada [6] and Olson and Bailyn
[7]. In the presence of gravity or other external fields, the
chemical potentials of a multicomponent fluid acquire
coordinate dependence, as already seen from Gibbs’ con-
dition, which is generally incompatible with the LEC.
As early as 1924, Rosseland [8] showed that in Newtonian

gravity theory (NGT), the unconstrainedHE equations for an
ionized self-gravitating gas with a constant temperature
admit solutions with similar distributions of ions and
electrons. The charge density of the gas was found to be
positive and λG times smaller than the particle number
density. In the context of white dwarfs, the polarization of
stars was discussed by Schatzman [9].
The smallness of the uncompensated charge density

justifies the use of the LEC when describing effects not
related to the electrostatic properties of stars.
Based on the variational energy principle of GRT, Olson

and Bailyn [7] derived a complete system of unconstrained
HE equations for a charged multicomponent fluid. In the
stellar structure models discussed by Olson and Bailyn*yudin@itep.ru
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[10], Bally and Harrison [11], and Neslušan [12], the
polarization effect leads to a stellar charge of Qs ∼
eMs=ðmuλGÞ ∼ 100Ms=M⊙ C.
Rotondo et al. [13] and Belvedere et al. [14,15] showed

recently that the components of a fluid have different
spatial distributions, leading to the appearance of an
electrosphere, the charge of which is sufficiently large to
completely compensate for the positive charge of the star.
The deviations from local electroneutrality and, accord-

ingly, the appearance of a large-scale electrostatic field in a
star affects the diffusion and separation of chemical
elements in the Sun [16] and in neutron stars [17]. The
uncompensated stellar charge could influence possible
mechanisms of supernova explosions [18–20].
Electrically charged stars are described in Refs. [8–15,

21] by particular solutions of the unconstrained HE
equations. Some features of the general solution can be
foreseen on the basis of simple qualitative considerations, as
discussed below.
Let us consider a neutron star composed of neutrons,

electrons and protons. Suppose that it is electrically neutral
and in chemical equilibrium with respect to the weak
interaction. The gravitational field of the star creates a
potential well, in which a number of electrons ΔNe can be
confined, given that the energy of their electrostatic
repulsion ∼e2ΔN2

e=Rs does not exceed the energy of their
gravitational attraction to the star ∼GMsΔNeme=Rs, where
Rs and Ms are the radius and mass of the star, respectively,
and me is the electron mass. This condition implies that
ΔNe ≲GMsme=e2 ∼ 5 × 1017Ms=M⊙. The charge of a
neutron star may vary from ∼ − 0.1 C to zero. An excess
of electrons, however, would violate the assumption of
chemical equilibrium. The relaxation of the neutron star to
a new state through the inverse β decay is accompanied by
the emission of energy in the form of neutrinos. The star
then turns into a lower-energy state with the same electric
charge. If gravitational stability is not lost during the
relaxation process, then the above estimate remains valid.
Considering that the number of electrons ΔNe is many
orders of magnitude smaller than the number of neutrons
M⊙=mu ≈ 1.2 × 1057, the neutron star remains gravitation-
ally stable. Similar arguments lead to the conclusion that the
neutron star is capable of confining ΔNp ≲ GMsmp=e2 ∼
1021Ms=M⊙ additional protons with a total charge not
exceeding Qs ∼ 150Ms=M⊙ C. The electric charge of a
neutron star can vary from −0.1 to 150 C per solar mass.
Similar considerations apply to white dwarfs.
The general solution of the unconstrained HE equations

is expected to describe gravitationally stable configurations
with a stellar charge of −0.1 to 150 C per solar mass.
A single-component self-gravitating fluid of hypotheti-

cal particles of mass mf and charge ef, with f ≪ 1, is
discussed by S. Ray et al. [22]. A comparison of the
gravitational force ∼GmfMs and the electrostatic repulsion
force ∼ðefÞ2Ms=mf acting on an elementary volume of the

fluid yields f ∼mf=ðmu
ffiffiffiffiffi
λG

p Þ and a maximum stellar
charge ofQs ∼ efMs=mf ∼ 1020Ms=M⊙ C. In nature, stars
are composed of multicomponent fluids and are subject to affiffiffiffiffi
λG

p
times more stringent constraint on Qs because of

charge separation in the stellar electric fields.
Another fundamental property of the general solution

follows from the Poincaré theorem on analyticity (see, e.g.,
Ref. [23]) and Dyson’s argument [24].
The Poincaré theorem on analyticity is an intuitively clear

theorem that in rough terms states that analyticity regions in
the parameter space of ordinary differential equations
(ODEs) are normally inherited by solutions of these equa-
tions. Analytic functions are determined by their singular-
ities, so one can talk also about the singularities instead of
the analyticity regions. It is not difficult to see that the
unconstrained HE equations are singular at G ¼ 0 or,
equivalently, at λG ¼ ∞. According to the Poincaré theorem,
the general solution is thus expected to be singular at
λG ¼ ∞ as well. One of the unconstrained HE equations
becomes an LEC in the limit of λG ¼ ∞. It would be natural
to consider the LEC solution as a zeroth-order approxima-
tion of the general solution in the framework of perturbation
theory in the small parameter 1=λG. The Poincaré theorem
suggests, however, that as long as λG ¼ ∞ is a singular
point, such an expansion fails because the radius of con-
vergence of the perturbation series is zero. Dyson’s argument
is interpreted similarly, with the same conclusions for
convergence of the perturbation series.
The general solution to the unconstrained HE equations is

therefore expected to be nonperturbative, which implies that
the density distributions of the fluid components are singular
at λG ¼ ∞. Such solutions are typical of singularly perturbed
ODE systems (see, e.g., [25]) whose order changes in the
limit of a vanishing small parameter. The unconstrained HE
equations belong to this class of singularly perturbed ODE
systems, with the small parameter being 1=λG.
In this paper, the properties of the general solution to the

unconstrained HE equations are investigated within the
NGT framework. The outline of the paper is as follows:
Section II presents the unconstrained HE equations for a
two-component fluid of ions and electrons described by
polytropic equations of state (EoS). A unique regular
solution at λG ¼ ∞, which is a particular solution to these
equations, is analyzed in detail. A regular solution can be
constructed using perturbation theory in the small param-
eter 1=λG, starting from the LEC solution. The solutions to
the unconstrained HE equations that have previously been
discussed in Refs. [8–17,21] are identified as such regular
solutions. The regular solutions are investigated (i) for
equal polytropic indices of ions and electrons, (ii) by
expanding the solution in a power series in the stellar
radius near the center, and (iii) by considering an expansion
in 1=λG around the LEC solution. In Sec. III, the electron
shell of a star is discussed. In Sec. IV, we consider an exactly
solvable model with unit polytropic indices of ions and
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electrons, which perfectly illustrates the non-perturbative
nature of the general solution and clarifies the important role
of the irregular part of the general solution in the formation of
the electro- and ionospheres of stars. The mass, radius and
charge of a star are found as functions of the central baryon
number and charge densities. The exponential sensitivity of
the electro- and ionospheric characteristics to the central
charge density is established. A useful example of an exactly
solvable model of a charged star consisting of a two-
component incompressible fluid is further discussed in the
Appendix. In Sec. V, we construct the general solution to the
unconstrained HE equations for arbitrary polytropic indices.
In the central stellar region, the irregular, non-perturbative
part of the general solution can be found using perturba-
tion theory of singular ODE systems (see, e.g., [25]). Such
problems arise in the semiclassical limit of the Schrödinger
equation, where the method of Wentzel, Kramers and
Brillouin, commonly known as the WKB approximation,
is proven to be effective. Perturbation theory applies every-
where, except in a thin subsurface layer of the star with a
thickness of ∼1=

ffiffiffiffiffi
λG

p
. To match the internal solution to the

outer electron or ion shell, numerical methods can be
employed. The conclusions section summarizes the results.

II. REGULAR SOLUTION TO THE
UNCONSTRAINED HYDROSTATIC

EQUILIBRIUM EQUATIONS

We consider the problem of the polarization of a
substance in a spherically symmetric star. The thermody-
namic equilibrium equations for the chemical potentials of
the ions, μi, and the electrons, μe, coincide with Gibbs’
condition (1.2) and can be written as

μi þmiφG þ ZeφE ¼ const; ð2:1Þ

μe þmeφG − eφE ¼ const; ð2:2Þ
where φG and φE are the gravitational and electrostatic
potentials, eZ andmi ¼ Amu are the charge and mass of the
ions. Bearing in mind possible applications to physics of
white dwarfs, we set temperature equal to zero, and
suppose the dominance of the contribution of electrons
in thermodynamic functions. The chemical equilibrium
with respect to the weak interaction is neglected. We also
assume the ion and electron EoS are polytropic with P ∼ nγ

and attempt to reduce the problem to one known in the
theory of polytropes (see, e.g., Ref. [26]).

A. Two-fluid model

The gravitational and electrostatic potentials satisfy the
Poisson equations

△φG ¼ 4πGρm; ð2:3Þ
△φE ¼ −4πρe; ð2:4Þ

where the mass and charge densities are, respectively,

ρm ¼ mini þmene; ð2:5Þ

ρe ¼ Zeni − ene: ð2:6Þ

The radial derivative term of the Laplacian △ is equal to

△r ¼
1

r2
d
dr

�
r2

d
dr

�
:

By applying △ to Eqs. (2.1) and (2.2) and constructing
appropriate linear combinations of the chemical potentials,
we obtain

△rðZμe þ μiÞ ¼ −4πGðmi þ ZmeÞρm; ð2:7Þ

△rðmiμe −meμiÞ ¼ −4πeðmi þ ZmeÞρe: ð2:8Þ

According to Eqs. (2.1) and (2.2), the gradient
−∇ðZμe þ μiÞ is equal to the gravitational force acting
on an ion and Z electrons. The thermodynamic relationship
dP ¼ ndμ allows the gradients of the chemical potentials to
be presented in terms of pressure gradients. As a special
case, the hydrostatic limit of the Euler equation is recovered
for an electroneutral fluid with ne ¼ Zni:

1

ρm
∇ðPi þ PeÞ þ∇φG ¼ 0:

As mentioned above, we assume that Pi ≪ Pe holds
everywhere.
First, we define the standard relations between pressures

and concentrations from the theory of polytropes:

Pk ¼ Kkn
1þ1=ηk
k ; k ¼ ði; eÞ; ð2:9Þ

where Kk and ηk are fixed constants and ηk is called the
polytropic index. The ion and electron components interact
with each other only through the gravitational and electro-
static forces. No fundamental difficulties arise when con-
sidering the influence of the interactions of the components
(see, e.g., [27]), although this consideration requires special
attention. The dimensionless functions θk are defined as
follows

nk ≡ nk0θ
ηk
k ; ð2:10Þ

where the nk0 are the concentrations at r ¼ 0. Excluding
the rest mass, the chemical potentials are equal to
μk ¼ μk0θk, where μk0 ¼ Kkð1þ ηkÞn1=ηkk0 . The functions
θk ¼ θkðxÞ depend on a dimensionless coordinate x, which
is related to r as follows:
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r ¼ r0x; r20 ¼
Zμe0

4πGmiðmi þ ZmeÞni0
: ð2:11Þ

These expressions allow Eqs. (2.7) and (2.8) to be rewritten
in the following dimensionless form:

△xðθe þ ΛiθiÞ ¼ −ðθηii þ ΛmΛeθ
ηe
e Þ; ð2:12Þ

△xðθe − ΛmΛiθiÞ ¼ −ΛGðθηii − Λeθ
ηe
e Þ; ð2:13Þ

with the initial conditions

θkð0Þ ¼ 1; θ0kð0Þ ¼ 0: ð2:14Þ

The Laplacian △x that appears in Eqs. (2.12) and (2.13)
acts on the coordinate x. The dimensionless Λ parameters
are defined below.
The ratio between the densities ne0 and ni0 determines

the parameter

Λe ¼
ne0
Zni0

≈ 1; ð2:15Þ

which characterizes the deviation from electroneutrality in
the center of the star. In the limit of ΛG ¼ ∞, Eqs. (2.13)
and (2.14) require Λe ¼ 1, which is the LEC at r ¼ 0.
Λi characterizes the smallness of the ion pressure:

Λi ¼
μi0
Zμe0

≈
ð1þ ηiÞPi0

ð1þ ηeÞPe0
≪ 1; ð2:16Þ

where Pk 0 is the pressure of the components at the center of
the star. The last equality in (2.16) is valid to the same
accuracy as the approximation Λe ≈ 1. For ηe ≠ ηi, the
parameters Λe and Λi are independent.
The parameter Λm quantifies the smallness of the

electron mass relative to the ion mass:

Λm ¼ Zme

mi
¼ Zme

Amu
≈ 5.5 × 10−4

Z
A
: ð2:17Þ

The main parameter ΛG is expressed as follows:

ΛG ¼ Z2e2

Gm2
i

¼
�
Z
A

�
2

λG: ð2:18Þ

A high value of ΛG plays the predominant role in
specifying the nature of the problem.
Notably, Λe and Λi depend on the EoS and the stellar

structure through nk0 and Kk, whereas Λm and ΛG depend
only on the chemical composition of the fluid (A and Z).
Equations (2.12)–(2.14) constitute the system of uncon-

strained HE equations in dimensionless form. This system
defines a Cauchy problem with the initial conditions given
in Eq. (2.14). In Eq. (2.13), the small parameter 1=ΛG
appears as a multiplier of the Laplacian; consequently,

Eqs. (2.12) and (2.13) belong to the class of singularly
perturbed ODEs.

B. Two-fluid model with equal polytropic indices

The key aspect of the problem is best illustrated by
first considering the case of identical polytropic indices
ηi ¼ ηe ≡ η. A particular solution to the system defined
in Eqs. (2.12) and (2.13) can be represented as θiðxÞ ¼
θeðxÞ≡ θðx̃Þ, with

x̃ ¼ x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ΛmΛe

1þ Λi

s
; ð2:19Þ

where the function θðx̃Þ is a solution to the Lane-Emden
equation

△x̃θðx̃Þ ¼ −θηðx̃Þ ð2:20Þ

with the standard initial conditions θð0Þ ¼ 1 and θ0ð0Þ ¼ 0.
In the case of ηi ¼ ηe, the parameters Λe and Λi are
dependent:

Λi ¼
Ki

KeΛ
1=η
e Z1þ1=η

: ð2:21Þ

The self-consistency of Eqs. (2.12) and (2.13) requires
Λe ¼ Λreg

e , where

Λreg
e ¼ ΛGð1þ ΛiÞ − ð1 − ΛmΛiÞ

ΛGð1þ ΛiÞ þ Λmð1 − ΛmΛiÞ
: ð2:22Þ

Equations (2.21) and (2.22) define Λi and Λe as functions
of ΛG.
In the model considered here, the ion and electron

densities appear to be similar, as in the Rosseland model
[8]. The parameter Λe differs from unity, so the LEC is
violated at Oð1=ΛGÞ. The solution describes a uniformly
polarized star with a positive electric charge.
The concentrations ni0 and ne0 are considered as input

parameters of the model. One would expect the general
solution to represent a two-parameter set of functions.
The constraint Λe ¼ Λreg

e restricts the freedom to a one-
parameter set. This seeming paradox is explained in
Secs. IV and V. Here, we merely remark that an additional
degree of freedom due to variations of Λe arises from the
singular component of the general solution to Eqs. (2.12)
and (2.13).

C. A power-series expansion near the center

A series expansion in powers of x is effective for solving
Eqs. (2.12) and (2.13) for arbitrary polytropic indices, and
it sheds further light on the origin of the constraint
Λe ¼ Λreg

e . Considering the initial conditions, we search
for a solution in the following form:
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θk ¼ 1þ
X∞
p¼1

βkpx2p; k ¼ ði; eÞ: ð2:23Þ

Terms with odd powers of x are absent because of the
even parity of Δx. By substituting these expressions into
Eqs. (2.12) and (2.13) and equating the coefficients at the
same powers of x, we obtain an infinite system of algebraic
equations.
The zeroth-order terms yield

6ðβe1 þ Λiβi1Þ ¼ −ð1þ ΛmΛeÞ; ð2:24Þ

6ðβe1 − ΛmΛiβi1Þ ¼ −ΛGð1 − ΛeÞ: ð2:25Þ

The left-hand side of Eq. (2.25) is of Oð1Þ, so we require
Λe ¼ 1 − αe=ΛG with αe ¼ Oð1Þ. βe1 and βi1 can be found
from Eqs. (2.24) and (2.25), whereas αe remains a free
parameter.
The ∼x2 terms yield the equations

20ðβe2 þ Λiβi2Þ ¼ −ðβi1ηi þ ΛmΛeβe1ηeÞ;
20ðβe2 − ΛmΛiβi2Þ ¼ −ΛGðβi1ηi − Λeβe1ηeÞ:

Again the boundedness of the expansion coefficients in last
of the above equations yields

βi1ηi1 ¼ βe1ηe1 þ
γ1
ΛG

; ð2:26Þ

where γ1 ¼ Oð1Þ is an unknown parameter. This equality,
with the use of Eqs. (2.24) and (2.25), allows one to
determine the lowest-order parameters, including αe, to an
accuracy of Oð1=ΛGÞ:

βe1
ηi

¼ βi1
ηe

¼ −
1þ Λm

6ðηi þ ΛiηeÞ
;

αe ¼ ðηi − ΛmΛiηeÞ
1þ Λm

ηi þ Λiηe
:

In the limit of ηi ¼ ηe, αe is consistent with Eq. (2.22). The
higher-order terms in 1=ΛG are determined, in turn, from
the condition of the boundedness of the expansion coef-
ficients at x4, etc. The regularity condition at ΛG ¼ ∞ thus
imposes a constraint on the concentrations of ions and
electrons in the center of the star. We are left with a set of
one-parameter solutions.
The results of this subsection can be generalized to

GRT [28].

D. A power-series expansion in G

The occurrence of a large parameter ΛG in Eqs. (2.12)
and (2.13) makes it possible to search for solutions through-
out the entire x range using a power-series expansion:

θk ¼ θk0 þ θk1Λ−1
G þOðΛ−2

G Þ; ð2:27Þ

Λe ¼ Λe0 þ Λe1Λ−1
G þOðΛ−2

G Þ: ð2:28Þ

To a zeroth-order approximation, the regularity of the right-
hand side of Eq. (2.13) yields θηii0ðxÞ ¼ Λe0θ

ηe
e0ðxÞ. The initial

conditions θe0ð0Þ ¼ θi0ð0Þ ¼ 1 imply that

θηii0ðxÞ≡ θηee0ðxÞ; Λe0 ¼ 1: ð2:29Þ

Equation (2.12) yields

△xðθe0 þ Λiθi0Þ ¼ −ð1þ ΛmÞθηee0
¼ −ð1þ ΛmÞθηii0; ð2:30Þ

which is the generalized polytropic equation. We solve it for
the initial conditions (2.14) in the interval from x ¼ 0 up to
the stellar surface at x ¼ xb, where θe0ðxbÞ ¼ θi0ðxbÞ ¼ 0.
The first-order terms in Eqs. (2.12) and (2.13) yield

△xðθe1 þ Λiθi1Þ ¼ −θηee0

�
ηi
θi1
θi0

þ Λmηe
θe1
θe0

þ ΛmΛe1

�
;

ð2:31Þ

△xðθe0−ΛmΛiθi0Þ¼−θηee0

�
ηi
θi1
θi0

−ηe
θe1
θe0

−Λe1

�
; ð2:32Þ

with the initial conditions θk1ð0Þ ¼ θ0k1ð0Þ ¼ 0. Let us
consider Eq. (2.32) for x → 0. Considering the asymptotic
behavior of θk (Eq. (2.27) for βk1 and αe), we obtain the
identity to zeroth order. Considering Λe1 ¼ −αe, Eq. (2.32)
can be written as follows:

ð1þ ΛmÞΛi

ηi þ Λiηe
△xðηeθe0 − ηiθi0Þ ¼ −θηee0

�
ηi
θi1
θi0

− ηe
θe1
θe0

�
:

For ηi ¼ ηe, this equation is satisfied by the similar
distribution θi1 ¼ θe1. Equation (2.31), when combined
with Eq. (2.32), can also be written as follows:

△xðθe1þΛiθi1þΛm½θe0−ΛmΛiθi0�Þ ¼−ð1þΛmÞθηee0ηi
θi1
θi0

:

ð2:33Þ

The zeroth- and first-order approximations are defined
for all values of x. The region near the surface of the star
should be treated separately, because for θk0 → 0, the
validity of the expansion (2.27) can be violated.

E. Global stellar parameters

The stellar radius (more precisely, the boundary of
its baryon component) is defined as Rs ¼ r0xb, where r0
is given by Eq. (2.11) and xb is fixed by the condition
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θðxbÞ ¼ 0 from the solution to Eqs. (2.12) and (2.13). The
mass of the star takes the form

Ms ¼
Z

Rs

0

4πr2ðnimi þ nemeÞdr

¼ −4πr30ni0mix2
d
dx

ðθe þ ΛiθiÞjx¼xb ; ð2:34Þ

where Eq. (2.12) is used to proceed to the second line.
The total stellar charge (at the boundary of the baryon
component) is equal to

Qs ¼
Z

Rs

0

4πr2ðZeni − eneÞdr

¼ −4πr30ni0
Ze
ΛG

x2
d
dx

ðθe − ΛmΛiθiÞjx¼xb ; ð2:35Þ

where we have used Eq. (2.13). The stellar charge can be
estimated as

Qs ∼
ZeMs

AmuΛG
≃ 1021e

A
Z
Ms

M⊙
; ð2:36Þ

where M⊙ is the mass of the Sun.
The total uncompensated electric charge of a star of one

solar mass, on the boundary of its baryon component, is on
the order of 100 C, in agreement with the estimates of
Pikel’ner [21], Bally and Harrison [11] and Neslušan [12].
The maximum charges of neutron stars and white dwarfs
are estimated to be 50 C and 500 C, respectively [10].
For comparison, one mole of 12C contains 6NA protons,
whose total charge is 6 × 105 C. The total negative charge
of the Earth at its surface is estimated to be ð4–5.7Þ × 105 C
[29]. In absolute value, the solar charge is less than
ð0.4 − 1Þ × 1018 C [30].

III. ELECTROSPHERE

In Sec. II, we have seen that the self-consistent regular
solution to the unconstrained HE equations describes a star
with a positive charge. To move an electron from the
surface of such a star to infinity, it is necessary to perform
work against the forces of gravity and Coulomb attraction.
In fact, a star can confine more electrons than it should be
able to according to the regular solution. This possibility
leads to the formation of an electrosphere that is quite
independent of the internal structure of the star. We there-
fore discuss the electrosphere separately.
Under normal conditions, a metal is surrounded by a

double charged layer, where an excess of positive charge at
the subsurface is created by the atomic lattice and a
negative charge outside is created by electrons. The thick-
ness of the layer is equal to several Bohr radii, and the work
function is several eV. An electrosphere surrounds the
surface of hypothetical strange stars [31,32]. Within the

strange star, the positive charge of the baryon component is
almost completely neutralized by electrons, whereas it is
only partly neutralized in the subsurface. As a result, an
electron shell forms above the surface, with a thickness
exceeding hundreds of fm, and the chemical potential of
electrons near the surface is several tens of MeV. The
electrons also give rise to an electrostatic potential jump
across the surface separating different phases of nuclear
matter [33].
Earlier, we presented arguments for the existence of stars

with a total charge of −0.1 to 150 C per solar mass, which
are able to support either an electrosphere or an ionosphere.
Here, we restrict ourselves to a discussion of the electro-
sphere. Section IV also describes the properties of the
ionosphere.

A. A polytropic model

The regular solution explicitly yields a positive charge
excess at r ¼ 0. Furthermore, the balance of the gravita-
tional and electrostatic forces ensures that the charge excess
must be positive everywhere from the central region up to
the surface. The electron component extends somewhat
beyond the ion component and compensates for the stellar
charge.
Applying the Laplacian to Eq. (2.2), we obtain

△rμe ¼ 4πe2ne

�
1 −

Gm2
e

e2

�
: ð3:1Þ

At the surface (r ¼ Rs), an equilibrium condition holds:

−
1

ne

dPe

dr
¼ eQs

R2
s
þGmeMs

R2
s

; ð3:2Þ

where Ms and Qs are given by Eqs. (2.34) and (2.35).
Proceeding in the standard way, we define a dimension-

less polytropic function based on the equation ne ¼ na0θ
ηe
a ,

where na0 is the electron density at the boundary of the ion
component. The thickness of the envelope is assumed to be
much smaller than Rs. This assumption will be checked at
the end of the calculation. The Laplacian simplifies to
△r → d2=dr2. For convenience, we introduce the dimen-
sionless parameter

λm ¼ me

mu
: ð3:3Þ

The dimensionless variable y is defined by

r ¼ Rs þ ray; r2a ¼
μa0

4πe2ð1 − λ2m=λGÞna0
; ð3:4Þ

where μa0 is the chemical potential of electrons at the
surface. Thus, Eq. (3.1) becomes
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d2θa
dy2

¼ θηea ðyÞ: ð3:5Þ

At the surface, y ¼ 0 and θað0Þ ¼ 1. Once the stellar
structure equations are solved and the stellar mass, radius,
and charge are determined, the initial condition for θ0að0Þ
follows from Eq. (3.2). Considering Eq. (2.36), we write
the charge in the form

Qs ¼
Ms

mu

eqs
λG

; ð3:6Þ

where qs ¼ Oð1Þ can be found by solving the unconstrained
HE equations. We remark that M⊙=mu ∼ ðλG=αÞ3=2, where
α ¼ e2=ðℏcÞ ≈ 1=137 is the fine structure constant, and
therefore,Qs ∼ e

ffiffiffiffiffi
λG

p
=α3=2. The second initial condition can

be written as

dθa
dy

����
y¼0

¼ −ðqs þ λmÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Pun

ð1þ ηeÞPa0ðλG − λ2mÞ

s
; ð3:7Þ

where Pa0 ¼ Ken
1þ1=ηe
a0 is the pressure of the electrons at the

boundary and Pun is the natural unit of pressure in the star:

Pun ¼
GM2

s

4πR4
s
:

Integrating Eq. (3.5) yields

dθa
dy

¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðW0 − VðθaÞÞ

p
; ð3:8Þ

where

W0 ¼
θ02a ð0Þ
2

−
1

1þ ηe
;

VðθaÞ ¼ −
θ1þηe
a

1þ ηe
;

and θa0ð0Þ is given by Eq. (3.7). A second integration yields

y ¼ ya −
θaffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ðW0 − VðθaÞÞ
p

× 2F1

�
1

2
; 1;

2þ ηe
1þ ηe

;
−VðθaÞ

W0 − VðθaÞ
�
; ð3:9Þ

where 2F1 is the Gauss hypergeometric function.
Equation (3.9) implicitly specifies θa ¼ θaðyÞ. With the
initial condition θað0Þ ¼ 1, the boundary of the electrosphere
can be found from θaðyaÞ ¼ 0 to give

ya ¼
1

jθ0að0Þj 2
F1

�
1

2
; 1;

2þ ηe
1þ ηe

;
2

ð1þ ηeÞθ02a ð0Þ
�
:

Figure 1 shows the behavior of ya as a function of W0.
With a decrease in W0, the radial thickness of the envelope
increases, and for W0 → 0, the radial thickness goes to
infinity. However, the function ya is still well defined at
zero:

yaðW0 ¼ 0Þ ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðηe þ 1Þp
ηe − 1

< 0; ð3:10Þ

because of the irregularity of ya forW0 ¼ 0. In comparison
with the nonrelativistic case, the shell of relativistic
electrons extends higher.
Equation (3.5) can be interpreted as the equation of

motion of a point particle of unit mass in a potential VðθaÞ,
where y plays the role of a time variable. Equation (3.8)
follows from the conservation of the total energy:

W ¼ θ02a
2

þ VðθaÞ:

There are three types of solutions. If the initial momentum
is small, the particle moves to the left relative to its initial
position θað0Þ ¼ 1, stops at some point 0 < θa < 1, and
then accelerates in the positive direction and goes to
infinity. The total energy of the particle is negative:
W ¼ W0 < 0. In the Thomas-Fermi theory of multielectron
atoms, solutions of this type are called compressed; they
terminate at θ0a ¼ 0 for a finite electron density, for which
the global electroneutrality of the atom holds [34]. In our
problem, however, such solutions are not physical since the
stars are, of course, isolated. The second type of solution
corresponds to the case of zero energy: the particle arrives
at the point θa ¼ 0 and stops there, such that θ0a ¼ 0. In the
Thomas-Fermi theory, such solutions describe neutral

10-2 10-1 100 1016 2 3 4 5 6 2 3 4 5 67 2 3 4 5 67

W0

0

1

2

3

4

5

6

y a

ηe= 3/2

ηe= 3

FIG. 1. Electron shell thickness ya in the nonrelativistic
(ηe ¼ 3=2) and relativistic (ηe ¼ 3) cases versus the
parameter W0.
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atoms. In our case, they describe stars with a maximum
negative total charge, i.e., Qmax

tot < 0. The third type of
solution is obtained for W0 > 0. The particle arrives at the
point θa ¼ 0 with a finite velocity of θ0a < 0, and then the
solution terminates. In the Thomas-Fermi theory, solutions
of this type correspond to ionized atoms with a total
positive charge. In our case, such a solution describes an
electrosphere of a finite thickness ya, and the total charge of
the star can be negative, zero, or positive.
The existence of solutions, therefore, depends on the

derivative of the chemical potential of the electrons at the
boundary of the ion component. The absolute value of
the derivative is constrained from below by the condition
W0 ≥ 0, which imposes an upper limit on the number of
electrons in the shell.
At the boundary of the ion component, the total positive

charge of the star is equal to Qs, and the charge of the
electrosphereQe either partially, completely, or excessively
compensates for Qs. Considering Eqs. (3.5) and (3.8), the
charge of the electrosphere can be written in the form

Qe ¼ −4πR2
s

Z
ya

0

enerady

¼ 4πR2
sena0ra

 
θ0að0Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
θ02a ð0Þ −

2

1þ ηe

s !
: ð3:11Þ

Let κ be a parameter characterizing the screening, such that
Qe ¼ −κQs, where 0 ≤ κ ≤ κmax. In dimensionless units
[see Eq. (3.6)], the charge of the electrosphere is equal to
qe ¼ −κqs. In particular, for κ ¼ 1, the screening is
complete, and the total stellar charge vanishes. From
Eq. (3.11), one can find

Pa0 ¼ κqs
Pun

λG

�
qs þ λm −

κqs
2

ð1 − λ2m=λGÞ
�
;

implying that the pressure in the envelope is λG times
smaller than Pun. It is now convenient to rewrite Eq. (3.7) in
the form

dθa
dy

����
y¼0

¼ −
qs þ λmffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

κqsð1þ ηeÞð1 − λ2m=λGÞðqs þ λm − κqs=2ð1 − λ2m=λGÞÞ
p : ð3:12Þ

The maximum negative charge of the envelope corre-
sponds to W0 ¼ 0. From Eq. (3.12), one can find the
critical value of the compensation parameter:

κmax ¼
1þ λm=qs
1 − λ2m=λG

> 1: ð3:13Þ

Solutions with a total negative charge, Qtot ¼ Qs þQe ¼
Qsð1 − κÞ < 0, are admissible since an electrically neutral
star has a gravitational field capable of binding electrons
under the condition that the energy of their Coulomb
repulsion does not exceed the energy of their gravitational
attraction to the star. An estimate of Qs ∼ 100 C was
obtained above. The maximum negative charge Qmax

tot is
proportional to the parameter λm≪ 1; thus,Qmax

tot ∼−0.05C
per solar mass.
The gravitational collapse of a charged single-component

spherically symmetric fluid is discussed in Refs. [35,36].
The maximum charge of a neutron star is determined in

Ref. [37] on the basis of the requirement of gravitational
stability. We showed that the maximum charge can instead
be determined from the requirement for the existence of a
solution of finite extent for the electro- or ionosphere of
the star. The latter requirement yields a limit that is

ffiffiffiffiffi
λG

p
times stronger than that obtained from the requirement of
gravitational stability.
The positive charge excess of strange stars at the quark

surface is found in Refs. [38,39] to be about 1020 C.

The electrosphere compensates this charge, although the
detailed mechanism has not yet been studied. The particular
values of the bag constant B used in Refs. [38,39] rule out
the existence of massive neutron stars metastable against
conversion to strange stars [40,41].

B. Electrically neutral stars

For W0 ¼ 0, Eqs. (3.9)—(3.10) yield

θmax
a ðyÞ ¼

�
1þ y

y0

�
− 2
ηe−1

; ð3:14Þ

where y0 ¼ −yaðW0 ¼ 0Þ > 0. This solution extends to
infinity, which means that an electron can be moved from
the center of the star to infinity without doing work. In the
case of a relativistic electron gas, ηe ¼ 3, the solution
decays rather slowly: θmax

a ∼ 1=y. At low densities, the
electrons become nonrelativistic, with ηe ¼ 3=2, and the
solution approaches θmax

a ∼ 1=y4. It is not difficult to
directly verify that θmax

a ðyÞ is a solution to Eq. (3.5) with
the proper boundary conditions.
In view of the approximate equality κmax ≈ 1, the electro-

sphere of a neutral star with κ ¼ 1 is described by a solution
close to θmax

a ðyÞ. We return to Eq. (3.12) and set κ ¼ 1.
From this equation, by neglecting the small terms ∼1=λG
and ∼λm, the derivative of θaðyÞ at y ¼ 0 can be found to be
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dθ
dy

����
y¼0

≈ −

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2

1þ ηe

s
ð1þ ξÞ; ð3:15Þ

where

ξ ¼ 1

2

�
λm
qs

�
2

≪ 1: ð3:16Þ

We are looking for a solution to Eq. (3.5) in the form
θa ¼ θmax

a þ σ, where σ is a small correction. The initial
conditions are of the form σð0Þ ¼ 0 and σ0ð0Þ ¼
−ξ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=ð1þ ηeÞ

p
. To the lowest order, σ satisfies the

equation

d2σ
dy2

¼ ηeσ

ð1þ y
y0
Þ2 : ð3:17Þ

The solution to this equation is given by

σðyÞ ¼ 2ξ

3ηe þ 1

��
1þ y

y0

�
−ηeþ1
ηe−1 −

�
1þ y

y0

� 2ηe
ηe−1
�
:

The dimensionless chemical potential of the electro-
sphere of a neutral star as a function of the distance to the
surface is shown in Fig. 2 for ηe ¼ 3=2 and in Fig. 3 for
ηe ¼ 3. The equilibrium conditions (2.1) and (2.2) are valid
for nonrelativistic particles. For completeness, we also
consider the relativistic case ηe ¼ 3, which can be interest-
ing for qualitative estimates. The total stellar charge is
assumed to be zero (κ ¼ 1), whereas the parameter ξ ¼
1.5 × 10−7 corresponds to qs ¼ 1. The dashed curves show
the asymptotic solutions corresponding to Eq. (3.14), the

solid curves labeled E show the exact solutions correspond-
ing to Eq. (3.9), and the solid curves labeled A show the
approximations θmax

a þ σ. The approximations reproduce
the exact formula in Eq. (3.9) with reasonable accuracy.
The thickness of the electrosphere can estimated to be

ya
y0

≈
�
3ηe þ 1

2ξ

� ηe−1
2ðηeþ1Þ

− 1: ð3:18Þ

An order-of-magnitude estimate of the thickness of the
electrosphere yara can be found from Eq. (3.4).
For nonrelativistic electrons with ηe ¼ 3=2, the pressure

and density are related by Pe ∼ ℏ2n5=3e =me. Considering
that Pa0 ∼ Pun=λG, we obtain

ra
Rs

∼
��

aB
Rs

�
3 mu

Ms
λG

�
1=5

≈ 2.2 × 10−16
�
R⊙

Rs

�
3=5
�
M⊙

Ms

�
1=5

; ð3:19Þ

where aB ¼ ℏ2=ðe2meÞ is the Bohr radius. In comparison
with the stellar radius, the thickness of the electrosphere is
quite small, although it is not small on an atomic scale:
yara ∼ 6 × 104aB for an electrically neutral star of mass
Ms ¼ M⊙ and radius Rs ¼ R⊙.
In the case of ηe ¼ 3, the substitution of the relativistic

relationship Pe ∼ ℏcn4=3e into Eq. (3.4) yields

ra
Rs

∼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λG
α3=2

mu

Ms

s
≈ 1.3 × 10−9

�
M⊙

Ms

�
1=2

: ð3:20Þ

The thickness of the electrosphere of an electrically neutral
neutron star with a radius of Rs ¼ 10 km and a mass of
1.4 M⊙ can be estimated to be yara ∼ 1 mm.

0 5 10 15 20

y

10-4

10-3

10-2

10-1

100

8

2
3
4
6
8

2
3
4
6
8

2
3
4
6
8

2
3
4
6

θa

E

A

ηe= 3/2

FIG. 2. Chemical potential θa of nonrelativistic electrons as a
function of the distance from the surface of a neutral star. The
dashed curve shows the limiting solution θmax

a to Eq. (3.14), the
solid curve labeled E shows the exact solution to Eq. (3.9), and
the solid curve labeled A shows the approximate solution
θmax
a þ σ.
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FIG. 3. Chemical potential θa of relativistic electrons as a
function of the distance from the surface. All parameters and
notation are the same as in Fig. 2.
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IV. EXACTLY SOLVABLE MODEL

As seen from the previous discussion, the regular
solution describes a polarized star with a nonzero positive
charge as measured at the ion surface. The properties of the
electrosphere are uniquely determined by the internal
structure of the star. The electrosphere ensures that the
total stellar charge is generally not equal to zero. This
feature is particularly evident in the model with equal
polytropic indices considered in Sec. II.B. An electrosphere
occurs provided that θeðxbÞ ≠ 0, whereas for identical
polytropic indices, the distributions vanish at the same
point, x ¼ xb.
Earlier, we presented simple physical arguments in favor

of the existence of stars with electric charges in the range of
−0.1 to 150 C per solar mass. A regular solution corre-
sponds to a single representative of this class. The regular
solutions described in Refs. [8–15,21] and in Sec. II above
do not exhaust all physical possibilities, nor are they
general solutions to the unconstrained HE equations.
Fourth-order systems of ODEs, similar to Eqs. (2.12)

and (2.13), depend on four initial conditions. In our case,
two of the initial conditions constrain the derivatives of
the chemical potentials [cf. Eq. (2.14)]. These conditions
ensure smooth behavior of the solutions at r ¼ 0 and
cannot be modified. The remaining two initial conditions
fix μi and μe and thereby define a two-parameter set of
stellar configurations. As shown in Sec. II, the requirement
of regularity imposes a constraint on the value of Λe, such
that only a one-parameter set of stellar configurations
survives.
Some of the solutions to Eqs. (2.12) and (2.13) appear to

be lost with the imposition of a requirement for regularity in
the neighborhood of ΛG ¼ ∞.

A. General properties of solutions

The analytic properties of solutions to ODE systems are
determined by the Poincaré theorem on analyticity (see,
e.g., [23]), which asserts, roughly speaking, that solutions
to ODE systems, when they exist, are analytic functions of
the initial coordinates and parameters in the region of
analyticity of the ODEs. The origin of nonregular solutions
can also be understood on the basis of Dyson’s argument,
which provides an effective qualitative criterion for the
nonanalyticity of observables in terms of the system
parameters [24]. From these perspectives, we discuss the
analytic properties in the parameter ΛG of the solutions to
Eqs. (2.12) and (2.13).

1. Poincaré theorem on analyticity

Using the independent variables πk ¼ θ0k, Eqs. (2.12)
and (2.13) can be reduced to a system of four first-order
ODEs. In terms of Φ ¼ ðπe; θe; πi; θiÞ, these equations take
the form Φ0 ¼ Fðx;Φ;ΛÞ, where F is a vector function

of x, Φ, and Λ ¼ ðΛe;Λi;Λm;ΛGÞ. The initial conditions
are Φðx ¼ 0Þ ¼ ð0; 1; 0; 1Þ.
The components of F, as can be easily seen, are analytic

functions of Φ and Λ. The domain of analyticity of F is a
Cartesian product of the complex planes of Φ and Λ
without Φ ¼ ∞ and Λ ¼ ∞. Given that the polytropic
indices are not integers, θk ¼ 0 and θk ¼ ∞ are branch
points of F.
According to the Poincaré theorem, the solutions, when

they exist, depend analytically on Φð0Þ and Λ in the
domain of analyticity of Fðx;Φ;ΛÞ. From Eq. (2.14), we
observe that the dimensionless chemical potentials at x ¼ 0
are frozen, so that the initial values Φð0Þ are not of interest.
The essential information is contained in Λe and the
dimensional quantities r0 and ni0. The analyticity theorem
can be interpreted to mean that throughout the entire domain
of their existence, solutions to Eqs. (2.12) and (2.13) are
analytic in Λ for Λ ≠ ∞. At infinity, the solutions are either
regular or irregular.
The dependence on ΛG is of particular interest because

ΛG ¼ ∞ corresponds to the LEC. It would be natural to use
the LEC solution as an initial approximation of the general
solution to Eqs. (2.12) and (2.13) and to account for
deviations from local electroneutrality by means of per-
turbation theory in 1=ΛG ≪ 1. The analyticity theorem,
however, asserts that the general solution is typically not
regular at ΛG ¼ ∞. If this is so, the perturbation series in
1=ΛG diverges because the radius of convergence, which is
defined by the closest singularity on the complex ΛG plane,
is equal to zero.
The convergence of the perturbation series for solutions

that are regular at ΛG ¼ ∞ can be determined by, e.g., the
singularities ofΛe andΛi as functions ofΛG, as in the model
of Sec. II. B. According to Eqs. (2.21) and (2.22),Λe,Λi, and
the corresponding system of ODEs are not analytic for
jΛGj ∼ 1. If there are no singularities close to infinity, the
point ΛG ¼ ∞ lies within the circle of convergence of the
perturbation series centered at the physical value (2.18). In
the model of Sec. II. B, one could obtain then the LEC
solution in the form of a convergent series starting from the
regular solution. The reciprocal statement is also true:
starting from the LEC solution, one could obtain the regular
solution in the form of a convergent series.

2. Dyson’s argument

A physical argument leading to similar conclusions has
been presented by Dyson [24]. In an extended context, the
argument concerns the relationship between singular points
in the parameter space and qualitative changes in the
behavior of the system. As applied to quantum electrody-
namics (QED), Dyson’s argument leads to the well-known
conclusions that α ¼ 0 is a singular point of physical
observables, QED series in powers of the fine structure
constant have radii of convergence equal to zero and
therefore are asymptotic.
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In our case, ΛG ¼ ∞ corresponds to G ¼ 0. The
physical picture for G < 0 undergoes obvious qualitative
changes; namely, the attraction between particles is
replaced by repulsion, and as a result, bound states (stars)
no longer exist.
We also remark that the many-body Hamilton function

for G < 0 is nonnegative, whereas for positive G it is not
bounded from below.
It can be observed that the characteristic length given in

Eq. (2.11) has branch points at G ¼ 0 and ∞. The stellar
mass (2.34) and charge (2.35) inherit these singularities,
which are further superimposed with the singularities of θk.
Dyson’s argument indicates that the general solution to

Eqs. (2.12) and (2.13) should be sought in the class of
functions that depend on ΛG in an irregular manner.

B. Two-fluid model with unit polytropic indices

The above statements can be illustrated and precisely
formulated using the model of Sec. II. B with unit poly-
tropic indices, which admits an explicit analytic solution.
The adiabatic index of the model, γ ¼ 1þ 1=η ¼ 2, is

sufficiently close to that of an ideal gas model with γ ¼ 5=3.
In terms of the functionsφk ≡ xθkðxÞ, Eqs. (2.12) and (2.13)
are reduced to a linear ODE system:

φ00
e þ Λiφ

00
i ¼ −ðφi þ ΛmΛeφeÞ; ð4:1Þ

φ00
e − ΛmΛiφ

00
i ¼ −ΛGðφi − ΛeφeÞ; ð4:2Þ

where the prime denotes differentiation in x. We look for
solutions of the form φk ¼ αkeβx. Equations (4.1) and (4.2)
yield

ðαe þ ΛiαiÞβ2 ¼ −ðαi þ ΛmΛeαeÞ; ð4:3Þ

ðαe − ΛmΛiαiÞβ2 ¼ −ΛGðαi − ΛeαeÞ: ð4:4Þ

The algebraic system formed by Eqs. (4.3) and (4.4) has
nontrivial solutions provided that the determinant is equal to
zero. This condition gives rise to a quadratic equation in β2,
whose solutions are

β2� ¼ 1

2Λið1þ ΛmÞ
fΛGð1þ ΛiΛeÞ − ð1þ Λ2

mΛiΛeÞ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ2
Gð1þ ΛiΛeÞ2 − 2ΛG½ð1 − ΛmΛiΛeÞ2 − ΛiΛeð1þ ΛmÞ2� þ ð1þ Λ2

mΛiΛeÞ2
q

g: ð4:5Þ

To the leading order in 1=ΛG, the values of β are given by

β2þ ¼ ΛG
1þ ΛiΛe

Λið1þ ΛmÞ
þOð1Þ; ð4:6Þ

β2− ¼ −
Λeð1þ ΛmÞ
1þ ΛiΛe

þOðΛ−1
G Þ: ð4:7Þ

The values �
ffiffiffiffiffiffi
β2þ

p
are real and large, whereas the values

�
ffiffiffiffiffiffi
β2−

p
are imaginary. We adopt the notation β1 ¼ jβþj > 0

and β2 ¼ jβ−j > 0. The general solution has the form

φkðxÞ ¼ α̃k1 expð−β1xÞ þ α̃k2 expðβ1xÞ
þ α̃k3 sinðβ2xÞ þ α̃k4 cosðβ2xÞ: ð4:8Þ

The initial conditions for θk lead to φkð0Þ ¼ 0, φ0
kð0Þ ¼ 1,

and φ00
kð0Þ ¼ 0. The general solution becomes

φkðxÞ ¼ αk1 sinhðβ1xÞ þ αk2 sinðβ2xÞ; ð4:9Þ

with the constraint

αk1β1 þ αk2β2 ¼ 1: ð4:10Þ

By substituting β2 ¼ β21 and −β22 into Eq. (4.3) for αk1 and
αk2, respectively, and using Eq. (4.10), we can uniquely
determine αk1 and αk2 and find the solution.

1. Closer inspection of analyticity in G

The analytic properties of φkðxÞ in the complex
ΛG-plane can be clarified by transforming the system
defined by Eqs. (4.1) and (4.2) into normal form with
the independent variables φk and πk ¼ φ0

k. In terms of
Φ≡ ðπi;φi; πe;φeÞ, Eqs. (4.1) and (4.2) take the form

Φ0 ¼ AΦ; ð4:11Þ

where A is a real 4 × 4 matrix that depends linearly on the
parameters Λ ¼ ðΛe;Λi;Λm;ΛGÞ. The solution takes the
form

ΦðxÞ ¼ expðAxÞΦð0Þ: ð4:12Þ

The series expansion of the exponential matrix converges,
so the evolution operator D ¼ expðAxÞ is well defined.
The matrix elements of D are analytic functions in Λ for
Λ ≠ ∞. A simple pole of A at Λ ¼ ∞ is transformed into
an essential fixed singularity of D, which does not depend
on the initial values. The functions ΦðxÞ are, therefore,

HYDROSTATIC EQUILIBRIUM OF STARS WITHOUT … PHYS. REV. D 97, 083016 (2018)

083016-11



analytic functions of Λ in a Cartesian product of the
complex planes of Λe, Λi, Λm, and ΛG. Equation (4.12)
also shows thatΦðxÞ are analytic on the initial valuesΦð0Þ,
in agreement with the Poincaré theorem on analyticity.
Let an denote the eigenvalues of A that coincide

with �β� ∈ C1, and let rn and ln be their corresponding
right and left eigenvectors satisfying Arn ¼ anrn and
lTnA ¼ lTnan. The eigenvectors are normalized according
to lTnrm ¼ δnm, where n ¼ 1, 2, 3, 4. The evolution operator
admits the representation

D ¼
X
n

rnlTn expðanxÞ: ð4:13Þ

The eigenvalues an are roots of the characteristic equation,
so they have additional singularities compared withA. The
analyticity of D implies that additional singularities cancel
out with singularities of the projection operators rnlTn .
A more explicit proof of this claim uses the Frobenius

representation

rnlTn ¼
Y
m≠n

A − am
an − am

: ð4:14Þ

We first note that the radicand in Eq. (4.5) vanishes for a
complex-conjugate pair of ΛG, where β� have square-root
branch points. The point ΛG ¼ ∞ is a simple pole of β2þ, a
square-root branch point of βþ, and an essentially singular
point of φkðxÞ. ΛG ¼ 0 is a simple zero of β2þ and a square-
root branch point of βþ. The eigenvalues an (�β�)
accordingly have four square-root branch points in the
complex ΛG plane. By passing around one of these points,
we obtain simply a permutation of an. The representation of
D using Eq. (4.14) is explicitly invariant under these
permutations, so the matrix elements of D do not inherit
additional singularities of an.
Consequently, the eigenvalues �β� and the projection

operators ofA have four singular points, whereas φkðxÞ has
a unique singular point ΛG ¼ ∞.
Given that φkðxÞ is analytic in ΛG ∈ C1n∞, φkðxÞ if not

a constant must be singular at ΛG ¼ ∞. The existence of
solutions independent of ΛG is excluded by Eq. (4.2).
Regular solutions at ΛG ¼ ∞ can be constructed by
replacing the parameters, e.g., Λe and Λi, with functions
of ΛG, as in the model of Sec. II. B. Solutions inherit the
singularities of these functions, which makes it possible to
construct a regular solution. The dependence of the
parameters on ΛG is a necessary condition for the existence
of a regular solution in the neighborhood of ΛG ¼ ∞.
A qualitative analysis of Eqs. (4.1) and (4.2), developed

above, reveals the mathematical reason why the parameters
Λe and Λi are not independent in the regular solution. The
analyticity in ΛG follows from the representation given in
Eq. (4.12). The requirement of regularity at ΛG ¼ ∞would
imply regularity in the extended complex ΛG plane. In such

a case, φkðxÞ must be a constant. By introducing a
dependence of the parameters onΛG, particular, non-trivial,
regular solutions at ΛG ¼ ∞ can be constructed, which can
further be used to approximate the general solution.

2. Electro- and ionospheres

The first term in Eq. (4.9) depends exponentially on
β1 ∼

ffiffiffiffiffiffi
ΛG

p
. For x ≠ 0, sinhðβ1xÞ has no zeros. For the

chemical potential to vanish at the boundary, the solution
must contain the component ∼ sinðβ2xÞ. The first term in
Eq. (4.9) is maximal on the boundary of the star, where it
should not exceed α2. The ratio α1=α2 is therefore expo-
nentially small.
The solutions are recovered with exponential accuracy

already for α2β2 ¼ 1. Substituting this expression into
Eqs. (4.3) and (4.4), we obtain

ð1þ ΛiÞβ22 ¼ 1þ ΛmΛe; ð4:15Þ

ð1 − ΛmΛiÞβ22 ¼ ΛGð1 − ΛeÞ: ð4:16Þ

The self-consistency of the system leads to Λe ¼ Λreg
e ,

where Λreg
e is given by Eq. (2.22). The corresponding β

parameters (with an additional index 0) become

β210 ¼
ΛGð1þ ΛiÞ − ð1 − ΛmΛiÞ

Λið1þ ΛmÞ
; ð4:17Þ

β220 ¼
ΛGð1þ ΛmÞ

ΛGð1þ ΛiÞ þ Λmð1 − ΛmΛiÞ
: ð4:18Þ

Equations (2.22), (4.17) and (4.18) are exact to all orders in
1=ΛG.Λi is a function ofΛG, according to Eq. (2.21). In the
approximation α1 ¼ 0, with exponential accuracy, the
function θðxÞ is given by

θðxÞ ¼ φðxÞ
x

≈
sinðβ20xÞ
β20x

; ð4:19Þ

in agreement with the analysis of Sec. II. B for
unit polytropic indices. The function θðxÞ is regular for
ΛG ¼ ∞ but inherits the singularities of β20.
A variation in the electron density at r ¼ 0 leads to a

variation △Λe ¼ Λe − Λreg
e ≠ 0, corresponding variations

of Λi and β� and, ultimately, to αk 1 ≠ 0. We return to the
general solution (4.9) and write the function θk in the form

θkðxÞ ¼ αk 1
sinhðβ1xÞ

x
þ αk 2

sinðβ2xÞ
x

; ð4:20Þ

where, with account of Eq. (4.10),

αk 2 ¼
1 − αk1β1

β2
: ð4:21Þ
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The regular solution (4.19) vanishes for x0 ¼ π=β20. For
αk1 ≠ 0, one of the functions θkðxÞ vanishes already at
xb ¼ x0 þ△x, whereas the second function is still finite.
We write this condition in the form

θiðxbÞ ¼ 0; ð4:22Þ

θeðxbÞ ¼ θeb; ð4:23Þ

where θeb is the value of the electron function at the
boundary. We assume first that an electrosphere is formed.
As follows from Sec. III, the electron pressure at the

boundary of the star is Peb ∼ Pun=ΛG, where Pun is the
characteristic pressure scale. The relation Pe ∼ n1þ1=ηe

e ∼
θ1þηe
e implies that θeb ∼ Λ−1=ð1þηeÞ

G ≪ 1. For the case under
consideration, ηe ¼ 1, and accordingly, θeb ∼ 1=

ffiffiffiffiffiffi
ΛG

p
. The

typical scale of the electrosphere is ra=r0∼θeb∼Λ−1=ð1þηeÞ
G ,

in agreement with the estimates given in Eqs. (3.19)
and (3.20). Using Eq. (3.2) and the inequality W0 ≥ 0,
we obtain

θeb ≤ λ−1=ð1þηeÞ
G

� ð1þ ηeÞðqs þ λmÞ2
2Λeð1þ ΛmÞð1 − λ2m=λGÞ

×

�
Ms

4πr30ni0mi

�
2
�
r0
Rs

�
4
�
1=ð1þηeÞ

: ð4:24Þ

Equations (4.22) and (4.23) allow to express the
unknown coefficients αk 1 in terms of θeb. Given the relation
in Eq. (4.21), the functions θkðxÞ are completely defined,
but the parameters △x and θeb on which these functions
depend must be found. We first substitute αk 1 into the first
of Eqs. (4.3) and (4.4), setting β2 ¼ β21, and then substitute
αk 2, setting β2 ¼ −β22. The two resulting equations are
linear in θeb. By excluding θeb, we find

ð1þ ΛiÞβ22 − 1 − ΛmΛe

β22 − ΛmΛe

sinh ðβ1xbÞ
β1xb

¼ ð1þ ΛiÞβ21 þ 1þ ΛmΛe

β21 þ ΛmΛe

sinðβ2xbÞ
β2xb

: ð4:25Þ

This equation defines xb as a function of the parameters Λe,
Λi, Λm, and ΛG. Equation (4.4) is not used because for
β2 ¼ β2�, it is not independent. Both parts of Eq. (4.25)
define θeb ≥ 0; therefore, a solution can exist for β22 ≥ β220
and△x ≤ 0. As noted above, θeb ∼ 1=β1 ∼ 1=

ffiffiffiffiffiffi
ΛG

p
, and so

△x ∼ ra=r0 ∼ 1=
ffiffiffiffiffiffi
ΛG

p
. Considering △x ∼ 1=β1 ≪ 1, the

right-hand side of Eq. (4.25) can be expanded into a series
in the neighborhood of xb ¼ x0; as a result, we find

△x ¼ −
1

β1
W
�
△Λe exp ðπβ1=β2Þ

2ð1þ ΛiÞ
�
: ð4:26Þ

The displacement △x is expressed in terms of the Lambert
W-function, which gives a solution to the equation
WðxÞ expðWðxÞÞ ¼ x. Since the argument of the function
is of order unity, the correction toΛe is exponentially small:

△Λe ∼ exp ð−Oð
ffiffiffiffiffiffi
ΛG

p
ÞÞ:

For θeb, we obtain

θeb ¼ −
△x
x0

ð1þ ΛiÞ: ð4:27Þ

In Eqs. (4.26) and (4.27), the ∼ exp ð−πβ1=β2Þ terms and
higher terms in 1=

ffiffiffiffiffiffi
ΛG

p
are omitted. At this level of

accuracy, we can replace β1 and β2 with the expressions
in Eqs. (4.17) and (4.18) everywhere, including exponents.
The positive definiteness of θeb implies that △x < 0 and
△Λe > 0.
For asymptotically large values of the argument ofWðxÞ,

the expansion WðxÞ ¼ lnðxÞ − lnðlnðxÞÞ þ � � � is valid. A
correction △Λe ∼ 1=

ffiffiffiffiffiffi
ΛG

p
could lead to the estimate

△x ∼ θeb ∼ 1, which contradicts the upper limit of
Eq. (4.24). The set of admissible solutions, therefore, consists
only of solutions with exponentially small deviations △Λe.
Equations (4.1) and (4.2) also permit solutions corre-

sponding to an ionosphere. Instead of Eqs. (4.22)
and (4.23), we require

θiðxbÞ ¼ θib; ð4:28Þ

θeðxbÞ ¼ 0: ð4:29Þ

The equation for determining △x is as follows:

ð1þ ΛiÞβ22 − 1 − ΛmΛe

β22Λi − 1

sinh ðβ1xbÞ
β1xb

¼ ð1þ ΛiÞβ21 þ 1þ ΛmΛe

β21Λi þ 1

sinðβ2xbÞ
β2xb

: ð4:30Þ

Both parts are equal to θib > 0. The relationship between
△x, △Λe and θib is established by the relations (4.26)
and (4.27) with the substitutions θeb → θib, △Λe → −△Λe
and Λi → 1=Λi, while the other parameters remain
unchanged. The condition θib > 0 implies that △x < 0
and △Λe < 0. An upper limit on θib is found from the
inequality W0 ≥ 0 and the balance between the pressure
and the forces of gravitational attraction and electrostatic
repulsion acting on the ions at the boundary of the electron
component [cf. (3.2)]:
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θib ≤ λ−1=ð1þηiÞ
G

�ð1þ ηiÞð−qs þ λm=ΛmÞ2
2Λið1þ ΛmÞð1 − 1=ΛGÞ

×

�
Ms

4πr30ni0mi

�
2
�
r0
Rs

�
4
�
1=ð1þηiÞ

: ð4:31Þ

An ionosphere exists provided that qs < λm=Λm ¼ A=Z.
For positive values of△Λe, the substance in the center of

the star is closer to the electrically neutral state than in the
regular solution. On the surface of the baryon component,
the bulk charge is positive, and the electrosphere compen-
sates for this charge either partially, completely, or exces-
sively. Suppression of the electron fraction increases the
deviation from electroneutrality and corresponds to
△Λe < 0. Under the condition qs < A=Z, the electron
density vanishes when the ion density is still finite. On
the surface of the electron component, the stellar charge is
positive (by continuity) and increases with j△Λej. The
ionosphere makes an additional contribution to this charge.
j△Λej can be increased until it violates (4.24) in the case of
an electrosphere or (4.31) in the case of an ionosphere.

3. Charge-mass-radius relation

The general properties associated with a deviation from
local electroneutrality are expected to be inherent in all
realistic models. We thus consider the charge-mass-radius
relation for stars. The mass and radius are expressed as
follows:

Ms

4πr30ni0mi
¼ πð1þ ΛiÞ

β2
; ð4:32Þ

Rs

r0
¼ π

β2
: ð4:33Þ

The violation of the LEC affects the mass and radius at
higher orders of the expansion in 1=

ffiffiffiffiffiffi
ΛG

p
. The correction to

the radius is ΔRs ¼ r0△x ∼ r0=
ffiffiffiffiffiffi
ΛG

p
, so the mass-radius

relation remains unchanged to within ∼1=
ffiffiffiffiffiffi
ΛG

p
. The bulk

charge of the star, qs, and the electrosphere charge, qe, are
as follows:

Z
A
qs ¼

1−ΛmΛi

1þΛi
−
ð1þΛmÞΛi

ð1þΛiÞ2
πΘeb;

Z
A
qe ¼ −

1þΛm

1þΛi

2
64−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1−

Λi

1þΛi
πΘeb

�
2

−
Λi

1þΛi
π2Θ2

eb

s

þ
�
1−

Λi

1þΛi
πΘeb

�375; ð4:34Þ

whereΘeb ¼ β1θeb=β2 ∼ 1. Both formulas are valid with an
accuracy of ∼1=

ffiffiffiffiffiffi
ΛG

p
. The existence of an electron shell

requires an excess of electrons relative to the solution
θeb ¼ θib ¼ 0. Accordingly, the second term in qs is
negative, and as Θeb increases, its contribution reduces
the stellar charge. By equating the root expression to zero,
we can obtain the maximum value of Θeb:

Θmax
eb ¼ ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 1=Λi

p
− 1Þð1þ ΛiÞ
π

: ð4:35Þ

This value corresponds to the upper limit in Eq. (4.24). For
Θeb ¼ Θmax

eb , the shell overcompensates for the positive
charge of the star: ðqs þ qeÞmin ¼ −λm < 0.
An ionosphere forms for a lower concentration of

electrons. The bulk charge, qs, measured at the boundary
of the electron component and the ion envelope charge, qe,
are given by the expressions

Z
A
qs¼

1−ΛmΛi

1þΛi
þð1þΛmÞΛi

ð1þΛiÞ2
πΘib;

Z
A
qe¼

ð1þΛmÞΛi

1þΛi

2
64−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1−

1

1þΛi
πΘib

�
2

−
1

1þΛi
π2Θ2

ib

s

þ
�
1−

1

1þΛi
πΘib

�375; ð4:36Þ

where Θib ¼ β1θib=β2 ∼ 1. The charge qs increases with
Θib. The radicand vanishes when Θib takes its maximum
value

Θmax
ib ¼ ð ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ Λi
p

− 1Þð1þ 1=ΛiÞ
π

: ð4:37Þ

One can check that for Θib ¼ Θmax
ib , the inequality in

Eq. (4.31) becomes an equality. The maximum total charge
is equal to ðqs þ qeÞmax ¼ A=Z. The condition qs < A=Z
constrains the value of Θib from above by ð1þ ΛiÞ=π.
However, this limit is weaker than Θib ≤ Θmax

ib .
Figure 4 plots the bulk charge of the star, qs, and the total

charge including the envelope, qs þ qe, as functions of the
difference Θeb − Θib in the interval ð−Θmax

ib ;Θmax
eb Þ for a

mixture of electrons and protons, i.e., for Z ¼ A ¼ 1 and
Λi ¼ Λm. The region Θeb − Θib ∼ 0 is presented separately
in Fig. 5 on an enlarged scale.
In summary, in the two-fluid model with unit polytropic

indices, it is possible to explicitly construct the general
solution describing charged stars with electro- and iono-
spheres. An electrosphere forms if the ion chemical
potential vanishes at the boundary, θiðxbÞ ¼ 0, whereas
the electron chemical potential at the boundary is finite,
θeðxbÞ > 0, according to Eqs. (4.22) and (4.23). An iono-
sphere forms in the opposite case; see Eqs. (4.28)
and (4.29). The solution for the internal stellar structure
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is unambiguously matched with the solution for the electro-
or ionosphere. The guiding parameter of the problem is
△Λe ¼ Λe − Λreg

e . The general solution also describes stars
with zero total charge, but such stars are not locally neutral.
In an exponentially small neighborhood of Λreg

e , the
electron and ion densities can be varied without restrictions.
The stellar envelope is sensitive to exponentially small
deviations ofΛe fromΛreg

e . The same fact can be interpreted
as indicating remarkable overall stellar stability: changes in
the envelope, and, accordingly, in the total stellar charge
(within acceptable limits) have an exponentially weak
influence on the internal structure of a star.

V. GENERAL SOLUTION TO THE
UNCONSTRAINED HYDROSTATIC

EQUILIBRIUM EQUATIONS

From the analysis of the exactly solvable model, the
specific nature of the problem becomes rather transparent:
the general solution to Eqs. (2.12) and (2.13) contains a
component that is irregular at ΛG ¼ ∞. In the model of
Sec. IV, the regular component dominates up to the surface
of the star, whereas the irregular component is exponen-
tially small everywhere except for the subsurface layer
Δr ∼ ra ∼ r0=

ffiffiffiffiffiffi
ΛG

p
, where the contributions of the two

components are comparable. The exponential smallness of
the irregular component makes perturbation theory appro-
priate for describing the inner layers of the star.
There are four independent parameters, Λe, Λi, Λm, and

ΛG, on which Eqs. (2.12) and (2.13) and their solutions
depend. The regular solution is a three-parameter solution
with the independent parameters Λi, Λm, and ΛG. The
function Λe ¼ Λreg

e is defined in Sec. II. C to Oð1=ΛGÞ.
The general solution and the regular solution satisfy
the equations with different values of Λe. We denote the
variance by △Λe ¼ Λe − Λreg

e , j△Λej ≪ 1. The parameter
Λi is not modified since for the general case ηe ≠ ηi
considered here, Λe and Λi are independent.
Let θk0 denote the regular solution. The general solution

is assumed to be of the form

θk ¼ θk0 þ χk; ð5:1Þ
where χk is a small correction. This representation is valid
everywhere except within a thin subsurface layer. By
substituting θk and θk0 into Eqs. (2.12) and (2.13) and
linearizing these equations in χk and △Λe, we obtain

△xðχe þ ΛiχiÞ ¼ −ðηiθηi−1i0 χi þ ΛmΛe0ηeθ
ηe−1
e0 χe

þ Λm△Λeθ
ηe
e0Þ; ð5:2Þ

△xðχe − ΛmΛiχiÞ ¼ −ΛGðηiθηi−1i0 χi

− Λe0ηeθ
ηe−1
e0 χe −△Λeθ

ηe
e0Þ: ð5:3Þ

The initial conditions

χkð0Þ ¼ χ0kð0Þ ¼ 0 ð5:4Þ
show that △Λe determines the overall scale of χk.

A. Irregular component in the WKB approximation

When both sides of Eq. (5.3) are divided by ΛG, the
Laplacian acquires the small coefficient 1=ΛG. A similar
case occurs in the Schrödinger wave equation, in which the
kinetic term with the Laplacian contains ℏ2. In the semi-
classical limit, ℏ is small, which makes the similarity of
Eqs. (5.2) and (5.3) to the semiclassical limit of the
Schrödinger wave equation quite obvious. In quantum
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FIG. 5. The bulk charge qs and the total charge qs þ qe as
functions of the difference Θeb − Θib on an enlarged scale. The
notation is the same as in Fig. 4.
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FIG. 4. The bulk charge qs and the total charge qs þ qe as
functions of the difference Θeb − Θib for a mixture of electrons
and protons (Z ¼ A ¼ 1) and for Λi ¼ Λm. Positive values of
Θeb − Θib correspond to the formation of an electrosphere
(Θib ¼ 0), whereas negative values correspond to the formation
of an ionosphere (proton envelope, Θeb ¼ 0). The region near
zero is shown on an enlarged scale in Fig. 5.
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mechanics, the Wentzel, Kramers, and Brillouin approxi-
mation is used to describe the semiclassical limit; this
approach is known as the WKB method (see, e.g., [34]).
Following the general scheme, we look for a solution of

the form

χirrk ðxÞ ¼ gkðxÞ expð
ffiffiffiffiffiffi
ΛG

p
SðxÞÞ: ð5:5Þ

In the neighborhood of ΛG ¼ ∞, the functions gk admit a
series expansion in 1=

ffiffiffiffiffiffi
ΛG

p
:

gkðxÞ ¼ gk 0ðxÞ þ
gk 1ðxÞffiffiffiffiffiffi

ΛG
p þ gk 2ðxÞ

ΛG
þ � � � : ð5:6Þ

The exponential factor causes the point ΛG ¼ ∞ to be an
essentially singular point of χirrk ðxÞ. Applying △x to χirrk ðxÞ
yields

△xχ
irr
k ¼ expð

ffiffiffiffiffiffi
ΛG

p
SÞ

×

�
ΛGgkðS0Þ2þ

ffiffiffiffiffiffi
ΛG

p ðx2g2kS0Þ0
x2gk

þðx2g0kÞ0
x2

�
: ð5:7Þ

The coefficients of powers of
ffiffiffiffiffiffi
ΛG

p
are as follows:

ΛG∶ gk0ðS0Þ2; ð5:8Þ
ffiffiffiffiffiffi
ΛG

p
∶ gk1ðS0Þ2 þ

ðx2g2k0S0Þ0
x2gk0

; ð5:9Þ

1∶ gk2ðS0Þ2 þ
ðx2g2k1S0Þ0
x2gk1

þ ðx2g0k0Þ0
x2

; ð5:10Þ

where the common exponential factor is suppressed.
The ΛG term in Eq. (5.2) yields the relation

ge0 þ Λigi0 ¼ 0: ð5:11Þ

By substituting this relation into Eq. (5.3), we obtain with
the same accuracy

S0 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ηiθ

ηi−1
i0 þ ΛiΛ

reg
e ηeθ

ηe−1
e0

Λið1þ ΛmÞ

s
: ð5:12Þ

The exponent can be found by integrating Eq. (5.12). In the
model with unit polytropic indices, this expression gives a
simple linear dependence, S ∼ x.
The

ffiffiffiffiffiffi
ΛG

p
term in Eq. (5.2) leads to the relation

ge1 þ Λigi1 ¼ 0: ð5:13Þ
Using this equality in Eqs. (5.3) and (5.12), we find that the
second differential term in Eq. (5.9) vanishes. We thus
obtain

x2g2e0S
0 ¼ const: ð5:14Þ

Near the center, gk0 behaves as gk0 ∼ 1=x. Equation (5.12)
leads to

S�ðxÞ ¼ �
Z

x

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ηiθ

ηi−1
i0 ðx0Þ þ ΛiΛ

reg
e ηeθ

ηe−1
e0 ðx0Þ

Λið1þ ΛmÞ

s
dx0:

The terms with S� appear in the expression for χirrk0ðxÞ in a
certain combination. The singularity at x ¼ 0 can be
eliminated by taking the difference exp ð ffiffiffiffiffiffi

ΛG
p

SþðxÞÞ−
exp ð ffiffiffiffiffiffi

ΛG
p

S−ðxÞÞ. Finally,

χirrk0ðxÞ ¼ Ck0
sinh ð ffiffiffiffiffiffi

ΛG
p

SþðxÞÞ
x
ffiffiffiffiffiffiffiffiffiffiffiffi
S0þðxÞ

p þOðΛ−1
2

G Þ; ð5:15Þ

where the Ck 0 are arbitrary constants.
The higher-order terms of the expansion can be found in

a similar manner.
The functions χirrk0ðxÞ do not vanish at x ¼ 0. The

normalization condition θkð0Þ ¼ 1 is restored when con-
sidering a particular solution of the inhomogeneous ODE
system defined by Eqs. (5.2) and (5.3).

B. Correction to the irregular component

A particular solution to Eqs. (5.2) and (5.3) can be found
from the original ODE system defined by Eqs. (2.12)
and (2.13). We can construct the regular solution to this
system, starting from the LEC solution, in the form of a
series expansion in 1=ΛG. The functions θk0ðxÞ and Λreg

e

that are obtained in this way depend on the parameters Λi,
Λm, and ΛG.
Suppose that we are looking for the regular solution to

Eqs. (2.12) and (2.13) with the initial conditions θkð0Þ ≠ 1

and θ0kð0Þ ¼ 0 for jθkð0Þ − 1j ≪ 1. Let θ̂k0ðxÞ denote the
corresponding solutions,whichdepend on the parametersΛi,
Λm, and ΛG. The same parameters determine Λe ≡ Λreg0

e .
It is not difficult to see that by rescaling x and θ̂k0ðxÞ, the

problem can be reduced to the initial problem with the
standard initial conditions, the rescaled variable x,

x̂ ¼ x

ffiffiffiffiffiffiffiffiffiffiffiffi
θηii ð0Þ
θeð0Þ

s
;

and the new parameters Λe and Λi:

Λ̂e ¼ Λreg0
e

θηee ð0Þ
θηii ð0Þ

; Λ̂i ¼ Λi
θið0Þ
θeð0Þ

:

By contrast, Λm is not modified. Obviously, Λ̂e is a known
function of Λ̂i, namely, Λ̂e ¼ Λreg

e ðΛ̂iÞ; thus,

Λreg0
e ðΛiÞ ¼

θηii ð0Þ
θηee ð0ÞΛ

reg
e

�
Λi

θið0Þ
θeð0Þ

�
:
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Under the assumption of the smallness of △θk¼θkð0Þ−1,
we obtain

△Λe ¼ Λreg0
e − Λreg

e ¼ △θi

�
ηiΛ

reg
e þ Λi

∂Λreg
e

∂Λi

�

−△θe

�
ηeΛ

reg
e þ Λi

∂Λreg
e

∂Λi

�
:

The solution to Eqs. (2.12) and (2.13) with the nonstandard
boundary conditions can be written as follows:

θ̂k0ðxÞ ¼ θkð0Þθk0
 
x

ffiffiffiffiffiffiffiffiffiffiffiffi
θηii ð0Þ
θeð0Þ

s
;Λi

θið0Þ
θeð0Þ

!
: ð5:16Þ

The function

χk0 ¼ θ̂k0 − θk0 ð5:17Þ
satisfies the linearized equations (5.2) and (5.3) for △Λe ¼
Λreg0
e − Λreg

e and the initial conditions χk0ð0Þ ¼ △θk. For
small △θk, we can write

χk0ðxÞ ¼ θk0ðxÞ△θk þ x
∂θk0ðxÞ

∂x
ηi△θi −△θe

2

þ Λi
∂θk0ðxÞ
∂Λi

ð△θi −△θeÞ: ð5:18Þ

C. General solution

The irregular component of the general solution is
given by the first term of the expansion in Eq. (5.6).
Equation (5.15) is a solution to the homogeneous equation,
whereas Eq. (5.18) is a solution to the nonhomogeneous
equation. The general solution is defined by Eq. (5.1) with
χk ¼ χirrk þ χk0. Among these functions, θk0 and χk0 are
regular at ΛG ¼ ∞, whereas χirrk is singular atΛG ¼ ∞. The
initial conditions (5.4) lead to the relation

Ck0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΛGS0þð0ÞÞ

q
þ△θk ¼ 0; ð5:19Þ

where the Ck0 are the constants that appear in Eq. (5.15).
The derivative of χk0 at x ¼ 0 vanishes by construction. In
the general case, S�ðxÞ ¼ xS0�ð0Þ þOðx3Þ; consequently,
the derivative χirrk also vanishes automatically at x ¼ 0. As a
consequence of Eq. (5.11), the coefficients Ck0 satisfy

Ce0 þ ΛiCi0 ¼ 0:

By expressing the unknown coefficients in terms of Ci0, we
can write

χiðxÞ ¼
Ci0

x
ffiffiffiffiffiffiffiffiffiffiffiffi
S0þðxÞ

p sinh
� ffiffiffiffiffiffi

ΛG

p
SþðxÞ

	
− Ci0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΛGS0þð0Þ

q �
θi0ðxÞ þ x

∂θi0ðxÞ
∂x

ηi þ Λi

2
þ Λi

∂θi0ðxÞ
∂Λi

ð1þ ΛiÞ
�
;

χeðxÞ ¼ −
Ci0Λi

x
ffiffiffiffiffiffiffiffiffiffiffiffi
S0þðxÞ

p sinh
� ffiffiffiffiffiffi

ΛG

p
SþðxÞ

	
þ Ci0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΛGS0þð0Þ

q �
Λiθe0ðxÞ −

∂θe0ðxÞ
∂x

ηi þ Λi

2
− Λi

∂θe0ðxÞ
∂Λi

ð1þ ΛiÞ
�
:

In each of these expressions, the first term increases
exponentially with x, dominates the second (regular) term
for x≳ 1=

ffiffiffiffiffiffi
ΛG

p
, and becomes comparable to the regular

component θk0 near the surface in the layer jx − xbj ∼ θeb,
where perturbation theory in χk is no longer applicable. The
constant Ci0 is exponentially small. This feature has been
noted earlier in the analysis of the exactly solvable model of
Sec. IV. The exponential smallness of the irregular solution
in the inner layers of the star is obviously a common
property. The functions χiðxÞ and χeðxÞ differ in sign, and
the electron component is suppressed by approximately Λi.
The matching of θk and θ0k with the electrosphere

solution requires

χeðxbÞ ∼ θeb; χ0eðxbÞ ∼ 1:

The first of the equations allows to fix Ci0. For θiðxbÞ ¼ 0,

Eq. (5.12) leads to S0þðxbÞ ∼ θðηe−1Þ=2eb ; the second equation
then follows automatically. One can verify that for
ηe ¼ ηi¼ 1, χirrk is analytic in ΛG ∈ C1n∞, with ΛG ¼ ∞

being a unique singular point of χirrk , in agreement with the
analysis of Sec. IV. B.
Standard numerical methods for solving ODE systems

do not allow the separation of the regular solution from the
irregular one due to the exponential smallness of the latter.
A numerical solution to Eqs. (2.12) and (2.13) for x≲ 1
will inevitably contain an admixture of the irregular
component, which is interpreted by the program as a
machine zero. In the subsurface layer jx − xbj ∼ θeb, due
to the exponential growth of χirrk ðxÞ, this machine zero is
converted into a finite but random value. The stellar
properties that are sensitive to △Λe cannot be determined
using numerical methods. A change in the integration, e.g.,
of the grid step, is thus expected to result in uncontrolled
changes in the stellar charge, the thickness of the electro- or
ionosphere, and other quantities that depend on △Λe. In
view of these remarks, the numerical solutions of
Refs. [13–15] are likely to be unstable.
At the same time, as the example of Eqs. (4.34)

and (4.36) shows, relationships which do not depend on
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△Λe are numerically stable. Each integration with a
varying grid step leads to random values of qs and θeb,
but all points on the plane ðqs; θebÞ must lie on a smooth
curve. In the exactly solvable model of Sec. IV, the
quantities qs and θeb are related by a linear dependence.

VI. CONCLUSIONS

In this paper, we considered the unconstrained HE
equations for stars in the absence of local electroneutrality.
The condition of local electroneutrality is usually imposed
on the EoS phenomenologically as an additional constraint
(LEC). In our approach, the electrostatic interactions are
considered ab initio; as a result, the LEC is satisfied
approximately, with the uncompensated charge density
being 1=λG ∼ 10−36 of the particle number density. The
smallness of the parameter 1=λG makes it possible to use
the LEC to describe with a high accuracy properties that are
not related to stellar electrostatics.
We found that the mass-radius relationship and the

condition for gravitational stability for charged stars are
not modified to an accuracy of ∼λ−1=ð1þηeÞ

G . The admissible
states of charged stars are determined by the condition that
the electro- and ionospheres do not extend to infinity. This
requirement provides lower and upper bounds on the total
stellar charge of−0.1 and 150 C per solar mass, respectively.
The main system of unconstrained HE equations,

Eqs. (II.12) and (II.13), belongs to the class of singularly
perturbed ODEs. In such a system, the perturbation
parameter (in our case, 1=λG) appears as a coefficient of
the higher derivative and thus plays the main role in
specifying the nature of the problem. The use of conven-
tional (regular) methods for solving ODEs via series
expansion in a small parameter leads to the loss of certain
solutions in this case. In the limit of λG → ∞, Eq. (II.13)
becomes a constraint on the particle concentrations, which
we identify as an LEC.
The Poincaré theorem on analyticity and Dyson’s argu-

ment indicate that the general solution to Eqs. (II.12)—
(II.13) is singular for λG ¼ ∞. A particular, regular solution
can exist provided that one of the parameters, e.g., Λe, is
replaced by a function of λG. Such a solution can be
constructed as a formal power series in G (∼1=λG) starting
from a locally neutral solution. Only these two types of
solutions, namely, regular ones and locally neutral ones,
have been discussed in the literature to date.
In this paper, the general solution to the HE problem was

first constructed in NGT.
In Sec. IV, we presented an exactly solvable model of a

two-component mixture of ions and electrons with unit
polytropic indices. The general solution to the uncon-
strained HE equations appears to be irregular in the
neighborhood of λG ¼ ∞. The irregular component is
exponentially small in the inner layers of the star.
In the general case, the WKB method can be used to

construct the irregular component. Its magnitude is

comparable to that of the regular component in a subsurface

layer of thickness ∼λ−1=ð1þηeÞ
G , where these components

interact non-linearly and determine the structure of the
electro- or ionosphere. The properties of these envelopes
are exponentially sensitive to variations in the charge
density in the central regions of the star.
In general, stars are characterized by their mass, radius

and charge. Nuclear reactions in the interior of a star cause
variations in the parameters Λe, Λi, and Λm and thereby
affect the bulk stellar charge, which, due to the conserva-
tion of electric charge, leads to a charge exchange between
the envelope and the inner region.
The structure of the general solution to the unconstrained

HE equations can be described as follows:
Starting from a locally neutral solution, one can con-

struct a regular solution (θk0 in Sec. V) in the form of a
series in powers of G. On the basis of this solution, an
irregular component can be constructed using the WKB
method ( χirrk in Sec. V). This component is singular for
λG ¼ ∞. A correction to this irregular component is needed
to satisfy the initial conditions ( χk0 in Sec. V). The sum of
these three functions yields the general solution, excluding

only a thin subsurface layer of thickness ∼λ−1=ð1þηeÞ
G , where

the magnitude of the irregular component becomes com-
parable to that of the regular component and the WKB
method is no longer applicable. Numerical methods should
then be used to match, within the subsurface layer, the
general solution with the known solution for the electro- or
ionosphere.
Extension of the formalism developed here to GRT is left

as an open problem. An important direction of study is
generalization to three or more component fluids in
chemical equilibrium. Yet another interesting application
is to find the general solution of the unconstrained HE
equations for strange stars.
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APPENDIX: INCOMPRESSIBLE
TWO-FLUID MODEL

As a second example of an exactly solvable, albeit
somewhat exotic, model, we consider the case of
ηi ¼ ηe ¼ 0, which corresponds to an incompressible fluid
(n ¼ n0θη ∼ const). Although the speed of sound in such a
substance is infinite, this case is of methodological interest
with regard to the restrictions on the parameter Λe in the
regular solution, especially as S�ðxÞ → 0 for ηi ¼ ηe ¼ 0.
For an incompressible fluid, Eqs. (2.12) and (2.13) become
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△xðθe þ ΛiθiÞ ¼ −ð1þ ΛmΛeÞ; ðA1Þ

△xðθe − ΛmΛiθiÞ ¼ −ΛGð1 − ΛeÞ: ðA2Þ

Their solutions for the initial conditions θkð0Þ ¼ 1 and
θ0kð0Þ ¼ 0 have the form

θi ¼ 1 −
ð1þ ΛmΛeÞ − ΛGð1 − ΛeÞ

6Λið1þ ΛmÞ
x2; ðA3Þ

θe ¼ 1 −
Λmð1þ ΛmΛeÞ þ ΛGð1 − ΛeÞ

6ð1þ ΛmÞ
x2: ðA4Þ

In principle, these solutions describe a charged stellar
configuration free from constraints on Λe. This freedom
is due to the irregular nature of the solution for ΛG ¼ ∞.
The requirement of regularity leads to the LEC Λe ¼ 1,
given that Λe is a parameter. If Λe is considered to be a
function of ΛG, then Λe ¼ 1þOð1=ΛGÞ. The solutions
(A3) and (A4) are valid in the inner region of the star. The
outer region requires special consideration.
According to Eq. (A3), the ion concentration vanishes

for

xi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

6Λið1þ ΛmÞ
ð1þ ΛmΛeÞ − ΛGð1 − ΛeÞ

s
: ðA5Þ

If we require the electron concentration to vanish at the
same point, xe ¼ xi, then we obtain Λe ¼ Λreg

e , where Λreg
e

is given by Eq. (2.22). In this case, the star still has a charge.
Suppose now that we do not require the concentrations to
vanish simultaneously. Again, let us consider the outer part
of the star, the electrosphere, where the ion concentration is
zero. The equation for θe reduces to

ð1þ ΛmÞ△xðθeÞ ¼ ΛeðΛG − Λ2
mÞ: ðA6Þ

At the boundary x ¼ xi, the function θe and its first
derivative are continuous. The solution to Eq. (A6) takes
the form

θea ¼ 1 −
x2i ðΛG þ ΛmÞ
2ð1þ ΛmÞ

�
1 −

2xi
3x

�
þ ΛeðΛG − Λ2

mÞ
6ð1þ ΛmÞ

x2:

For an electrically neutral star, the boundary x ¼ xe, where
θeaðxeÞ ¼ 0, determines the total charge. The bulk charge is
proportional to [cf. Eq. (2.35)]

Qs ∼ −x2ðθ0e − ΛmΛiθ
0
iÞjxi0 ; ðA7Þ

whereas the charge of the envelope is proportional to

Qe ∼ −
ΛGð1þ ΛmÞ
ΛG − Λ2

m
x2θ0eajxexi : ðA8Þ

The condition Qs þQe ¼ 0 leads to the relation

xe ¼ xi=Λ
1=3
e ; ðA9Þ

whereas the condition θeaðxeÞ ¼ 0 leads to the following
equation:

ΛeðΛG þ ΛmÞ þ ΛiΛ
1=3
e ð3ΛG þ 2Λm − Λ2

mÞ
¼ ΛG − 1þ 3ΛiðΛG þ ΛmÞ; ðA10Þ

whose solution, Λe, coincides with Λreg
e to an accuracy

of 1=ΛG.
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