
 

Gravitational lensing of photons coupled to massive particles
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The gravitational deflection of massless and massive particles, both with and without spin, has been
extensively studied. This paper discusses the lensing of a particle which oscillates between two interaction
eigenstates. The deflection angle, lens equation and time delay between images are derived in a model of
photon to hidden-photon oscillations. In the case of coherent oscillations, the coupled photon behaves as a
massive particle with a mass equal to the product of the coupling constant and hidden-photon mass. The
conditions for observing coherent photon-hidden photon lensing are discussed.
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I. INTRODUCTION

The gravitational deflection of massless and massive
particles, with and without spin, has been studied by
numerous authors. The gravitational deflection of massive
photons has been known for several decades [1]. The
deflection angle for a single flavor, massless neutrino was
derived by Lambiase et al. [2] and found to agree with the
predictions of general relativity for massless photons. The
optics and deflection angle for a spin-2 particle has been
obtained by Papinzi [3]. Several papers have discussed
explicitly neutrino lensing [4–6]. In a recent paper, the
ANTARES neutrino telescope [7] has obtained limits on
the neutrino emission of four lensed quasars. However, to
the best of the author’s knowledge, no detailed treatment of
neutrino lensing with flavor oscillations, giving the images
positions and delays, has been published, presumably due
to the complex formalism describing neutrino propagation
in a gravitational field. The purpose of this paper is to study
the lensing of oscillating particles with a simpler model
where photons are coupled to hidden, massive photonlike
particles (HP). The most straightforward approach to the
lensing of oscillating particles consists in following inde-
pendently the mass eigenstates on their geodesics, then
recombining them (coherently or not) at the observer level.
This point of view is taken in Sec. IV. The other approach is
the direct study of the propagation of a photon-HP beam.
The mixing of photons to HP is shown in Sec. II to be
equivalent to the propagation of photons in a refractive
medium. An effective refractive index is calculated in
Sec. II B. The Synge formalism [8], which provides
Hamilton’s equations for photon propagation in refractive
media, is used in Sec. III to derive the deflection angle and
time delay of the mixed photon. Finally, signatures of

photon-HP mixing in the deflection of radio waves by the
sun are discussed in Sec. IV.

II. EFFECTIVE REFRACTIVE INDEX OF
PHOTONS MIXED WITH HIDDEN PHOTONS

A. Hidden photon model

Photons are predicted to couple to massive uncharged
particles in several extensions of the standard model of
particle physics. The most popular of these particles is the
axion, which is a solution to the strong CP problem Dine
et al. [9]. Axions oscillate into photons in external magnetic
fields. Axions and other axionlike particles have been
extensively searched for and constrained [10,11]. The
HP-photon oscillations [12] share many features with the
photon-axion oscillations, but are simpler in several aspects
(e.g. the equivalent refractive index in vacuum is isotropic).
In this paper, the HP-photon oscillations are used as a toy
model to study the lensing of oscillating particle systems.
This section uses the notations of [12].
In the hidden photon model, the photon field Aμ couples

with a coupling strength χ to a massive spin-1 field B̃μ with
mass μ. The Lagrangian contains the usual electromagnetic
Lagrangian and a B̃μ related part,

LB ¼ 1

2
μ2ðB̃μB̃μ − 2χB̃μAμ þ χ2AμAμÞ: ð1Þ

The equations of motion in the z direction are

�
ðω2 þ ∂2

zÞ
�
1 0

0 1

�
− μ2

�
χ2 −χ
−χ 1

���
A

B̃

�
¼ 0: ð2Þ

The dispersion relations of plane waves with energy ω
and momentum k are obtained from Eqs. (2),*glicens@cea.fr
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����ω2 − k2 − μ2χ2 μ2χ

μ2χ ω2 − k2 − μ2

���� ¼ 0: ð3Þ

These dispersion relations have two branches which
describe a massless field, the photon, and a massive field
with mass μ0 ¼ μ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
χ2 þ 1

p
.

The propagation eigenvectors can be projected in the
(A, B̃) interaction basis as

Γ1 ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ χ2
p Aþ χffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ χ2
p B̃;

Γ2 ¼ −
χffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ χ2
p Aþ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ χ2
p B̃; ð4Þ

where Γ1 is the photon state.

B. Equivalent refractive index

In this section, the propagation of a photon beam
originating from a cosmic source is studied. Photons and
HP are described by plane waves, with energy ω, and
propagating in the z direction. In Sec. IV, photon-HP beam
coherence effects are discussed and it is more appropriate to
use wave packets. Initially, the photon beam is in a pure A
state, which is projected into the propagation basis as

Φðt ¼ 0Þ ¼ A ¼ −
χffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ χ2
p Γ2 þ

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ χ2

p Γ1: ð5Þ

At a later time t,

ΦðtÞ ¼ −
χffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ χ2
p Γ2 exp i

�
ωt −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 − μ02

q
z
	

þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ χ2

p Γ1 exp iωðt − zÞ: ð6Þ

Equation (6) assumes that the energy is conserved in the
photon-HP oscillations, and that momentum is not con-
served. This procedure is commonly used for neutrino
oscillations and has been proven to give consistent results
[13]. The photon amplitude A(t) is obtained by projecting
ΦðtÞ over A.

AðtÞ ¼ ΦðtÞ:A ¼ exp iωðt − zÞ
1þ χ2

×
�
χ2 exp i

�
ω −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 − μ02

q 	
zþ 1

	
: ð7Þ

Writing AðtÞ ¼ ρ exp iωðt − zÞ exp iϕ and assuming
μ0
ω ≪ 1, the photon survival probability is

ρ2 ¼ 1 −
4χ2

ð1þ χ2Þ2 sin
2
��

ω −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 − μ02

q 	
z=2

	

¼ 1 −
4χ2

ð1þ χ2Þ2 sin
2

�
μ02z
4ω

�
ð8Þ

and the phase of the photon beam is

ϕ ≃
zχ2μ2

2ω
: ð9Þ

Defining the effective wave number by keff ¼ ω − χ2μ2

2ω ,
the phase velocity vϕ and refractive index n are obtained,

vϕ ¼ ω

keff
≃ 1þ χ2μ2

2ω2
; ð10aÞ

n ¼ 1

vϕ
≃ 1 −

χ2μ2

2ω2
≃ vg; ð10bÞ

where vg is the group velocity. The motion of a photon
oscillating to a HP is thus similar to the motion of a photon
in a refractive medium or in a plasma.

III. GRAVITATIONAL LENSING OF PHOTONS
MIXED WITH HIDDEN PHOTONS

Gravitational lensing in a refractive medium has been
studied by several authors (see e.g. Bisnovatyi-Kogan and
Tsupko [14]) using the formalism of Synge [8]. Assume
that the light from a distant source propagates in the
gravitational field UðrÞ ≪ 1 of a massive lens. The
spacetime is described by the isotropic metric gij, given
in Cartesian coordinates by

ds2 ¼ gijdxidxj ¼ g00dt2 þ gssdr2 ð11aÞ

¼ −ð1þ 2UðrÞÞdt2 þ ð1 − 2UðrÞÞdr2: ð11bÞ

In Eq. (11b), the speed of light c is set to 1. The metric
signature is (−, þ, þ, þ); greek letters are used for the
spatial part of the metric and dr2 ¼ dxαdxβδαβ.
The Hamiltonian of a photon with energy ω ¼

−p0

ffiffiffiffiffiffiffiffiffiffi
−g00

p
in a medium with refractive index nðxα;ωÞ is

Hðxi; piÞ ¼
1

2
ðgijpipj − ðn2 − 1Þω2Þ ð12Þ

with the further restriction H ¼ 0. The latter is the
dispersion relation in the medium of index n. With the
metric defined by (11b), the dispersion relation can be
simplified to
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gss
X
α

p2
α ¼ −n2g00p2

0: ð13Þ

The Hamilton equations for the xα coordinates of the
photon are, in the medium rest frame

dxα

dλ
¼ gααpα ¼ gSSpα ðspace componentsÞ ð14aÞ

dxo

dλ
¼ g00p0 þ

�
ðn2 − 1Þ þ nω

dn
dω

�
p0g00

¼
�
n2 þ nω

dn
dω

�
p0g00; ð14bÞ

where λ parametrizes the position of the photon.
Introducing the group velocity

1

vg
¼ ∂ðnωÞ

∂ω ð15Þ

and the momentum P2 ¼ P
p2
α, and using the dispersion

relation (13), Eq. (14b) can be rewritten as

dxo

dλ
¼

�
nþ ω

dn
dω

�
P

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðgSSÞ × ð−g00Þ

q

¼ P
vg

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gSS × ð−g00Þ

q
: ð16Þ

The length element can be calculated using Eq. (14a),

dr
dλ

¼ gSSP; ð17Þ

so that

dxo

dr
¼ 1

vg

ffiffiffiffiffiffiffiffiffiffi
−g00

gSS

s
¼ 1

vg

ffiffiffiffiffiffiffiffiffiffi
gSS
−g00

r
: ð18Þ

The travel time from the source S to the observer O is
given by

T ¼
Z

S

O

1

vg

ffiffiffiffiffiffiffiffiffiffi
gSS
−g00

r
dr ≃

Z
S

O

ð1 − 2UðrÞÞdr
vg

: ð19Þ

In Eq. (19), vg depends on position through the dependence
of the energy of the particle on the gravitational potential
UðrÞ. For the refractive index obtained in Sec. II B,

1

vg
¼ ∂ðnωÞ

∂ω ¼ 1þ χ2μ2

2ω2
¼ 1 −

χ2μ2

2p2
0g

00
ð20aÞ

≃
�
1þ χ2μ2

2p2
0

þ χ2μ2UðrÞ
p2
0

�
: ð20bÞ

To first order in UðrÞ, the travel time is given by the
integral

T ¼
Z

S

O
dr

�
1þ χ2μ2

2p2
0

− 2UðrÞ
�
: ð21Þ

A generalization of the Fermat principle from geomet-
rical optics [8,15] is used in the paper to derive the
deflection angle. The optical path length from the source
to the observer,

L ¼
Z

S

O
n

ffiffiffiffiffiffiffiffiffiffi
gSS
−g00

r
dr ≃

Z
S

O
nð1 − 2UðrÞÞdr; ð22Þ

is extremal on light paths. Taking n from Eq. (10b) and
developing as in (20b), one obtains to first order in UðrÞ

L ¼
Z

S

O
dr

�
1 −

χ2μ2

2p2
0

− 2UðrÞ
�
: ð23Þ

In the thin lens approximation, the lensed particle moves
on a straight line until it get deflected towards the observer.
The angular distance to the lens is DOL; the angular
distance from lens to observer is DLS. Coordinates are
taken in the plane perpendicular to the line of sight (the lens
plane). The projected source position on the lens plane is at
η, and the impact parameter of the particle trajectory is at ζ.
The remainder of the paper uses the Schwarzschild lens

model, appropriate for lensing by stars and black holes. The
gravitational potential is UðrÞ ¼ − GML

r , where ML is the
lens mass. Integration of Eq. (23) yields

L ¼
�
1

2

�
1 −

χ2μ2

2p2
0

��
1

DOL
þ 1

DLS

�

× ðζ − ηÞ2 − 4GML ln ζ þ L0

�
; ð24Þ

where L0 is a constant.
The travel time is given by the same equation with just a

sign change,

T ¼
�
1

2

�
1þ χ2μ2

2p2
0

��
1

DOL
þ 1

DLS

�

× ðζ − ηÞ2 − 4GML ln ζ þ T0ðμ2Þ
�
; ð25Þ

where

T0ðμ2Þ ¼
�
1þ χ2μ2

2p2
0

�
DOS þ 2GML ln ðDOLDLSÞ: ð26Þ

The lens equation gives the position of images. It is
obtained by differentiating Eq. (24) with respect to ζ. One
gets the familiar equation
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ðζ − ηÞ − r2E
ζ
¼ 0 ð27Þ

where the Einstein radius rE is defined by

r2EðμÞ¼
4GMLDOLDLS

c2DOSð1− χ2μ2

2p2
0

Þ
≃
4GMLð1þ χ2μ2

2p2
0

ÞDOLDLS

c2DOS
: ð28Þ

Comparing with the geometric derivation of the lens
equation (Schneider et al. [15]), it is clear that the light
deflection angle is

ψðζÞ ¼
4GMLð1þ χ2μ2

2p2
0

Þ
c2ζ

: ð29Þ

The lens Eq. (27) has solutions ζ� defined by

ζ� ¼ 1

2

�
η�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η2 þ 4r2E

q 	
: ð30Þ

Equations (27) and (28) show that mixed photons are
lensed like massive particles of mass χμ. However, as
shown below [Eq. (33)], there are differences between
mixed photon lensing and ordinary massive photon lensing.
In the experiment of gravitational deflection of light by

the Sun, one of the light rays, say ζ− is occulted by the Sun.
Due to the coupling of the photon to the HP, the apparent
position of the source on the sky moves by

Δθcoh ¼
Δζþ
DOL

¼ χ2μ2rE2ð0Þ
2p2

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η2 þ 4rE2ð0Þ

p
DOL

ð31Þ

relative to the position expected for massless photons.
rEð0Þ is a short-hand notation for the Einstein radius
evaluated at μ ¼ 0.
The signal of a mixed photon with energy p0 is delayed

relative to the massless photon arrival by

ΔTcoh ¼
χ2μ2

2p2
0

DOS

�
1þ ζ2−

2DOLDLS

�
: ð32Þ

Oscillations are only possible if the photon-HP beam
has a nonvanishing momentum width, at least of order

p0 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
0 − μ2

p
≃ μ2

2p0
. The ζþ image is smeared on the sky

with a width of at least

δðΔζþÞ
Δζþ

∼
μ2

p2
0

: ð33Þ

The travel time ΔTcoh from Eq. (32) also obtains a relative

dispersion of at least μ2

p2
0

. By contrast, a lensed massive

particle observed by an ideal telescope would be seen as a

pointlike image, with an arbitrarily small arrival time
spread.

IV. COHERENT AND INCOHERENT LENSING

If the photon and the HP were not mixed, they would
move at different speeds on different geodesics. They
would give two sets of images with different travel times
(as noted by Kayser [16]). The angular distance between
say the ζþ images would be given by

Δθincoh ¼
Δζþ
DOL

¼ μ2rE2ð0Þ
2p2

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η2 þ 4rE2ð0Þ

p
DOL

ð34Þ

for photons of energy p0. The time of arrival of the wave
packets would be separated by

ΔT incoh ¼
μ2

2p2
0

DOS

�
1þ ζ2−

2DOLDLS

�
≃

μ2

2p2
0

DOS: ð35Þ

For the oscillation to occur, the photon and HP wave
packets have to overlap temporally and spatially. For
neutrino beams, this implies the existence of a coherence
length [17], as discussed in numerous papers [16,18]. From
Eqs. (35) and (34), the time overlap of the photon-HP wave
packets is possible if

ΔT incoh ≃
μ2

2p2
0

DOS < σx ð36Þ

where σx is the largest among the temporal and spatial
coherence width of the production and detection process
[18]. If the condition (37) is satisfied, then the condition for
space overlap of the wave packets

DOLΔθ ∼ rE
μ2

2p2
0

< σx ð37Þ

is also fulfilled, since rE ≪ DOS.
We now specialize to the observations of the gravita-

tional deflection of radio waves by the Sun. Fomalont et al.
[19] observed the relative position of 3C 279 (redshift
z ¼ 0.536, angular size distance DOS ¼ 1.27 Gpc) and
three fainter quasars with the Very Long Baseline Array.
The central frequency of observations was 43 GHz and the
passband width was 16 MHz. A limit of μ < 1.710−5 eV
has been set on the photon mass based on these observa-
tions (Accioly et al. [20]). One would naively expect that
this limit [obtained by exploiting Eq. (31)] would translate
directly into a limit on the effective mass μχ of the photon
in the HP model. However, this is true only when the
distance to the source DOS is larger than the coherence
length Λcoh. The coherence length has been evaluated for
radio sources, especially active galactic nuclei by Lobanov
et al. [21] in the context of photon-hidden photon mixing,
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Λcoh ¼ 4
ffiffiffi
2

p
σx

�
ω

μ

�
2

¼ 4
ffiffiffi
2

p
σx

��
ω

43 GHz

��
1.810−4 eV

μ

��
2

: ð38Þ

Since synchrotron radiation from a single electron in the
quasar source has a broadband spectrum, the temporal
coherence width is dominated by the detection process,
giving a lower limit for σx of 19 meters. Inserting this value
into Eq. (38) shows that the condition Λcoh > DOS can be
satisfied only for μ < 10−16 eV. This tiny value is smaller
than the photon mass in the interstellar medium (10−13 eV)
or the intergalactic medium plasmas (10−14 eV) [21].
Plasma effects would hide totally any additional photon
mass-induced deflection for HP masses smaller than
10−13 eV. In the 10−12 eV < μ < 10−5 eV mass range,
the HP mass is larger than the plasma-induced photon mass
and smaller than ω. Since the photon-HP beam is incoher-
ent, a HP signal would be weak (weaker than the photon
signal by χ2) and delayed relative to the photon signal by
∼10ð μ

10−12
Þ2 s. 3C279 is variable with a timescale of ∼1 day

at radio frequencies [22]. A 10-day observation similar to

that of Fomalont et al. [19] could in principle put an upper
limit on the coupling χ for hidden photon masses in the
10−10 eV < μ < 10−9 eV range.

V. CONCLUSION

The hidden-photon model is a convenient toy model to
study the lensing of oscillating particles. The photon-HP
oscillations induce a refractive index for the photon. The
deflection angle and time delay are then obtained with
Synge’s formalism. The photon-HP beam is lensed almost
like a single massive particle of mass χμ as long as the
photon and HP wave packets overlap. The only differences
with massive lensing are a tiny angular spread of the images
and spread in arrival time. When the distance to the photon
source is larger that the coherence length of the wave
packets, the photon and the HP are lensed separately and
give two sets of spatially and temporally separated images.
The results obtained in this paper should extend qualita-
tively to more complex problems such as neutrino lensing.

ACKNOWLEDGMENTS

I thank Jim Rich for stimulating and helpful comments.

[1] D. D. Lowenthal, Phys. Rev. D 8, 2349 (1973).
[2] G. Lambiase, G. Papini, R. Punzi, and G. Scarpetta, Phys.

Rev. D 71, 073011 (2005).
[3] G. Papini, Phys. Rev. D 75, 044022 (2007).
[4] J. D. Barrow and K. Subramanian, Nature (London) 327,

375 (1987).
[5] O. Mena, I. Mocioiu, and C. Quigg, Astropart. Phys. 28, 348

(2007).
[6] N. Fornengo, C. Giunti, C. W. Kim, and J. Song, Phys. Rev.

D 56, 1895 (1997).
[7] S. Adrián-Martínez, A. Albert, M. André, G. Anton, M.
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