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Compressing large data sets to a manageable number of summaries that are informative about the
underlying parameters vastly simplifies both frequentist and Bayesian inference. When only simulations
are available, these summaries are typically chosen heuristically, so they may inadvertently miss important
information. We introduce a simulation-based machine learning technique that trains artificial neural
networks to find nonlinear functionals of data that maximize Fisher information: information maximizing
neural networks (IMNNs). In test cases where the posterior can be derived exactly, likelihood-free
inference based on automatically derived IMNN summaries produces nearly exact posteriors, showing that
these summaries are good approximations to sufficient statistics. In a series of numerical examples of
increasing complexity and astrophysical relevance we show that IMNNs are robustly capable of
automatically finding optimal, nonlinear summaries of the data even in cases where linear compression
fails: inferring the variance of Gaussian signal in the presence of noise, inferring cosmological parameters
from mock simulations of the Lyman-α forest in quasar spectra, and inferring frequency-domain parameters
from LISA-like detections of gravitational waveforms. In this final case, the IMNN summary outperforms
linear data compression by avoiding the introduction of spurious likelihood maxima. We anticipate that the
automatic physical inference method described in this paper will be essential to obtain both accurate and
precise cosmological parameter estimates from complex and large astronomical data sets, including those
from LSST and Euclid.
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I. INTRODUCTION

Current data analysis techniques in astronomy and cos-
mology often involve reducing large data sets into a collection
of sufficient statistics [1–3]. There are several methods for
condensing raw data to a set of summaries. Amongst others,
these methods could be: principal component analysis (PCA)
[4–8]; statistics including the mean, covariance, and higher
point functions [9,10]; or calculating the autocorrelation or

power spectrum [10,11]. Unfortunately, summaries calcu-
lated using the above methods can still be infeasibly
large for data-space comparison. For example, analysis of
weak lensing data from the Euclid and the Large Synoptic
Survey Telescope (LSST) photometric surveys will have
around 104 summary statistics [12]. Reducing the number
of summaries further results in enormous losses in the
information available in the raw data [12].
Another popular way of summarizing data is using the

Massively Optimized Parameter Estimation and Data
(MOPED) compression algorithm [2]. Summaries from
MOPED are linear combinations of data that compress the
number of data points down to the number of parameters of
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a model describing the data. MOPED is completely lossless
when noise in the data is independent of the parameters and
when the likelihood is, at least to first order, Gaussian [2].
The MOPED algorithm has been used on many problems in
astronomy and cosmology such as studying the star
formation histories of galaxies [13–15], analyzing the
cosmic microwave background [16,17], and identifying
transients [18] to name but a few. Unfortunately, using
linear combinations of the data for compression may not be
optimal for maximizing the possible information available,
even when the likelihood is known [19].
For many astronomical and cosmological problems, it

can become impossibly difficult to write a likelihood func-
tion which describes, not only physics, but also includes
any selection bias and instrumental effects. Recently,
methods have become available to perform inference when
a likelihood is not available via approximate Bayesian
computation (ABC). ABC is a technique which allows
samples to be drawn from an approximate posterior dis-
tribution. Forward simulations are first created using
parameter values drawn from a prior and samples are
accepted or rejected by comparing the distance of the
simulation to the real data. To efficiently approach the true
posterior distribution, it is convenient to couple ABC with a
sampling procedure such as population Monte Carlo
(PMC). ABC using PMC (PMC-ABC) is a method to
obtain approximate parameter distributions by iterating
through weighted samples from the prior [20,21] and
can massively reduce the number of samples which need
to be drawn during ABC.
Likelihood-free inference has been used for a variety of

astronomical problems which include deducing quasar
luminosity functions [22], understanding early time galaxy
merger rate evolution [23], constraining cosmological
parameters with supernova observations [24], interpreting
galaxy formation [25], searching for the connection
between galaxies and halos [26], measuring cosmological
redshift distributions [27], inferring photometric evolution
of galaxies [28], and calculating the ionizing background
using the Lyman-α and Lyman-β forest transmission [29].
Each of the above examples are used in conjunction with
publicly available (PMC-)ABC codes [30–32].
A two-step compression algorithm was defined in [33]

that is capable of optimally summarizing data while
preserving information when the likelihood is not known.
The first step involves extracting informative statistics from
raw data (or simulations of the data) heuristically, i.e.
perhaps using the power spectrum or using PCA. The
summaries of the simulations contain information about
physics, selection bias, and the instrument. A second step
then assumes an asymptotic likelihood to perform com-
pression from the summaries gathered in the first step down
to the number of parameters in the model as in MOPED or
[19]. The choice of likelihood in the second step does not
bias the inference of model parameters during ABC,

although the compression will be closer to optimal by
choosing a better likelihood function.
However, what if there is information in the data that we

did not think to summarize in a first-step summary? In this
paper we introduce the concept of information maximizing
neural networks (IMNNs). Through the use of machine
learning, we can circumvent the two-step compression used
in [33] and find the most informative nonlinear data
summaries by training a neural network using the Fisher
information matrix as a reward function. In fact, if we
already know some informative summaries, such as those
calculated in the first step of [33], we can use the IMNN to
calculate summaries of the data which optimally increase
the information further and then including the IMNN
summaries amongst the first-step summaries.
Once the network is trained, ABC proceeds as before.

Model parameters can be drawn from a prior, used to
generate simulations and once they are fed through the
network, the IMNN summaries of the simulation can be
compared to the summaries of the real data. Samples can
then be accepted or rejected given the distance of the
network summary of the simulation to the network sum-
mary of the real data to build the approximate posterior
distribution of model parameters. The IMNN provides a
framework to perform automatic physical inference simply
by producing simulations.
In Sec. II we describe how to calculate the Fisher

information matrix and how linear summaries of the data
can conserve Fisher information using the MOPED algo-
rithm. In Sec. III we lay out the procedure for creating
nonlinear summaries of the data. An overview of how
artificial neural networks work is presented in Sec. IV and
we continue in Sec. V by showing how maximizing the
determinant of the Fisher information matrix allows a
network to be trained to provide the optimal nonlinear
set of summaries. Next, in Sec. VI, we trace the steps to
obtain parameter constraints from PMC-ABC using the
network trained as prescribed in Sec. V. Finally, in Sec. VII,
we give some test examples. The first test model provides
an example where a single linear summary of the data
would provide nearly no information about a parameter, but
the nonlinear summary provided by a trained artificial
neural network can extract the maximum information the
data contains. The second example is more astronomically
motivated, using the absorption of flux from quasars by
neutral hydrogen to constrain the amplitude of scalar
perturbations. Finally we use the network to summarize
and constrain the central oscillation frequency of a gravi-
tational wave burst from Laser Interferometer Space
Antenna (LISA). This problem was used in [34] to show
that MOPED compression introduces spurious maxima in the
posterior distribution; we show that the nonlinear IMNN
data compression introduced in this paper can avoid this
peculiarity.
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II. FISHER INFORMATION AND LINEAR
COMPRESSION

A likelihood function LðdjϑÞ of some data, d, with nd
data points, is informative about a model with a set of nϑ
parameters, ϑ. The more sharply peaked LðdjϑÞ is at a
particular value of ϑ, the better ϑ is known. The Fisher
information describes how much information d contains
about the linear parameters, ϑ, and can be calculated by
finding the second moment of the score of the likelihood
[35–37], i.e. the variance of the partial derivative of the
natural logarithm of the likelihood with respect to the
parameters at a fiducial parameter value, ϑfid,

FαβðϑÞ ¼
Z

ddLðdjϑÞ∂ lnLðdjϑÞ∂ϑα
∂ lnLðdjϑÞ

∂ϑβ
����
ϑ¼ϑfid

¼
�∂ lnLðdjϑÞ

∂ϑα
∂ lnLðdjϑÞ

∂ϑβ
�����

ϑ¼ϑfid

: ð2:1Þ

Equation (2.1) can be rewritten as

FαβðϑÞ ¼ −
�∂2 lnLðdjϑÞ

∂ϑα∂ϑβ
�����

ϑ¼ϑfid

ð2:2Þ

when the likelihood is twice continuously differentia-
ble [36–38]. A large Fisher information for a given set
of data indicates that the data is informative about the
parameters and therefore the parameters can be measured
more effectively [38]. In particular, the minimum variance
of an estimator of a parameter, ϑ, is given by the Cramér-
Rao bound [39,40], which states that

hðϑα − hϑαiÞðϑβ − hϑβiÞi ≥ ðF−1Þαβ; ð2:3Þ

such that finding the maximum Fisher information provides
the minimum variance for estimators of ϑ. Note that the
Cramér-Rao inequality only holds under certain conditions,
i.e. that the score function is defined for all d in the support
of the likelihood and that differentiation and taking the
expectation commute. The Cramér-Rao bound limits the
second moment of any estimator, but does not limit
the shape of the confidence regions [41]. In the case
that the likelihood of the data in a particular model is
Gaussian, the logarithm of the likelihood can be written as

−2 lnLðdjϑÞ ¼ ðd − μðϑÞÞTC−1ðd − μðϑÞÞ þ ln j2πCj;
ð2:4Þ

where d is the data and μðϑÞ is the mean of the model given
parameters ϑ, which we will denote μ for convenience.C is
the covariance of the data and is assumed to be independent
of the parameters. Using the MOPED algorithm [2], d can be
compressed from the number of points in the data, nd, to the
number of parameters of the model, nϑ, simply by seeking

the linear combination of data which optimizes the linear-
ized parameters. The MOPED compression is lossless in the
sense that the Fisher information is conserved under the
transformation

xα ¼ rTαd ð2:5Þ

where α labels the parameter and rα is calculated by
maximizing the Fisher information ensuring that rα is
orthogonal to rβ (where α ≠ β). The form of rα is

r1 ¼
C−1μ;1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ;T1 C

−1μ;1
p ; ð2:6Þ

for the first parameter, ϑ1, and where ∂=∂ϑα≡;α. For each
parameter afterwards,

rα ¼
C−1μ;α −

P
α−1
i¼1 ðμ;Tα riÞriffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

μ;Tα C−1μ;α −
P

α−1
i¼1 ðμ;Tα riÞ2

q : ð2:7Þ

After creating the linear summaries, x ¼ fxαjα ∈ ½1; nϑ�g,
x is as informative about ϑ as d is with regards to the Fisher
information, for the likelihood in Eq. (2.4). The Fisher
information takes the form

Fαβ ¼ Tr½μ;Tα C−1μ;β �: ð2:8Þ

The lossless compression of the data, d → x, is only
possible when the likelihood is exactly of the form in
Eq. (2.4). Nearly lossless compression is still possible if the
peak of the likelihood is approximately Gaussian. Often,
this will be a good approximation in the asymptotic limit,
i.e., when the data are informative about the parameters.

III. NONLINEAR FISHER INFORMATION
MAXIMIZING SUMMARIES

We are influenced by the MOPED algorithm to find some
transformation which maps the data to compressed sum-
maries, f∶d → x, while conserving Fisher information, but
without the limitation that the method is only valid as a
Gaussian approximation. f is a function that modifies the
original likelihood describing the data, which need not be
known a priori, into the form

−2 lnLðxjϑÞ ¼ ðx − μfðϑÞÞTC−1
f ðx − μfðϑÞÞ ð3:1Þ

where

μfðϑÞ ¼
1

ns

Xns
i¼1

xs
i ð3:2Þ

is the mean value of ns summaries, fxs
i ji ∈ ½1; ns�g, where

each summary is obtained from a simulation ds
i ¼ dsðϑ; iÞ
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using f∶ds
i → xs

i . We will denote μfðϑÞ≡ μf for conven-
ience. Each i denotes a different random initialization of a
simulation. Similarly C−1

f is the inverse of the covariance
matrix which is again obtained from simulations of the data

ðCfÞαβ ¼
1

ns − 1

Xns
i¼1

ðxs
i − μfÞαðxs

i − μfÞβ: ð3:3Þ

Using Eq. (2.2) a modified Fisher information matrix can
be calculated from the likelihood in Eq. (3.1)

Fαβ ¼ Tr½μf;Tα C−1
f μf;β �: ð3:4Þ

Here, the values of μf;α and C−1
f are calculated using fixed,

fiducial parameter values, ϑfid, such that the simulations are
ds fid
i ¼ dsðϑfid; iÞ. Although f∶d → x is not specified, a

subclass of f is accessible via a neural network, described
in detail in Sec. IV. We will show how this function can be
found by training a neural network in Sec. V.

IV. ARTIFICIAL NEURAL NETWORKS

Artificial neural networks are arbitrary maps from some
inputs to outputs. Consider some data vector d ¼
fdiji ∈ ½1; nd�g with nd data points. Each data point is
regarded as an input to a network. For a deep neural
network, a series of hidden layers are able to learn levels of
abstraction from the input [42–46]. Each layer, l, of the
network contains a set of neurons which takes some
number of inputs and provides one output per neuron
[47,48]. The output a neuron is activated by a nonlinear
activation function

ali ¼ ϕðvliÞ ð4:1Þ

where

vlj ¼
X
i

wl
jia

l−1
i þ blj; ð4:2Þ

is a weighted, biased input at each layer with weights wl ≡
wl
ji and biases bl ≡ blj [47]. i describes an element of the

output vector of a collection of neurons in the ðl − 1Þth layer
and j indexes the neuron in layer l. With these notations, the
input to the network can be considered to be the output of a
zeroth layer of a network, di ≡ a0i . Stacking several
neurons into a hidden layer and stacking several hidden
layers, taking the outputs from the previous layer as the
inputs to each node in the next layer, allows for greater
levels of abstraction from the input data [44]. These
networks are often referred to as deep networks. Note that
the addition of too many layers can lead to expensive
computations and overfitting by the network so that it
becomes difficult to train. The network output at the final

layer can be described by aL ¼ faLi ji ∈ ½1; noutputs�g where
noutputs is the number of outputs in the final layer, labeled L,
and aLi ¼ ϕðvLi Þ.
As mentioned at the end of Sec. III, a neural network can

be used as a representation of f∶d → x, which compresses
data to summary statistics. Formally, this subclass of
functions is described, for some input z, by

fl∶z → al ¼ ϕ

�X
i

wl
ji½fl−1ðzÞ�i þ blj

�
; ð4:3Þ

for l > 0 and

f0∶z → a0 ¼ m; ð4:4Þ

where the compressed summary is given at l ¼ L of the
recursion and the input to the function at l ¼ 0 is taken to
be the identity.

A. Activation functions

The activation function, ϕðvliÞ, in Eq. (4.1) describes
whether the artificial neuron fires or not, i.e. whether the
inputs are informative or useful for describing the output
[43,46,49,50]. It is the activation function that provides the
nonlinearity necessary for the network to learn the complex
map from inputs to outputs by combining the relevant
combinations of inputs at each layer in a nontrivial way. As
long as there are enough hidden layers, the form of the
activation function is relatively unimportant since the
weights and biases will be trained to combine the outputs
of each hidden layer in such a way as to provide the correct
map. There are many options for the choice of activation
function, including tanh and sigmoid functions. Currently
popular activation functions are the rectified linear unit
(ReLU) [49]. We show here, as an example, an adaptation
called leaky ReLU

ϕðxÞ ¼
�
αx x ≤ 0

x x > 0
; ð4:5Þ

where α ¼ 0 for ReLU and α is small and positive for leaky
ReLU [51]. Although the ReLU family of activation
functions are linear, stacking several layers of neurons
provides a function which approximates a nonlinear func-
tion, and is extremely quick to calculate. It will become
apparent that the derivative of the activated output with
respect to the weighted, biased inputs are essential for
training neural networks. The derivative of the ReLU
family of activation functions can also be efficiently
calculated as

∂ϕðxÞ
∂x ¼

�
α x ≤ 0

1 x > 0
: ð4:6Þ
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Although we have shown ReLU as an example, we explore
various activation functions across the population of net-
works that we train.

B. Back propagation

A scalar loss function, ΛðaLÞ, is calculated from the
outputs of the network aL. In supervised deep learning, the
loss function describes how far the outputs are from a set of
labels for the training data [52]. An iterative procedure,
called back propagation, uses the chain rule to find how
much the weights and biases need to change to minimize
the loss function [52]. Using gradient descent [53] it can be
seen that the weights and biases must be updated using

wl
ji → wl

ji − η
∂Λ
∂wl

ji
ð4:7Þ

and

bli → bli − η
∂Λ
∂bli ; ð4:8Þ

where η is a tunable learning rate which dictates the size of
the steps that the weights and biases are able to take on each
update [46]. It is very efficient to calculate the derivatives in
Eqs. (4.7) and (4.8) at the last layer using

∂Λ
∂vLi ¼ ∂Λ

∂aLi
∂aLi
∂vLi : ð4:9Þ

From any layer, the rate of change of the loss function with
respect to the weighted, biased inputs at the previous layer
can be found using

∂Λ
∂vli ¼

X
j

wlþ1
ji

∂Λ
∂vlþ1

j

∂ali
∂vli : ð4:10Þ

The changes in the loss function under changes in the
weights or the biases are then calculated using

∂Λ
∂wl

ji
¼ ∂Λ

∂vlj
∂vlj
∂wl

ji

¼ ∂Λ
∂vlj a

l−1
i ð4:11Þ

and

∂Λ
∂bli ¼

∂Λ
∂vli

∂vli
∂bli

¼ ∂Λ
∂vli : ð4:12Þ

Each of the ali and the derivatives with respect to the
weighted biased inputs [using Eq. (4.6)] are calculated on

the forward pass of the network inputs. Back propagation
allows the change of the loss function with respect to all of
the weights or biases to be calculated in just one pass
forward and one pass backwards [46]. By calculating the
change in the loss function with respect to the network
outputs and applying Eq. (4.9) successively, the weight and
bias updates at every layer can be calculated easily.
The back propagation procedure is repeated many times

using different sets of training inputs [46]. Once all of the
training inputs are used, one epoch of training is complete.
After one epoch of training, the order of the training inputs
can be jumbled and the training procedure repeated many
times until the loss function is minimized [46].

C. Overfitting

It is possible that the network weights become tuned to
features in the training data which are not present in the real
data. To prevent this overfitting, we implement dropout
[54]. Dropout is a technique where a random fraction of the
neurons are set to zero on each batch of training and after
back propagation only the weights and biases of the active
neurons are updated. Performing dropout during training
equates to training many subnetworks, where all the
neurons share weights and biases. Each of the subnetworks
can learn specific features in the data, but the consensus
network does not learn features too strongly.

D. Training and test data sets

When training a network, it is essential to test how well
the network is learning by using a test set which contains
data which is not present in the training set. However, it is
extremely important to note that even the accuracy of
prediction on the test set should not be considered to be a
measure of the predictive ability of the network. It is
considered normal to tune a network to achieve the minimal
loss of the test set without showing signs of overfitting. A
third, completely unseen, data set should then be used to
quote network accuracies. In doing so, the irreproducible
accuracy scores often quoted in the literature, arising from
only considering a network that is highly tuned on the test
set, are avoided. In this paper we train and test networks
with a training set and a test set and use the comparison
between the posterior distribution obtained using the net-
work output and the analytically calculated distribution as
our confirmation that the network is accurate.

V. FINDING NONLINEAR SUMMARIES

Inspired by supervised artificial neural networks we are
able to create a network capable of maximizing the Fisher
information to create nonlinear summaries of data. The
output of the network, x≡ aL is a compressed summary of
some data, d. Since the data is a function of some
parameters, ϑ, given some model, the summary can be
described as a function of these parameters, as well as the
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weights and biases at each layer, l, of a network,
x → xðϑ;wl; blÞ. The mean, μf, covariance, Cf and
Fisher information matrix, Fαβ, from Eqs. (3.2), (3.3)
and (3.4), each become functions of the weights and biases
as well. Summaries of simulations, xs

i , are obtained by
passing simulations, ds

i , through the network f∶ds
i → xs

i .
To compute the Fisher information matrix in Eq. (3.4),

the derivative of the network needs to be calculated with
respect to the parameters at fiducial values. It is, in
principle, simple to find the derivative of the network
with respect to the parameters due to partial derivatives
commuting with sums

μf;α ¼
∂
∂ϑα

1

ns

Xns
i¼1

xs fid
i

¼ 1

ns

Xns
i¼1

� ∂x
∂ϑα

�
s fid

i
: ð5:1Þ

Unfortunately, since the parameters only appear in the
simulations, numerical differentiation needs to be per-
formed. The numerical differentiation is achieved by
producing three copies of the simulation, ds fid

i ¼
dsðϑfid; iÞ, ds fid−

i ¼ dsðϑfid − Δϑ−; iÞ, and ds fidþ
i ¼

dsðϑfid þ Δϑþ; iÞ where Δϑ� is some small deviation
from the fiducial parameter value. The derivative of the
network output with respect to the parameters is therefore
given by

� ∂x
∂ϑα

�
s fid

i
≈
xs fidþ
i − xs fid−

i

Δϑþα − Δϑ−α
: ð5:2Þ

Setting the random seed, i, to the same value when
generating ds fid−

i and ds fidþ
i suppresses the sample variance

in estimates of the derivative of the mean. Although the
network output can vary a lot between different simula-
tions, the derivative with respect to parameters is much
more stable to changes in the parameter value, meaning
relatively few extra simulations (n∂ϑ < ns) need to be
computed to calculate the gradient of the mean.
Another way of calculating the derivative of the mean of

the network output is to calculate the adjoint gradient of the
simulations, and calculate the derivative of the network
with respect to the simulations

μf;α ¼
1

ns

Xns
i¼1

Xnd
k¼1

∂xs fidik

∂dk
∂ds fidik

∂ϑα ; ð5:3Þ

where i labels the random initialization of the simulation
and k labels the data point in the simulation. In certain
situations, calculating the adjoint gradient of the simula-
tions may be more efficient than the method described in
Eqs. (5.1) and (5.2).

One simple way of obtaining the optimal nonlinear
summary from some data is to maximize the determinant
of the Fisher information matrix calculated from the
network, jFj,

Λ ¼ −
1

2
jFj2: ð5:4Þ

The Fisher information matrix terms are produced from the
second derivatives of the Kullback-Leibler divergence, i.e.
the information gain, and is hence directly related to the
Shannon entropy [55]. In particular, the Fisher information
matrix is the Shannon information of the Gaussian prob-
ability distribution function which optimally approximates
the likelihood in (3.1) near its peak. For this reason,
choosing to maximize the determinant of the Fisher
information is equivalent to maximizing the Shannon
information of this distribution. The error is then found
by taking the derivative of the loss function with respect to
the network output. Normally xs

i would be considered
as the network output when the input is a simulation, but
since the quantity of interest in our problem is statistically
calculated over a large number of network outputs, we
follow the cartoon in Fig. 1 and use the determinant of the
Fisher information matrix as the true network output. First,
a large number of simulations at fixed fiducial parameter
value and random initialization (as well as the simulations
created to calculate the derivative of the mean) are fed
forwards through identical networks. All the network
outputs from the fixed fiducial parameter simulations are
used to calculate the covariance as in Eq. (3.3). Meanwhile,
the rest of the network outputs are used to find the
derivative of the mean with respect to the parameter as
in Eqs. (5.1) and (5.2). These are combined to give the
Fisher information matrix of Eq. (3.4). If we consider
the true network output to be aL ¼ jFj rather than xs then
the error can be defined as

∂Λ
∂aL ¼ −jFj: ð5:5Þ

Training then commences over many epochs of weight and
bias updates until the Fisher information stops increasing.
In practice, a problem arises when using Eq. (5.5), since the
Fisher information is invariant under linear scaling of the
summary. To control the magnitude of the summaries we
can artificially induce a scale by adding the determinant of
the covariance matrix, jCfj, to the error function

∂Λ
∂aL ¼ −jFj þ jCfj: ð5:6Þ

The network is penalized when the determinant of the
covariance is large. When using Eq. (5.6) the network
provides the summary which maximizes the Fisher infor-
mation while minimizing the covariance of the outputs.
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Although the network is capable of extracting all
necessary summaries of the data without any prior knowl-
edge of what the parameters represent, we can imagine the
IMNNs would be better suited to extending the heuristic
first-step summaries. For example, if the power spectrum is
a known useful summary of some data, the network can be
trained to find any statistic which increases the Fisher
information further. With the power spectrum and the
network summary, a second stage compression as described
in [19] can be used for efficient parameter inference. This
way, inexhausted information of the data can be unlocked,
even when the form of the data combination that probes it is
not known.

VI. APPROXIMATE BAYESIAN COMPUTATION

ABC is a technique of finding an approximate posterior
distribution for some model parameters by accepting or

rejecting samples dependent on how similar simulations
created using the sample parameters are to the real data
[56]. It is useful to choose an appropriate sampling
procedure to quickly approach the true posterior for the
parameters without creating too many simulations. PMC is
an algorithm by which samples can be obtained by iterating
through weighted draws from a prior, even when the
likelihood is not accessible [57]. Although PMC has a
variety of uses, such as filtering, we are going to couple
it to ABC (PMC-ABC) to effectively approach the true
posterior [20,21].
Similar to the method in [31], our PMC-ABC algorithm

starts bydrawingN parameter vectors,fϑt
kjk∈ ½1;N�; t¼ 0g,

from the prior, pðϑÞ. N is the final number of posterior
samples wanted, k labels the sample and t describes the
number of sampling iterations. In each sampling iteration,
samples are drawn from a prior, used to create simulations,
and then weighted by the distance of the simulation from the

FIG. 1. Cartoon of the information maximizing neural network architecture. During training, each simulation ds;fid
i and each

simulation made with a varied fiducial parameter, ds fid�
i , is passed through the same network (all the weights and biases are shared). The

output of the network for each simulation, xs fid
i , is used to calculate the covariance, Cf, and each of the network outputs from the varied

simulations, xs fid�
i , are used to calculate the derivative of the mean, μf;α. The network uses ∂Λ=∂aL ¼ −jFj þ jCfj as the error of a

reward function which is maximized through back propagation. The reward function is back propagated only through a selection of
networks which use the simulations created at the fiducial parameter value, xs fid

i . The weights and biases are updated using the mean of
the back propagated error at each weight and bias, ∂Λ=∂wl and ∂Λ=∂bl. Once trained, a summary of some data can be obtained using a
simple artificial neural network with the weights and biases from the training network.
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real data. The weighted samples are used to obtain a new
proposal distributionwithwhich to resample from in the next
iteration. This allows the PMC-ABC to gradually hone in on
the true probability distribution. Simulations are made at
each of the N parameter vectors and fed through the trained
network to obtain a collection of network summaries
fxst

ikjk ∈ ½1; N�g where i labels the simulation. Only the
value of ϑ is important for ABC and so the random
initialization, i, can be ignored once chosen for each
simulation. We choose to define the distance of each
simulated summary from the summary of the real data x by

ϱtk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxst

ik − xÞTFðxst
ik − xÞ

q
; ð6:1Þ

where F is the Fisher information matrix obtained originally
by the network. Equation (6.1) is the optimal distance
measure [19], although it is not unique. On each iteration,
an acceptance condition, εt, for the samples is defined by the
75th percentile of fϱtkjk ∈ ½1; N�g such that the 75% of
sampleswhich have the smallest distances from the summary
of the real data are kept.ϑt

k then corresponds to the remaining
25% of the samples, which are used to draw parameter
vectors for the next iteration, ϑtþ1

k . ϑtþ1
k are selected from

a Gaussian with mean ϑt
k and covariance, Ct, from

the weighted parameter values. The weighting for ϑtþ1
k is

given by

Wtþ1
k ¼ pðϑtþ1

k ÞP
N
j¼1W

t
jN ðϑtþ1

k ;ϑt
j;CtÞ

ð6:2Þ

with pðϑtþ1
k Þ as the value of the prior at ϑtþ1

k ,

N ðϑtþ1
k ;ϑt

j;CtÞ ¼
exp ½− 1

2
ðϑtþ1

k − ϑt
jÞTC−1

t ðϑtþ1
k − ϑt

jÞ�ffiffiffiffiffiffiffiffiffiffiffiffiffij2πCtj
p

ð6:3Þ

and where the initial weighting is equal for all k,W0
k ¼ 1=N.

ϑtþ1
k is drawn repeatedly from the Gaussian with mean ϑt

k

and covariance Ct until ϱ
tþ1
k ≤ εt for each of the rejected k

samples. Once complete, the first iteration of sampling
finishes, allowing Wtþ1

k to be calculated.
Unlike the method in [31] the accepted ϑt

k are instantly
promoted to ϑtþ1

k rather than being redrawn. The accepted
ϱtk can also be promoted to ϱtþ1

k , and the new ϑtþ1
k used to

find Ctþ1. The next acceptance condition, εtþ1, is again
calculated from the 75th percentile of fϱtþ1

k jk ∈ ½1; N�g and
the selection procedure is repeated. Iterations can be
performed until the number of draws from N ðϑt

k;CtÞ in
a particular iteration, t, is much larger than the number of
wanted samples from the posterior, N. A large number of
draws compared to the number of accepted parameter

values is a sign that the approximate posterior has stopped
changing considerably between iterations.

VII. TESTING INFERENCE WITH INFORMATION
MAXIMISING NEURAL NETWORKS

In this section we use the information maximizing neural
network on a range of test models. In Sec. VII Awe use the
network to summarize a Gaussian signal with unknown
variance, as well as Gaussian signal with unknown variance
that was contaminated by noise, first of known variance and
then of unknown variance. We consider the same problem
in Sec. VII B showing that the network provides nearly
optimal, informative summaries in spite of a poorly chosen
fiducial parameter value by learning the correct map. In
Sec. VII C we constrain the amplitude of scalar perturba-
tions using simulations of quasar absorption spectra
which can be summarized by a single statistic provided
by the network. Finally, in Sec. VII D, we demonstrate the
performance of IMNN compression for the case estimating
the central frequency of a LISA gravitational wave chirp.
This example addresses a concern raised in [34] where
the authors show that a linear summary of data in the time
domain can be misleading about a parameter in the
frequency domain. We are show that the nonlinear
summary avoids this problem and is more informative.

A. Summarizing Gaussian signals

A simple toy model can be constructed where linear
combinations of the data are unable to provide information
about parameters.
Consider an experiment which measures nd ¼ 10

data points which are drawn from a zero-mean Gaussian
where the variance, ϑ ¼ σ2, is not perfectly known,
d ¼ fdi↶N ð0; ϑÞji ∈ ½1; nd�g. The likelihood is written

LðdjϑÞ ¼
Ynd
i¼1

1ffiffiffiffiffiffiffiffi
2πϑ

p exp

	
−

1

2ϑ
d2i




¼ 1

ð2πϑÞnd=2 exp
	
−

1

2ϑ

Xnd
i¼1

d2i



; ð7:1Þ

such that

−2 lnLðdjϑÞ ¼ 1

ϑ

Xnd
i¼1

d2i þ nd ln ½2πϑ�: ð7:2Þ

From here it can be seen that a single number, the sum of
the square of the data

x ¼
Xnd
i¼1

d2i ; ð7:3Þ

is a minimal sufficient statistic. Maximizing the (logarithm
of the) likelihood with respect to the variance relates the
value of the statistic to the variance
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∂ lnLðxjϑÞ
∂ϑ ¼ x

2ϑ2
−
nd
2ϑ

¼ 0 ð7:4Þ

so that

x ¼ ndϑ: ð7:5Þ

The Fisher information is calculated using Eq. (2.2)

F ¼ x
ðϑfidÞ3 −

nd
2ðϑfidÞ2

¼ nd
2ðϑfidÞ2 : ð7:6Þ

For nd ¼ 10 and a fiducial variance of ϑfid ¼ 1 the Fisher
information is

F ¼ 5: ð7:7Þ

Since the single summary is a nonlinear combination
(squared sum) of the data, linear combinations will not
be able to provide a single sufficient statistic.
Now consider training a network to maximize the Fisher

information while summarizing the data, as laid out in
Sec. V. We show the progress an example network makes
until it extracts the full information in Fig. 2.
The fully connected network has two hidden layers with

256 neurons in each. We denote this configuration [256,

256]. The network uses leaky ReLU activation with α ¼
0.01 and a learning rate of η ¼ 0.01. Each of the weights,
wl, are initialized with a value drawn from a normal
distribution with mean μ ¼ 0 and standard deviation σ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffi
2=κl−1

p
where κl is the number of neurons in layer l [49].

As is usual when using the ReLU family of activation
functions, the biases bl are initialized with a slightly
positive value [58], where bl ¼ 0.1 has been chosen here.
To mimic the small number of simulations which would be
available for complex data sets, we limit the total number of
simulations to 1000 (þ100 simulations created above and
below the fiducial parameter value to calculate the numeri-
cal derivatives). These are divided into ntrain ¼ 2 training
batches per epoch, such that ns ¼ 500 and n∂ϑ ¼ 50.
The training batches are split to provide variation in the
statistical quantities μf;α and Cf when jumbling the
simulations at the beginning of each epoch of training.
We train the network for 800 epochs. To prevent overfitting,
where the network learns features in the training set which
are not present in the test data, 50% of the neurons are
dropped from the network on each batch of training.
From Eq. (7.7), it can be seen that the maximum Fisher

information attainable for this problem is F ¼ 5. Figure 2
shows that F ¼ 5.15� 0.39 is obtained by the network
over the last 10% of the training epochs. The solid blue line
in Fig. 2 is the value of the Fisher information obtained
from the network summaries of ns ¼ 500 and n∂ϑ ¼ 50
simulations from the training set (a single batch with no
dropout), while the dashed orange line is the same for
simulations which are not contained in the training set. We
find that we are able to obtain a Fisher information slightly
above F ¼ 5 as indicated by the straight black dashed line.
This is because the data sets fluctuated to have a smaller
variance than ϑ ¼ 1 and therefore the Fisher information
for these sets is higher than their expectation. The network
interprets the fluctuation in the data as an indication that
more information about the parameters is available from the
network than is truly available.
We have found that a very large variety of hyper-

parameters will provide us with approximately F ¼ 5.
Most notably we can use very deep networks with few
neurons such as [5, 5, 5, 5, 5] to extremely simple networks
with large numbers of neurons, i.e. [2048, 2048], each with
very similar outcomes. The main difference with different
architectures, that we have found, is the number of epochs
necessary to maximize the Fisher information matrix. We
have chosen a simple network of [256, 256] since it seems
to converge more quickly than other networks.
Since the test model can be written down analytically, the

true posterior distribution for some simulated test data d
(shown in Table I) can be found and is plotted as the solid
orange curve in Fig. 3. The prior distribution used here
is uniform between ϑ ¼ ð0; 10�. A first approximation of
the posterior distribution using the network, without
creating any additional simulations can be found using

FIG. 2. Value of the Fisher information obtained by the network
at the end of each epoch of training. The solid blue line shows the
Fisher information obtained by running a set of 500 simulations
(and 50 partial derivatives), which are contained in the training
set, through the network. The dashed orange line shows the
Fisher information obtained by running the same number of
simulations through the network, but where none of the simu-
lations are present in the training set. The maximum amount of
Fisher information expected is F ¼ 5, shown as a black dashed
line. It is clear that the network manages to extract the entirety of
the information given the data.
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the asymptotic likelihood by expanding Eq. (3.1) about the
fiducial variance with Δϑ ¼ ð−1; 9�.1 The asymptotic
likelihood result is plotted in Fig. 3 in dashed blue.
It can be seen that the peak of the posterior found using
the asymptotic likelihood corresponds with the peak of the
analytic posterior, although as expected the rest of the
distribution quickly deviates from the analytic result.
To perform PMC-ABC, N ¼ 1000 parameter values,
fϑ0kjk ∈ ½1; N�g, are drawn from the uniform prior distri-
bution, pðϑÞ, between ϑ ¼ ð0; 10�. The PMC procedure,
described above, is then carried out to obtain 1000 samples
from the approximate posterior. Using a criterion that there
needs to be 2000 draws of ϑtk in iteration t to be convinced
that the approximate posterior has converged requires a
total of 10232 simulations. The width of the acceptance
parameter is εT ¼ 0.086 at the last iteration, T, meaning
that the network summary of each of the accepted network
summaries are within a band of xsTik ¼ x� 0.086 of the
network summary of the real data, x. The histogram of
the accepted points are shown in Fig. 3 in purple. The
PMC-ABC posterior distribution follows the analytic
posterior distribution exactly, showing that the network
has successfully learned how to summarize the data.

It is interesting to see the network outputs as a function
of ϑ, without using the PMC procedure. By performing
ABC by randomly drawing from the whole prior, and not
honing in on the true distribution, we can plot the network
output as a function of the variance drawn from the prior,
shown in Fig. 4. The green points show the rejected
samples and the purple points (under the black dashed
line) show the accepted draws. The black dashed line shows
the network output of the real data. There is a strong
correlation between the network summary of the simula-
tions and the value of ϑ used to create the simulation.
Requiring that there are 1000 samples whose summaries
are within xsTik ¼ x� εT , where εT ¼ 0.086, necessitates
more than 600 000 draws from the prior, 50 times more

FIG. 3. The posterior distribution for the variance of the real
data. The solid orange curve is the analytic posterior distribution
using Bayes’ theorem and the likelihood in Eq. (7.1). The dashed
blue curve shows the posterior calculated from the asymptotic
likelihood from the network summary and in purple is the ABC
posterior obtained through PMCwith the purple shaded error bars
showing the 1-σ Poisson width. Each distribution is normalized
such that its integral is unity in the interval ϑ ¼ ½0; 10�. We can
see that the analytic posterior in the solid orange curve overlaps
the PMC-ABC posterior in the purple histogram showing that the
network has successfully learned to summarize the data. The blue
dashed curve peaks at the same place as the analytic posterior
with a similar width, which shows that the first order approxi-
mation of the posterior is also correct.

TABLE I. Values of the input parameters for the original
simulated true data set where the data is Gaussian noise
d ¼ fdi↶N ð0; 1Þji ∈ ½1; nd�g.

Data Value

d1 −0.919 033 99
d2 −0.373 225 15
d3 −0.056 133 42
d4 1.208 167 46
d5 0.076 492 69
d6 −0.471 711 41
d7 −1.475 657 1
d8 −0.629 464 63
d9 −1.303 340 79
d10 −0.414 416 39

FIG. 4. Network output as a function of the variance used to
create the simulations. The green points are the network summa-
ries of a selection of the simulations created from random draws
from ϑ ¼ ð0; 10� for the random ABC procedure. The purple
points are the accepted network summaries of the 1000 simu-
lations within xsTik ¼ x� εT with εT ¼ 0.086. The black dotted
line indicates the network output of the real data. There is a strong
correlation between the network output and the value of ϑ which
suggests that the network has learned how to summarize the
network input with respect to the model parameters.

1This approximation is only true for Abs½Δϑ� ≪ 1. The
interval chosen here is used only for plotting purposes.
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draws than the PMC needs. It should be noted that the
network summary is not equal to the value of ϑ and, in
general can vary a lot by changing the network architecture,
the initialization of the weights or even just changing the
order of the simulations used to train the network. The
variation in the network summary is a manifestation of how
the Fisher information is invariant under linear scalings of a
sufficient statistic, although the scale of the statistic is able
to be constrained somewhat by coupling the Fisher infor-
mation matrix to the covariance of the outputs, as in
Eq. (5.6).
When creating simulations during the ABC procedure

we can calculate the true sufficient statistic, i.e.

xsi ¼
Xnd
j¼1

ðdsijÞ2 ð7:8Þ

where i labels the random initialization of the simulation
and the j labels the data point in the data set d. Plotting the
exact sufficient statistic against the network output allows
us to see how well the correct function is learned by
maximizing the IMNN, as seen in Fig. 5. The blue points
show the values of exact sufficient statistics of the simu-
lations and scaled values of the network outputs of the same
simulations. The network output must be scaled due to the
allowed linear scaling of the sufficient statistic. We actually
found that network output is approximately

network output ≈
Xnd
j¼1

ðdsijÞ2 þ 58; ð7:9Þ

without a linear scaling of the exact sufficient statistic, but
with an offset. The black dashed line shows what would be
expected if the exact map was learned by the network. We
can see that the network output generally follows the sum
of the square of the data closely with hints of a slight bend
and superficial broadening at larger exact sufficient sta-
tistics. The bending is of no concern since any one-to-one
function of the sufficient statistic is still a sufficient statistic,
and we can see that the network output is clearly a
monotonic function of the real summary. The broadening
indicates that only an approximate map is learned because
the training of the network is incomplete due to lack of
diversity within simulations and perhaps a suboptimal
choice of network hyperparameters. With greater variety
within the simulations or, likewise, a greater number of
simulations, the optimal map could be learned even more
precisely. Nevertheless, we can see how minor an effect the
broadening of the exact sufficient statistic is by looking at
the results in Fig. 3. The resulting posterior distribution is
equivalent to the analytic posterior, which is the real proof
that the network has found the correct summary statistic.

1. Summarizing Gaussian signals
with known noise variance

Now consider some noisy data where the real data d ¼
fdi↶N ð0; ϑþ σ2noiseÞji ∈ ½1; nd�g has a signal variance of
ϑtrue ¼ 1 and the variance of the noise is taken to be known
σ2noise ¼ 1. Simulations of the noisy data can be created and
used to train the network, as before. The addition of the
noise makes the likelihood less peaked about the true
parameter value and so the Fisher information is expected
to be less than in original problem. Since the likelihood is
known analytically, using Eq. (7.6) it can be seen that
F ¼ 1.25. The network manages to achieve F ≈ 1.25 by the
end of training, suggesting the network is capable of
extracting close to the maximum amount of information
possible. We have used a slightly less complex network
here with [128, 128], but all other parameters the same.
Again, many different architectures work equally well, but
do not necessarily converge as quickly. We train the
network for 2000 epochs before the Fisher information
saturates to its maximum value.
In Fig. 6, it can be seen that the PMC-ABC posterior

distribution, shown in the purple histogram with shaded 1-σ
Poisson regions, when given some simulated test data, d, is
very similar to the analytic result shown by the solid orange
line. The dashed blue approximate posterior distribution
from the asymptotic likelihood again peaks very close to
the maximum of the analytic posterior. The posterior
distribution becomes maximal at the most likely parameter
value given the data, with the variance given by the inverse

FIG. 5. Rescaled network output for a given exact sufficient
statistic. The blue dots show a scaled value of the network output
at the exact sufficient statistic of simulations obtained at a range
of ϑ during ABC. The black dashed line shows the expected value
of the network output if the network had learned the map from
data to the sufficient statistic perfectly. Since the scatter of the
exact sufficient statistic to the network output closely follows the
black dashed line, we know the network has approximately
learned the correct map from data to sufficient statistic. There is a
slight curve which arises from the fact that any one-to-one
function of the sufficient statistic is still a sufficient statistic and
so is of no concern. There is also a superficial broadening of the
curve which shows that the map is only approximately correct.
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Fisher information at the end of training. There are 1000
samples used to create the histogram of the PMC-ABC
posterior which required approximately 2 × 105 simula-
tions to be created during the PMC, where all samples are
within xsTik ¼ x� εT , with εT ¼ 0.109. Since the analytic
posterior distribution is so similar to the PMC-ABC
posterior we can see that, even though the network is only
given noisy simulations, it is capable of finding the true
function to summarize the data.

2. Summarizing Gaussian signals
with unknown noise variance

Now consider the problem where, again, the real data
d ¼ fdi↶N ð0; ϑþ σ2noiseÞji ∈ ½1; nd�g has a signal vari-
ance of ϑ ¼ 1 and the variance of the noise is also unknown
with a uniform prior σ2noise ∈ ð0; 2�. We train using 1000
simulations (þ100 for each of the derivatives) at a fiducial
ϑfid ¼ 1 each with a different σ2noise randomly drawn from
the uniform prior on the noise. The final value of the Fisher
information from the network is less than in either of the
two previous cases at F ¼ 0.9 using a slightly more
complex network than in the previous section with an
architecture of [128, 128, 64] but all other parameters the
same. If the noise were assumed to be known at σ2noise ¼ 2

then the maximum Fisher available, as calculated from
Eq. (7.6) would be F ¼ 5=9. The posterior distributions for
ϑ are shown in Fig. 7. Since the noise is unknown, a Rao-
Blackwell estimate of the analytic distribution is made.

Here, the posterior distribution is calculated for a range of
given noise values from σ2noise ¼ ð0; 2� and their results
summed at each value of ϑ, plotted with a solid orange line.
The PMC-ABC posterior is given by the purple histogram
consisting of 1000 samples, which required approximately
105 simulations using the PMC. Again, as before, the
constraints on ϑ are incredibly similar to the analytic result,
confirming that the network can approximate the exact
summary very well. The Rao-Blackwell estimation pro-
cedure is also carried out to obtain the posterior calculated
from the asymptotic likelihood, in dashed blue, although
the result does not agree with the exact or PMC-ABC
posteriors. The lack of agreement arises because the
simulated test data is not well represented in the training
simulations. Even though there is an under representation
in the data, the network has learned the correct way to
summarize data independent of the input, i.e. the network
calculates the sum of the square of the input.

B. Summarizing Gaussian signals
with wrong fiducial variance

Since the network trained in the known noise problem, in
Sec. VII A 1, is akin to a network trained at a fiducial
parameter ϑfid ¼ 2, we can use it to test how well the
network can predict the variance when the fiducial value
does not coincide with the true parameter. It would be

FIG. 6. The posterior distribution of the signal variance of the
Gaussian noise when the data is contaminated with known noise
of σ2noise ¼ 1. The solid orange line shows the analytic posterior
distribution, while the posterior distribution from the asymptotic
likelihood is shown in dashed blue and the purple histogram with
1-σ Poisson shaded error bars shows the approximate posterior
distribution from PMC-ABC. Each distribution is normalized
such that its integral is unity in the interval ϑ ¼ ½0; 10�. We can
see that the solid orange curve and the purple histogram overlap
along the entire range of ϑ suggesting that the network has
learned the correct way to summarize the data.

FIG. 7. The posterior distribution of the signal variance when
the data is contaminated with unknown noise σ2noise ¼ ð0; 2�. The
exact posterior is shown by the solid orange curve, the posterior
distribution obtained using the asymptotic likelihood is in dashed
blue and the PMC-ABC posterior with samples drawn using
PMC is indicated by the purple histogram with shaded 1-σ
Poisson error bars. Each distribution is normalized such that its
integral is unity in the interval ϑ ¼ ½0; 10�. Even with unknown
noise the network can summarize the data equally as well as a
Rao-Blackwell estimate of the analytic case, leading to equivalent
posterior distributions. The posterior distribution obtained from
the asymptotic likelihood does not agree with the other distri-
butions since the training simulations are not representative of the
real data.
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expected that data with ϑ ¼ 1 would be under-represented
in a training data set where the fiducial value is ϑfid ¼ 2.
Naïvely, one would assume that the network would not
perform as well as a network trained using simulations
created at ϑfid ¼ 1, especially since the Fisher information
available from this network is F ¼ 1.25 and not F ¼ 5 as in
Sec. VII A. However, Fig. 8 shows that the parameter
constraints given the same real data as in Table I are equally
as strong as when using the trained network from
Sec. VII A. It is promising that the training of the network
seems fairly insensitive to the choice of fiducial parameter.
The posterior distribution from the asymptotic likelihood,
in dashed blue, is much wider than the same curve in Fig. 3
since the variance of the distribution is given by the
Cramér-Rao bound, i.e. F−1 ¼ 0.8, rather than F−1 ¼ 0.2
when using the network from Sec. VII A 1. The fact that the
purple histogram matches the analytic solid orange dis-
tribution so well indicates that the network has learned the
correct way to summarize data, rather than learning an
algorithm for mapping simulations to an output which
specifically depends on the fiducial parameter value. For
example, in the problem considered here, we know that the
correct summary of the data is the sum of the square of
the data (or at least a linear scaling of the sum of the square
of the data). The network is trained in such a way that
the abstract function of weights, biases and inputs that the
network represents closely approximates the sum of the
square of the input. Once abstract function is learned, it

does not matter what parameter value is used to create the
simulations, even if that parameter is far from the fiducial
value, because the network will still output the sum of the
square of the input. It is extremely encouraging to see that
the network can extrapolate beyond its training data by
depending on the robustness of the learned patterns.

C. Summarizing quasar spectra

Beyond the elementary test case on variance estimation,
we can consider models that are of more astronomical
interest. Here we attempt to generate constraints on the
amplitude of scalar perturbations, As, using a simplistic 1D
model of the Lyman-α forest from a single quasar. To
generate simulations we begin by using the halo mass
function calculator hmf module [59] in python to generate
the 3D power spectrum P3DðkÞ, evolved using the method
of Eisenstein and Hu [60], at a redshift of z ¼ 2.25 with
fixed cosmological parameters (at z ¼ 0). The cosmologi-
cal parameters come from the Planck 2015 temperature and
low-l polarization results [61], H0 ¼ 67.7 kmMpc−1 s−1,
Ωm ¼ 0.307, Ωb ¼ 0.0486, ns ¼ 0.9667, σ8 ¼ 0.8159,
TCMB ¼ 2.725 K, Neff ¼ 3.05, and

P
mν ¼ 0.06 eV,

calculated using astropy [62]. The power spectrum is cal-
culated between lnkmin=ð1hMpc−1Þ¼−18.42 and ln kmax=
ð1h Mpc−1Þ ¼ 9.90 in steps of Δ lnk=ð1hMpc−1Þ¼ 0.005.
The correlation function can be found using

ξðrÞ ¼
Z

∞

0

dk
2π2

exp ½−R2
wk2�k2P3DðkÞsincðkrÞ ð7:10Þ

where the exponential term is a smoothing function where
we use Rw ¼ 5h−1 Mpc. We calculate the value of ξðrÞ
between −200 < r < 200h−1 Mpc in N ¼ 8192 bins. To
simulate the density fluctuations along the line of sight, we
calculate the 1D power spectrum using

P1DðkÞ ¼
Z

∞

−∞
dr exp½ikr�ξðrÞ: ð7:11Þ

The Lyman-α peak in the rest frame of an emitter is λαRF ¼
121.567 nm [63] and we use the fact that BOSS can
measure absorbers in the redshift range 1.96 < z < 3.44
[64]. Using

z ¼ λ

λRF
− 1 ð7:12Þ

the minimum observed wavelength of the Lyman-α peak is
λmin ¼ 359.838 nm (at z ¼ 1.96) and the maximum wave-
length is λmax ¼ 539.757 nm (at z ¼ 3.44) [64]. The length
L of the survey in comoving space is calculated between
these redshifts, yielding L ¼ 1122.9h−1 Mpc. The fre-
quency spacing is given by the inverse of the survey
length, so we consider a range of k ¼ ð0; 14.6�h Mpc−1

with N ¼ 8192 bins. We modify the 1D power spectrum

FIG. 8. The posterior distribution of parameter ϑ where the real
data is that of Table I, but the network has been trained with a
fiducial ϑfid ≠ ϑtrue. The solid orange line shows the analytic
posterior distribution and the purple histogram, with shaded 1-σ
Poisson widths, shows the approximate posterior distribution
from PMC-ABC. The dashed blue curve shows the posterior
distribution from the asymptotic likelihood. Each distribution is
normalized such that its integral is unity in the interval
ϑ ¼ ½0; 10�. The analytic posterior distribution and the PMC-
ABC posterior are again identical, which shows how the network
is able to find the correct function to map data to summaries, even
when the fiducial training parameter value is incorrect.
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such that it more closely follows the gas power spectrum as
seen from Lyman-α absorptions [65],

P1D
g ðkÞ ¼ βDðk; μÞP1DðkÞ ð7:13Þ

where β is a free parameter, set for a given realization of
noise which ensures that hFi ¼ 0.8 [66]. Dðk; μÞ is a term
which modifies the small-scale power spectrum [65] and is
of the form

Dðk;μÞ ¼ exp

	�
k
kNL

�
αNL

−
�
k
kP

�
αP
−
�
kk
kV

�
αV


; ð7:14Þ

where

kV ¼ kV0

�
1þ k

k0V

�
α0V ð7:15Þ

and kNL ¼ 6.40hMpc−1, αNL ¼ 0.569, kP ¼ 15.3h Mpc−1,
αP ¼ 2.01, kV0

¼ 1.220, k0V ¼ 0.923h Mpc−1, α0V ¼ 0.451,
αV ¼ 1.50 [67] and we choose to use μ ¼ kjj=k ¼ 1 since
we only consider independent quasar lines, i.e. the flux is
completely decorrelated from one line to the next. The
above numbers are computed for the log-flux explicitly
described in [65]. For the purpose of demonstration we
keep the same k dependence here. With the gas power
spectrum in Eq. (7.13), normalized by the length of the
survey, we can generate 1D random Gaussian fields, δg.
The Gaussian fields are generated by multiplying unit
variance, zero-mean Gaussian noise with ðP1D

g ðkÞ=2Þ1=2
and Fourier transforming into real space, including the
normalization of N=ð2LÞ due to the discrete nature and
finite period of the discrete Fourier transform. The flux
from quasars is absorbed by neutral hydrogen in over-
densities in the density field, and can be calculated from the
fluctuating Gunn-Peterson approximation [68] as

F ¼ exp ½−τ� ð7:16Þ

where we consider the form of the optical depth to be

τ ¼ 1.54

�
T0

104 K

�
−0.7 10−12 s−1

ΓUV

�
1þ z
1þ 3

�
6

ð7:17Þ

×
0.7
h

�
Ωbh2

0.02156

�
2 4.0927
HðzÞ=H0

ρ2−0.7γ ð7:18Þ

where T0 ¼ 18400 K is the normalization to the power-law
temperature-density relation T ¼ T0ð1þ δgÞγ−1 with γ ¼
0.29 [both here and in Eq. (7.18)] and ΓUV ¼ 4 × 10−12 s−1

is the photoionization rate due to the ambient UV back-
ground [68]. The gas density field is normalized such that
its mean is unity,

ρ ¼ exp½δg�
hexp½δg�i

: ð7:19Þ

The continuum flux can be calculated between the Lyman-
α and Lyman-β peaks at λαRF ¼ 121.567 nm and λβRF ¼
102.572 nm using the PCA formulation of [69]. The
continuum flux in the rest frame of the emitter is calculated
using

rðλÞ ¼ μðλÞ þ
X
i

ciðλÞξiðλÞ ð7:20Þ

where μðλÞ is the mean flux over many quasars, ξiðλÞ are
the ith principal components and ciðλÞ are the amplitudes
of the principal components which we consider to be
ciðλÞ ¼ 1 for simplicity. The continuum can be transformed
into the observer’s wavelength space by assuming a redshift
for the quasar and inverting Eq. (7.12). We choose the
redshift of the simulated (and real) quasar to be z ¼ 2.91.
The flux, which is currently in real space, is transformed
into wavelength space by interpolating the comoving
distance, r, along given redshift values, z, using the hmf
comoving distanceðzÞ function and then using Eq. (7.12).
The continuum modulated flux from the quasar is simply

fðλÞ ¼ FðλÞCðλÞ ð7:21Þ

where CðλÞ is rðλÞ from Eq. (7.20) in the rest frame of the
observer [63]. Figure 9 shows the generated flux from a
single mock quasar at z ¼ 2.91 in blue. The orange (lighter)
line shows the continuum flux between the Lyman-α and
Lyman-β peaks and the dashed green line shows the
mean of the transmitted flux. We only consider the flux
between 406.6 nm < λ < 469.2 nm which is 104 nm <
λ < 120 nm in the rest frame of the quasar [64]. We bin the
wavelengths using the resolution from the BOSS coadded
spectra of Δ log10 λ=1 nm ¼ 10−4 [63] which gives a flux

FIG. 9. Simulated spectrum of a quasar at z ¼ 2.91 in blue,
with the value of the continuum in orange (light) and the mean
flux in the Lyman-α forest in dashed green.
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in Wm−2 nm−1, but needs to be measured in photon counts.
Using the method2 in [70] we see that for a quasar such as
the one we are generating the spectra for, there is an almost
one-to-one correspondence between flux and photon count
(albeit the photon count is integer) [70]. Therefore, we
make the assumption that making the flux into integer
values and then applying Poisson noise satisfactorily
represents real quasar spectra. Our binned, noisy spectra
have 581 data points, each of which can be used as an input
to an IMNN.
An example of the simulated test data input to the

network is shown in Fig. 10.
For any set of fixed cosmological parameters the value of

amplitude of scalar perturbations, As, is a scaling of P1D
g ðkÞ.

To get constraints on As we can train a network at a fiducial
As and then use the PMC to find the posterior distribution
of As compared to some simulated test data. In fact, for
simplicity, we can consider the parameter ϑ to be some
multiplicative scaling of the amplitude, As ¼ ϑAcosmo with
Acosmo the amplitude of the power spectrum found in
Eq. (7.13). We use ϑfid ¼ exp½0� as the fiducial parameter,
i.e. Afid

s ¼ Acosmo.
A relatively simple network, such as [256, 256], is able

to obtain a Fisher information of F ¼ 0.015, which is the
maximum Fisher information that could be found over a
large range of different network architectures and hyper-
parameters. However, the network which was most resilient
to incorrect fiducial values was more complex than those
networks previously considered. The network with the
largest Fisher information by the final epoch of training,
which could handle incorrect fiducial parameters was a

network four hidden layers shaped like [1024, 512, 256,
128], using 1000 simulations (with 100 simulations each
for the upper and lower components of the derivative)
which were split into two batches, an initial bias of b ¼ 0.1,
where the activation function is leaky ReLu with α ¼ 0.1, a
dropout of 20% and a learning rate of η ¼ 1 × 102 when
training for 10 000 epochs.
As before, once the network was trained, PMC-ABC

could be performed. We used a uniform prior in logarithmic
space of ϑ ¼ exp½−10; 10�. The simulated test data was
created away from the fiducial parameter value of ϑfid ¼
exp½0� at ϑreal ¼ exp½3�, i.e. As ¼ exp½3�Acosmo, and is
shown in Fig. 10. The posterior distribution for the value
of ϑ can be found in Fig. 11. Here, we required 1000
samples in the posterior requiring at least 2500 draws in the
final iteration of the PMC to be convinced that the posterior
had converged. The histogram peak, and the tentative peak
of the leading order expansion of the likelihood, are at their
maximum at As ≈ exp½3�Acosmo, i.e. lnϑ ≈ 3, which con-
firms that the correct test parameter can be recovered,
shown as the vertical black dashed line in Fig. 11. There is a
large, degenerate tail in the PMC-ABC posterior which
arises due to the amplitude of the random Gaussian noise,
used to create the quasar spectrum, being so small that the
features in the generated flux become negligible. Since the
network output of the random fluctuations are still reason-
ably close to the network output from the real data, they
cannot be constrained. The lack of constraining power at

FIG. 10. Simulated observation of a quasar spectrum from a
quasar at z ¼ 2.91 between the Lyman-α and Lyman-β peaks in
the rest frame of the observer. We use this data as our simulated
test data for the PMC-ABC.

FIG. 11. Posterior distribution for the scaling of the amplitude
of scalar perturbations, ln ϑ. The dashed blue curve shows the
Gaussian approximation to the true constraints as estimated with
the training simulations and the purple histogram, with shaded
1-σ Poisson error bars, is calculated from samples from PMC-
ABC. The peak of both posterior distributions occur at the
vertical black dotted line which shows the true value of the
parameter. Although the constraints span several orders of
magnitude, we expect these kinds of constraints from a single
observation of a quasar absorption spectrum. Most importantly,
we have shown that we can summarize extremely noisy data by
solely maximizing the Fisher information.

2In particular we use the method described in http://www.sdss
.org/dr12/algorithms/spectrophotometry/ in the section called
“DR9 Flux to Photons.” We use quasar 024918.47þ 025035.6
as a guideline.
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low ϑ is even clearer in the posterior from the leading order
expansion. The constraints on As span approximately 5
orders of magnitude or more using the PMC-ABC pos-
terior, which seems poor, but is due to using only one
quasar spectrum to constrain cosmology with. Joint infer-
ence using several quasars would provide a much stronger
constraint, as is done when using cosmological surveys.
Although the constraints are not particularly strong, we
have shown that we can learn to extract information from
highly noisy data, and summarize it in such a way that we
can perform PMC-ABC to get a posterior distribution for
parameters of interest.

D. Gravitational waveform frequency

Reference [34] showed that the MOPED algorithm,
described in Sec. II, was unable to summarize the central
oscillation frequency of a gravitational waveform from
LISAwithout introducing spurious features [34]. By using
nonlinear summaries of the data, the problem in [34] can be
avoided.
We start by considering a sine-Gaussian gravitational

wave signal as could be seen in LISA, with a short burst
duration and frequency space waveform [71] of

h̄ðfÞ ¼ AQ
f

exp

	
−
Q2

2

�
f − fc
fc

�
2


exp ½2πifctc�; ð7:22Þ

where A is some amplitude, Q is the width of the
gravitational wave burst, tc is the time of the burst and
fc is the central oscillation frequency. We fix A ¼ 3.5,
Q ¼ 5 and tc ¼ 1 × 105s and require that the signal-to-
noise of the burst is S=N ¼ 34 [34]. We are interested in
summarizing and constraining the parameter fc. To gen-
erate a simulation of the gravitational wave signal, we use
the one-sided noise power spectral density of the LISA
detector [71], which is

ShðfÞ ¼ 16sin2½2πftL�ð2Spnð1þ cos ½2πftL� ð7:23Þ
þ cos2½2πftL�Þ þ ðcos ½2πftL�=2þ 1ÞSsnf2Þ;

SpnðfÞ ¼
�
1þ

�
10−4 Hz

f

�
2
�
Sacc
f2

; ð7:24Þ

where Ssn ¼ 1.8 × 10−37 Hz−1 is the shot noise, Sacc ¼
2.5 × 10−48 Hz−1 is the proof acceleration mass and tL ¼
16.678 s is the light travel time along one arm of the LISA
constellation. To generate the real space gravitational wave
burst, we calculate the frequency space waveform h̄ðfÞ and
detector noise n̄ðfÞ and then Fourier transform them into
real space

h̄ðfÞ ¼
Z

∞

−∞
dthðtÞ exp½2πift�; ð7:25Þ

n̄ðfÞ ¼
Z

∞

−∞
dtnðtÞ exp½2πift�: ð7:26Þ

We perform the Fourier transform at 2048 time steps from
t ¼ 9.9 × 104 s, sampled at 1 s intervals. The output of the
LISA detector is then given by

d ¼ hðϑtrueÞ þ n ð7:27Þ
where hðϑtrueÞ is the values of the gravitational waveform
at the true parameter values, ϑtrue ¼ fAtrue; Qtrue; ttruec ; ftruec g
at the sampled time and n is a random realization of the
noise. When assuming a noise covariance which is inde-
pendent of the signal, σ2n ¼ I, the logarithm of the like-
lihood is particularly simple [71] and is given by

lnL ¼ C −
kd − hðϑÞk2

2
; ð7:28Þ

where hðϑÞ is the real space gravitational wave at, not-
necessarily-true, parameters ϑ andC is a constant which we
set to zero.
We are interested in summarizing the data to constrain

the central oscillation frequency, fc, of the gravitational
wave. To do so, we use a network which takes in the 2048
inputs from the data with the architecture [10, 10, 10, 10,
10]. The network has a 10% dropout and leaky ReLU
activation with α ¼ 0.01. The learning rate is fixed at
η ¼ 10−5 and the biases are initialized slightly positively at
bl ¼ 0.1. We train for 1200 epochs using 1000 fiducial
simulations and 100 simulations each for the positive and
negative parts of the numerical derivative, all of which is
split into two combinations. Once trained, we can use the
network to summarize the data. We also use Eq. (7.28) to
calculate the logarithm of the likelihood from the summary
by passing the simulated test data, d, with a given
realization of the noise and generated at ftruec ¼ 0.1 Hz,
through the network f∶d → x and comparing it to the
waveform at a given fc, f∶hðfcÞ → xhðfcÞ. However,
since the noise is included in the realizations which is
passed through the network, the noise variance needs to be
transformed as well. Assuming the variance is small, so that
the likelihood remains Gaussian near the peak, the error
propagation gives the new variance as

σ02n ¼
���� ∂x

hðfcÞ
∂fc

����
2

σ2n ð7:29Þ

where the gradient should be evaluated at or near the true
mean. The modified approximate likelihood, assuming
Gaussian noise, for the IMNN summary evaluated at
different parameters is therefore given by

lnL ¼ C −
kx − xhðfcÞk2

2σ02n
: ð7:30Þ

We calculate Eqs. (7.28) and (7.30) using simulated test
data, d, generated at ftruec ¼ 0.1 Hz between 1 × 10−2 <
fc < 0.5 Hz. The logarithm of the likelihood of fc
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calculated using all the data, lnLðfcjdÞ is shown in the
upper subplot of Fig. 12 as a dashed orange line. This is
compared to lnLðfcjxMOPEDÞ using the MOPED summary as
the dotted green line in the middle subplot and lnPðfcjxÞ
using the network summary as the solid blue line in the
bottom subplot. The MOPED summary assumes a noise
covariance which is independent of the signal such that the
compression parameter is simply

rfc ∝ μ;fc : ð7:31Þ

For the network summary, the noise is automatically
included through the random initialization of the simula-
tions used to train the network. It can be seen that each of
the likelihoods in Fig. 12 agree with ftruec ¼ 0.1 Hz, shown
with the dashed black line, but a false aliasing peak appears,
shown with the dotted black line, when using the MOPED

summary. This false maximum in the likelihood arises from
unsuccessfully undoing the Fourier transform which leaves
the mapping from hðfcÞ → xhMOPEDðfcÞ not being one-
to-one. On the other hand, the IMNN compression does
not suffer this problem. There is a clear unique summary

which, when used to calculate the approximate likelihood
assuming Gaussian noise and evaluated at different fc,
results in a single peak at the ftruec . Full inference on fc is
then possible using PMC-ABC.
This test shows that, through the use of the nonlinear

function provided by the IMNN, we are able to surpass the
capability of linear compression. Not only can the summary
from the network be at least as informative as the MOPED

summary, it is also more robust since it is able to avoid
misleading parameter inference due to nontrivial mappings.

VIII. CONCLUSIONS

We have shown how IMNNs can perform automatic
physical inference. Automatic physical inference begins by
training a neural network to find the optimal nonlinear
summaries of data supplied only with simulations and no
other knowledge about how to best compress data. Once
the network is trained, its output is used to perform PMC-
ABC and find the approximate posterior distribution of any
parameter that the network is sensitive to. We have also
shown that the network is insensitive to poor choice in
fiducial parameter value when generating simulations.
We consider the technique presented in this paper as an

extension or replacement to other massive optimal data
compression procedures. The MOPED algorithm is able to
optimally compress data using linear combinations under
the assumption that the likelihood is known and is, to first
order, Gaussian. Further, the method in [19] generalizes
MOPED to any given likelihood function, where the com-
pressed statistics no longer need to be linear. In [33], the
likelihood does not need to be known at all, first summa-
rizing simulations of real data heuristically and then
compressing these summaries using an appropriate like-
lihood in the same way as [19]. Although a powerful
technique, the first step in [33] can potentially be lossy and
the likelihood in the second step should be well known to
achieve optimal compression of the first-step summaries.
The information maximizing neural network can replace
both steps in [33] by taking the raw data and providing
nonlinear, likelihood-free summaries directly from the
simulations. Likewise, and perhaps more conveniently,
the network introduced here is ideally placed to squeeze
additional information out of the data after all of the more
obvious summaries, such as the power spectrum, have been
exhausted.
In this paper, we have focussed on a few test models used

to illustrate the method and its abilities. The first set of tests
uses the network to find a summary of Gaussian signal,
without noise, with known noise variance and with
unknown noise variance. This is a useful example since
it can be solved analytically and linear compression, such
as MOPED would fail to provide useful summaries of
the data. We showed that PMC-ABC is able to recover
the analytic posterior distribution for the variance of the
Gaussian noise nearly exactly, which means that the

FIG. 12. Logarithm of the likelihood for the central oscillation
frequency, fc. The dashed orange line in the upper panel shows
the likelihood using all the data, while the green dotted line in the
middle panel and the blue solid line in the bottom panel show the
approximate Gaussian likelihoods when using compression,
MOPED and IMNN respectively. All three likelihoods have peaks
at the correct ftruec ¼ 0.1 Hz, but an aliasing peak arises in the
MOPED likelihood due to a nonmonotonic mapping from
hðfcÞ → xhMOPEDðfcÞ. The compression using the IMNN on
the other hand does not have any aliasing peaks since the
network has learned the nonlinear map from data to frequency.

AUTOMATIC PHYSICAL INFERENCE WITH INFORMATION … PHYS. REV. D 97, 083004 (2018)

083004-17



network has correctly learned the sufficient statistic for this
problem. It is useful to consider variance inference as there
are many examples in astronomy and cosmology where the
variance is informative about the underlying parameters.
Although the details of the input data and simulations will
be more complex, variance estimation appears in cases such
as estimating the value of the optical depth to reionization,
τ, and recovering B-mode polarization from probes of the
large-angle cosmic microwave background polarization
anisotropies.
Following the success of the first set of tests, the next two

examples show further tests on astronomically motivated
problems. The first shows how extremely noisy raw data
can be directly input to the network to constrain cosmo-
logical parameters and the second shows how using non-
linear summaries are suited to situations where linear
summaries can be misleading.
Information maximizing neural networks are designed to

deal with raw data. We can see IMNNs being useful, or
even essential, when trying to calculate posterior distribu-
tions of model parameters where the likelihood, describing
the distribution of some large number of data points, is
unknown. For example, the raw data from large scale
structure surveys is infeasibly large. Even the number of
summary statistics is ∼104 and a likelihood cannot be
written to describe the physics, the selection bias and the
instrument—but the data can in principle be simulated from

initial conditions. The IMNNs presented in this paper to
illustrate and explore the concept used a fully connected
architecture. When considering very large data sets we will
need to consider network architectures that are adapted to
the problem at hand and computationally efficient. For
example, assuming the isotropy of the universe transverse
to the line of sight, while looking radially in redshift space
suggests that stacks of convolutional neural networks could
be used to deal with raw LSS data. As long as patches of the
large scale structure (and the instrument) can be simulated
to train the convolutional filter, IMNNs should make it
possible to extract cosmologically interesting information
directly from the raw data—automatically.
The code used in this paper is available [72].
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