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In the next decade, x-ray polarimetry will open a new window on the high-energy Universe, as several
missions that include an x-ray polarimeter are currently under development. Observations of the
polarization of x rays coming from the accretion disks of stellar-mass and supermassive black holes
are among the new polarimeters’ major objectives. In this paper, we show that these observations can be
affected by the quantum electrodynamic (QED) effect of vacuum birefringence: after an x-ray photon is
emitted from the accretion disk, its polarization changes as the photon travels through the accretion disk’s
magnetosphere, as a result of the vacuum becoming birefringent in the presence of a magnetic field. We
show that this effect can be important for black holes in the energy band of the upcoming polarimeters and
has to be taken into account in a complete model of the x-ray polarization that we expect to detect from
black-hole accretion disks, both for stellar mass and for supermassive black holes. We find that, for a
chaotic magnetic field in the disk, QED can significantly decrease the linear polarization fraction of
edge-on photons, depending on the spin of the hole and on the strength of the magnetic field. This effect
can provide, for the first time, a direct way to probe the magnetic field strength close to the innermost
stable orbit of black-hole accretion disks and to study the role of magnetic fields in astrophysical accretion
in general.

DOI: 10.1103/PhysRevD.97.083001

I. INTRODUCTION

In quantum electrodynamics (QED), the vacuum is
expected to be birefringent in the presence of a magnetic
field. This effect is extremely small for the magnetic fields
that are obtainable here on Earth, and therefore, this
prediction, which was one of the first predictions of
QED [1–3], has not been tested until very recently.
Astrophysical magnetic fields, on the other hand, are much
more intense, and objects like neutron stars and black holes,
which are characterized by magnetic fields that can be as
large as 1015 G, are ideal laboratories to test this prediction.
Recently, the detection of the optical polarization of a
radio-quiet neutron star, RX J1856.5-3754, has provided a
hint that vacuum birefringence actually exists [4].
The effect of the vacuum birefringence on the photon’s

polarization is much stronger in the x rays [5], and, indeed,
several studies show how the observation of x-ray polari-
zation from neutron stars can, on one hand, test QED and,
on the other hand, probe the magnetosphere of these objects
[6,7]. Black-hole accretion disks are expected to generate a
weaker magnetic field, so one could think that the effect of
vacuum birefringence on x-ray polarization would be
small. However, how strongly the birefringence affects

the polarization of the photon traveling in the magnetized
vacuum does not depend only on the strength of the
magnetic field itself, but also on for how long the photon
travels in the strong magnetic field (see Sec. II). In Sec. III,
we estimate the photon energy at which QED becomes
important as a function of the black hole spin and for a
magnetic field strength that is the minimum needed for
accretion to occur in a α model. We show that, for fast
spinning black holes, QED becomes important at the high
end of the upcoming polarimeters’ range, around 10 keV. If
the magnetic field was in fact stronger than the minimum
required by the model, the effect would be important at
lower energies as well. The estimate in Sec. III, however,
does not take into account the structure of the magnetic
field and the angular momentum of the photon. In order to
get a better sense of how QED would affect the final
polarization of x-ray photons, we calculate the effect of a
partially ordered magnetic field on x-rays traveling near the
disk plane (see Sec. V).
A detailed calculation of the effect of QED on x-ray

polarization from black holes is crucial as several missions
with x-ray polarimeters are currently under development. In
the soft range (1 to 10 keV), the NASA mission IXPE [8]
has already been selected in the current SMEX cycle, XIPE
is among the 3 ESA M4 candidates [9], and CAS/CNSA
mission eXTP is currently in its phase zero [10]. In the*ilariacaiazzo@phas.ubc.ca
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sub-keV range, a narrow band (250 eV) polarimeter,
LAMP, and a broad band (0.2–0.8 keV) rocket-based
polarimeter, REDSox, are currently being designed
[11,12]. As for hard x rays, the balloon-borne X-Calibur
[13], with an energy range of 20 to 80 keV, and POGO+
[14], 18 to 160 keV, have already observed the Crab and
Cygnus X-1.
Magnetic fields have an important role in the physics of

black holes, as they are thought to lead to the formation of
relativistic jets [15,16] and to be the source of the shear
stresses in accretion disks [17,18]. However, there have
been very few observations capable of probing the strength
of magnetic fields in accretion disks, especially close to the
black hole. Recently, observations of the radio polarization
from Sagittarius A*, the supermassive black hole at the
center of our own Galaxy, have found evidence for partially
ordered magnetic fields near the event horizon [19]. The
work of Miller et al. [20–22] on spectra from stellar mass
black hole binaries, has shown that the observed wind,
produced by the inner disk as close as 850 GM=c2 to the
central engine, must be powered by magnetic processes,
most likely by pressure generated by magnetic shear
stresses internal to the disk, and can provide an indication
on the strength of the magnetic field in that region. The
observation of the x-ray polarization from black-hole
accretion disks could be, if properly modeled including
QED, the first probe of black-hole magnetic fields close to

the innermost stable orbit of the disk, and a direct way to
study the role of magnetic fields in astrophysical accretion
generally.

II. VACUUM BIREFRINGENCE

In classical electrodynamics, Maxwell’s equations are
linear in the fields, and there is no interaction of light with
light. In QED, the vacuum current of a charged Dirac field
implies an addition to the action integral of the electro-
magnetic field, as photons can interact with the field via the
production of virtual electron-positron pairs. This addition
can be written as a function of Lorentz- and gauge-invariant
quantities [3]:

F ¼ 1

4
FμνFμν ¼ 1

2
ðB − EÞ2 ð1aÞ

G ¼ 1

4
FμνF�

μν ¼ E · B ð1bÞ

X2 ¼ 2ðF þ iGÞ ¼ ðBþ iEÞ2 ð1cÞ

where E and B are constant electric and magnetic field
strengths and Fμν is the electromagnetic tensor. The full
Lagrangian density of constant electromagnetic fields
becomes

L ¼ −F −
1

8π

Z
∞

0

dss−3 exp ð−m2sÞ
�
ðesÞ2Gℜ½coshðesXÞ�

ℑ½coshðesXÞ� − 1 −
2

3
ðesÞ2F

�
: ð2Þ

In Eq. (2), the term −F is the classical Lagrangian density of electrodynamics and the second term is the addition due to
the presence of a charged Dirac field in QED.
Historically, Heisenberg and Euler [1] and Weisskopf [2] independently derived an effective Lagrangian for weak fields

using electron-hole theory. Schwinger [3] later derived Eq. (2) using QED, which gives the same result for the effective
Lagrangian in the weak field limit:

Leff ≃
1

2
ðE2 −B2Þ þ 2α2QED

45

ðℏ=mcÞ3
mc2

½ðE2 − B2Þ2 þ 7ðE ·BÞ2� ð3Þ

The non-linear interaction of the electromagnetic field
implies that, if you add a photon field as a perturbation to
the constant electromagnetic field, the speed at which light
travels through the magnetized vacuum depends on its
direction, polarization and on the local strength of the
magnetic field. In other words, the vacuum in presence of a
magnetic field acquires an index of refraction n different
from unity. From the effective Lagrangian in Eq. (3), Heyl
and Hernquist [23] calculated the difference between the
index of refraction in the direction perpendicular to the
magnetic field and the one in the parallel direction. In
the weak field limit (B ≪ 0.5BQED):

nk − n⊥ ¼ αQED
30π

�
B

BQED

�
2

sin2 θ ð4Þ

where θ is the angle between the direction of the wave
number of the photon and the external field, αQED is the fine
structure constant and

BQED ¼ m2
ec3

ℏe
≃ 4.4 × 1013 G: ð5Þ

In order to describe the evolution of the polarization of a
single photon in the magnetized vacuum, we employ the
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Poincaré sphere formalism: polarization is described by a
unit vector

s ¼ 1

S0
ðS1; S2; S3Þ ¼

1

I
ðQ;U; VÞ: ð6Þ

where S0, S1, S2, S3 (or I, Q, U, V) are the Stokes
parameters and the polarization states are mapped on the
surface of a sphere. Kubo and Nagata [24,25] derived
the equation of motion of the polarization direction on the
Poincaré sphere as light travels through an inhomogeneous
birefringent medium. They obtain the following expression
for the evolution of the polarization of a wave:

∂s
∂x3 ¼ Ω̂ × sþ ðT̂ × sÞ × s ð7Þ

where Ω̂ is the birefringent vector, T̂ is the dichroic vector
and x3 is the length of the photon path on the sphere.
In the case of vacuum in QED with an external magnetic

field to one loop and weak electric field, T̂ ¼ 0 (there is no
real pair production) and the amplitude of Ω̂ is proportional
to the difference between the indices of refraction for the
two polarization states. From Eq. (4),

Ω̂ ¼ k0ðnk − n⊥Þ ¼ k0
αQED
30π

�
B

BQED

�
2

sin2 θ; ð8Þ

where k0 ¼ 2πν=c, is the unperturbed wave number of the
photon.
All the current models for the polarization of light

emitted from a black hole [26–29] assume that the
polarization vectors of the photons are simply parallel
transported along the photon paths as the photons travel
through the black hole spacetime. This assumption may
fail, because, as photons travel in a strong magnetic field,
their polarization can change along the path due to vacuum
birefringence. Numerical integrations of Eq. (7) show that,
for strong enough magnetic fields, the photon polarization
modes are decoupled, and the direction of polarization
follows the direction of the magnetic field [5]. This effect
becomes important when

����Ω̂
�

1

jΩ̂j
∂jΩ̂j
∂x3

�−1����≳ 0.5: ð9Þ

From the same expression, we can find the distance from
the source at which the polarization stops following the
magnetic field and becomes frozen with respect to the
radius curvature. This distance is called the polarization-
limiting radius, or the adiabatic radius (see Sec. III). We
want to calculate the polarization-limiting radius for black
holes in order to understand whether QED is important for
x-ray observations and, therefore, we need to estimate the
strength of the magnetic field in the disk.

III. ACCRETION DISK MODEL

Black-hole accretion disks are rarefied; thus, angular
momentum transfer due to molecular viscosity is inefficient
and cannot lead to accretion [30]. In current theories of
astrophysical accretion disks, magnetic fields and turbu-
lence are expected to be the source of shear stresses. Here,
in order to have an estimate of the strength of the magnetic
field in the disk plane, we set the magnetic field to be the
minimum needed for accretion to occur. The relation
between the tangential stresses between layers in the disks
and the magnetic field can be written as [17]

tϕ̂ r̂ ¼ ρcsvt þ
B2

4π
¼ αP; ð10Þ

where ρ is the mass density, cs is the speed of sound, vt is
the turbulence velocity, P is pressure and tϕ̂ r̂ is the shear
stress as measured in a frame of reference moving with the
gas. The last equality is called the α-prescription, in which
the efficiency of the angular momentum transfer is
expressed with one parameter. Since turbulence in the disk
is generated by the magnetic field, we expect the two terms
to be of the same order. The minimum strength for the
magnetic field to generate the shear stresses needed for
accretion is then of the order B ∼ ð4παPÞ1=2.
We model the accretion disk physics using the Novikov

and Thorne (N&T) model [31]. The N&T accretion disk
model is the general relativistic generalization of the
Shakura-Sunyaev model [17], set in the Kerr spacetime
surrounding a spinning black hole with spin parameter
a ¼ J=ðcMÞ, ranging from a ¼ 0 (Schwarzschild black
hole) to a ¼ GM=c2 (critical spin).
For simplicity, in order to split expressions into

Newtonian limits times relativistic corrections, N&T intro-
duced the following functions (from now on we will use
c ¼ G ¼ 1), which are equal to one in the nonrelativistic
limit:

A ¼ 1þ a2⋆=r2⋆ þ 2a2⋆=r3⋆ ð11aÞ

B ¼ 1þ a⋆=r3=2⋆ ð11bÞ

C ¼ 1 − 3=r⋆ þ 2a⋆=r3=2⋆ ð11cÞ

D ¼ 1 − 2=r⋆ þ a2⋆=r2⋆ ð11dÞ

E ¼ 1þ 4a2⋆=r2⋆ − 4a2⋆=r3⋆ þ 3a4⋆=r4⋆ ð11eÞ

F ¼ 1 − 2a⋆=r3=2⋆ þ a2⋆=r2⋆ ð11fÞ

G ¼ 1 − 2=r⋆ þ a⋆=r3=2⋆ ð11gÞ

N ¼ 1 − 4a⋆=r3=2⋆ þ 3a2⋆=r2⋆ ð11hÞ
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where r⋆ ¼ r=M and a⋆ ¼ a=M. The last expression, N ,
which is not from Novikov and Thorne [31], corresponds to
the quantity called C in Riffert and Herold [32]. In the N&T
accretion disk model, the disk lies in the equatorial plane
(θ ¼ π=2) and matter rotates in quasi-circular orbits with
angular velocity

ω ¼ dϕ
dt

¼
ffiffiffiffiffi
M
r3

r
1

B
: ð12Þ

The inner edge of the disk is determined by the inner-
most stable circular orbit (or ISCO), which lies at the radius

rI ¼ Mf3þ Z2 − ½ð3 − Z1Þð3þ Z1 þ 2Z2Þ�1=2g
Z1 ≡ 1þ ð1 − a2⋆Þ1=3½ð1þ a⋆Þ1=3 þ ð1 − a⋆Þ1=3�
Z2 ≡ ð3a2⋆ þ Z2

1Þ1=2 ð13Þ

In order to calculate the pressure in the disk, we have
to analyze the local vertical structure of the disk near the
equatorial plane. The easiest way is to perform the calcu-
lations in the local orbiting frame at the center of the disk
(z ¼ 0). In this inertial frame of reference, all that is needed
are the following equations, in which the Newtonian value
is multiplied by the relativistic corrections defined in
Eqs. (11). We will need, of course, the equation for
hydrostatic equilibrium in general relativity. We use the
correction to the N&T equilibrium found by Riffert and
Herold [32]:

dP
dΣ

¼ −ω2z
B2N
C

ð14Þ

where dΣ ¼ ρdz. Since we are interested in the mid-plane,
where by symmetry we expect the vertical density profile to
reach a local maximum (or minimum), we consider ρ to be
approximately constant near the mid-plane. We then need
an expression for how the energy is generated inside the
disk. The viscous heating generated by friction between
adjacent layers is given by [31]

dF
dz

¼ 3

2
ωtϕ̂ r̂C

−1BD ð15Þ

where F is the energy flux. We assume the energy transport
to be radiative:

F ¼ −
1

κR

dPrad

dΣ
ð16Þ

where κR is the Rosseland mean opacity. For the equation of
state to calculate the vertical structure, we assume that, in
the central part of the disk, pressure is dominated by
radiation. However, we allow a z dependence:

P ¼ 1

χðΣÞPrad: ð17Þ

From Eqs. (14), (16), and (17) we get:

−κRF ¼ dðχðΣÞPÞ
dΣ

¼ dχ
dΣ

Pþ χ
dP
dΣ

¼ dχ
dΣ

Pþ χð−ω2zÞB
2N
C

ð18Þ

Thus, from Eqs. (15) and (17):

αP ¼ χ
2ω

3κR

BN
D

−
2F
3ω

d ln κR
dz

C
BD

þ 2ωz
3κR

dχ
dz

BN
D

−
2

3κRω

d
dz

�
dχ
dΣ

P

�
C
BD

ð19Þ

In the mid-plane this becomes:

αPc ¼ χc
2ω

3κR

BN
D

− Pc
2

3κRω

d
dz

�
dχ
dΣ

�����
z¼0

C
BD

∼ χc
2ω

3κR

BN
D

− Pc
2

3κRω

χc
ρch2

����
z¼0

C
BD

ð20Þ

where h is the typical scale height of the disk. The second
term is negative because χ decreases with z and Σ and it
reaches its maximum at z ¼ 0, so its derivative at z ¼ 0 is
less than 0.
Rewriting κRρc ¼ 1=λ (mean free path), we have:

Pc
2

3κRω

χc
ρch2

¼ χcPc
2λ2

ωλh2
ð21Þ

In this expression, h2=λ2 corresponds to the number of
mean free paths that a photon needs to perform a random
walk out of the disk, while λ=c is the time for one mean free
path. We can then rewrite this expression in terms of the
diffusion time:

χcPc
2λ2

ωλh2
¼ χcPc

2

ωtdiff
¼ χcPc

trot
πtdiff

ð22Þ

where trot is the time needed by the disk to undergo a
complete rotation and tdiff is the diffusion time. Since
trot ≪ tdiff , this term is much smaller than the first one. The
relativistic corrections do not affect this result because the
value of C=ðBDÞ is less than one from the ISCO to infinity
and it goes to one at infinity. We can then write the strength
of the magnetic field in the midplane as:
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B2 ∼ 4παPc ∼ χc
2ω

3κR

BN
D

¼ χc
8π

3κR

ffiffiffiffiffi
M
r3

r
N
D

: ð23Þ

Since radiation dominates the pressure in the mid-plane of
the disk, we can take χc ∼ 1. Moreover, it is safe to assume
that in the innermost part of the disk the opacity is
dominated by electron scattering:

κR ¼ κes ¼
8π

3mp

�
e2

mec2

�
2 ð1þ XÞ

2
ð24Þ

wheremp andme are the proton mass and the electron mass
respectively and X is the hydrogen mass fraction. For a
10 M⊙ black hole at the ISCO, r ¼ rI, we obtain

B2 ¼ ð0.36 − 1.22 × 108 GÞ2
�

M
10 M⊙

�
−1
�
1þ X
2

�
−1

ð25Þ

where the first value is for a⋆ ¼ 0 and the second is for
a⋆ ¼ 0.999 (the value diverges for a⋆ ¼ 1). This is a crude
estimate of the minimum magnetic field strength needed to
generate enough shear stresses for accretion to occur. Both
global magneto-hydrodynamic (MHD) simulations [33]
and shearing box simulations [34] show that, when moving
away from the mid-plane, the magnetic pressure decreases
toward the photosphere. However, our expression, Eq. (25)
with the radial scaling of Eq. (23), reproduces the strength
of the magnetic field at the photosphere obtained with
shearing box simulations by Hirose et al. [34] for a
6.62 M⊙ black hole at a radius of 30 GM=c2. Likewise,
the expressions in Eqs. (23) and (25) reproduce both the
strength and the radial decrease of the magnetic field along
the photosphere in Fig. 3 of Schnittman et al. [33], who
performed a global MHD simulation for a 10 M⊙ black
hole. Regarding the estimates obtained by Miller et al. [22]
for GRS 1915þ 105 at 850, 1,200, 3,000 and 30,000
GM=c2, Eqs. (23) and (25) reproduces their minimum
estimate at every radius, the one obtained by assuming
MHD pressure, while it is two orders of magnitude less
than their estimates obtained by assuming a magneto-
centrifugal driven wind or an α-model pressure. For our
purposes, we will then use the analytical expression found
in Eq. (23) for the minimum magnetic field strength at the
photosphere.
From Eqs. (8) and (23), we can estimate the amplitude of

the birefringent vector in the vacuum just above the
accretion disk. Reintroducing all the constants yields the
magnitude of the birefringent vector:

Ω̂ ¼ k0Δn ¼ k0
ℏmp

15πm2
ec2

1

ð1þ XÞ

ffiffiffiffiffiffiffiffi
GM
r3

r
N
D

sin2 θ ð26Þ

And Eq. (9) becomes

����Ω̂
�

1

jΩ̂j
∂jΩ̂j
∂x3

�−1���� ≃ Ω̂ðrÞr

≃ k0
ℏmp

15πm2
ec2

1

ð1þ XÞ

ffiffiffiffiffiffiffiffi
GM
r

r
N ðrÞ
DðrÞ:

ð27Þ

Equating this expression to 0.5, we can calculate the
polarization limiting radius to be

rpc2

GM
¼

�
2k0ℏmp

15πm2
ecð1þ XÞ

N ðrpÞ
DðrpÞ

�
2

ð28Þ

The polarization-limiting radius is a rough indication for
the distance from the source at which the polarization of
light is not affected by the birefringence anymore. In Fig. 1,
the energy of the photon at which rp is equal to rI is plotted
against the spin of the black hole (solid red line). The dotted
line represents the ISCO (right y-axis). This means that, for
rapidly spinning black holes, the effect of QED will be
important around a photon energy of 10 keVor lower, while
for slowly spinning black holes, QED will affect the
polarization only above 10–20 keV. However, if the
magnetic field strength is higher (or lower), the energy
at which QED becomes important decreases (or increases)
as the inverse square of the magnetic field strength. The
effect of vacuum birefringence, if properly modeled, can
therefore provide an indication on the strength of the
magnetic field that threads the accretion disk. It is worth

FIG. 1. The plot shows, on the left, the y axis, the energy
at which rp ¼ rI (solid red line). On the right, the y axis, the
ISCO for a black hole as function of the spin parameter a
(dashed black line).
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noticing that this result is dependent on the spin of the black
hole but not on the mass, so it stands for both stellar-mass
and supermassive black holes. The polarization-limiting
radius estimate does not take into account light bending,
which causes the photon’s path in the strong magnetic field
region to be longer due to the gravitational pull of the hole.
For this reason, photons at energies lower than the one
plotted in Fig. 1 could still be affected by the vacuum
birefringence, depending on their angular momentum
(see Sec. V).

IV. COMPETITION WITH THE
PLASMA BIREFRINGENCE

The possible presence of a corona above the inner
regions of the disk introduces the possibility of a competing
Faraday rotation due to the plasma birefringence. The
effects of plasma birefringence for black hole accretion
disks were studied in detail in a paper by Davis et al. [35]
and comprise of a reduction of the photons linear polari-
zation in a range of energy that depends on the strength of
the magnetic field, on the energy of the photons and on the
distance to the black hole of the emission region. In this
section, we estimate the photon energy above which the
vacuum birefringence dominates over the plasma. If we
write the two photon polarization modes as

je1i ¼ cosψ jai þ i sinψ jbi ð29aÞ

je2i ¼ sinψ jai − i cosψ jbi ð29bÞ

where

jai ¼

0
B@

− sin θ

0

cos θ

1
CA; jbi ¼

0
B@

0

1

0

1
CA; ð30Þ

in the cold plasma limit we obtain

b ¼ 1

tan 2ψ
≃
ωB

ω

�
1þ V

ω2 − ω2
B

ω2
B

	
sin2θ
2 cos θ

ð31Þ

where ωB ¼ eB=mec2 is the cyclotron frequency,

V ¼ αQED
15π

�
B

BQED

�
2
�
ω

ωp

�
2

ð32Þ

measures the influence of the virtual eþ e− pairs in the
strong magnetic field relative to the real electrons of the
plasma and ωp is the plasma frequency [36].
For an accretion disk in the keV range, we are in the limit

for which ω ≫ ωB. If b goes to zero, the polarization
becomes circular, and without the presence of QED, the
Faraday rotation induced by the plasma would destroy the
linear polarization, as in that case b ≃ ωB=ω ≪ 1. The limit

for which the QED and the plasma effects are similar is for
b ∼ 1. Since ωB=ω ≪ 1, in order for b to be about 1,
Vω2=ω2

B needs to be much greater than 1, so we can neglect
the first term in the brackets of Eq. (31) and then obtain

b ≃
αQED
15π

�
B

BQED

�
2 ω3

ω2
pωB

¼ eBE3

60π2nem2
eℏ2c6

; ð33Þ

where E is the energy of the photon and ne is the number
density of electrons.
If we assume the optical depth over a distance compa-

rable to the ISCO to be low,

τ ¼ neσTrI ≃ 0.2; ð34Þ

where σT is the Thomson cross section, we obtain that
b ∼ 1 for

E ¼ 2.11 − 2.43 keV

�
M

10 M⊙

�
−1
6

�
τ

0.2

�1
3

�
1þ X
2

�1
6

;

ð35Þ

where the first value is for a⋆ ¼ 0 and the second value is
for a⋆ ¼ 1. Because b scales as E3, at higher energies the
plasma birefringence does not destroy the linear polariza-
tion of the photons thanks to the predominance of QED
which renders the propagation modes approximately linear.
The energy at which QED begins to dominate scales slowly
with the assumed magnetic field strength, in fact as B−1=3.

V. DEPOLARIZATION IN THE DISK PLANE

To calculate in detail the effect of QED, as a first step we
evolve the polarization of a photon traveling along a
geodesic from the ISCO to the observer just above the
plane of the accretion disk. Wewant to calculate the amount
of depolarization caused by a partially ordered field in the
disk. Recent measurements of the radio polarization around
Sagittarius A� provided evidence for partially ordered
magnetic fields near the event horizon [19]. It is reasonable
to assume the field to be organized on some length-scale
that depends on the distance to the hole and that reflects the
competition between the magnetic field itself, that tends to
be organized, and the shear of the disk, impeding the
formation of big structures. Therefore, to model the field in
the disk, we divide the disk into regions of constant
magnetic-field direction, which is the usual condition
applied to the field in the equatorial plane in magnetohy-
drodynamics calculations [37].
As a photon travels through a magnetized birefringent

vacuum with difference in index of refraction Δn, the
polarization direction rotates around the birefringent
vector Ω̂ as
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dΘ
dτ

¼ Δn
p · u
ℏc

ð36Þ

where p is the four-momentum of the photon, u is the four-
velocity of the disk that anchors the field and τ is the proper
time elapsed in the frame of the disk. We want to calculate
the final depolarization of the photon, so we integrate along
the geodesic

ΔΘ ¼
Z

Δn
p · u
ℏc

�
dxμ

dr

�
uμdr ð37Þ

to determine the total rotation of the polarization of a
photon across the Poincaré sphere. The polarization of an
individual photon will perform a random walk across the
Poincaré sphere, and the total rotation of the polarization
along the path is given by Eq. (37), where the extremes of
the integral are the ISCO and infinity. The direction of the
individual step, is given by Eq. (7).
For simplicity, we limit ourselves to photons traveling

near the plane of the disk. In the equatorial plane, the metric
becomes

ds2 ¼ gttdt2 þ 2gtϕdrdϕþ gϕϕdϕ2 þ grrdr2 ð38aÞ

gtt ¼ −1þ 2M=r ð38bÞ

gtϕ ¼ −2Ma=r ð38cÞ

gϕϕ ¼ r2ð1þ a2=r2 þ 2Ma2=r3Þ ¼ r2A ð38dÞ

grr ¼ ð1 − 2M=rþ a2=r2Þ−1 ¼ D−1 ð38eÞ

The four-velocity of an observer rotating with the disk
can be easily obtained remembering that

uϕ ¼ dϕ
dτ

¼ ωut ð39Þ

From its definition, gμνuμuν ¼ −1, we obtain

ur ¼ 0 ð40aÞ

ut ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−1
gtt þ 2gtϕωþ gϕϕω2

s
¼ BC−1

2 ð40bÞ

uϕ ¼ dϕ
dτ

¼ ωut ¼ ωBC−1
2 ð40cÞ

(ur ¼ 0 because we are in the local orbiting frame), and

ut ¼ ðgtt þ gtϕωÞut ¼ −GC−1
2 ð41aÞ

uϕ ¼ ðgϕϕωþ gtϕÞuϕ ¼
ffiffiffiffiffiffiffi
Mr

p
FC−1

2 ð41bÞ

In order to study the path of the photon along its
geodesic, it is useful to calculate quantities that do not
change along the path. From the dot-product of the four-
momentum of the photon and two of the Killing vectors of
the metric, we find two quantities that remain constant
along the geodesics: the energy and angular momentum of
the photon

E ¼ −ξt · p ¼ −ðgttpt þ gtϕpϕÞ ð42aÞ

L ¼ ξϕ · p ¼ gϕϕpϕ þ gtϕpt ð42bÞ

We call the specific angular momentum L=E ¼ l. We
analyze three cases: a photon coming from the ISCO
with zero angular momentum (l ¼ 0), a photon initially
rotating with the disk (maximum prograde lþ) and a photon
initially going against the rotation of the disk (maximum
retrograde l−).

A. Zero angular momentum photons

If l ¼ 0, from Eqs. (42a) and (42b), we obtain, for
the photon,

dϕ
dt

¼ −
gtϕ
gϕϕ

¼ 2
Ma
r3

A−1 ð43Þ

From the null-geodesic condition ds2 ¼ 0, we find:

dt
dr

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

grr
g2tϕ
gϕϕ

− gtt

vuut ¼ A
1
2D−1 ð44Þ

We can then write the second part of Eq. (37) as

�
dxμ

dr

�
uμ ¼

dϕ
dr

uϕ þ
dt
dr

ut

¼ −ðACÞ−1
2B: ð45Þ

The first part becomes

p · u ¼ Eð−ut þ buϕÞ ¼ −Eut: ð46Þ

Using Δn from Eq. (26), and changing the integration
variable to a dimensionless one (r⋆ ¼ r=M), Eq. (37)
becomes

ΔΘ ¼ EK
Z

sin2θr
−3
2⋆ A−1

2B2N ðDCÞ−1dr⋆ ð47Þ

where K ¼ mp=½15πm2
ec2ð1þ XÞ�.
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B. Maximum prograde and retrograde
angular momentum photons

From Eqs. (42a) and (42b), we obtain, for the photon,

dϕ
dt

¼ −
lgtt þ gtϕ
gϕϕ þ lgtϕ

ð48Þ

By imposing dr2 ¼ 0, at the point of emission (the ISCO),
we obtain the values for the maximum prograde specific
angular momentum (lþ) of a photon rotating with the disk
and the maximum retrograde specific angular momentum
(l−) for a photon in retrograde motion:

l� ¼
gtϕ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2tϕ − gϕϕgtt

q
−gtt

¼ r

�
−2a⋆=r2⋆ �D1=2

1 − 2=r⋆

�
ð49Þ

Since l is a constant along the geodesic, we calculate l� at
the ISCO. Depending on the spin of the black hole,
however, the ISCO can be inside the retrograde photon
orbit (the prograde photon orbit is always inside the ISCO).
In this case, we calculate l− at the retrograde photon orbit.
Employing Eq. (48) in the null-geodesic condition, we

find the path of the photon:

dt
dr

¼ gϕϕ þ lgtϕ
rDðl2gtt þ 2lgtϕ þ gϕϕÞ1=2

ð50aÞ

dϕ
dr

¼ −ðlgtt þ gtϕÞ
rDðl2gtt þ 2lgtϕ þ gϕϕÞ1=2

: ð50bÞ

Defining a dimensionless angular momentum as
l⋆ ¼ l=M, we can then write the second part of Eq. (37) as

�
dxμ

dr

�
uμ ¼

dϕ
dr

uϕ þ
dt
dr

ut

¼ l
ffiffiffiffiffiffiffi
Mr

p
− r2B

rC1=2ðl2gtt þ 2lgtϕ þ gϕϕÞ1=2

¼ l⋆=r3=2⋆ − B
C1=2ðl2⋆gtt=r2⋆ − 4l⋆a⋆=r3⋆ þAÞ1=2 ð51Þ

The first part becomes

p · u ¼ Eð−ut þ luϕÞ
¼ EC−1=2ðl⋆=r3=2⋆ − BÞ ð52Þ

We can then rewrite Eq. (37) as

ΔΘ ¼ EK
Z

sin2θr
−3
2⋆
N
DC

ðl⋆=r3=2⋆ − BÞ2
ðl2⋆gtt=r2⋆ − 4l⋆a⋆=r3⋆ þAÞ1=2 dr⋆

ð53Þ

where K ¼ mp=½15πm2
ec2ð1þ XÞ� is the same as in the

previous section.

C. Results

As explained at the beginning of this section, we assume
a partially organized field in the disk, as we divide the disk
into region of fixed magnetic field direction. In order to
model the magnetic field of the disk, we need to make an
assumption on the length-scale over which the magnetic
field is organized, i.e. the length-scale of the annular
regions. As we expect the length-scale to be related to
both the size of the hole itself and the distance to the hole,
we first divide the disk into 5 regions, each twice as large as
the previous one: from the ISCO to twice the ISCO, to 4
times the ISCO, to 8 times the ISCO, to 16 times the ISCO,
to infinity. For simplicity, we call this configuration the “2-
fold configuration.” Equations (47) and (53) allow us to
calculate the path that the polarization of a photon takes
across the Poincaré sphere in each region. To calculate the
direction of the step, we rotate s around Ω̂ [Eq. (7)]. In each
region, we take the angle between the magnetic field and
the photon, θ, and the angle between s and Ω̂ as random.
In order to visualize the depolarization effect of the

partially ordered field on the single photon, we first
performed a Monte Carlo simulation for 60 photons,
calculating the evolution of their polarization from the
ISCO to infinity. Each photon is emitted with the same
angular momentum and the same energy at infinity from
the ISCO of a black hole rotating with a⋆ ¼ 0.84 (as the
AGN NGC 1365 [38]). We repeated the same calculation
for photons traveling with zero, 90% of the maximum
prograde and 90% of the maximum retrograde specific
angular momentums and for three different energies: 3, 5
and 7 keV (at infinity). The results are shown in Fig. 2.
Figure 2 depicts a solid Poincaré sphere, in which the dots
represent the end-point of the polarization vectors. The dark
blue dot indicates the initial polarization, which is the same
for every photon. Without the QED effect, the polarization
would be frozen at the emission and the final polarization at
infinity would be the same for all photons: still the dark
blue dot. The other dots indicate the final polarization of the
photons, calculated within QED. The yellow dots indicate
the end-point of the polarization vector for the zero angular
momentum photons; the violet dots correspond to the
photons that receive a large blue shift (lþ photons) and
the copper dots represent the photons that receive a large
red shift (l− photons). We can immediately see that the final
polarization is different from the initial one for all the
photons, with a much bigger effect for red-shifted photons
and for high-energy photons.
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We then performed the same Monte-Carlo simulation,
this time with 6,000 photons, for different energies in the
upcoming polarimeters’ bands, 1 to 80 keV (at the
observer), and for four values of a⋆: 0.5, 0.7, 0.9 and
0.99. In order to check in which way our assumption on the
structure of the magnetic field affects our results, we
performed the same calculations also for a disk in which
the regions of constant magnetic field are, each, 1.5 times as
large as the previous one: from the ISCO to 1.5 times the

ISCO, to 2.3 times the ISCO, to 5.1 times the ISCO, to 7.6
times the ISCO, to 11 times the ISCO, to 17 times the
ISCO, to infinity. For simplicity, we call this configuration
the 1.5-fold configuration. The results are shown in Fig. 3.
Both plots show the polarization fraction obtained as an
average of the final linear polarization of all the 6,000
photons against the photon energy. Results are shown for
both the 2-fold configuration (solid lines) and the 1.5-fold
configuration (dashed lines). The left plot shows the final

FIG. 3. Final polarization fraction vs. photon energy calculated in the 2-fold configuration (solid lines) and in the 1.5-fold
configuration (dashed lines). Left plot, left to right: maximum retrograde (90% l−) angular momentum photons (red), zero angular
momentum photons (black) and maximum prograde (90% lþ) angular momentum photons (blue), coming from the ISCO of a black hole
with a⋆ ¼ 0.9. Right plot: 90% l− photons for, left to right, a⋆ ¼ 0.99 (purple), 0.9 (red), 0.7 (light blue) and 0.5 (green).

FIG. 2. Monte-Carlo simulation of the depolarization of radiation from a black hole with a ¼ 0.84 (as NGC 1365) for three photon
energies (as measure by a distant observer): 3 keV (left), 5 keV (middle) and 7 keV (left). Polarization is represented on the Poincaré
sphere: the dots represent the end-point of the polarization vector. The initial polarization vector is indicated by a dark blue dot. The
violet dots are photons that receive a large blue shift (90% of lþ), the yellow dots are zero-angular-momentum photons and the copper
receive a large red shift (90% of l−) on their way from the ISCO to us.
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polarization fraction of the zero angular momentum pho-
tons (black lines), the blue-shifted photons (blue lines) and
the red-shifted photons (red lines) for a black hole rotating
with a⋆ ¼ 0.9. The right plot shows the polarization
fraction of red-shifted photons for four different a⋆: 0.5
(green lines), 0.7 (light blue lines), 0.9 (red lines) and 0.99
(purple lines).
All our results are independent of the black hole mass.

VI. CONCLUSIONS

As we can see from the left panel of Fig. 3, the effect of
the vacuum birefringence on the polarization of x-ray
photons is important, especially for retrograde photons at
the high end on the upcoming polarimeters’ range, where
the observed polarization can be reduced up to 90% for a
black hole rotating at 90% the critical spin. There are two
reason why retrograde photons are more affected by
vacuum birefringence: they are the ones that undergo more
orbits around the hole and the energy at which they are
emitted is higher. The effect of QED is larger for rapidly
rotating black holes, for which the magnetic field at the
ISCO is higher and photons perform many rotations around
the hole before leaving the magnetosphere (see the right
panel of Fig. 3).
The dashed lines plot in both panels of Fig. 3 show the

averaged final polarization fraction for photons traveling
through a different field configuration (the 1.5-fold con-
figuration). In general, if magnetic loops are smaller, the
depolarization effect is reduced linearly with the size of
the loops: in our example, the dashed lines fall on top of the
solid lines if we rescale them by 2=1.5. However, the solid
lines show peaks that are not present in the dashed lines.
For example, for a hole rotating with spin a⋆ ¼ 0.99 in the
2-fold configuration (purple solid line, right panel) the
polarization fraction peaks at 7 keV and then again at
14 keV, at 21 keVand so on. These peaks are due to the fact
that at those energies the integral in Eq. (53) reaches, in the
first zone of the disk, an average value of π, and therefore,

the polarization vector remains closer to the S1 − S2 plane.
In the 1.5-fold configuration this does not happen because
the first region is smaller and the second region has a bigger
effect on the final polarization, washing out the peaks.
Ideally, the presence of features in the polarization spec-
trum like the peaks shown for the 2-fold configuration
could provide hints on the structure of the magnetic field in
the disk.
Our analysis is restricted to nearly edge-on observations

of black-hole accretion disks, in which the photons that
reach the observer are traveling very close to the disk
through the magnetosphere. Further studies are needed for
modeling photons coming out of the plane of the disk and
traveling through a more organized magnetic field struc-
ture. In this case, the effect of QED could be opposite to the
one due to a chaotic field in the disk. Indeed, the presence
of an organized field could increase the linear polarization
of photons instead of destroying it.
All the results in this paper are obtained for the minimum

magnetic field needed for accretion to operate in the disk. A
larger magnetic field would cause a higher depolarization at
all energies. The observation of the x-ray polarization from
black-hole accretion disks would provide, if properly
modeled including QED, a measurement of the strength
of the magnetic field in the disk and therefore a validity
check for the theories of astrophysical accretion.
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