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We consider accelerated and rotating media of weakly interacting fermions in local thermodynamic
equilibrium on the basis of kinetic approach. Kinetic properties of such media can be described by
covariant Wigner function incorporating the relativistic distribution functions of particles with spin. We
obtain the formulae for axial current by summation of the terms of all orders of thermal vorticity tensor,
chemical potential, both for massive and massless particles. In the massless limit all the terms of fourth and
higher orders of vorticity and third order of chemical potential and temperature equal zero. It is shown, that
axial current gets a topological component along the 4-acceleration vector. The similarity between different
approaches to baryon polarization is established.
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I. INTRODUCTION

Relativistic fermionic liquid is an unusual object for
which the laws of quantum field theory become apparent in
macroscopic phenomena. The most important effects (see
e.g. [1] for reference), chiral magnetic effect (CME) and
chiral vortical effect (CVE) [2–11] effectively modify the
equations of hydrodynamics [2]. Chiral effects can have
different experimental consequences, in particular, result-
ing in baryon polarisation [7,8,12], approached also in the
different context [13,14]. In particular, there are sugges-
tions to investigate P-odd effects in heavy-ion collisions,
strongly controlled by CVE [7,12], at the Nuclotron-Based
Ion Collider Facility (NICA) which under construction in
the Joint Institute for Nuclear Research.
There are currently seemingly different approaches to

polarization relying either on relativistic thermodynamics
[14] or on anomalous axial current and the respective
charge [7,12]. The use of that charge allows to address the
baryonic phase performing the calculation of quark anoma-
lies. The other approach to polarization in confined phase
was recently suggested by consideration of the vortices
cores in pionic superfluid [15]. To compare the approaches
and fill the gap between them we explore in detail the
appearance of anomalous axial current (used in [7,12]) in
the framework of the approach [14].

To do so we will concentrate on the CVE. The existence
of CVE was proven in many different ways, e.g. in
hydrodynamic approximation as the result of joint consid-
eration of triangle axial anomaly and second law of
thermodynamics [2,16], exploring Kubo formulas and
thermal field theory loop calculation [5,17,18], kinetics
[9,10], calculations of triangle anomaly in effective quan-
tum field theory and generalization of the form of axial
charge in hydrodynamics [3,7,19].
We will consider the medium of weakly interacting

fermions in approximation of local thermodynamic equi-
librium, using the kinetic approach, developed in the series
of papers Refs. [13,14,20–24]. In these works, a simple and
natural ansatz was proposed and grounded, which simu-
lates local relativistic distribution functions. According to
the argument used in the construction of this ansatz, it must
describe with a good degree of accuracy the effects
associated with acceleration and rotation, at least in the
lowest order approximation in vorticity.
Various thermodynamic quantities can be calculated

using the covariant Wigner function, the expression for
which can be derived on the basis of the ansatz of the
distribution functions and using the approximation of weak
interaction and small inhomogeneities. Thus, in [14] the
effects of the vorticity in the energy-momentum tensor,
vector current, spin tensor and recently in the axial current
in [24] were investigated.
In our paper we continue to consider the consequences of

the anzats of distribution functions from [14]. Using the
same approximations for theWigner function, we show that
CVE can be obtained by calculating the average value of
the axial current using the distribution functions under
consideration, and, therefore, is their direct consequence.
This is one of the main results of the present paper. We have
reproduced in a new way the well-known formula for axial
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current, corresponding to CVE, which is linear in vorticity,
with the necessary coefficient, depending on μ2 and T2

[1–5,9–11,24]. Thus, we confirmed the similar calculation
recently made in [24]. Let us notice here, that appearance of
CVE in kinetics might be connected to triangle graphs,
existing in finite-temperature field theory.1

We also go beyond currently formulated region of
applicability of the formalism [14] and investigate higher
order effects. We managed to go beyond the perturbative
approximations used in the previous papers, and derive an
exact formula for the axial current. We show analytically
that in the massless limit all terms in the axial current,
starting from the third order in the chemical potential and
temperature, and the fourth order in vorticity and accel-
eration vectors are cancelled. An intriguing consequence of
the expression obtained, in comparison with the usual CVE,
is that the axial current obtains a topological component
directed along the 4-acceleration vector, which gives a
nonzero contribution to the divergence of the axial current.
Also, vortical conductivity obtains additional contribution
of the second order in vorticity and acceleration.
As soon as we show the existence of CVE and

anomalous current in kinetic approach [14], this also directs
to the similarity of polarization calculation, based on this
kinetic approach [13,14] and approach [7,12], based on the
form of anomalous current.
We use Minkowskian metric tensor in the form gμν ¼

diagð1;−1;−1;−1Þ and Levi-Civita symbol ϵ0123 ¼ 1.
The contraction of the induces is sometimes denoted by
dots ϖ2 ¼ ϖμνϖ

μν ¼ ϖ∶ϖ. For Dirac matrices we take
γ5 ¼ iγ0γ1γ2γ3. We use the system of units ℏ ¼ c ¼ k ¼ 1.

II. THERMAL VORTICITY TENSOR

Thermal vorticity tensor [14,24] contains information
about local acceleration, vorticity and temperature gra-
dients in the media in local thermodynamic equilibrium. As
it was noticed in [14] the form of this tensor is not strictly
defined for local thermodynamic equilibrium and known
up to the second order over the gradients ∂2β

ϖμν ¼ −
1

2
ð∂μβν − ∂νβμÞ þOð∂2βÞ; ð2:1Þ

where βμ ¼ uμ
T and T is a temperature in the comoving

system. In the limit of global thermodynamic equilibrium
βμ satisfies [24]

βμ ¼ bμ þϖμνxν; bμ ¼ const;

ϖμν ¼ const; ϖμν ¼ −
1

2
ð∂μβν − ∂νβμÞ ð2:2Þ

and the ratio of chemical potential to temperature in
comoving frame is constant

ξ ¼ μ

T
¼ const: ð2:3Þ

Taking into account (2.2), (2.3) one may transform the
density operator to the form of global thermodynamic
equilibrium density operator [24]. Further, in most cases it
will not be necessary to know the exact form of expression
forϖ. In fact, it is sufficient to assume that thermal vorticity
is an antisymmetric tensor, which follows from the form of
the distribution functions given below. But at the final
stages, we will consider global thermodynamic equilibrium
(2.2) as a particular case to illustrate the content and the
consequences of the obtained formulas.
By analogy with electrodynamics it is convenient to

expand ϖ tensor into vector and pseudovector. Following
to [24] we introduce thermal acceleration vector αμ and
thermal vorticity pseudovector wμ

αμ ¼ ϖμνuν; wμ ¼ −
1

2
ϵμναβuνϖαβ: ð2:4Þ

In accordance with the terminology of electrodynamics, αμ
and wμ may be called “electric” and “magnetic” compo-
nents in the comoving frame, respectively. Tensor ϖμν can
be expressed in terms of these components (2.4) as follows:

ϖμν ¼ ϵμναβwαuβ þ αμuν − ανuμ: ð2:5Þ

For global thermodynamic equilibrium temperature
remains constant along the flow direction [24]. Due to
this, αμ and wμ are proportional in this case to the usual
kinematic 4-acceleration and vorticity, respectively

αμ ¼
1

T
uν∂νuμ ¼

aμ
T
;

wμ ¼
1

2T
ϵμναβuν∂αuβ ¼ ωμ

T
; ð2:6Þ

which in the local rest frame a and ω are expressed in terms
of 3-dimensional vectors

aμ ¼ ð0; aÞ; ωμ ¼ ð0;wÞ; ð2:7Þ

where a and w are 3-dimensional acceleration and angular
velocity. In the limit (2.2) and (2.3) the derivatives of
thermal acceleration, vorticity and temperature can be
defined [24] as

∂ · α ¼ 1

jβj ð2w
2 − α2Þ; ∂ · w ¼ −

3

jβj ðw · αÞ;

∂μT ¼ T2αμ: ð2:8Þ
1We are indebted for V. I. Zakharov for pointing out such an

effect.

GEORGE PROKHOROV and OLEG TERYAEV PHYS. REV. D 97, 076013 (2018)

076013-2



It is possible to construct tensor ϖ̃, which is dual to ϖ and
gives the vorticity vector after projection to 4-velocity

ϖ̃μν ¼
1

2
ϵμναβϖ

αβ ¼ ϵμναβα
αuβ − wμuν þ wνuμ;

wμ ¼ ϖ̃νμuν: ð2:9Þ

By analogy with electrodynamics one scalar and one
pseudoscalar can be constructed from the thermal vorticity
tensor (2.1), ϖ2 ¼ ϖ∶ϖ and ϖ∶ϖ̃, respectively

ϖ2 ¼ 2ðα2 − w2Þ; ϖ∶ϖ̃ ¼ −4ðw · αÞ ð2:10Þ

Note that ϖ2 ¼ const, ϖ∶ϖ̃ ¼ const in the global thermo-
dynamic equilibrium limit as it follows from (2.2). Also,
another scalar,

α2 þ w2; ð2:11Þ

corresponds to the density of the Hamiltonian in
electrodynamics.
Continuing the analogy with electrodynamics, it is

convenient to introduce complex vectors, constructed
from (2.6)

φμ ¼
aμ
2π

þ iωμ

2π
; ψμ ¼ φ�

μ; ð2:12Þ

With the help of these vectors, the final results can be
represented in a compact form reflecting the symmetry
between acceleration and rotation.

III. COVARIANT WIGNER FUNCTION
AND DISTRIBUTION FUNCTION
FOR PARTICLES WITH SPIN

One of the ways of describing the kinetic properties of
the medium, allowing one to take into account the quantum
effects, is based on the use of the covariant Wigner
function. A sequential introduction to the quantum rela-
tivistic kinetic theory and formalism using the Wigner
function can be found in [25]. For the spin 1=2 particles this
Wigner function is a spinorial matrix, expressed in terms of
mean value of the operators of Dirac fields

Wðx; kÞAB ¼ −
1

ð2πÞ4
Z

d4ye−ik·y

× h∶ΨAðx − y=2ÞΨ̄Bðxþ y=2Þ∶i: ð3:1Þ

Brackets h∶∶i mean ensemble averaging with normal
ordering. Wigner function (3.1) can be calculated using
the distribution function. In the case when the interaction is
weak and the inhomogeneities leading to a gradient of the
Wigner function are much smaller than the characteristic
length scale (Compton wave length for massive particles

and de Broglie wave length for massless case) [14,25], one
has

Wðx; kÞ ¼ 1

2

Z
d3p
ε

ðδ4ðk − pÞUðpÞfðx; pÞŪðpÞ

− δ4ðkþ pÞVðpÞf̄Tðx; pÞV̄ðpÞÞ; ð3:2Þ

where UðpÞ ¼ ðuþðpÞ; u−ðpÞÞ, VðpÞ ¼ ðvþðpÞ; v−ðpÞÞ
are 4 × 2 matrices, ŪðpÞ ¼ U†ðpÞγ0, V̄ðpÞ ¼ V†ðpÞγ0
are 2 × 4 matrices, fðx; pÞ and f̄ðx; pÞ are 2 × 2 matrices
and uþðpÞ and u−ðpÞ are spinors of free Dirac fields with
different values of helicity, normalized as usual: ūrus ¼
−v̄rvs ¼ 2mδrs.
In [14] local equilibrium distribution functions fðx; pÞ

and f̄ðx; pÞ for massive particles and antiparticles with spin
in the accelerated and rotating media were introduced. They
have the following form

fðx; pÞ ¼ 1

8π3
1

2m
ŪðpÞXðx; pÞUðpÞ;

f̄ðx; pÞ ¼ −
1

8π3
1

2m
½V̄ðpÞX̄ðx; pÞVðpÞ�T ð3:3Þ

(note the phase space factor 1
8π3
, cf. [26,24]). Exact form of

Xðx; pÞ and X̄ðx; pÞ is unknown. However, it can be stated
beforehand that these functions must lead to a Fermi-Dirac
distribution in the case of a stationary medium, and to a
correct distribution in a rotating medium in the Boltzmann
limit obtained in [14,20]. In [20] a simple ansatz,2

complying with these requirements, was suggested to
investigate the lowest order corrections for the vorticity

Xðx;pÞ¼
�
exp½β ·p−ξðxÞ�exp

�
−
1

2
ϖðxÞ∶Σ

�
þI

�
−1
;

X̄ðx;pÞ¼
�
exp½β ·pþξðxÞ�exp

�
1

2
ϖðxÞ∶Σ

�
þI

�
−1
; ð3:4Þ

where ξðxÞ ¼ μðxÞ
TðxÞ, μðxÞ and TðxÞ are comoving local

chemical potential and temperature and Σμν ¼ i
4
½γμ; γν�

are the generators of Lorentz transformation of spinors.
One may expect [20] that ansatz (3.4) is a good approxi-
mation at least for the lowest order corrections for the
vorticity, though we will also apply it to investigate the
higher order effects.
One can also consider distribution functions (3.4) as

generalization of formulas (introduced in [14] for
global equilibrium) to the case local equilibrium. The
generalization corresponds to change of quantities, which
are constant in global equilibrium, such as temperature,

2We are indebted for F. Becattini for pointing out the
approximate nature of the distribution functions.
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thermal vorticity tensor and chemical potential, to space-
time dependent quantities.
Mean values can be now calculated with a help of

Wigner functionsWðx; pÞ, and we will now concentrate on
the axial current.

IV. AXIAL CURRENT

A. Massive particles

In general, the mean value h∶Ψ̄AΨ∶i of an operator A
containing 4 × 4 matrix, has the form [14]:

h∶Ψ̄ðxÞAΨðxÞ∶i ¼
Z

d4ktrðAWðx; kÞÞ

¼
Z

d3p
2ε

tr2ðfðx; pÞŪðpÞAUðpÞÞ

− tr2ðf̄Tðx; pÞV̄ðpÞAVðpÞÞ; ð4:1Þ

where tr2 means the trace of 2 × 2matrix, corresponding to
sum over polarizations. For axial current j5μ ¼ Ψ̄γμγ5Ψ
(4.1) leads to

h∶j5μ∶i ¼ −
1

16π3
ϵμανβ

Z
d3p
ε

pαftrðXΣνβÞ − trðX̄ΣνβÞg: ð4:2Þ

The traces trðXΣνβÞ trðX̄ΣνβÞ in (4.2) can be calculated in the lowest order in vorticity [14], for which (3.4) and (3.2) is
expected to be a good approximation. However, one can go beyond perturbation theory and obtain exact expressions for
these traces:

trðXΣνβÞ ¼ fðexp½ðβ · p − ξ − g1 þ ig2Þ� þ 1Þ−1 − ðexp½ðβ · p − ξþ g1 − ig2Þ� þ 1Þ−1g

×
1

4ðg1 − ig2Þ
½ϖνβ − isgnðϖ∶ϖ̃Þϖ̃νβ�

þ fðexp½ðβ · p − ξ − g1 − ig2Þ� þ 1Þ−1 − ðexp½ðβ · p − ξþ g1 þ ig2Þ� þ 1Þ−1g

×
1

4ðg1 þ ig2Þ
½ϖνβ þ isgnðϖ∶ϖ̃Þϖ̃νβ�; ð4:3Þ

where sgn is a sign-function and g1 and g2 are scalars,
depending on vorticity

g1 ¼
1

4
ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðϖ∶ϖÞ2 þ ðϖ∶ϖ̃Þ2

q
þϖ∶ϖÞ1=2;

g2 ¼
1

4
ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðϖ∶ϖÞ2 þ ðϖ∶ϖ̃Þ2

q
−ϖ∶ϖÞ1=2: ð4:4Þ

Derivation of (4.3) is given in Appendix. The trace trðX̄ΣνβÞ
can be formally obtained from (4.3) by replacement
ξ → −ξ and change of overall sign.

The integral in (4.2) has a form
R d3p

ε pαfðβ · pÞ, where
fðβ · pÞ is a scalar function of ðβ · pÞ. From Lorentz-
covariance one obtains

Z
d3p
ε

pαfðβ · pÞ ¼ uα
Z

d3pf

�
ε

T

�
: ð4:5Þ

After substitution of (4.3) to (4.2), using (4.5) and perform-
ing the algebraic transformations, one can see, that imagi-
nary terms compensate each other. The final expression for
axial current is

h∶j5μ∶i ¼ C1wμ þ sgnðϖ∶ϖ̃ÞC2αμ;

C1 ¼
1

4π2
g2 coshðg1Þ sinðg2Þ þ g1 sinhðg1Þ cosðg2Þ

g21 þ g22
ðI1ðξÞ þ I1ð−ξÞÞ þ

1

8π2
g1 sinhð2g1Þ þ g2 sinð2g2Þ

g21 þ g22
ðI2ðξÞ þ I2ð−ξÞÞ;

C2 ¼
1

4π2
g2 sinhðg1Þ cosðg2Þ− g1 coshðg1Þ sinðg2Þ

g21 þ g22
ðI1ðξÞ þ I1ð−ξÞÞ þ

1

8π2
g2 sinhð2g1Þ− g1 sinð2g2Þ

g21 þ g22
ðI2ðξÞ þ I2ð−ξÞÞ;

ð4:6Þ

where I1ðξÞ, I2ðξÞ denote one-dimensional integrals, which can be calculated numerically:
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I1ðξÞ ¼
Z

dpp2 coshðεT − ξÞ
ðcoshðεT − ξ − g1Þ þ cosðg2ÞÞðcoshðεT − ξþ g1Þ þ cosðg2ÞÞ

;

I2ðξÞ ¼
Z

dpp2

ðcoshðεT − ξ − g1Þ þ cosðg2ÞÞðcoshðεT − ξþ g1Þ þ cosðg2ÞÞ
: ð4:7Þ

The expression (4.6) contains two terms. The first one is
proportional to wμ and corresponds to usual expression for
CVE [2,11,24]. At the same time, in comparison to the
usual formula for CVE, (4.7) also includes “electric” term,
proportional to acceleration 4-vector αμ divided by temper-
ature in the case of global thermodynamic equilibrium. C1

starts with zero order in vorticity, while C2 in the lowest
order is proportional to g1g2 ∼ϖ∶ϖ̃ and includes the
powers of vorticity starting from the third order. Thus,
the electric term in (4.6) is two orders of magnitude smaller
than the magnetic term.

B. Massless limit

Massless limit is of special interest, as it corresponds to
chiral invariance manifestation, and also because in
this case the integrals (4.7) can be calculated analytically
and the expressions (4.6), (4.7) can be significantly
simplified. For this purpose it is convenient to come
back to the formulae (4.3). Using (4.5), (4.2), (4.3) and
passing to the massless limit ε ¼ jpj, the integrals in (4.2)
can be expressed through polylogarithmic functions
Li3ðzÞ

h∶j5μ∶i ¼ −
T3

4π2ðg21 þ g22Þ
ððg1 þ ig2ÞLi3ð−eg1−ig2−ξÞ − ðg1 − ig2ÞLi3ð−e−g1−ig2−ξÞ

þ ðg1 þ ig2ÞLi3ð−eg1−ig2þξÞ − ðg1 − ig2ÞLi3ð−e−g1−ig2þξÞ þ c:c:Þwμ

þ sgnðϖ∶ϖ̃ÞT3

4π2ðg21 þ g22Þ
ððg2 þ ig1ÞLi3ð−e−g1−ig2−ξÞ − ðg2 − ig1ÞLi3ð−eg1−ig2−ξÞ

þ ðg2 þ ig1ÞLi3ð−e−g1−ig2þξÞ − ðg2 − ig1ÞLi3ð−eg1−ig2þξÞ þ c:c:Þαμ: ð4:8Þ

The polylogarithms Li3ðzÞ in (4.8) have the notable
property [27], which eventually leads to compensation of
higher order terms in the current

Li3ð−e−xÞ − Li3ð−exÞ ¼
π2

6
xþ 1

6
x3: ð4:9Þ

Using (4.9), the definitions of g1 and g2 (4.4) and
formulas (2.10) one obtains:

h∶j5μ∶i ¼
�
T2

6

�
1þ α2 − w2

4π2

�
þ μ2

2π2

�
Twμ

þ T3

12π2
ðw · αÞαμ; ð4:10Þ

which can be further simplified in the limit of global
thermodynamic equilibrium, using (2.6), (4.10):

h∶j5μ∶i ¼
�
1

6

�
T2 þ a2 − ω2

4π2

�
þ μ2

2π2

�
ωμ þ

1

12π2
ðω · aÞaμ:

ð4:11Þ

Formula (4.11) contains three parts: thermal vortical
current h∶j5μ∶iTvort, depending on temperature, chemical

potential and vorticity and corresponding to usual CVE,
purely vortical term h∶j5μ∶ivort, which does not depend on μ
and T, and purely acceleration term h∶j5μ∶iacc, expressed
only through vorticity and acceleration

h∶j5μ∶i ¼ h∶j5μ∶iTvort þ h∶j5μ∶ivort þ h∶j5μ∶iacc;

h∶j5μ∶iTvort ¼
�
T2

6
þ μ2

2π2

�
ωμ; h∶j5μ∶ivort ¼

a2 −ω2

24π2
ωμ;

h∶j5μ∶iacc ¼
1

12π2
ðω · aÞaμ: ð4:12Þ

In the limit T; μ → 0 the first term h∶j5μ∶iTvort vanishes,
while the last two terms in (4.12) form nonzero contribu-
tion, which is of the third order in the vorticity and
acceleration. Such a structure of a current might be related
to the vacuum effects in accelerated frames [28].
Let us notice, that the introduction of complex vectors

(2.11) allows one to diagonalize the expression (4.11):

h∶j5μ∶i ¼ 2πIm

��
1

6
ðT2 þ φ2Þ þ μ2

2π2

�
φμ

�
: ð4:13Þ

The divergence of (4.11) in the case of global
thermodynamic equilibrium can be calculated in the
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straightforward way, using the equations, in particular
(2.8), from [24]. For different components of axial current,
introduced in (4.12), one obtains

∂μh∶j5μ∶iTvort ¼ 0; ∂μh∶j5μ∶ivort ¼ 0;

∂μh∶j5μ∶iacc ¼
1

6π2
ðω · aÞða2 þ ω2Þ; ð4:14Þ

so that the divergence of full current is

∂μh∶j5μ∶i ¼ ∂μh∶j5μ∶iacc ¼
1

6π2
ðω · aÞða2 þ ω2Þ: ð4:15Þ

The contribution to the right-hand side of (4.15) comes
from the third order acceleration-dependent term h∶j5μ∶iacc.
This contribution is purely topological being proportional
to ðω · aÞ, it is of the fourth order over the vorticity and it
vanishes in the limit a → 0. Then, in fact, from (4.15) it
follows, that axial current, calculated with the use of
relativistic distribution functions (3.4), does not conserve,
which was not expected for the free theory without external
fields in global equilibrium case (while could appear in
local equilibrium).
Let us notice, that the correctness of the equation (4.12)

for low temperature and density, when h∶j5μ∶ivort and
h∶j5μ∶iacc begin dominate, is under discussion, because
(as it is pointed in [5]) boundary effects in the accelerated
rotating system can be essential in this case and,
strictly speaking, we cannot conclude that h∶j5μ∶i ≠ 0

for μ ¼ T ¼ 0.
Using current conservation in the absence of external

fields in global equilibrium as a criterion, we could exclude
the term 1

12π2
ðω · aÞaμ from (4.11) (while additional con-

tribution to vortical conductivity quadratic in the accel-
eration and vorticity remains), and the conserved current
would be

h∶j5μ∶icons ¼
�
1

6

�
T2 þ a2 − ω2

4π2

�
þ μ2

2π2

�
ωμ: ð4:16Þ

Equations (4.10), (4.11) were obtained as a result of the
exact integration of the distribution functions in (4.2)
beyond the limits of perturbation theory. As a result, we
derived formulas (4.10), (4.11), which contain terms of
only a few first orders. This interesting fact means that
terms of higher orders compensate each other, beginning
with some order. The origin of this fact can be seen from the
formulas (4.9). For example, there are the terms of the form
−ðg1 þ ig2ÞLi3ð−e−g1þig2þξÞ and ðg1 þ ig2ÞLi3ð−eg1−ig2−ξÞ
in (4.8). Both of these two terms can be expanded into
infinite Taylor series in the vorticity and chemical potential
divided to temperature. But from (4.9) one can see, that
these two terms compensate each other starting from the
fourth order. So the correspondence of (4.10), (4.11) to the
low order expansion over the vorticity and chemical

potential is the result of compensation between different
contributions from the traces in (4.8).
The corrections to CVE, contained in the expression

(4.11), can be compared to the existing results. In particu-
lar, in [4,5] axial current of right handed massless fermions
was calculated for the system with constant rotation speed
on the axis of rotation. In the limit aμ ¼ 0 (4.11) exactly
corresponds to Eq. (27) from [4] and Eq. (83) in [5], where
the term independent of T, μ was first identified. However,
comparing with [4] we find the term along aμ, which in [4]
is equal to zero, because rotation speed is perpendicular to
centripetal acceleration. Also, we find the additional
quadratic contribution ∼a2 in vortical conductivity.

V. CONCLUSION

In this paperwe have investigated the consequences of the
ansatz of relativistic distribution functions for particles with
spin, introduced in [14]. Analytic formulas for axial current
were obtained both for massive (4.6) and massless fermions
(4.10), (4.11) in the approximation of weak interaction and
small inhomogeneities. We reproduce the standard expres-
sion for CVE in the linear approximation in vorticity, using
distribution functions [14], thereby confirming a similar
calculation of [24]. The result obtained is in full accordance
with all known theoretical calculations of the CVE.
We also hypothesize and apply the formalism beyond its

currently formulated region of applicability to investigate
higher order contributions to axial current. For massless
fermions it is possible to simplify the expression for current
due to compensation of higher order terms. It is shown, that
axial current contains a new topological component along
the acceleration vector αμ and additional quadratic con-
tribution to vortical term. We propose a simple method of
diagonalizing an expression for an axial current by intro-
ducing complex combinations of acceleration and vorticity
vectors, and the resulting expression reflects explicitly the
symmetry between acceleration and rotation speed.
The divergence of axial current was calculated (4.15) and

it remains nonzero even in global equilibrium.
Finally, as we show, that CVE follows from the kinetic

approach, we may conclude that various approaches to
baryon polarizations are closely related, and that found
earlier numerical similarity between them [12] may be not
an occasional one.
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APPENDIX: TRACE CALCULATION

The present goal is to obtain formula for the trace (4.3).
For this purpose it is necessary to expand Xðx; pÞ to Taylor
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series, take the trace in each term and then sum the traces
back. Function 1

1þx can be expanded to Taylor series

1

1þ x
¼

X∞
n¼0

ð−1ÞnxtðnþlÞ;

t; l ⇒

�
t ¼ 1; l ¼ 0 if jxj < 1;

t ¼ −1; l ¼ 1 if jxj > 1:
ðA1Þ

Then for Xðx; pÞ using (A1) we will have

X ¼
X∞
n¼0

ð−1Þn exp
�
tðnþ lÞ

�
β · p − ξ −

1

2
ϖ∶Σ

��

¼
X∞
n¼0

ð−1Þn exp½tðnþ lÞðβ · p − ξÞ�

×
X∞
m¼0

1

m!

�
tðnþ lÞ

�
−
1

2
ϖ∶Σ

��
m
: ðA2Þ

The product ΣαβΣγδ can be decomposed to the basis of the
space of 4 × 4 matrices

ΣαβΣγδ ¼ 1

4
ðgαγgβδ − gαδgβγÞI þ i

4
ϵαβγδγ5

−
i
2
ðgβδΣαγ þ gαγΣβδ − gαδΣβγ − gβγΣαδÞ: ðA3Þ

From (A3) the product ðϖ∶ΣÞ2 can be defined. After
extraction of chiral projective operators one obtains

ðϖ∶ΣÞ2 ¼ η
1þ γ5

2
þ θ

1 − γ5

2
;

η ¼ 1

2
ϖ∶ϖ þ i

2
ϖ∶ϖ̃;

θ ¼ η� ¼ 1

2
ϖ∶ϖ −

i
2
ϖ∶ϖ̃: ðA4Þ

Then the even power of ðϖ∶ΣÞ can be calculated

ðϖ∶ΣÞ2k ¼ ηk
1þ γ5

2
þ θk

1 − γ5

2
; k ¼ 0; 1; 2…: ðA5Þ

From (A5) and (A3) one has

trððϖ∶ΣÞ2kþ1ΣνβÞ ¼ ðϖνβ þ iϖ̃νβÞηk þ ðϖνβ − iϖ̃νβÞθk;
trððϖ∶ΣÞ2kΣνβÞ ¼ 0; k ¼ 0; 1; 2…: ðA6Þ

The traces in (4.2) now can be defined using decomposition
(A2) and (A6)

trðXΣνβÞ ¼
X∞
n¼0

ð−1Þn exp½tðnþ lÞðβ · p − ξÞ�

×
X∞
k¼0

1

ð2kþ 1Þ!
��

−
1

2

�
tðnþ lÞ

�
2kþ1

× fðϖνβ þ iϖ̃νβÞηk þ ðϖνβ − iϖ̃νβÞθkg: ðA7Þ

Square roots of η and θ are

ffiffiffi
η

p ¼ 2g1 þ 2isgnðϖ∶ϖ̃Þg2;ffiffiffi
θ

p
¼ 2g1 − 2isgnðϖ∶ϖ̃Þg2:

Here g1 and g2 are given by (4.4). Now, the series over k in
(A7) can be summed to sine functions

trðXΣνβÞ ¼
X∞
n¼0

ð−1Þn exp½tðnþ lÞðβ ·p− ξÞ�

× i

�
1ffiffiffi
η

p sin

�
i
2
tðnþ lÞ ffiffiffi

η
p �

½ϖνβ þ iϖ̃νβ�

þ 1ffiffiffi
θ

p sin

�
i
2
tðnþ lÞ

ffiffiffi
θ

p �
½ϖνβ − iϖ̃νβ�

�
: ðA8Þ

Sines in (A8) can be decomposed to exponents and after
that the series over n can be summed back using (A1). Also
we notice, that sgnðϖ∶ϖ̃Þ can be extracted as a factor of ϖ̃.
After that (A8) transforms to (4.3).
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