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A new approximation is proposed for the contour of the stationary phase of the Mellin-Barnes integrals
in the case of its finite asymptotic behavior as Rez → −∞. The efficiency of application of the proposed
contour and the quadratic approximation to the contour of the stationary phase is compared to the example
of the inverse Mellin transform for the structure function F3. It is shown that, although for a small number
of terms N in quadrature formulas used to calculate integrals along these contours, the quadratic contour is
more efficient, but for N > 20 the asymptotic stationary phase integration contour gives better accuracy.
The case of the Q2 dependence of the F3 structure function is also considered.
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I. INTRODUCTION

The Mellin-Barnes (MB) integrals [1] are widely used at
high-energy physics. Recently, significant progress has
been made in the numerical computation of these integrals.
The review of digital packages is presented in the intro-
duction to the paper [2]. The list of physical tasks solved
using the MB integrals (two-loop massive Bhabha scatter-
ing in QED, in three-loop massless form factors and static
potentials, in massive two-loop QCD form factors, in
B-physics studies, in hadronic top-quark physics, and for
angular integrations in phase-space integrals) can be
supplemented by the problem of determining the structure
functions and parton distributions in x space on the basis of
their Mellin moments.
The inverse Mellin transform method is widely used in

calculations related to deep inelastic scattering (DIS) [3–5]
for describing the scaling violation in polarized and unpo-
larized structure functions and fragmentation functions. The
general expression for the inverse Mellin transform is written
as a contour integral in the complex z plane in the form

fðxÞ ¼ 1

2πi

Z
C
dzx−zf̃ðzÞ; ð1Þ

where the contour C usually runs parallel to the imaginary
axis, to the right of the rightmost pole. In the case of the DIS,
a function f̃ on the right-hand side of expression (1) is the
moments of the structure function at some fixed value of
momentum transfer squared Q2

0 and is usually expressed in
terms of the ratio of Γ functions, such as the expression (27)
for the Mellin moments of the F3-structure function, which
will be investigated in Sec. IV. Then, the integral (1) can be
considered as a typical one-dimensional MB integral.
The best efficiency in a numerical integration Eq. (1) can

be achieved on the contour of the stationary phase, where
the oscillations of the integrand are minimal. However, the
solution of the differential equation for the stationary phase
contour and its subsequent application to calculate the MB
integral requires big computing expenses (see, e.g.,
Ref. [6]). Instead, it is proposed to build such approxima-
tions of the stationary phase contour that would allow the
effective application of the quadrature integration formulas
[2]. It can be said that the first attempt to construct an
effective approximation for the contour using the expansion
of the integrand at the saddle point was made by Kosower
[7] as applied to the calculation of parton distributions in
the x space. We call this contour CK. Recently, it was pro-
posed to construct the Padé approximation of the stationary
phase contour, taking into account the presence of a saddle
point in the integrand and its asymptotic behavior for large
z [2]. The effectiveness of this approach is shown in the
summary table [2]. However, according to this table, for
the integrand F1ðz; sÞ ¼ ð−sÞ−zΓ3ð−zÞΓð1þ zÞ=Γð−2zÞ at
s ¼ −1=20 the relative accuracy 10−8 is achieved by taking
into account 16 polynomials in the quadrature formula,
whereas for the contour CK, we achieve the same accuracy
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with 12 terms. In this concrete case, the use of the
integration contour CK is more effective than the use of
the Padé approximation of the stationary phase contour
constructed in Ref. [2]. When does the contour CK, which
does not take into account the asymptotic behavior, allow
us to obtain a reasonable result? Will the advantages of this
contour be preserved with increasing the required accu-
racy? The answer to these questions will prompt our
consideration in this work.
Here, we propose a new approximation for the contour

of the stationary phase. The asymptotic behavior of the
constructed contour coincides with the contour of the
stationary phase as Rez → −∞. We consider a particular
case of a finite asymptotic behavior of the contour of the
stationary phase in the limit Rez → −∞. The MB integral
arising for the F3 structure function corresponds to this
case. First, the construction of the contour will be presented
on a simpler example of the MB integral whose value is
known exactly. The corresponding integral arising in
Feynman diagrams was examined, for example, in
Ref. [2], where it was denoted by I5ðsÞ. Further, we
consider in detail the application of the new asymptotic
contour in the calculation of the F3 structure function on
the basis of their Mellin moments, and give a comparison
with the results of applying the integration contour CK.
It should be stressed that the choice of a contour of

integration is dictated by a physical task. For example, in
the calculation of massive diagrams it is usually enough to
calculate the MB integral once but with a high relative
accuracy of ∼10−10 − 10−16. In the case of finding the
shape of the structure functions, the accuracy of
∼10−4 − 10−5 is sufficient for the fit of experimental data.
However, in the process of fitting, the integral has to be
calculated many times (more than 106 times), so the
computational speed that directly depends on the number
of terms in the quadrature formula N is important. It is
known that the application of the contour proposed by
Kosower is effective for a small number of N terms in the
quadrature formula when the nodes of the quadrature
formula are located near the saddle point [7,8].
However, this contour considerably moves away from
the contour of the stationary phase at large jzj. One can
expect that the advantages of the contour coinciding with
the asymptotic behavior of the exact contour of the
stationary phase as Rez → −∞ should be manifested for
sufficiently large values ofN. Wewill try to find out at what
value ofN⋆ occurs the “change of the mode,” i.e., the use of
the contour coinciding with the asymptotic behavior of the
contour of a stationary phase becomes more efficient.
The paper is organized as follows. In Sec. II, we start

with a review of the basic expressions relating to the choice
of the integration contour in the MB integrals, according to
the method proposed in Ref. [7]. In Sec. III, we explain how
a contour that coincides with the asymptotic behavior of the
stationary phase contour is constructed. Here, we confine

ourselves to integrals with finite asymptotic behavior of
the stationary phase contour as Rez → −∞. We present the
example of the application of constructed contour in the
numerical calculation of well-known integral IðsÞ whose
value is known exactly. The case of the implementation of
the MB integrals for evaluation of the F3ðxBÞ structure
function, where xB is the Bjorken variable, is given in
Sec. IV. We also investigate the applicability of the
asymptotic stationary phase integration contour if the Q2

dependence of the F3 structure function is taken into
account. Numerical estimates of the relative accuracy of
the reconstruction of the functions considered above using
different contours are given in Sec. V. Summarizing com-
ments are presented in Sec. VI. In the Appendix, using
the previously considered integral IðsÞ, we perform an
additional study for the contour with finite asymptotic
as Rez → þ∞.

II. CONSTRUCTION OF THE CK
INTEGRATION CONTOUR

Let us begin with the review of the main relations for
creation of the effective contour proposed by Kosower [7]
based on the saddle-point method of the integrand in
Eq. (1). We use this contour, which we recall is denoted
by CK, for comparison of the efficiency of the numerical
evaluation of the integral (1) for different contours.
Following the saddle-point method one can rewrite

expression (1) as

fðxÞ ¼ 1

π

Z
C0
Re½−idzFðzÞ�; ð2Þ

where FðzÞ≡ x−zf̃ðzÞ, C0 means the contour running from
the saddle point c0, where F0ðc0Þ ¼ 0 (see Ref. [7] for
additional details). The complex variable z is parametrized
as follows:

zðtÞ ¼ xðtÞ þ iyðtÞ ðx; y realÞ ð3Þ

with the conditions xðt0 ¼ 0Þ ¼ c0 and yðt0Þ ¼ 0. Then,
the expansion of FðzðtÞÞ in a series around the saddle point
looks like

FðzðtÞÞ ∼ Fðc0Þ −
F00ðc0Þ

2
t2 þ 1

6
½−iFð3Þðc0Þ

þ 3iF00ðc0Þx00ð0Þ�t3 þ � � � : ð4Þ

The requirement that the imaginary part of the function is
equal to zero

ImFðzðtÞÞ ¼ 0 ð5Þ

in any order of the F-expansion (4) determines the exact
stationary-phase contour.

SIDOROV, LASHKEVICH, and SOLOVTSOVA PHYS. REV. D 97, 076009 (2018)

076009-2



According to Eq. (5), to order Oðt3Þ the contour is
written as

zðtÞ ¼ c0 þ itþ c3
2
t2; ð6Þ

where the coefficient c3 ¼ Fð3Þðc0Þ=½3F″ðc0Þ�. Hence, to
this order we may write the integral (2) in the form

fðxÞ ¼ 1

π

Z
∞

0

Re½ð1 − ic3tÞFðzðtÞÞ�dt ð7Þ

with the use of the quadratic integration contour CK given
by Eq. (6).
Next, putting t ¼ c2

ffiffiffi
u

p
, one can introduce a new

variable u, where c2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Fðc0Þ=F00ðc0Þ

p
, and the integra-

tion over u can be presented as

fðxÞ ¼
Z

∞

0

duffiffiffi
u

p e−uH1ðuÞ; ð8Þ

where the function H1ðuÞ up to order OðuÞ has the form

H1ðuÞ ¼
c2
2π

Re½euð1 − ic3c2
ffiffiffi
u

p ÞFðzðuÞÞ� ð9Þ

and the contour integration CK in terms of u reads as

zðuÞ ¼ c0 þ ic2
ffiffiffi
u

p þ c3
2
c22u: ð10Þ

The function H1ðuÞ up to order Oðu2Þ looks like

H̄1ðuÞ ¼
c2
2π

Re½euð1 − ic3c2
ffiffiffi
u

p
− 4ic6c32u

3=2ÞFðz̄Þ�;
ð11Þ

and the integration contour is defined by the expression

z̄ðuÞ ¼ c0 þ ic2
ffiffiffi
u

p þ c3
2
c22uþ c6c42u

2 ð12Þ

with the coefficients c4 ¼ c3Fð4Þðc0Þ=½12F″ðc0Þ�,
c5 ¼ Fð5Þðc0Þ=½120F″ðc0Þ�, and c6 ¼ ðc4 − c5 − 3

8
c33Þ. We

designate this contour by C̄K. It is obvious that if c6 ¼ 0,
then expression (11) turns into Eq. (9).
Finally, one can see that the prefactor in front of the H1

function in Eq. (8) corresponds exactly to the weight
function for the generalized Laguerre polynomials

Lð−1=2Þ
n ðuÞ. Therefore, one can expect that the application

of the generalized Gauss–Laguerre quadrature formula
(see, e.g., Ref. [9])

Z
∞

0

duffiffiffi
u

p e−uH1ðuÞ ≃
XN
j¼1

wjH1ðujÞ ð13Þ

can give a fast numerical evaluation of the integral (8) in the
lower orders of approximation. This was the key achieve-
ment of the method proposed by Kosower [7]. Indeed,
already the first approximation (N ¼ 1) gives relative
accuracy of the parton distributions reconstruction about
a few percent (see, e.g., the table in Ref. [7]). However, the
number of points N required for evaluating the integral (8)
using Eq. (13) with desirable accuracy depends on the
integrand function and remains the subject of a numeri-
cal study.

III. EXAMPLE FOR CONSTRUCTION OF
ASYMPTOTIC STATIONARY PHASE CONTOUR

To get a more detailed idea about the construction of the
asymptotic stationary phase integration contour, we begin
with a simple illustrative example of the MB integral,
which can arise in Feynman diagrams. The asymptotics of
the stationary phase contour in this case tends to a finite
limit, just as in the case that will be considered below for
the F3 structure function.
Let us consider the integral [10]

IðsÞ ¼ 1

2πi

Z
δþi∞

δ−i∞
dzð−sÞ−z Γ3ð−zÞΓð1þ zÞ

Γð−2zÞΓð1 − zÞΓð2þ zÞ
ð14Þ

with the fundamental strip δ ∈ ð−1; 0Þ in the region
0 < −s < 4. This integral can be evaluated analytically
with the following result: IðsÞ ¼ −s.
We present the integrand as

ΦðzÞ≡ ezω
Γ3ð−zÞΓð1þ zÞ

Γð−2zÞΓð1 − zÞΓð2þ zÞ ; ð15Þ

where ω ¼ − lnð−sÞ, and using known asymptotic expres-
sions ΓðzÞ ∼ ffiffiffiffiffiffi

2π
p

e−zzz−1=2; z → ∞, and

lim
z→∞

Γðaþ zÞ
ΓðzÞza ¼ 1; j arg zj < π − ϵ; ð16Þ

we get the integrand asymptotic behavior

ΦðzÞ ∼ jzj−5=2 exp
�
ðωþ ln 4Þzþ i

3

2
πsignðyÞ−i 5

2
arg z

�
;

z ¼ xþ iy: ð17Þ

Whence from the zero phase condition Im ln ½ΦðzÞ� ¼ 0,
we obtain that arg z ¼ 2½ðωþ ln 4Þyþ 3

2
πsignðyÞ�=5 and

the asymptotic behavior of the zero-phase contour is
determined by the equation

xasðyÞ ¼ yctg

�
2

5

�
ðωþ ln 4Þyþ 3

2
πsignðyÞ

��
: ð18Þ
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From this equation it follows that in the asymptotic region
as Rez → −∞ the zero-phase contour, which is a contour of
stationary phase Cst, tends to lines parallel to the real axis

yas ¼
π

ωþ ln 4
signðyÞ: ð19Þ

Thus, the asymptotic stationary phase contour Cas in the
complex z plane takes the form

zasðyÞ ¼ xasðyÞ þ iy: ð20Þ

Using this contour, we can represent the original integral
(14) as

IðsÞ ¼
Z jyasj

0

dyH2ðyÞ; ð21Þ

where the function H2ðyÞ is given by

H2ðyÞ ¼ Re

��
1 − i

dxasðyÞ
dy

�
ΦðzasðyÞÞ

��
π; ð22Þ

and, finally, we have

Z jyasj

0

dyH2ðyÞ ≃
jyasj
2

XN
j¼1

wjH2ðyjÞ; ð23Þ

where yj ¼ jyasj
2
ðxj þ 1Þ, xj are the roots of the Legendre

polynomials PnðxÞ with normalization Pnð1Þ ¼ 1, and
weight coefficients wj ¼ 2

ð1−x2j Þ½P0
nðxjÞ�2.

Note that in practical calculations of the integral (21), it
is advisable to shift the asymptotic contour (20) parallel to
the real axis to the saddle point c0. Then, instead of
Eq. (20), we get

zasðyÞ ¼ xasðyÞ þ Δc0 þ iy; ð24Þ

where Δc0 ¼ c0 − cas; cas ≡ xasðy ¼ 0Þ. For the case
under consideration, in accordance with Eq. (18),
xasðy ¼ 0Þ ¼ 0.
Comparing the shape of the contours, we also consider

the exact contour of the stationary phase, which can be
found from the differential equation

dx
dy

¼ Ref∂z ln ½ΦðzÞ�g�
Imf∂z ln ½ΦðzÞ�g� ð25Þ

with condition xð0Þ ¼ c0. (The designation “�” means the
complex conjugation.) In the case under consideration,
we used x and y, since the solution x ¼ xðyÞ is uniquely
determined. In the general case, the equation for the exact
stationary-phase contour is written in the parametric form
using Eq. (3); see Ref. [2] for more details.

Figure 1 shows the shape of the contours for the integral
IðsÞ given by Eq. (14) for a fixed value of −s ¼ 1=20.
The solid curve represents the asymptotic stationary phase
contour Cas determined by Eq. (24), the dotted curve
corresponds to the exact contour of the stationary phase Cst
calculated by Eq. (25), and the dashed curve is the contour
CK corresponding to Eq. (6). The dash-dot-dotted hori-
zontal lines denote the asymptotic limit of the stationary
phase contour determined by Eq. (19). The main contri-
bution to the integral IðsÞ is given by a region near the
saddle point c0, where the curves are very close to each
other. It can be found that the contoursCst andCas are close
also in the asymptotic region Rez → −∞, but the contours
CK and C̄K quickly move away from the contour Cst (see
Ref. [8] for details). Note that for the considered value of s,
the coefficient combination c6c42 in Eq. (12) is a small
negative number and the contour corresponding to Eq. (12)
practically coincides with the contour CK. Therefore, we do
not plot the contour C̄K in Fig. 1. The influence of the
coefficient c6 for the other region of −s > 4 is shown in the
Appendix.

IV. ASYMPTOTIC STATIONARY PHASE
INTEGRATION CONTOUR FOR THE F3

STRUCTURE FUNCTION

The reconstruction of the DIS structure function F3

based on its Mellin moments can be performed using the
inverse Mellin transformation (1), which reduces to the
MB integral. For an optimal calculation of this integral we
construct the efficient contours in exactly the same way as
in the previous section for the integral IðsÞ. It should be
noted that the accuracy of calculations of the structure
function values can be limited to 4–5 decimal places, which
corresponds to the accuracy of the experimental data. At the
same time, the method of calculating the F3 structure
function using the asymptotic stationary phase contour
makes it easy to obtain the F3 values with high accuracy.

FIG. 1. The efficient contours for the MB integral (14). The
solid, dotted, and dashed curves indicate the contours Cas, Cst,
and CK , respectively. Horizontal lines show the asymptotics (19).
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A. Contour of integration

Let us consider the following parametrization of the F3

structure function [11]

xBF3ðxBÞ ¼ AxαBð1 − xBÞβð1þ γxBÞ ð26Þ

with values of the parameters found in Ref. [12].
We can write the Mellin moments of the structure

function via the Γ functions,

M3ðzÞ ¼
Z

1

0

dxxz−1xF3ðxÞ

¼ A

�
Γðβ þ 1ÞΓðαþ zÞ
Γðαþ β þ 1þ zÞ þ γ

Γðβ þ 1ÞΓðαþ 1þ zÞ
Γðαþ β þ 2þ zÞ

�
;

ð27Þ

and present the structure function in the form

xBF3ðxBÞ ¼
1

2πi

Z
C
dzx−zB M3ðzÞ: ð28Þ

Introducing the notation

ΦðzÞ ¼ eωBzM3ðzÞ; ð29Þ

where ωB ≡ − lnðxBÞ, and using the relation (16) one can
get the asymptotic behavior ΦðzÞ as z → ∞

ΦðzÞ ∼ eωBzAΓðβ þ 1Þ 1þ γ

zβþ1
: ð30Þ

Calculating the argument of theΦ function and equating its
imaginary part to zero, we arrive at the equation

ωBy − ðβ þ 1Þarctg y
x
¼ 0: ð31Þ

From this equation it follows that as z tends to infinity, the
argument z tends to�π and we get the asymptotic behavior

xDISas ðyÞ ¼ yctg

�
ωBy
β þ 1

�
: ð32Þ

Hence, in the asymptotic region the contour
CstðRez → −∞Þ tends to the finite limit

yDISas ¼ ðβ þ 1Þπ
ωB

signðyÞ: ð33Þ

As a result, the asymptotics of the stationary phase contour
are parallel to the real axis. Note that the right-hand side
of Eq. (33) depends on the Bjorken variable xB and the
parameter β which relates to the shape of the structure
function at large xB values. There is no dependence on
the parameters α and γ contained in Eq. (26). With the

growth of xB and β, the width of the corridor between the
asymptotic limits increases. In accordance with expression
(24), we obtain that the asymptotic stationary phase contour
is determined by the expression

zDISas ¼ yctg

�
ωBy
β þ 1

�
þ c0 −

β þ 1

ωB
þ iy: ð34Þ

To calculate the F3-structure function numerically, we
can use the expression (21), which is now read as

xBF3ðxBÞ ¼
Z jyDISas j

0

dyHDIS
2 ðyÞ; ð35Þ

and also Eqs. (22), (23), and (29), replacing yas ⇒ yDISas
and zas ⇒ zDISas .
Figure 2 shows the shape of a set of contours Cas (solid

curve), Cst (dotted curve), CK (dashed curve), and C̄K
(dash-dotted curve) for a fixed value of xB ¼ 0.1. In the
calculation, we used the parameter values in Eq. (26) that
were found in Ref. [12] at fixed Q2 ¼ Q2

0 ¼ 3 GeV2.
One can see that, qualitatively, the behavior of the curves

in Fig. 2 is similar to the behavior in Fig. 1. There is some
difference between the shapes of the contours Cst and Cas
in the vicinity of the saddle point. However, in the limit
Rez → −∞ the contours Cst and Cas coincide, while the
contours CK and C̄K move away from the contour Cst in
this limit.

B. Q2 evolution and the contour of integration

Let us discuss the change of the behavior of the contour
Cas with a change of the momentum transfer squared Q2.
The perturbative Q2 evolution of the Mellin moments is

well known (see, e.g., Refs. [4,13]), and in the nonsinglet
case in the leading order (LO) is given by the formula

FIG. 2. The comparison of the efficient contours for the F3

structure function at xB ¼ 0.1. The notations are the same as in
Fig. 1. The contour C̄K is shown as the dash-dotted curve. The
horizontal lines correspond to the asymptotics (33).
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M3ðz;Q2Þ ¼ M3ðz;Q2
0Þ exp

�
ΔðQ2Þ

×

�
1

2ðzþ 1Þðzþ 2Þ þ
3

4
− γ − ψðzþ 2Þ

�	
:

ð36Þ

Here

ΔðQ2Þ≡ 16

33 − 2nf
ln

�
αLOs ðQ2

0Þ
αLOs ðQ2Þ

�
; ð37Þ

γ is the Euler constant, ψ is the usual logarithmic derivative
of the Γ function, nf is the number of active flavors, and
αLOs is the LO running coupling.
Finding the asymptotic behavior of the integrand

Φðz;Q2Þ≡ x−zB M3ðz;Q2Þ as jzj → ∞, analogously to
how it was made before for a fixed of value Q2, and also
taking into account an asymptotic behavior of the ψ
function, we obtain

Φðz;Q2Þ ∼ exp fωBz − ½ðβ þ 1Þ þ ΔðQ2Þ� ln zg: ð38Þ

Next, from the zero phase condition follows that
ωBy − ½ðβ þ 1Þ þ ΔðQ2Þ� arg z ¼ 0. Therefore, the asymp-
totic behavior of the contour as Rez → −∞ is determined
by the formula

xDISas ðy;Q2Þ ¼ yctg

�
ωBy

ðβ þ 1Þ þ ΔðQ2Þ
�
: ð39Þ

In the asymptotic region the contour Cas tends to the finite
limiting value

yDISas ðQ2Þ ¼ � ½ðβ þ 1Þ þ ΔðQ2Þ�π
ωB

: ð40Þ

Thus, the account of the Q2 evolution of the Mellin
moments of the F3 structure function comes down
to replacement in the expressions without evolution β ⇒
β þ ΔðQ2Þ and using Eq. (35) xDISas ðyÞ ⇒ xDISas ðy;Q2Þ
and yDISas ⇒ yDISas ðQ2Þ.
It is important to note that the expression defining the

contour Cas in higher orders of the perturbation theory
QCD will coincide with the LO expression with the
replacement only of αLOs ðQ2Þ in Eq. (37) by an expression
for the running coupling in the corresponding order of the
perturbation theory.
Figure 3 shows the influence of the Q2 evolution on a

value of the saddle point c0 and the “asymptotic” point
cas ¼ xasðy ¼ 0Þ in the case of the F3 structure function. In
this figure c0 and cas are shown as functions of the Bjorken
variable xB at Q2 ¼ Q2

0 ¼ 3 GeV2 (solid and dashed lines
for c0 and cas, respectively) and Q2 ¼ 100 GeV2 (dotted

and dash-dotted lines). One can see that there is no
significant difference in the behavior of the point c0 with
the changing of Q2 as the solid and dotted curves are close
to each other. The same behavior is observed also for the
point cas. It is interesting to note a sharp increase in the
values of c0 and cas if xB > 0.5, as well as the convergence
of all curves at large values of xB.

V. NUMERICAL ESTIMATIONS OF ACCURACY

In this section, by numerically calculating the MB
integrals given by Eqs. (14) and (28), we investigate the
question at what values of polynomials N in the corre-
sponding quadrature formula the advantages of the asymp-
totic contour Cas are manifested, in comparison with the
quadratic approximation CK to the contour of the sta-
tionary phase.
The relative accuracy of a reconstruction is defined as

usual εðNÞ ¼ jðfN − fexactÞ=fexactj, where fN is the sum
given by Eq. (13), when the contour CK is used, or Eq. (23)
for the contour Cas; fexact is the exact value of the
corresponding integral.
The relative accuracy εðNÞ of calculating the IðsÞ

integral depending on number of terms N in the sums
(13) and (23) is presented in Table I. The result is given for

FIG. 3. The comparison of the behavior of the saddle point c0
and the point cas versus xB at two fixed values of Q2.

TABLE I. The relative accuracy εðNÞ of numerical evaluation
of the MB integral (14) for different values of terms N in the
sum (13), when the contour CK is used, and in the sum (23) for
the contour Cas.

−s ¼ 1=20 −s ¼ 2.0

N CK Cas CK Cas

16 1.2 × 10−8 1.3 × 10−7 1.2 × 10−6 6.5 × 10−5

20 6.7 × 10−10 8.5 × 10−12 4.0 × 10−6 3.9 × 10−6

30 1.2 × 10−11 5.7 × 10−14 5.1 × 10−7 1.2 × 10−8

35 5.8 × 10−13 5.7 × 10−16 1.4 × 10−7 5.8 × 10−11
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−s ¼ 1=20 and −s ¼ 2.0. The calculations for the F3

structure function are presented in Table II for the values
xB ¼ 0.01, 0.1, and 0.5. In doing so, we use the values of
the parameters in Eq. (26) that were found in Ref. [12] at
fixed Q2

0 ¼ 3 GeV2.
Tables I and II show similar results for the relative

accuracy εðNÞ. The contour CK works more efficiently for
a small number of terms (N < 20) in the quadrature
formulas (13) and (23), as for a large N > 20, the result
of the asymptotic contour Cas is more accurate by 2–3
orders of magnitude. In addition, as can be seen from
Table II, the high accuracy achieved atN� ¼ 20 exceeds the
experimental accuracy by several orders of magnitude.
However, as can be seen from Table I, the “regime change”
for the integral Ið−s ¼ 2.0Þ occurs at a value of
εðN�Þ ≃ 4 × 10−6. Such accuracy has practical importance
in calculations in the quantum field theory.
Figure 4 shows the effect of the contour Q2 evolution

according to Eq. (39) for the F3 structure function. In this
figure the relative accuracy εðNÞ is plotted as a function
of number terms N in the Gauss-Legendre quadrature
formula (23) at values of the Bjorken variable xB ¼ 0.01

(triangles) and xB ¼ 0.8 (squares) for the contours
CasðxB; Q2

0Þ (open triangles and squares) and
CasðxB; Q2Þ (full triangles and squares) for Q2 ¼ Q2

0 ¼
3 GeV2 and Q2 ¼ 100 GeV2. For the running coupling
αLOs ðQ2Þ we used a value ΛQCD ¼ 363 MeV and nf ¼ 4

(see Ref. [12]). One can see that the contour CasðxB; Q2Þ
yields a more exact result; however, this advantage is
compensated when using the contour CasðQ2

0Þ if the
number of terms N is increased by 2–4 units.

VI. CONCLUSIONS

We presented a new approximation for the construction
of a contour close to the contour of the stationary phase. A
special case of the finite asymptotics of the stationary-phase
contour in the limit Rez → −∞ was considered as such an
asymptotics arises in the calculation of the MB integral that
represents the F3 structure function in terms of its Mellin
moments. The proposed approximation reproduces the
behavior of the contour zero phase for large values of jzj
and has the form like Eq. (34) in the case of the DIS
structure functions.
It was compared to the efficiency of application of the

asymptotic stationary phase contour Cas and the contour
CK , determined by the saddle-point method, as described in
Sec. II, in calculating the MB integrals (14) and (28). As
expected, the contourCK turned out to be more effective for
a small number of N terms in the Gauss–Laguerre quad-
rature formula, when the nodes of the quadrature formulas
are located near the saddle point [7,8]. The advantage of the
contour Cas is manifested at large values of N. The “regime
change” occurs at N� ≈ 20. For the region 20 < N ≤ 35,
the contour Cas gives a relative error of 2–3 orders of
magnitude better than the contour CK. With increasing N,
this gap increases too.
When the Q2 evolution of the structure function F3 is

taken into account, the efficiencies of the contours CasðQ2
0Þ

and CasðQ2Þ were compared. Although the contour
CasðQ2Þ gives a more accurate result, this advantage is
compensated by using the contour CasðQ2

0Þ if we increase
the number of terms in the quadrature formula by only 2–3
units. The contourCasðQ2

0Þ can be considered as a universal
one, that is, applicable for other values of Q2.

TABLE II. The relative accuracy εðNÞ of the xBF3ðxB; Q2
0Þ reconstruction for different values of terms N in the

sums (13) and (35), for the contours CK and Cas, respectively.

xB ¼ 0.01 xB ¼ 0.1 xB ¼ 0.5

N CK Cas CK Cas CK Cas

16 2.5 × 10−8 3.2 × 10−7 1.3 × 10−9 2.9 × 10−8 1.0 × 10−13 1.4 × 10−11

20 3.7 × 10−10 4.1 × 10−9 1.0 × 10−10 1.6 × 10−10 1.8 × 10−17 4.6 × 10−15

30 2.7 × 10−11 7.6 × 10−13 5.7 × 10−13 3.6 × 10−16 3.8 × 10−19 8.7 × 10−21

35 9.7 × 10−13 1.5 × 10−16 5.1 × 10−14 1.5 × 10−16 4.3 × 10−20 3.6 × 10−23

FIG. 4. The comparison of the relative accuracy εðNÞ of the
xBF3ðxB; Q2Þ reconstruction versus the number of terms N in
the sum (23) at xB ¼ 0.01 (triangles) and xB ¼ 0.5 (squares)
using the contour CasðxB; Q2

0Þ (open triangles and squares) and
CasðxB; Q2Þ (full triangles and squares) for Q2

0 ¼ 3 GeV2 and
Q2 ¼ 100 GeV2.

ASYMPTOTICS OF THE CONTOUR OF THE STATIONARY … PHYS. REV. D 97, 076009 (2018)

076009-7



It should be emphasized that since the necessary accu-
racy is achieved when using a small number of N in the
quadrature formulas (13) or (21), the computer time for
calculating the F3 structure function by using Eq. (28) with
the efficient contours is significantly less than if one uses
the linear contours that are usually parallel to the imaginary
axis, to the right of the rightmost pole in the integrand, or a
straight line at an angle (see, e.g., Refs. [4,5,14,15]).
Here we have considered the F3 structure function,

which is the simplest among the DIS structure functions
since it does not contain the contribution of gluons and sea
quarks. The parametrization of the shape of this structure
function (26) is typical and widely used in the QCD
analysis of the structure functions. Our consideration can
be applied to the polarized nonsinglet combination Δq3,
Δq8 and the nonsinglet combination fragmentation func-
tion Dπþ

uv . The choice of the efficient contour for the singlet
case can be performed along the same line, but requires
more complicated formulas. This is the task for a forth-
coming investigation.
Our result can be useful in choosing an integration

method in both the one-dimensional case and the case of
few-dimensional MB integrals if it is required to achieve
relative accuracy unattainable in the integration by the
Monte Carlo method.
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APPENDIX: ON NUMERICAL EVALUATION
OF IðsÞ FOR− s > 4

Let us turn to the MB integral (14) and discuss the
efficient contours for the case −s > 4. The exact result is
written as follows:

IðsÞ ¼ 2 lnð−sÞ − s

 
1 −

ffiffiffiffiffiffiffiffiffiffiffi
1þ 4

s

r !

þ 4 ln

"
1

2
þ 1

2

ffiffiffiffiffiffiffiffiffiffiffi
1þ 4

s

r #
; −s > 4: ðA1Þ

This case is interesting for us, because the exact contour
of zero phase Cst [see Eq. (25)] moves away from the
imaginary axis to the right. The asymptotic behavior of the

contourCst is defined by Eq. (18), as before; however, from
this equation it follows that in the asymptotic region as
Rez → þ∞ the contour tends to another limit value

yas ¼
3

2

π

jωþ ln 4j signðyÞ: ðA2Þ

Therefore, the numerical value of the integral IðsÞ can be
found using the Gauss–Legendre quadrature formula (23)
in which yas is given by Eq. (A2) and the contour Cas by
Eqs. (18) and (24).
The contours CK and C̄K are defined using the same

way as before, and the numerical value of the integral
IðsÞ is determined using the Gauss–Laguerre quadrature
formula (13).
Figure 5 shows the shape of contours for fixed −s ¼ 5.

The solid curve corresponds to the contour Cas, the dotted
curve is the exact contour Cst, the dashed curve is the
contour CK, and the dash-dotted contour is the contour C̄K.
From this figure it is clear that in calculating the integral
IðsÞ using the contour CK, difficulties will arise, as this
contour has an incorrect direction. Only the first few terms
in the sum (13) may give a reasonable result, since the
contour CK is close to the contour Cst near the saddle point
c0. Thus, for the case −s > 4 the contour CK is impossible
to consider as efficient. At the same time, the contour C̄K
works rather well, but applying it to achieve relative
accuracy, for example, 10−12, can be problematic. The
proposed contourCas, whose a construction is quite simple,
reproduces the behavior of the exact contour Cst well, and
the use of this contour can provide the required high
relative accuracy.

FIG. 5. The comparison of the efficient contours for the MB
integral (14) in the region −s > 4. The notations are the same as
in Fig. 1.
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