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We calculate the amplitude of elastic photon-photon scattering via a single quark loop in the double-
logarithmic approximation, presuming all external photons to be off-shell and unpolarized. At the same
time we account for the running coupling effects. We consider this process in the forward kinematics at
arbitrary relations between t and the external photon virtualities. We obtain explicit expressions for the
photon-photon scattering amplitudes in all double-logarithmic kinematic regions. Then we calculate the
small-x asymptotics of the obtained amplitudes and compare them with the parent amplitudes, thereby
fixing the applicability regions of the asymptotics, i.e., fixing the applicability region for the nonvacuum
Reggeons. We find that these Reggeons should be used at x < 10−8 only.
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I. INTRODUCTION

For a long time, the light-by-light scattering has been an
object of both experimental and theoretical interest. In this
paper we consider this process in the high energy limit. The
motivation of our study is twofold.
On the one hand, it is well known that, similarly to the

eþe− annihilation into hadrons, the total cross section of the
collision of two off-shell photons with large virtualities is
an important test ground for perturbative QCD. At a fixed
order of in the strong coupling, αs, and at low energies, the
dominant contribution comes from the pure QED quark
box diagrams, calculated at the leading-order (LO) in
Refs. [1,2] and at the next-to-LO (NLO) in αs, see
Ref. [3]. In Ref. [4] the resummation of double logs
appearing starting from the first NLO QCD corrections
to the quark box was studied. Such contributions are
important at high energy where arguments of the logs
are large. At even higher energies additional class of QCD
diagrams gives important contribution to the cross section.
It is a contribution with the two-gluon exchange in the

t-channel that overwhelms the quark exchange contribution
despite additional α2s suppression: it has a different asymp-
totics in the power of energy and therefore it will exceed
the contribution of quark exchange mechanism at suffi-
ciently large center of mass frame (c.m.f.) energy

ffiffiffi
s

p
. At

higher orders in αs, the contributions from t-channel gluons
lead to terms with powers of single logarithms of the energy,
which must be resummed. The Balitsky-Fadin-Kuraev-
Lipatov (BFKL) approach [5] provides for a consistent
theoretical framework for such resummation of the energy
logarithms, both in the leading logarithmic approximation
(LLA), whichmeans resummation of all terms∼ðαs lnðsÞÞn,
and in the next-to-leading approximation (NLA), which
means resummation of all terms ∼αsðαs lnðsÞÞn. In this
approach, the imaginary part of the amplitude (and, hence,
the total cross section) for a large-s hard collision process
can be written as the convolution of the Greens function of
two interacting Reggeized gluons with the impact factors of
the colliding particles.
The study of the γ�γ� total cross section in LLA BFKL

has a long history [6]. For the extension of these results to
the NLA level one needs to consider corrections to both the
BFKL Green’s function [7] and to the impact factors of
colliding virtual photons.
While its LO expression for the photon impact factor is

known since long, the NLO calculation, carried out in the
momentum representation, turned out to be rather compli-
cated and was completed only after year-long efforts [8],
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and the results are available only in the form of a numerical
code, thus making it of limited practical use. Indeed, until
recently, the inclusion of BFKL resummation effects in the
NLA calculation of the γ�γ� total cross section was carried
out only in approximate way, by taking the BFKL Green’s
function in the NLA while using the LO expression for
impact factors. This is the case of the pioneer paper in
Ref. [9] (see also Ref. [10]) and of the later analysis in
Refs. [11,12].
The situation changed when the NLO photon impact was

calculated analytically in the coordinate space and then
transformed to the momentum representation and to the
Mellin [13] (see also Ref. [14]). This achievement opened
a way for a subsequent calculations of γ�γ� total cross
section with complete NLA BFKL resummation approach,
see [14,15].
In [15] a comparison of the NLA BFKL predictions with

LEP2 data [16,17] was made. It was shown that the account
of the Balitsky and Chirilli expression for NLO photon
impact factor reduces the BFKL contribution to the cross
section to very small values making it impossible to
describe LEP2 data as a sum of BFKL and LO QED
quark box contributions. Note that, as we discussed above,
the LO QED quark box itself receives, at higher QCD
orders, large corrections enhanced by double logs. Their
resummation is important and leads to a considerable
enhancement of the quark box contribution (see Ref. [4]
for detail), but still these effects are not large enough for a
good description of LEP2 data at largest available rapidity
without a sizable BFKL contribution. Therefore, in this
situation, one of the aim of this paper is to reconsider the
derivation of double logs resummation and to confirm
results of [4]. Besides, we account for the running QCD
coupling effects.
Another motivation for the present paper is related to

the possibility to measure amplitude of the light-by-light
scattering at nonzero angles, i.e., at nonzero values of t.
Recently, ATLAS Collaboration has reported[18] on evi-
dence for the quasireal photo-photon scattering in heavy-
ion collisions with the ATLAS detector at the LHC. These
results proved to be consistent with calculations reported in
Refs. [19–21], Light-by-light scattering has been an object
of both experimental and theoretical interest. For instance,
ATLAS Collaboration has recently reported [18] on evi-
dence for light-by-light scattering in heavy-ion collisions
with the ATLAS detector at the LHC. These results proved
to be consistent with calculations reported in Refs. [19–21],
where one of the essential ingredients is the amplitudes
of the photon-photon elastic scattering studied in the lowest
(“Born”) approximation where description of the photon
scattering involves a single quark loop only. As accounting
for the QCD radiative corrections can essentially change
the scattering amplitudes, it is interesting to study their
impact. Both the technology of accounting for the radiative
corrections and their impact strongly depend on the
kinematic region of the process. The most interesting

kinematics at high energies is the forward one. Because
of that we investigate the photon-photon scattering

γ�ðpÞγ�ðqÞ → γ�ðp0Þγ�ðq0Þ; ð1Þ

with all photons being off-shell, via a single quark loop. We
consider this reaction in the forward kinematics

s ¼ ðpþ qÞ2 ≫ −t ¼ −ðp0 − pÞ2: ð2Þ

In order to be in agreement with the conventional
notations, we denote the photon virtualities as follows:

jp2j ¼ Q2
1; jp02j ¼ Q02; jq2j ¼ Q2

2; jq02j ¼ Q02
2; ð3Þ

so thatQ2
1;2; Q

02
1;2 are positive. We presume thatQ2

1;2 ≈Q02
1;2.

In what follows we consider the case when s ≫ Q2
1;2; Q

02
1;2,

i.e., when

s ≫ jtj; Q2
1;2: ð4Þ

In contrast, we do not fix any hierarchy between Q2
1;2 and t

and consider all possible situations. Then, throughout the
paper we will focus on the unpolarized initial and final
photons. We will calculate the amplitude Aγγ of the reaction
(1) in the double-logarithmic approximation (DLA). The
imaginary part (with respect to s) of this amplitude was
calculated in Ref. [4] in the collinear kinematics, i.e., in the
kinematics (2) with t ¼ 0, and under the approximation of
fixed QCD coupling αs. We check and confirm the results
obtained in Ref. [4] and, in contrast, we account for the
running αs effects, using the results of Ref. [22]. In our
approach αs runs in every rung of each involved Feynman
ladder graph. Then we consider the process (1) in the
forward kinematics, with t ≠ 0 and obtain a complete
expression for the amplitude of this process.
In our calculations we compose and solve infrared

evolution equations (IREE) for Aγγ. The key point of the
IREE method is the property of factorization of the double
logarithmic (DL) contributions of the softest partons (i.e.,
the partons with minimal transverse momenta) out of the
scattering amplitudes. This remarkable property of the
softest photons was first proved by V. N. Gribov [23] in
the QED context and then its generalization to the non-
Abelian theories was obtained in Ref. [24,25], where the
IREE method was suggested to calculate in DLA ampli-
tudes of quark-antiquark scattering. After that, the IREE
method proved to be a simple and effective method to
calculate in DLA amplitudes of various inclusive and
exclusive processes in QCD and the standard model, with
both fixed and running αs, see, e.g., the overviews
in Ref. [26].
The aim of our paper is to calculate the amplitudeMγγ of

the process (1) in the forward kinematics (2) with nonzero
value of t and arbitrary relations between t and Q2

1;2.
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Throughout the paper we deal with running αs. Technology
of composing IREE involves matchingMγγ with amplitude
Aγγ calculated in the collinear kinematics. Following this
pattern, we in the first place calculate amplitude Aγγ in the
collinear kinematics, examining the cases of running and
fixed αs thereby checking results of Ref. [4], and then
proceed to calculating Mγγ in the region of nonzero t.
Our paper is organized as follows: In Secs. II–V we

consider the photon-photon scattering in collinear kinemat-
ics, i.e., in kinematics (2) with t ¼ 0. In Sec. II we briefly
mention the lowest-order results for Aγγ. In Sec. III we
compose and solve IREE for Aγγ, expressing it terms of
auxiliary amplitudes describing photon-quark scattering. In
Sec. IV we compose and solve IREE for the auxiliary
amplitudes and express them in terms of amplitudes of the
quark-antiquark annihilation in the forward kinematics.
Using the obtained results, in Sec. V we express the
photon-photon scattering amplitudes through the quark-
quark amplitude. Then in Sec. VI we use results of Sec. V
in order to calculate the photon-photon scattering ampli-
tude Mγγ in kinematics (2) at t ≠ 0. In Sec. VII we discuss
the results obtained in Secs. Vand VI. Here we consider the
high-energy asymptotics of Aγγ and compare them to the
parent amplitudes, thereby defining the applicability region
for non-vacuum Reggeons. Finally, Sec. VIII is for our
concluding remarks.

II. LOWEST-ORDER AMPLITUDES IN THE
COLLINEAR KINEMATICS

First of all we consider the “Born”, i.e., the simplest,
case, where only quark box diagrams contribute. We also
suggest that t ≈ 0. In this case the amplitude AB of the
process (1) in the lowest order, with the quark masses
neglected, consists of two terms:

AB ¼ Bþ B0; ð5Þ

where

B ¼ {
e4

ð2πÞ4
Z

d4k
Tr½γνðq̂þ k̂Þγμk̂γλðk̂ − p̂Þγρk̂�

k2k2ðqþ kÞ2ðk − pÞ2
× lμðqÞlλðpÞl�νðq0Þl�λðp0Þ ð6Þ

and B0 can be obtained from (6) by replacing q → −q.
The important property of amplitude B is that ℑsB ≠ 0

whereas ℑsB0 ¼ 0. By this reason we will not consider B0
and focus on B only. In Eq. (6) we have neglected the quark
mass and introduced the following notations: k is the loop
momentum, lμðqÞ; lλðpÞ are the polarization vectors of the
incoming photons, and l�νðqÞ; l�ρðpÞ stand for the polariza-
tion vectors of the outgoing photons. Throughout the
present paper we consider the case of the unpolarized
photons and use for them the Feynman gauge where the
averaging over the photon polarizations can be done using
the following replacements:

lμðqÞl�νðqÞ ¼ −gμν=2; lλðpÞl�ρðpÞ ¼ −gλρ=2 ð7Þ
and therefore

Tr½γνðq̂þ k̂Þγμk̂γλðk̂ − p̂Þγρðk̂þ p̂0 − p̂Þ�
× lμðqÞlλðpÞl�νðq0Þl�λðp0Þ

¼ Tr½ðq̂þ k̂Þk̂ðk̂ − p̂Þðk̂þ p̂0 − p̂Þ�
≈ −Tr½q̂ k̂ p̂ k̂� ¼ 2½wk2 − 2pk2qk�; ð8Þ

where we have used the standard notation w ¼ 2pq. For the
next step, it is convenient to introduce the Sudakov
representation [27] for the soft momentum k:

k ¼ −αq̃þ βp̃þ k⊥; ð9Þ
where the light-cone momenta p̃, q̃ are made of the photon
momenta p and q:

p̃ ¼ p − xpq; q̃ ¼ q − xqp; xp ≈Q2
1=w; xq ≈Q2

2=w;

ð10Þ
so that

2pk ¼ −αwþ βxpw; 2qk ¼ βw − αxqw;

k2 ¼ −αβw − k2⊥: ð11Þ
In terms of the Sudakov variables Eq. (8) looks much

simpler:

2½wk2 − 2pk2qk� ≈ −2wk2⊥: ð12Þ
Corrections to Eq. (12) are ∼p2; q2. Accounting for them is
beyond the DLA accuracy, so we drop them.
Therefore, the DL contribution to amplitude B of Eq. (6)

in collinear kinematics is given by the following expression
of the Sudakov type:

B ¼ −{
e4

16π3

Z
dαdβdk2⊥w2k2⊥

k2k2ðxqwþ βw − αxqwþ k2Þðxpwþ αw − βxpwþ k2Þ

≈ {
e4

16π3

Z
dαdβdk2⊥w2

k2ðxqwþ βwþ k2Þðxpwþ αwþ k2Þ : ð13Þ
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We have used in (13) that in DLA the integrand does not
depend on the azimuthal angle.

A. Massless external photons

This case is the simplest. Here p2 ¼ q2 ¼ 0, so the on-
shell Born amplitude Bon is

Bon ¼ {
e4

16π3

Z
dαdβdk2⊥w2

k2ðβwþ k2Þðαwþ k2Þ

¼ −
e4

8π2

Z
1

0

dβ
Z

s

0

dk2⊥
w

k2⊥ðwβ − k2⊥Þ

¼ −
e4

16π2
ln2ðw=μ2Þ ≈ −

e4

16π2
ln2ðs=μ2Þ; ð14Þ

where we have introduced the infrared (IR) cutoff μ in the
transverse space: k2⊥ ≫ μ2. In order to use the cutoff and at
the same time neglect the quark masses, μ should obey the
inequality μ ≫ mquark. With our accuracy, we have
neglected the difference between s and w in Eq. (14)
and will do so throughout the paper.

B. Off-shell external photons

Here we consider the case of the off-shell photons. After
integrating B of Eq. (13) over k⊥, we arrive at

B ¼ −
e4

8π2

Z
1

0

dα
Z

1

0

dβ
Θðαβ − λÞ

ðβ þ xqÞðαþ xpÞ
; ð15Þ

where λ ¼ μ2=s. Depending on the ratio between the
photon virtualities and μ2, there are two different cases:
(1) Moderately virtual photons

We call so the case, when virtualities Q2
1 and Q2

2

are sizable but not too great and obey the inequality

Q2
1Q

2
2 ≪ sμ2: ð16Þ

The integration region in this case is depicted in
Fig. 1 and therefore the off-shell Born amplitude

BðMÞ
γγ in the kinematics (16) is

BðMÞ
γγ ¼ −

e4

8π2

Z
1

xp

dα
α

Z
1

xq

dβ
β
Θðαβ − λÞ

¼ −
e4

16π2
½ln2ðs=μ2Þ − ln2ðp2=μ2Þ

− ln2ðq2=μ2Þ�: ð17Þ

(2) Deeply virtual photons
On the contrary when the photon virtualities are

so great that

Q2
1Q

2
2 ≫ sμ2; ð18Þ

the integration region does not include or touch the
line sαβ ¼ μ2 (see Fig. 2), so the amplitude BðMÞ

γγ

does not depend on μ and becomes IR stable:

BðDÞ
γγ ¼ −

e4

8π2

Z
1

xp

dα
α

Z
1

xq

dβ
β

¼ −
e4

8π2
lnðs=Q2

1Þ lnðs=Q2
2Þ: ð19Þ

III. PHOTON-PHOTON AMPLITUDES IN DLA

In this section we account for DL corrections to the
Born amplitudes BM

γγ ; BD
γγ and express the amplitude

Aγγðs;Q2
1; Q

2
2Þ of the process (1) at t ¼ 0. We do it with

constructing and solving IREE for Aγγðs;Q2
1; Q

2
2Þ. As a

result, we represent Aγγðs;Q2
1; Q

2
2Þ in terms of auxiliary

amplitudes Aγq and Aqγ that correspond respectively to the
t-channel annihilation of the pair of photons into quarks

γ�ðpÞγ�ðqÞ → qðp0
1Þq̄ðp0

2Þ; ð20Þ

and to the inverse process. According to the IREE
technology, we start with introducing a cutoff μ in the
transverse space:

FIG. 1. Integration region for moderately virtual photons.

FIG. 2. Integration region for deeply virtual photons.
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k⊥ ≫ μ; ð21Þ

where k⊥ refers to the transverse momenta of virtual quarks
or gluons. In order to handle virtual quarks and gluons
equally, we choose μ much greater than the masses of
involved quarks, which allows us to neglect the quark
masses. After that, the amplitude Aγγ becomes μ-dependent,
so we can evolve it with respect to μ and thereby compose
IREE for Aγγ. It is convenient to deal with Aγγ through its
Mellin transformation Fγγ . We will use the Mellin trans-
form as follows:

Aγγðs;Q2
1; Q

2
2Þ ¼

Z
{∞

−{∞

dω
2π{

ðs=μ2ÞωFγγðω; Q2
1; Q

2
2Þ

¼
Z

{∞

−{∞

dω
2π{

eωρFγγðω; y1; y2Þ; ð22Þ

where we have denoted

ρ ¼ lnðs=μ2Þ; y1 ¼ lnðQ2
1=μ

2Þ; y2 ¼ lnðQ2
2=μ

2Þ:
ð23Þ

We will address Fγγðω; y2; y1Þ and ðs=μ2Þω as the Mellin
amplitude and the Mellin factor respectively. We would like
to remind the reader that in the context of the Regge
processes the Mellin transform in Eq. (22) is actually the
asymptotic form of the Sommerfeld-Watson representation
for the positive signature amplitudes. Before composing
IREE for objects with several μ-dependent variables like
Aγγðρ; y1; y2Þ, we should order these variables. We use the
ordering of Eq. (4), complementing it by the restriction
Q2

1 ≫ Q2
2 and arriving thereby at

ρ > y1 > y2: ð24Þ

When we obtain expressions for Aγγðρ; y1; y2Þ under the
ordering (24), we will generalize our results on the case
of the opposite ordering y1 < y2 and for y1 ¼ y2 as well.
The general strategy of composing IREE prescribes to
start with considering the simplest case: we first compose
the IREE for the on-shell amplitude Aon

γγ , which describes
the process (1) at y1 ¼ y2 ¼ 0 and therefore depends
on the largest variable ρ only. When Aon

γγ is found, we
do next step, considering the more involved case of
amplitude Ãγγðρ; y1Þ of the same process in the kinematics
ρ > y1 > y2 ¼ 0. In order to specify a general solution of
the IREE for Ãγγðρ; y1Þ, we will use matching with the on-
shell amplitude Aon

γγ , which has been found on the previous
step. Then we repeat the same to specify a general solution
to the IREE for Aγγðρ; y1; y2Þ. Obviously, such procedure
can be repeated as many times as one needs, allowing to
describe processes with arbitrary number of external
kinematic invariants. We suppose that the amplitudes

Aon
γγ ðρÞ; Ãγγðρ; y1Þ; Aγγðρ; y1; y2Þ are related to the conju-

gated Mellin amplitudes fγγðωÞ; F̃γγðω; y1Þ; Fγγðω; y1; y2Þ
by the Mellin transform (22).
Now we have got all set to compose IREE for the

amplitudes of the process (1). The generic form of IREE for
Aγγ is depicted in Fig. 3. Throughout this paper we will
write the IREE directly in the ω-space.

A. All photons are nearly on-shell

We start with calculation of Aon
γγ in the simplest kin-

ematics where Q2
1 ≈Q2

2 ≲ μ2. We denote fγγðωÞ the Mellin
amplitude for the photon-photon scattering in the case
when virtualities Q2

1;2 are neglected, i.e., when

y2 ¼ y1 ¼ 0: ð25Þ

The IREE for fγγðωÞ is very simple. It represents fγγðωÞ
through two auxiliary Mellin amplitudes:

ωfγγðωÞ ¼
1

8π2
fγqðωÞfqγðωÞ; ð26Þ

where fγqðωÞ and fqγðωÞ corresponds to the pro-
cesses (20) and the reversal process, respectively. In
fact, fγqðωÞ ¼ fqγðωÞ.

B. One of the photons is on-shell
and the other is off-shell

Let us consider the more complicated case when

ρ > y1 > y2 ¼ 0; ð27Þ

i.e., Q2
1 ≫ Q2

2 ∼ μ2, and denote F̃γγðω; y1Þ the amplitude
corresponding to that case. It obeys the following IREE:

∂F̃γγ

∂y1 þ ωF̃γγ ¼
1

8π2
Fγqðω; y1ÞfqγðωÞ: ð28Þ

FIG. 3. Infrared evolution equation for the amplitude Aγγ . The
dashed lines denote the external photons, whereas the straight
lines correspond to quarks. The blobs stand for amplitudes
calculated in DLA. The letters on the blobs denote the IR cutoffs
for the involved amplitudes.
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where amplitudes Fγqðω; y1Þ and fqγðωÞ are supposed to be
calculated independently. Once they are known, the general
solution to Eq. (28) is

F̃γγ ¼ e−ωy1
�
C2ðωÞ þ

1

8π2
fqγðωÞ

Z
y1

0

dy0eωy0Fγqðω; y0Þ
�
:

ð29Þ

In order to specify an unknown function C2 in Eq. (29)
we use the matching:

F̃γγðω; y1Þjy1¼0 ¼ fγγðωÞ; ð30Þ

where fγγðωÞ is defined in Eq. (26). Therefore, F̃γγðω; y1Þ
in kinematics (27) is represented in terms of the photon-
quark amplitudes:

F̃γγðω; y1Þ ¼ e−ωy1
�

1

8π2ω
fγqðωÞfqγðωÞ

þ 1

8π2
fqγðωÞ

Z
y1

0

dyeωyFγqðω; yÞ
�
; ð31Þ

where Fγqðω; yÞ is the photon-quark amplitude at
y ≠ 0.

C. Off-shell photons with moderate virtualities

We call the moderately virtual kinematics the case when
Q2

1 ≫ μ2 andQ2
2 ≫ μ2 butQ2

1Q
2
2 ≪ sμ2. In the logarithmic

variables it means that

ρ > y2 þ y1: ð32Þ

The IREE for the amplitude FðMÞ
γγ ðω; y1; y2Þ in the

kinematic region (32) is

∂FðMÞ
γγ

∂y2 þ ∂FðMÞ
γγ

∂y1 þ ωFðMÞ
γγ ¼ 1

8π2
Fγqðω; y1ÞFqγðω; y2Þ:

ð33Þ

In order to use the symmetry with respect to y1, y2 of the
differential operator in (33) and simplify the IREE, we have
introduced new variables ξ, η:

ξ ¼ y1 þ y2; η ¼ y1 − y2: ð34Þ

Equation (33) in terms of ξ, η takes a simpler form:

2
∂FðMÞ

γγ

∂ξ þ ωFðMÞ
γγ ¼ 1

8π2
Fγqðω; y1ÞFqγðω; y2Þ: ð35Þ

A general solution to Eq. (35) is

FðMÞ
γγ ¼ e−ωξ=2

�
Cðω; ηÞ

þ 1

16π2

Z
ξ

0

dξ0eωξ0=2Fγqðω; y01ÞFqγðω; y02Þ
�
; ð36Þ

with Cðω; ηÞ being an arbitrary function and the variables
y01; y

0
2 are defined as follows:

y01 ¼ ðξ0 þ ηÞ=2; y02 ¼ ðξ0 − ηÞ=2: ð37Þ

In order to specify Cðω; ηÞ, we use the matching of

FðMÞ
γγ ðω; y1; y2Þ with an amplitude F̃γγðω; y1Þ of the same

process but in the simpler kinematic regime (27) considered
above:

FðMÞ
γγ ðω; y1; y2Þjy2¼0 ¼ F̃γγðω; y1Þ; ð38Þ

where amplitude F̃γγðω; y1Þ is given by Eq. (31).
Combining Eqs. (38), (36), and (31), we arrive at the
following expression for Fγγ:

FðMÞ
γγ ¼ e−ωξ=2

�
eωη=2F̃γγðω; ηÞ

þ 1

16π2

Z
ξ

η
dξ0eωξ0=2Fγqðω; y01ÞFqγðω; y02Þ

�
: ð39Þ

Substituting Eq. (39) in (22), we arrive at the expression
for the amplitude AðMÞ

γγ at moderate virtualities Q2
1;2:

AðMÞ
γγ ¼

Z
{∞

−{∞

dω
2π{

eωðρ−ξ=2Þ
�
eωη=2F̃γγðω; ηÞ

þ 1

16π2

Z
ξ

η
dξ0eωξ0=2Fγqðω; y02ÞFqγðω; y01Þ

�

¼
Z

{∞

−{∞

dω
2π{

�
sffiffiffiffiffiffiffiffiffiffiffiffi
Q2

1Q
2
2

p
�

ω
�
eωη=2F̃γγðω; ηÞ

þ 1

16π2

Z
ξ

η
dξ0eωξ0=2Fγqðω; y02ÞFqγðω; y01Þ

�
; ð40Þ

where F̃γγ is expressed in Eq. (31) through the auxiliary
amplitudes. Eqs. (39), (40) are obtained under the

assumption of Eq. (32) that y1 > y2. Writing AðMÞ
γγ and

FðMÞ
γγ in terms of variables ζ, η makes easy to see that the

reverse assumption y1 > y2 leads to the expressions for

AðMÞ
γγ ; FðMÞ

γγ , with η replaced by −η. Therefore, replacing η
by jηj in Eqs. (39), (40) allows us to embrace the both
cases. After the replacement has been done, Eqs. (39), (40)
are indeed invariant to the exchange y1 ⇆ y2.
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D. Deeply virtual photons

When Q2
1 ≫ μ2 and Q2

2 ≫ μ2, and their product is also
great, Q2

1Q
2
2 ≫ sμ2, the inequality in Eq. (32) is replaced

by the opposite one

ρ < y2 þ y1: ð41Þ
We address such photons as deeply-virtual ones. The

principal difference between this case and the case of
moderately virtual photons is that the scattering amplitude

AðDÞ
γγ ðρ; y1; y2Þ in the kinematics (41) does not depend on μ,

so the IREE for it is very simple:

∂AðDÞ
γγ

∂ρ þ ∂AðDÞ
γγ

∂y1 þ ∂AðDÞ
γγ

∂y2 ¼ 0: ð42Þ

A general solution to Eq. (42) can be written in different
ways. The most convenient way for our goal is

AðDÞ
γγ ¼ Mðρ − y1; ρ − y2Þ; ð43Þ

with M being an arbitrary analytic function. In order to

specify M we use the matching with the amplitude AðMÞ
γγ of

the same process but in the region (32). It means that

AðDÞ
γγ ðρ − y1; ρ − y2Þjρ¼y1þy2 ¼ AðMÞ

γγ ðρ; y1; y2Þjρ¼y1þy2

≡ ÃðMÞ
γγ ðy1; y2Þ: ð44Þ

Replacing y1 → ρ − y2 and y2 → ρ − y1 in ÃðMÞ
γγ ðy1; y2Þ

immediately allows us to express AðDÞ
γγ through ÃðMÞ

γγ in the
whole the region ρ ≤ y1 þ y2:

AðDÞ
γγ ðρ; y1; y2Þ ¼ ÃðMÞ

γγ ðρ − y2; ρ − y1Þ; ð45Þ

or, in terms of the Mellin transform,

AðDÞ
γγ ¼

Z
{∞

−{∞

dω
2π{

eωðρ−ξ=2Þ
�
eωη=2F̃γγðω; ηÞ

þ 1

16π2

Z
2ρ−ξ

η
dξ0eωξ0=2Fγqðω; y02ÞFqγðω; y01Þ

�
:

ð46Þ
Equation (46) demonstrates that, in contrast to the

previous cases, the variable ρ participates not only in the
Mallin factor but also in the expression in parentheses. This
should be taken as a clear warning not to use the Mellin
amplitudes for the matching. Indeed, applying the Mellin
transform to Eq. (42) converts it into the following equation

for the Mellin amplitude FðDÞ
γγ :

ωFðDÞ
γγ þ ∂FðDÞ

γγ

∂y1 þ ∂FðDÞ
γγ

∂y2 ¼ 0; ð47Þ

or

ωFðDÞ
γγ þ ∂FðDÞ

γγ

∂ξ ¼ 0; ð48Þ

with the obvious general solution:

FðDÞ
γγ ¼ Φðω; ηÞe−ωξ; ð49Þ

where an unspecified function Φ is supposed to be found

through matching with FðMÞ
γγ of Eq. (39) at ρ ¼ ξ. However,

it cannot be done because Φ by definition does not depend

on ξ whereas FðMÞ
γγ depends on it. So, the matching can be

done for the amplitudes AðDÞ
γγ ; AðMÞ

γγ . We consider this issue
in more detail in Sec. V.

IV. AUXILIARY AMPLITUDES

In the previous section we obtained amplitudes AðM;DÞ
γγ in

terms of auxiliary amplitudes Aγq; Aqγ. corresponding to the
process of Eq. (20) and the inverse process respectively. We
denote Fγqðω; yÞ and Fqγðω; yÞ the Mellin amplitudes
related to Aγq; Aqγ respectively. We remind that throughout
the paper we neglect the quark masses. We will compose
and solve IREE for them, considering first the simplest
kinematics, where the photons are on-shell and then move
to the case of off-shell photons. As Aγq and Aqγ are much
alike, we consider in detail dealing with Fγq only.

A. Photon-quark amplitude with on-shell photon

We consider the case when y ¼ 0 and denote fγqðωÞ the
Mellin amplitude of such a process. The IREE for fγqðωÞ is
depicted in Fig. 4.
In the ω-space it is

fγqðωÞ ¼
aγq
ω

þ 1

8π2ω
fγqðωÞf0ðωÞ; ð50Þ

where aγq=ω, with aγq ¼ e2, is the Born amplitude and f0
is the quark-quark amplitude. It includes the total resum-
mation of DL contributions as well as accounts for the
running coupling. The solution to Eq. (50) is

fγqðωÞ ¼
aγq

ω −HðωÞ ; ð51Þ

FIG. 4. Infrared evolution equation for the amplitude Aγq.
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where, by convenience reason we have introduced the
notation HðωÞ ¼ ð1=8π2Þf0ðωÞ. In DIS process H plays
the role of the nonsinglet anomalous dimension calculated
in DLA.

B. Off-shell photons

IREE for Fγqðω; yÞ is
∂
∂yFγqðω; yÞ þ ωFγqðω; yÞ ¼

1

8π2
Fγqðω; yÞf0ðωÞ: ð52Þ

A general solution to Eq. (52) is

Fγqðω; yÞ ¼ CγqðωÞe−y½ω−HðωÞ�; ð53Þ

with Cγg being an arbitrary function. To specify Cγg we use
the matching

Fγqðω; yÞjy¼0 ¼ F̃γqðωÞ; ð54Þ

with F̃γqðωÞ defined in Eq. (51). The use of Eq. (54)
leads to

Fγqðω; yÞ ¼
aγq

ω −HðωÞ e
−y½ω−HðωÞ� ð55Þ

Now the auxiliary amplitude Fγqðω; yÞf0ðωÞ is
expressed through the on-shell quark-quark amplitude f0
which is well known. It was calculated in Ref. [25], with αs
being fixed.

C. Quark-quark amplitude

Amplitude f0 was obtained in Ref. [25]. It satisfies the
simple algebraic equation

f0 ¼
a0
ω

þ 1

8π2ω
f0f0; ð56Þ

where a0=ω is the Born amplitude. Solving Eq. (57), one
arrives at the explicit expression for f0:

f0 ¼ 4π2
h
ω −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 − a0=ð2π2Þ

q i
: ð57Þ

Equation (57) is true for the both cases of fixed and running
αs but a0 in those cases are different. For fixed QCD
coupling, a0 ≡ afix0 was obtained in Ref. [25]:

afix0 ¼ 4παfixs CF; ð58Þ

with CF ¼ ðN2 − 1Þ=ð2NÞ ¼ 4=3, while at running αs it
depends on ω (see [22] for detail):

a0ðωÞ ¼
4πCF

b

�
ζ

ζ2 þ π2
−
Z

∞

0

dρe−ωρ

ðρþ ζÞ2 þ π2

�
; ð59Þ

where ζ ¼ ln ðμ2=Λ2
QCDÞ and b ¼ ð11N − 2nfÞ=ð12π2Þ is

the standard notation for first coefficient of the Gell-Mann–
Low function.

D. Representation of the auxiliary amplitudes
through the quark amplitude

Using Eq. (56) allows us to simplify Eq. (51) for the
auxiliary amplitude fγqðωÞ:

fγqðωÞ ¼
aγq
a0

f0ðωÞ ð60Þ

as well as the expression for Fγqðω; yÞ in Eq. (55):

Fγqðω; yÞ ¼
aγq
a0

f0ðωÞe−yðω−HðωÞÞ: ð61Þ

The only difference between IREE for Fγqðω; yÞ and
Fqγðω; yÞ is in the use of different the factors aγq and aqγ
respectively, so expressions for F̃qγðω; yÞ and Fqγðω; yÞ can
be immediately obtained from Eqs. (60) and (61):

fqγðωÞ ¼
aqγ
a0

f0ðωÞ ð62Þ

Fqγðω; yÞ ¼
aqγ
a0

f0ðωÞe−yðω−HðωÞÞ: ð63Þ

We define the factors aγq and aqγ as follows:

aγq ¼ e2q; aqγ ¼ −e2q; ð64Þ
where eq is the electric charge of the loop quark.

V. REPRESENTATION OF PHOTON-PHOTON
AMPLITUDES THROUGH

QUARK-QUARK AMPLITUDES

A. On-shell initial photons

Substituting Eqs. (62), (60) in Eq. (26) and using
Eq. (56), we obtain

fγγðωÞ ¼ κ

�
f0ðωÞ −

a0
ω

�
; ð65Þ

with

κ ¼ aγqaqγ
a20

: ð66Þ

According to Eq. (59) κ depends on ω, when αs is running,
so throughout the paper we will keep it under the Mellin
integral sign. The photon-photon scattering amplitude

AðonÞ
γγ , all photons are on-shell, is

AðonÞ
γγ ðs=μ2Þ ¼

Z
{∞

−{∞

dω
2π{

eωρκ

�
f0ðωÞ −

a0
ω

�
: ð67Þ
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B. One of the photons is off-shell

If y1 > y2 ¼ 0, amplitude F̃γγ is given by Eq. (31) where
F̃γγðω; y1Þ is represented through the auxiliary amplitudes.
Combining Eq. (31), (61) and (65), we express F̃γγðω; y1Þ
in terms of f0ðωÞ:

F̃γγðω; y1Þ ¼ κe−ωy1
�
f0ðωÞey1H −

a0
ω

�
: ð68Þ

Therefore,

Ãγγðω; y1Þ ¼
Z

{∞

−{∞

dω
2π{

eωðρ−y1Þκ
�
f0ðωÞey1f0=ð8π2Þ −

a0
ω

�
:

ð69Þ

C. Moderately-virtual photons

Combining Eq. (39) with Eqs. (68), (61), (63) allows us

to obtain FðMÞ
γγ , so we can write the amplitude AðMÞ

γγ in the
MV region as follows:

AðMÞ
γγ ¼

Z
{∞

−{∞

dω
2π{

eωρκ½W1 þW2�; ð70Þ

with

W1 ¼ e−ωðξþjηjÞ=2
�
−
a0
ω

þ f0ejηjH
�

W2 ¼
�
f0 −

a0
ω

�
ωffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ω2 − a0=ð2π2Þ
p

× ½e−ðξþjηjÞω=2þηH − eξð−ωþHÞ�: ð71Þ

We remind that the variables ξ, η are defined in Eq. (34).

Equations (70), (71) describe AðMÞ
γγ at any ordering between

y1 and y2, i.e., at y1 > y2 and y1 < y2; they also stand
when y1 ¼ y2.

D. Deeply virtual photons

According to Eq. (44), amplitude AðMÞ
γγ can be found

through matching with amplitude AðMÞ
γγ at the border

between the deeply virtual and moderately virtual regions,
where

ρ ¼ ξ: ð72Þ

As ρ participates in the Mellin factor, the matching

should involve the whole amplitudes AðMÞ
γγ ; AðDÞ

γγ rather than

FðMÞ
γγ ; FðMÞ

γγ . For performing the matching the easiest way,
we replace Eq. (70) by the following one:

AðMÞ
γγ ¼

Z
{∞

−{∞

dω
2π{

eðωρ−ωξ=2ÞκF1ðω; ηÞ

−
Z

{∞

−{∞

dω
2π{

eðωρ−ωξþξHÞκF2ðωÞ; ð73Þ

where

F1ðω; ηÞ ¼ e−ωη=2
��

−
a0
ω

þ f0eηH
�

þ
�
f0 −

a0
ω

�
ωffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ω2 − a0=ð2π2Þ
p eηH

�
;

F2ðωÞ ¼
�
f0 −

a0
ω

�
ωffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ω2 − a0=ð2π2Þ
p : ð74Þ

Then at ρ ¼ ξ amplitude AðMÞ
γγ becomes ĀðMÞ

γγ :

ĀðMÞ
γγ ¼

Z
{∞

−{∞

dω
2π{

eωξ=2κF1ðω; ηÞ −
Z

{∞

−{∞

dω
2π{

eξHκF2ðωÞ

ð75Þ

and therefore in the deeply virtual region

AðDÞ
γγ ¼

Z
{∞

−{∞

dω
2π{

eωðρ−ξ=2ÞκF1ðω; ηÞ

−
Z

{∞

−{∞

dω
2π{

eð2ρ−ξÞHκF2ðωÞ: ð76Þ

The second integral in Eq. (76) can be dropped because it
does not contain the standard Mellin factor eωρ (or eωð2ρ−ξÞ)
which would prevent closing the integration contour to the
right, where the integrand does not have singularities.
Closing the contour to the right, we find that the integration
over ω yields a zero. So, we arrive at the following
expression which is true for any ordering of y1;2 and for
the case y1 ¼ y2:

AðDÞ
γγ ¼

Z
{∞

−{∞

dω
2π{

eωðρ−ξ=2−jηj=2Þκ
��

−
a0
ω

þ f0ejηjH
�
þ
�
f0 −

a0
ω

�
ωffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ω2 − a0=ð2π2Þ
p ejηjH

�

¼
Z

{∞

−{∞

dω
2π{

�
sffiffiffiffiffiffiffiffiffiffiffiffi
Q2

1Q
2
2

p
�

ω
�
Q2

max

Q2
min

�
ω

κ

��
−
a0
ω

þ f0ejηjH
�
þ
�
f0 −

a0
ω

�
ωffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ω2 − a0=ð2π2Þ
p ejηjH

�
; ð77Þ

where we have denoted Q2
max ¼ max½Q2

1;2� and Q2
min ¼ min½Q2

1;2�.
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The amplitudes AðMÞ
γγ in Eq. (70) and AðDÞ

γγ in Eqs. (77),
(99) are represented in the form different from the expres-
sions for the same amplitudes obtained in Ref. [4], which is
unessential. The main difference between our approach and
Ref. [4] is our accounting for the running QCD coupling. In
this case a0 depends on ω [see Eq. (59)]. Now let us remind

that AðMÞ
γγ and AðDÞ

γγ are not complete expressions for
amplitudes of the process (1) in the collinear kinematics.
In order to account for the missing contributions, we
replace s by u in Eqs. (70) and (77), obtaining the

amplitudes A0ðMÞ
γγ and A0ðDÞ

γγ . Adding them to AðMÞ
γγ and

AðDÞ
γγ respectively, we arrive at the complete expressions for

the DLA amplitude of the process (1) in the collinear
kinematics. In the moderately virtual region (32) it is

ÃðMÞ
γγ ¼ AðMÞ

γγ þ A0ðMÞ
γγ ð78Þ

whereas in the deeply virtual region (41)

ÃðDÞ
γγ ¼ AðDÞ

γγ þ A0ðDÞ
γγ : ð79Þ

VI. NONCOLLINEAR PHOTON-PHOTON
SCATTERING

In this section we extend the results obtained above to the
forward Regge kinematics (2) with t ≠ 0. In order to avoid

confusing new amplitudes with AðMÞ
γγ and AðDÞ

γγ obtained
under assumption that t ∼ 0, we introduce a generic
notation Mγγ for new amplitudes in DLA and will provide
this notation with superscripts to specify the kinematics.
The Born amplitude, MB is [cf. Eq. (6)]

MB ¼ B̃þ B̃0; ð80Þ

with

B̃ ¼ −{
e4

16π3

Z
dαdβdk2⊥w2k2⊥

k2ðkþ q − q0Þ2ðxqwþ βw − αxqwþ k2Þðxpwþ αw − βxpwþ k2Þ ð81Þ

and B̃0 is obtained from B̃0 with replacing q → −q. It is
obvious that the integration over k in Eq. (81) yields a DL
contribution from the region

k2⊥ ≫ −t ¼ −ðq0 − qÞ2: ð82Þ
In other words, jtj acts in Eq. (81) as a new IR cutoff.

Therefore in the Born approximation (and beyond it) the
amplitudeMγγ in DLA is IR stable. All results we obtained
in the previous sections, studying the amplitudes in the
collinear kinematics, can easily be extended to the region of
nonzero t by the simple replacement

μ2 → jtj: ð83Þ

A further advancement strongly depends on the hier-
archy between Q2

1;2 and jtj. When

Q2
1;2 < jtj; ð84Þ

amplitude MB does not depend on Q2
1;2 under the DL

accuracy. In this case

MB ¼ MB ¼ −
e4

16π2
ln2ðs=jtjÞ: ð85Þ

When s ≫ Q2
1;2 ≫ jtj, there are again two cases:

MB ¼ −
e4

16π2
½ln2ðs=jtjÞ − ln2ðQ2

1=jtjÞ − ln2ðQ2
2=jtjÞ�;

ð86Þ

when Q2
1Q

2
2 ≪ sjtj and

MB ¼ −
e4

8π2
ln2ðs=Q2

1Þ ln ðs=Q2
2Þ; ð87Þ

when Q2
1Q

2
2 ≫ sjtj. Now let us to extend our results for

amplitudes Aγγ to the case of nonzero jtj beyond the Born
approximation. To this end, we introduce new logarithmic
variables ρ̄; ȳ1; ȳ2 instead of the variables ρ; y1; y2 defined
in Eq. (23):

ρ̄ ¼ ln ðs=jtjÞ; ȳ1;2 ¼ ln ðQ2
1;2=jtjÞ: ð88Þ

In the case when s ≫ Q2
1 ≫ jtj and Q2

2 ≲ jtj, i.e., when
ρ̄ > ȳ1 > ȳ2 ≈ 0, amplitude

M̃γγðω; y1Þ ¼
Z

{∞

−{∞

dω
2π{

eωðρ̄−ȳ1Þκ
�
f0ðωÞey1f0=ð8π2Þ −

a0
ω

�
:

ð89Þ

In the more involved case of moderate virtualities, when
s ≫ Q2

1; Q
2
2 ≫ jtj but sjtj ≫ Q2

1Q
2
2, i.e., when

ρ̄ > ȳ1 þ ȳ2; ð90Þ

the scattering amplitude MðMÞ
γγ is

MðMÞ
γγ ¼

Z
{∞

−{∞

dω
2π{

eωρ̄κ½W̄1 þ W̄2�; ð91Þ
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with

W̄1 ¼ e−ωðξ̄þjη̄jÞ=2
�
−
a0
ω

þ f0ejη̄jH
�

W̄2 ¼
�
f0 −

a0
ω

�
ωffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ω2 − a0=ð2π2Þ
p

× ½e−ðξ̄þjη̄jÞω=2þjη̄jH − eξ̄ð−ωþHÞ�: ð92Þ

whereas in the new deeply virtual region

ρ̄ < ȳ1 þ ȳ2 ð93Þ

the scattering amplitude MðDÞ
γγ is

MðDÞ
γγ ¼

Z
{∞

−{∞

dω
2π{

eωðρ̄−ξ̄=2−jη̄j=2Þκ
��

−
a0
ω

þ f0ejη̄jH
�

þ
�
f0 −

a0
ω

�
ωffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ω2 − a0=ð2π2Þ
p ejη̄jH

�
: ð94Þ

Replacing s by u in Eqs. (91) and (94), we obtain

amplitudes M0ðMÞ
γγ and M0ðDÞ

γγ . Adding them to the expres-
sions in Eqs. (91), (94) and multiplying them by the factor
2nf, with nf being the number of involved flavors, we
arrive at the DL expressions for the scattering amplitudes

M̃ðMÞ
γγ [in the moderately virtual region (90)] and M̃ðDÞ

γγ [in
the deeply virtual region (93)]:

M̃ðMÞ
γγ ¼ 2nf½MðMÞ

γγ þM0ðMÞ
γγ �;

M̃ðDÞ
γγ ¼ 2nf½MðDÞ

γγ þM0ðDÞ
γγ �: ð95Þ

Amplitudes M̃ðM;DÞ
γγ in Eq. (95) account for the total

resuimmation of DL corrections to the Born amplitude AB
of Eq. (5) in the forward kinematic region (2).

VII. DISCUSSION OF THE OBTAINED RESULTS

In this section we discuss the results obtained in the
previous sections.

A. Comment on deeply virtual and
moderately virtual regions

The deeply virtual (DV) and moderately virtual (MV)
kinematics are introduced in Eqs. (16), (32) and (18), (41),

respectively. The scattering amplitude AðMÞ
γγ , being calcu-

lated in MV kinematics explicitly depends on the IR cutoff
μ. Often, μ is an artificial parameter with arbitrary value but
on the other hand, there are cases, when μ has a physical
meaning. For instance, it can be the heavy quark mass or
the masses ofW, Z bosons in standard model. In such cases
the range of ρ in the region (41) is quite restricted:

max½y1; y2� < ρ < y1 þ y2: ð96Þ

As a result, AðDÞ
γγ cannot be used for calculating the

asymptotics of Aγγ , when s → ∞. The asymptotics in this

case can be obtained from AðMÞ
γγ . The same is true also in the

case when the running coupling effects for amplitudes in
the Regge kinematics are accounted for.
On the contrary, when μ is not associated with an

appropriate mass scale and αs is fixed or regarded as
μ- independent, the value of μ can be chosen arbitrary
small. and, as the DV region ensures the IR stability
independently of μ, one can choose μ very small. This
considerably broadens the applicability region for the DV
kinematics and makes possible to use it at very high
energies. So, despite the kinematics is the Regge one, it
is as IR stable as the hard kinematics.

B. Impact of higher-loop DL radiative corrections

The s-dependent parts, BðM;DÞ
γγ of the photon-photon

scattering amplitudes in the lowest-order approximation
at t ¼ 0 are given by Eqs. (17), (19) for the MV and DV
photons respectively. Accounting for the radiative correc-

tions in DLA converts them into amplitudes AðM;DÞ
γγ . Let us

estimate the impact of the DL radiative corrections on

BðM;DÞ
γγ in the simplest case when Q2

1 ∼Q2
2 ¼ Q2, so the

involved amplitudes in this case depend on x ¼ Q2=s only.
In order to be independent of choice of μ, we will do it for

the amplitudes with deeply virtual photons, where AðDÞ
γγ ðxÞ

is given by Eq. (99). We define the ratio Rγ as follows:

RγðxÞ ¼ AðDÞ
γγ =BðDÞ

γγ ð97Þ

and show the plot of Rγ against x in Fig. 5.
Figure 5 explicitly demonstrates that the radiative

corrections become sizable since x ∼ 10−3. They double
the Bon amplitude at x ∼ 10−4.

C. High-energy asymptotics

At very high energies scattering amplitudes are often
approximated by their asymptotics. The asymptotics are
much easier to work on than the explicit expressions.

FIG. 5. Dependence of Rγ on x.
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However, the applicability region for the asymptotics
cannot be deduced from theoretical consideration. Below
we first show how to calculate the asymptotics and then
outline its applicability region. Very small x asymptotics at
ρ → ∞ of all amplitudes we calculated above can be
obtained by using the saddle point method and is given
by similar expressions. For the sake of simplicity we

consider the small-x asymptotics of amplitudes AðM;DÞ
γγ of

Eqs. (70), (77) in the particular case when Q2 ∼Q2
2 ≡Q2.

In this case Eq. (70) is reduced to

AðMÞ
γγ ðx;yÞ¼

Z
{∞

−{∞

dω
2π{

x−ωκ

�
f0−

a0
ω

�

×

�
1þ ωffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ω2−a0=ð2π2Þ
p ð1−e−y

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2−a0=ð2π2Þ

p
Þ
�
;

ð98Þ

where x ¼ Q2=s and y ¼ Q2=s. In contrast, AðDÞ
γγ depends

on x only:

AðDÞ
γγ ðxÞ¼

Z
{∞

−{∞

dω
2π{

x−ωκ

�
f0−

a0
ω

��
1þ ωffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ω2−a0=ð2π2Þ
p

�
:

ð99Þ

The saddle point method, being applied to Eqs. (98),
(99), immediately yields that the rightmost stationary point
ω0 is the same for the both amplitudes and it is given by the
rightmost root of the equation

ω2 − a0=ð2π2Þ ¼ 0: ð100Þ

The further progress depends on the treatment of αs.
When αs is fixed (αs ¼ αfixs ), it is easy to obtain an analytic
expressions for ω0:

ω0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2αfixs CF=π

q
þ 1=ð2zÞ: ð101Þ

A numerical estimate for αfixs in Eq. (101) was obtained in
Ref. [28]. According to it, αs ≈ 0.24.
When the running coupling effects are taken into

account, a0 depends on ω [see Eq. (59)] and therefore
Eq. (100) has to be solved numerically (see Ref. [22]). It
leads to the estimate ω0 ≈ 0.4. The small-x asymptotics

½AðM;DÞ
γγ �as of amplitudes AðM;DÞ

γγ respectively are

½AðM;DÞ
γγ �as ¼ ΠðM;DÞx−ω0 ; ð102Þ

with the factors ΠðMÞ and ΠðDÞ being

ΠðMÞ ¼ e4

π2ω3
0

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πω0z3

p
�
1þ ω0z

2
ð1 − e−2y=zÞ

�
;

ΠðDÞ ¼ e4

4π2ω2
0

1ffiffiffiffiffiffiffiffiffiffi
πω0z

p ; ð103Þ

where we have denoted z ¼ lnð1=xÞ.
Now let us consider the x dependence of the ratio

Ras ¼
½AðMÞ

γγ �as
AðMÞ
γγ

: ð104Þ

The x-dependence of RðMÞ
as is plotted in Fig. 5. For the

sake of simplicity, the graph in Fig. 6 is done for y ≈ 0. The
greater y, the lower the graph runs.
Similarly to Eq. (104), we define the ratio

Ras ¼
½AðDÞ

γγ �as
AðDÞ
γγ

: ð105Þ

The x-dependence of RðDÞ
as is plotted in Fig. 7.

Figures 6 and 7 display that the amplitudes AðM;DÞ
γγ are

reliably represented by their asymptotics at very small x.

Indeed, RðM;DÞ
as ∼ 0.8 at x≲ 10−8. It perfectly agrees with

the results of Ref. [26] where it was proved that the small-x
asymptotics of the nonsinglet DIS structure functions FNS

1

and gNS
1 reliably represent these structure functions at

x≲ 10−8. In terms of the Reggeology, the only difference

FIG. 6. Dependence of RðMÞ
γ on x.

FIG. 7. Dependence of RðDÞ
γ on x.
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between FNS
1 and AðM;DÞ

γγ is the difference in the impact
factors while the Reggeons are the same. This proves
that the applicability region for the use of nonvacuum
Reggeons is

x≲ 10−8; ð106Þ

i.e., Eq. (106) manifests that the nonvacuum Reggeons
should not be used for description of hadronic reactions at
available energies.

VIII. CONCLUSION

We have calculated the amplitudes of the process (1) in
DLA. We considered this process in both the collinear

kinematics (amplitudes AðMÞ
γγ and AðDÞ

γγ Þ, where t ¼ 0, and

the forward kinematics (2) (amplitudes MðMÞ
γγ and MðDÞ

γγ ) at
t ≠ 0. So as to calculate those amplitudes we constructed
and solved the infrared evolution equations for them.
According to the general technology of solving IREE,
any general solution to IREE for a scattering amplitude in a
certain kinematics is specified through matching with the
known amplitude of the same process in a simpler
kinematics. So, before solving IEEE for the amplitudes

MðM;DÞ
γγ in the t ≠ 0 -kinematics, we had to calculate the

amplitudes AðM;DÞ
γγ of the same process in the collinear

kinematics. Doing so, we confirmed the results of Ref. [4]
and generalized them to the case of running QCD coupling
while αs in Ref. [4] was fixed.
At very high energies the scattering amplitudes are often

considered in the asymptotic form and such asymptotics are
addressed as Reggeons. Such Reggeons are much easier to
use than their parent amplitudes. However, applicability
regions for the asymptotics (Reggeons) cannot be fixed
from theoretical grounds. We do it numerically, calculating
the asymptotics of amplitudes AðM;DÞ

γγ and comparing the
asymptotics to the amplitudes. In order to calculate the
asymptotics, we use the saddle point method. The results
are plotted in Figs. 5 and 6. They outline the applicability
region of the nonvacuum Reggeons and perfectly agree
with the observation of Ref. [26] that nonvacuum Reggeons
should not be used for describing available experimen-
tal data.
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