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Elastic scattering of virtual photons via a quark loop
in the double-logarithmic approximation
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We calculate the amplitude of elastic photon-photon scattering via a single quark loop in the double-

logarithmic approximation, presuming all external photons to be off-shell and unpolarized. At the same
time we account for the running coupling effects. We consider this process in the forward kinematics at
arbitrary relations between ¢ and the external photon virtualities. We obtain explicit expressions for the

photon-photon scattering amplitudes in all double-logarithmic kinematic regions. Then we calculate the
small-x asymptotics of the obtained amplitudes and compare them with the parent amplitudes, thereby
fixing the applicability regions of the asymptotics, i.e., fixing the applicability region for the nonvacuum
Reggeons. We find that these Reggeons should be used at x < 10~% only.
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I. INTRODUCTION

For a long time, the light-by-light scattering has been an
object of both experimental and theoretical interest. In this
paper we consider this process in the high energy limit. The
motivation of our study is twofold.

On the one hand, it is well known that, similarly to the
et e~ annihilation into hadrons, the total cross section of the
collision of two off-shell photons with large virtualities is
an important test ground for perturbative QCD. At a fixed
order of in the strong coupling, a,, and at low energies, the
dominant contribution comes from the pure QED quark
box diagrams, calculated at the leading-order (LO) in
Refs. [1,2] and at the next-to-LO (NLO) in a,, see
Ref. [3]. In Ref. [4] the resummation of double logs
appearing starting from the first NLO QCD corrections
to the quark box was studied. Such contributions are
important at high energy where arguments of the logs
are large. At even higher energies additional class of QCD
diagrams gives important contribution to the cross section.
It is a contribution with the two-gluon exchange in the
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t-channel that overwhelms the quark exchange contribution
despite additional o2 suppression: it has a different asymp-
totics in the power of energy and therefore it will exceed
the contribution of quark exchange mechanism at suffi-
ciently large center of mass frame (c.m.f.) energy /s. At
higher orders in «a,, the contributions from t-channel gluons
lead to terms with powers of single logarithms of the energy,
which must be resummed. The Balitsky-Fadin-Kuraev-
Lipatov (BFKL) approach [5] provides for a consistent
theoretical framework for such resummation of the energy
logarithms, both in the leading logarithmic approximation
(LLA), which means resummation of all terms ~(a; In(s))",
and in the next-to-leading approximation (NLA), which
means resummation of all terms ~a (o, In(s))". In this
approach, the imaginary part of the amplitude (and, hence,
the total cross section) for a large-s hard collision process
can be written as the convolution of the Greens function of
two interacting Reggeized gluons with the impact factors of
the colliding particles.

The study of the y*y* total cross section in LLA BFKL
has a long history [6]. For the extension of these results to
the NLA level one needs to consider corrections to both the
BFKL Green’s function [7] and to the impact factors of
colliding virtual photons.

While its LO expression for the photon impact factor is
known since long, the NLO calculation, carried out in the
momentum representation, turned out to be rather compli-
cated and was completed only after year-long efforts [8],
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and the results are available only in the form of a numerical
code, thus making it of limited practical use. Indeed, until
recently, the inclusion of BFKL resummation effects in the
NLA calculation of the y*y* total cross section was carried
out only in approximate way, by taking the BFKL Green’s
function in the NLA while using the LO expression for
impact factors. This is the case of the pioneer paper in
Ref. [9] (see also Ref. [10]) and of the later analysis in
Refs. [11,12].

The situation changed when the NLO photon impact was
calculated analytically in the coordinate space and then
transformed to the momentum representation and to the
Mellin [13] (see also Ref. [14]). This achievement opened
a way for a subsequent calculations of y*y* total cross
section with complete NLA BFKL resummation approach,
see [14,15].

In [15] a comparison of the NLA BFKL predictions with
LEP2 data [16,17] was made. It was shown that the account
of the Balitsky and Chirilli expression for NLO photon
impact factor reduces the BFKL contribution to the cross
section to very small values making it impossible to
describe LEP2 data as a sum of BFKL and LO QED
quark box contributions. Note that, as we discussed above,
the LO QED quark box itself receives, at higher QCD
orders, large corrections enhanced by double logs. Their
resummation is important and leads to a considerable
enhancement of the quark box contribution (see Ref. [4]
for detail), but still these effects are not large enough for a
good description of LEP2 data at largest available rapidity
without a sizable BFKL contribution. Therefore, in this
situation, one of the aim of this paper is to reconsider the
derivation of double logs resummation and to confirm
results of [4]. Besides, we account for the running QCD
coupling effects.

Another motivation for the present paper is related to
the possibility to measure amplitude of the light-by-light
scattering at nonzero angles, i.e., at nonzero values of ¢.
Recently, ATLAS Collaboration has reported[18] on evi-
dence for the quasireal photo-photon scattering in heavy-
ion collisions with the ATLAS detector at the LHC. These
results proved to be consistent with calculations reported in
Refs. [19-21], Light-by-light scattering has been an object
of both experimental and theoretical interest. For instance,
ATLAS Collaboration has recently reported [18] on evi-
dence for light-by-light scattering in heavy-ion collisions
with the ATLAS detector at the LHC. These results proved
to be consistent with calculations reported in Refs. [19-21],
where one of the essential ingredients is the amplitudes
of the photon-photon elastic scattering studied in the lowest
(“Born”) approximation where description of the photon
scattering involves a single quark loop only. As accounting
for the QCD radiative corrections can essentially change
the scattering amplitudes, it is interesting to study their
impact. Both the technology of accounting for the radiative
corrections and their impact strongly depend on the
kinematic region of the process. The most interesting

kinematics at high energies is the forward one. Because
of that we investigate the photon-photon scattering

r(p)r*(q) = r* (P r(d), (1)

with all photons being off-shell, via a single quark loop. We
consider this reaction in the forward kinematics

s=(p+qP>-t=—(p-p) (2)

In order to be in agreement with the conventional
notations, we denote the photon virtualities as follows:

21— 02 2] — O% 2 02 142 — 02

Pl =01p" = 0% gl =05ld" = Q%  (3)
so that QF ,, Q% are positive. We presume that 0F , ~ 0%,
In what follows we consider the case when s > 0% ,, 0%,

i.e., when

s> |t

UPS (4)

In contrast, we do not fix any hierarchy between Qf , and ¢
and consider all possible situations. Then, throughout the
paper we will focus on the unpolarized initial and final
photons. We will calculate the amplitude A,, of the reaction
(1) in the double-logarithmic approximation (DLA). The
imaginary part (with respect to s) of this amplitude was
calculated in Ref. [4] in the collinear kinematics, i.e., in the
kinematics (2) with ¢t = 0, and under the approximation of
fixed QCD coupling a,. We check and confirm the results
obtained in Ref. [4] and, in contrast, we account for the
running «, effects, using the results of Ref. [22]. In our
approach a, runs in every rung of each involved Feynman
ladder graph. Then we consider the process (1) in the
forward kinematics, with ## 0 and obtain a complete
expression for the amplitude of this process.

In our calculations we compose and solve infrared
evolution equations (IREE) for A,,. The key point of the
IREE method is the property of factorization of the double
logarithmic (DL) contributions of the softest partons (i.e.,
the partons with minimal transverse momenta) out of the
scattering amplitudes. This remarkable property of the
softest photons was first proved by V. N. Gribov [23] in
the QED context and then its generalization to the non-
Abelian theories was obtained in Ref. [24,25], where the
IREE method was suggested to calculate in DLA ampli-
tudes of quark-antiquark scattering. After that, the IREE
method proved to be a simple and effective method to
calculate in DLA amplitudes of various inclusive and
exclusive processes in QCD and the standard model, with
both fixed and running «,, see, e.g., the overviews
in Ref. [26].

The aim of our paper is to calculate the amplitude M, of
the process (1) in the forward kinematics (2) with nonzero
value of ¢ and arbitrary relations between ¢ and Q7 ,.
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Throughout the paper we deal with running «,. Technology
of composing IREE involves matching M,, with amplitude
A,, calculated in the collinear kinematics. Following this
pattern, we in the first place calculate amplitude A,, in the
collinear kinematics, examining the cases of running and
fixed a, thereby checking results of Ref. [4], and then
proceed to calculating M,, in the region of nonzero 7.

Our paper is organized as follows: In Secs. II-V we
consider the photon-photon scattering in collinear kinemat-
ics, i.e., in kinematics (2) with £ = 0. In Sec. II we briefly
mention the lowest-order results for A,,. In Sec. III we
compose and solve IREE for A,,, expressing it terms of
auxiliary amplitudes describing photon-quark scattering. In
Sec. IV we compose and solve IREE for the auxiliary
amplitudes and express them in terms of amplitudes of the
quark-antiquark annihilation in the forward kinematics.
Using the obtained results, in Sec. V we express the
photon-photon scattering amplitudes through the quark-
quark amplitude. Then in Sec. VI we use results of Sec. V
in order to calculate the photon-photon scattering ampli-
tude M,, in kinematics (2) at ¢ # 0. In Sec. VII we discuss
the results obtained in Secs. V and VI. Here we consider the
high-energy asymptotics of A,, and compare them to the
parent amplitudes, thereby defining the applicability region
for non-vacuum Reggeons. Finally, Sec. VIII is for our
concluding remarks.

II. LOWEST-ORDER AMPLITUDES IN THE
COLLINEAR KINEMATICS

First of all we consider the “Born”, i.e., the simplest,
case, where only quark box diagrams contribute. We also
suggest that =~ 0. In this case the amplitude Ap of the
process (1) in the lowest order, with the quark masses
neglected, consists of two terms:

Ay —B+B, (5)
where
R / 2 Tl (@ + Ry (k= p)y &)

(27)* k(g + k)*(k = p)*

x L(q)L(p)L (4 (p') (6)

and B’ can be obtained from (6) by replacing g — —q.
The important property of amplitude B is that I;B # 0
|

whereas J;B’ = 0. By this reason we will not consider B’
and focus on B only. In Eq. (6) we have neglected the quark
mass and introduced the following notations: k is the loop
momentum, /,(g), [;(p) are the polarization vectors of the
incoming photons, and /;(g). I;(p) stand for the polariza-
tion vectors of the outgoing photons. Throughout the
present paper we consider the case of the unpolarized
photons and use for them the Feynman gauge where the
averaging over the photon polarizations can be done using
the following replacements:

L(@)(q) = =gu/2,

and therefore

Trly,(§ + )y ky (k= p)y,(k+ p' = p)]
x L(a)L:(p) (4 (p')
= Tr((§ + k)k(k = p)(k + p' = p)]
~ =Tr[qk p k] = 2[wk? — 2pk2qk], (8)

L(p)L(p) = =g,,/2 (7)

where we have used the standard notation w = 2 pq. For the
next step, it is convenient to introduce the Sudakov
representation [27] for the soft momentum k:

k=—ag+pp+ky, )

where the light-cone momenta p, § are made of the photon
momenta p and g:

P=p-x,4. G=q-x;p. x,~07/w. x,~Q3}/w,
(10)
so that
2pk = —aw + fx,w, 2gk = pw — ax,w,
K = —apw — k3. (11)

In terms of the Sudakov variables Eq. (8) looks much
simpler:

2[wk? — 2pk2qk] ~ —2wk? . (12)

Corrections to Eq. (12) are ~p?, g*. Accounting for them is
beyond the DLA accuracy, so we drop them.

Therefore, the DL contribution to amplitude B of Eq. (6)
in collinear kinematics is given by the following expression
of the Sudakov type:

dadBdi3 w*k3

o
B =—-
"6r / K> (x,w + pw — ax,w + k) (x,w + aw — fx,w + k*)

dadpdk’w

o
Nl16ﬂ3/k2(xqw + pw + k) (x,w + aw + k*)

(13)
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We have used in (13) that in DLA the integrand does not
depend on the azimuthal angle.

A. Massless external photons

This case is the simplest. Here p*> = ¢*> = 0, so the on-
shell Born amplitude B, is

et dadpdkl w?
By =175 [ 5 2 2
167° | k*(pw + k )(aw—l—k )

d dk?
8n/ﬂ/ L2 (wp—K2)

= 16 n*(w/p?) ~

ﬂ k%)

In?(s/u?),  (14)

16

where we have introduced the infrared (IR) cutoff x in the
transverse space: k7 > p. In order to use the cutoff and at
the same time neglect the quark masses, u should obey the
inequality p > mg.. With our accuracy, we have
neglected the difference between s and w in Eq. (14)
and will do so throughout the paper.

B. Off-shell external photons

Here we consider the case of the off-shell photons. After
integrating B of Eq. (13) over k, we arrive at

:_—/ /dﬂﬁ—l-xaﬁaj—)xp)’ (13)

where 1 = u?/s. Depending on the ratio between the
photon virtualities and u?, there are two different cases:
(1) Moderately virtual photons
We call so the case, when virtualities Q% and Q3
are sizable but not too great and obey the inequality

0305 < s (16)

The integration region in this case is depicted in
Fig. 1 and therefore the off-shell Born amplitude

B in the kinematics (16) is

lda/ldﬂ

= 16 5 [hl (s/p*) = n*(p*/p?)

—In*(g?/p?)]. (17)

(2) Deeply virtual photons
On the contrary when the photon virtualities are
so great that

M
Biy):

0305 > sp?, (18)

«
1

7 //

i

r aff = p?/s

Zq 1 6]

FIG. 1. Integration region for moderately virtual photons.

«
1

\_O‘B = /s
Zq 1 I}

Integration region for deeply virtual photons.

FIG. 2.

the 1ntegrat10n region does not include or touch the
line saff = u* (see Fig. 2), so the amplitude Bﬁy)
does not depend on u and becomes IR stable:

1 d )
B’(’?) T . ;
:_;;m(s/g%)ln(s/Q%)- (19)

III. PHOTON-PHOTON AMPLITUDES IN DLA

In this section we account for DL corrections to the
Born amplitudes BJ),BY and express the amplitude
A, (s, 01, 03) of the process (1) at t = 0. We do it with
constructing and solving IREE for A, (s, 07, 03). As a
result, we represent A, (s, 01, Q3) in terms of auxiliary
amplitudes A,, and A, that correspond respectively to the

t-channel annihilation of the pair of photons into quarks

r*(p)r*(q) = a(py)a(ps), (20)

and to the inverse process. According to the IREE
technology, we start with introducing a cutoff x in the
transverse space:
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ky > u, (21)

where k refers to the transverse momenta of virtual quarks
or gluons. In order to handle virtual quarks and gluons
equally, we choose p much greater than the masses of
involved quarks, which allows us to neglect the quark
masses. After that, the amplitude AW becomes y-dependent,
so we can evolve it with respect to u and thereby compose
IREE for A,,. It is convenient to deal with A,, through its
Mellin transformation F',,. We will use the Mellin trans-
form as follows:

100 da
Ay}/<S7 Q27 Q%) = / z—m(S/M2>mF},},(a), Q27 Q%)
10 da) wp
= _mz—me Fyy(a)’yl’y2)’ (22)

where we have denoted

p =In(s/u?), y2 = In(Q3/u?).

(23)

yi = In(Q7/p?),

We will address F,,(,y,,y;) and (s/u*)” as the Mellin
amplitude and the Mellin factor respectively. We would like
to remind the reader that in the context of the Regge
processes the Mellin transform in Eq. (22) is actually the
asymptotic form of the Sommerfeld-Watson representation
for the positive signature amplitudes. Before composing
IREE for objects with several u-dependent variables like
A, (p.y1,Y2), we should order these variables. We use the
ordering of Eq. (4), complementing it by the restriction
Q% > Q3 and arriving thereby at

P>y >y (24)

When we obtain expressions for A,,(p,y;.y,) under the
ordering (24), we will generalize our results on the case
of the opposite ordering y; < y, and for y; = y, as well.
The general strategy of composing IREE prescribes to
start with considering the simplest case: we first compose
the IREE for the on-shell amplitude AyY, which describes
the process (1) at y; =y, =0 and therefore depends
on the largest variable p only. When A7) is found, we
do next step, considering the more involved case of
amplitude AW (p,y;) of the same process in the kinematics
p >y, >y, = 0. In order to specify a general solution of
the IREE for A,,(p,y;), we will use matching with the on-
shell amplitude A}y, which has been found on the previous
step. Then we repeat the same to specify a general solution
to the IREE for A,,(p. y1,y,). Obviously, such procedure
can be repeated as many times as one needs, allowing to
describe processes with arbitrary number of external
kinematic invariants. We suppose that the amplitudes

q q
S ,v
_d_ — _d_
dp? T dp?
/’l \\A
p p

FIG. 3. Infrared evolution equation for the amplitude A,,. The
dashed lines denote the external photons, whereas the straight
lines correspond to quarks. The blobs stand for amplitudes
calculated in DLA. The letters on the blobs denote the IR cutoffs
for the involved amplitudes.

AR (). A, (p.y1). Ay (P y1.32) are related to the conju-
gated Mellin amplitudes f,, (@), F,, (@, y1). F,,(0.y1,y2)
by the Mellin transform (22).

Now we have got all set to compose IREE for the
amplitudes of the process (1). The generic form of IREE for
A,, is depicted in Fig. 3. Throughout this paper we will
write the IREE directly in the w-space.

A. All photons are nearly on-shell

We start with calculation of AJ} in the simplest kin-
ematics where 0} ~ 03 < y?. We denote f,,(w) the Mellin
amplitude for the photon-photon scattering in the case
when virtualities QF , are neglected, i.e., when

v =y =0. (25)

The IREE for f,,(w) is very simple. It represents f,, (o)
through two auxiliary Mellin amplitudes:

0f @) = ¢ (@) f @), (26)

where f,,(w) and f, (@) corresponds to the pro-
cesses (20) and the reversal process, respectively. In

fact, f,,(w) = fg,(@).

B. One of the photons is on-shell
and the other is off-shell

Let us consider the more complicated case when

P>y >y, =0, (27)

ie., 01 > Q3 ~u?, and denote F,, (w,y;) the amplitude
corresponding to that case. It obeys the following IREE:

oF - 1
Wyly—ka)FW:@Fyq(w,)’l)fqy(w)‘ (28)
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where amplitudes F,, (@, y;) and f,, (@) are supposed to be
calculated independently. Once they are known, the general
solution to Eq. (28) is

- ) 1 Y1 /
F,, =e ™| Cy(w) +8—T[2fqy(w)/o dy'e™ F (w,y")].
(29)

In order to specify an unknown function C, in Eq. (29)
we use the matching:

Fyy(w’)’1)|y,:0 = [y (@), (30)

where f,,(w) is defined in Eq. (26). Therefore, F,, (o, y)
in kinematics (27) is represented in terms of the photon-
quark amplitudes:

Frg(@)f g (@)

F (w,y)) = e™® !
V24 ) yl - 8]7,'26()

1 |
tgalalo) [ e F o] o1

where F,,(w,y) is the photon-quark amplitude at
y#0.

C. Off-shell photons with moderate virtualities

We call the moderately virtual kinematics the case when
Q% > p* and Q3 > pi? but 0203 < sy?. In the logarithmic
variables it means that

p>yatyr (32)
The IREE for the amplitude F ﬁ’;’)(w, y1,¥,) in the
kinematic region (32) is

1
M
+wFJ(/J’) = ngq(vaI)Fq;'(wvyZ)'

oF . OF M
dy, dy,
(33)

In order to use the symmetry with respect to y;, y, of the

differential operator in (33) and simplify the IREE, we have
introduced new variables &, #:

E=y1+ . n=y— . (34)

Equation (33) in terms of &, x takes a simpler form:

oOF Y
0¢

1
+a)FJ(’£/I) = 7Fyq(a)vyl)qu(wvy2)- (35)

2
872

A general solution to Eq. (35) is

A = e o)

1

* 1672

'f /
AﬁWWMWﬁmmwa,oa

with C(w, ) being an arbitrary function and the variables
y’l, y’2 are defined as follows:

VWw=E+n/2. yh=(E-n)/2 (37)

In order to specify C(w,n), we use the matching of

Fﬁy) (@.y1,y,) with an amplitude F,, (w,y;) of the same
process but in the simpler kinematic regime (27) considered
above:

M ~
Fi (@, y1,92)ly,—0 = Fyp (@, 31), (38)

where amplitude F,, (w,y;) is given by Egq. (31).
Combining Egs. (38), (36), and (31), we arrive at the
following expression for F,:

ng ) _ pmwE/2 [ewn/Z F,(w.n)

1

+ 1672

¢ /
/ dg e 2 (@, Y))F (@, 5) . (39)
n

Substituting Eq. (39? in (22), we arrive at the expression
for the amplitude A/yw at moderate virtualities Q7 ,:

10 -
A(M) = / 2 p@(p=£/2) | pom/2 |7 ,
144 o 27”6 4 yy(w 7])

1

¢ ,
* 167> dg e 2 F g (0. y5)F gy (@, y&)]
n

_/mm )" e w.n)
) 2m \/E%_Qg (.
1 14 /
dé/ewé /szq (C(), y’z)qu(a), y'1 ):| , (40)

+—
1622 J,

where F 4y 18 expressed in Eq. (31) through the auxiliary

amplitudes. Eqgs. (39), (40) are obtained under the

assumption of Eq. (32) that y; > y,. Writing A%y) and

F %VI) in terms of variables {, # makes easy to see that the

reverse assumption y; > y, leads to the expressions for

A%yl), F ﬂ“, with # replaced by —#. Therefore, replacing 5

by 5| in Egs. (39), (40) allows us to embrace the both
cases. After the replacement has been done, Egs. (39), (40)
are indeed invariant to the exchange y; & y,.
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D. Deeply virtual photons
When Q7 > p? and Q3 >y, and their product is also
great, 0203 > su?, the inequality in Eq. (32) is replaced
by the opposite one

p <yt (41)

We address such photons as deeply-virtual ones. The
principal difference between this case and the case of
moderately virtual photons is that the scattering amplitude

Ayy)) (p,y1,y,) in the kinematics (41) does not depend on y,
so the IREE for it is very simple:
DAY N DAY . DAY
9o Oy On

= 0. (42)

A general solution to Eq. (42) can be written in different
ways. The most convenient way for our goal is

Ay = M(p=yi.p— ), (43)

with M being an arbitrary analytic function. In order to
specify M we use the matching with the amplitude A,(,y) of
the same process but in the region (32). It means that

D M
A (p = y1,p = ¥2) lpmyi v, = AW (p, v, Y2)lp=y, 43,

=A% (y1.y2). (44)

Replacing y; = p—y, and y, = p—y; in A3 (v, y2)
(D) (M)

immediately allows us to express A,  through A, in the
whole the region p < y; + y,:
D 5 (M
A (o) = A5 (0 =y2p=3). (45)

or, in terms of the Mellin transform,

D 00 da w(p— on/2 I
Agy) N /—1002—7”6 oD e (@, 1)

1

+ 167>

2p-¢ ,
/ dE' e”® /2FM(a),y’2)qu(a), Y-
n

(40)

Equation (46) demonstrates that, in contrast to the
previous cases, the variable p participates not only in the
Mallin factor but also in the expression in parentheses. This
should be taken as a clear warning not to use the Mellin
amplitudes for the matching. Indeed, applying the Mellin
transform to Eq. (42) converts it into the following equation

for the Mellin amplitude F %,)) :
oFy)  OF))
Iy Iy

wFly) +

=0, (47)

or

. o F(D)
wFy + ag =0, (48)

with the obvious general solution:
Fi7) = ®(w.n)e, (49)

where an unspecified function @ is supposed to be found

through matching with F W) of Eq. (39) at p = &£. However,

it cannot be done because ® by definition does not depend

(M)

on £ whereas Fy, ' depends on it. So, the matching can be

done for the amplitudes A%,)) , Aﬁy). We consider this issue

in more detail in Sec. V.

IV. AUXILIARY AMPLITUDES

In the previous section we obtained amplitudes A%W’D) in
terms of auxiliary amplitudes A,,, A, . corresponding to the
process of Eq. (20) and the inverse process respectively. We
denote F,,(w,y) and F,(w,y) the Mellin amplitudes
related to A,,, A, respectively. We remind that throughout
the paper we neglect the quark masses. We will compose
and solve IREE for them, considering first the simplest
kinematics, where the photons are on-shell and then move
to the case of off-shell photons. As A, and A,, are much
alike, we consider in detail dealing with F,, only.

A. Photon-quark amplitude with on-shell photon

We consider the case when y = 0 and denote f,,(w) the
Mellin amplitude of such a process. The IREE for f,, () is
depicted in Fig. 4.

In the w-space it is

_ g 1

fyq(w) _;4_%](”(0))](0(0))’ (50)
where a,,/w, with a,, = e?, is the Born amplitude and f,
is the quark-quark amplitude. It includes the total resum-
mation of DL contributions as well as accounts for the
running coupling. The solution to Eq. (50) is

Ayg
S (. 1
o) = (51)
q q
q q
v q q
P— # \T—T( +
P P

FIG. 4.

Infrared evolution equation for the amplitude A,,.
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where, by convenience reason we have introduced the
notation H(w) = (1/8x%)fy(w). In DIS process H plays
the role of the nonsinglet anomalous dimension calculated
in DLA.

B. Off-shell photons
IREE for F,,(w,y) is

0 1
a_yFyq(wfy) +wF7q(w’y) = QFM(CU,)’)]CQ(CU)- (52)

A general solution to Eq. (52) is
F, (@.y) = C, (w)elo-H@)] (53)

with C,, being an arbitrary function. To specify C,, we use
the matching

Foy(o, )’)|y:0 = Fyq(w)’ (54)

with F,,(w) defined in Eq. (51). The use of Eq. (54)
leads to

Yq e—y[a)—H(m)] (55)

Fyq(a)9y) = m

Now the auxiliary amplitude F, (@.y)fo(®@) is
expressed through the on-shell quark-quark amplitude f,
which is well known. It was calculated in Ref. [25], with
being fixed.

C. Quark-quark amplitude

Amplitude f, was obtained in Ref. [25]. It satisfies the
simple algebraic equation

do

1
So +87z—2wf0f0’ (56)

(0]

where ay/w is the Born amplitude. Solving Eq. (57), one
arrives at the explicit expression for f:

fo = 42 [(u _yJe? - ao/(zﬂz)}. (57)

Equation (57) is true for the both cases of fixed and running
a, but ay in those cases are different. For fixed QCD

coupling, ay, = agix was obtained in Ref. [25]:
al™ = 4zal™ C, (58)

with Cp = (N?> = 1)/(2N) = 4/3, while at running «; it
depends on @ (see [22] for detail):

_ 4nCp ¢ [ dpe™”
b [524-”2 A (P+C)2+ﬂ2} (%9)

ag(w)

where { = In (u?/Adcp) and b = (11N —2n;)/(122%) is
the standard notation for first coefficient of the Gell-Mann—
Low function.

D. Representation of the auxiliary amplitudes

through the quark amplitude

Using Eq. (56) allows us to simplify Eq. (51) for the
auxiliary amplitude f,,(®):

a
fyq (a)) = ﬂfO(w) (60)
do
as well as the expression for F,,(w,y) in Eq. (55):
a
Fpylo.y) = aioqfo(w)e‘“‘”‘”(“’”- (61)

The only difference between IREE for F,, (®,y) and
F,(w,y) is in the use of different the factors a,, and a,,

respectively, so expressions for F (@, y)and F (@, y) can
be immediately obtained from Egs. (60) and (61):

Far(@) =22 fo(w) (62)
0
Fopl@.5) =2 fo(w)e @), (63)
0

We define the factors a 4 and ag, as follows:

v
a,, = e a,, = —e? (64)

where e, is the electric charge of the loop quark.

V. REPRESENTATION OF PHOTON-PHOTON
AMPLITUDES THROUGH
QUARK-QUARK AMPLITUDES

A. On-shell initial photons

Substituting Egs. (62), (60) in Eq. (26) and using
Eq. (56), we obtain

folw) = o) =2, (65)
with
k= Lradar (66)
4

According to Eq. (59) k depends on w, when a is running,
so throughout the paper we will keep it under the Mellin
integral sign. The photon-photon scattering amplitude

Aﬁ(ym), all photons are on-shell, is

A o) = [ 5 e o =2, 7

100 2701
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B. One of the photons is off-shell
Ify, > y, = 0, amplitude F 4y 1s given by Eq. (31) where
F ,y(@, ;) is represented through the auxiliary arflplitudes.
Combining Eq. (31), (61) and (65), we express F,, (@, y)
in terms of fy(w):

(o) =sen folwe =2]. (69

Therefore,

~ 100 da)
Ayy(“)vyl) = /

(p=y1) (@ )e)lfo/ 87%) _@]
100 27[1 [ 0l

C. Moderately-virtual photons

Combining Eq. (39) with Egs. (68), (61), (63) allows us

to obtain F W), so we can write the amplitude A%W)

MYV region as follows:

in the

M 100w ”
AJ(/}/ ) - /_100 277,'1 ¢ pK[ ! + 2]’ (70)
with

W, = eolethi) <_@ N foenH>
w

_ _Goy @
Wz-(fo a)> wz—ao/(2ﬂ2)

x [ (E i/ nt _ &(-artH)]. (71)

We remind that the variables &, 5 are defined in Eq. (34).

Equations (70), (71) describe A%’” at any ordering between
y; and y,, i.e., at y; > y, and y; < y,; they also stand
when y; = y,.

D. Deeply virtual photons
According to Eq. (44), amplitude A}(,]y) can be found

through matching with amplitude A%‘,’I) at the border
between the deeply virtual and moderately virtual regions,
where

p=E (72)

As p participates in the Mellin factor, the matching
should involve the whole amplitudes A%y), Aﬁf,)) rather than

F ;jy) F ;1;/1) For performing the matching the easiest way,
we replace Eq. (70) by the following one:

M teo da) WP—0:
AN = /_m 2me< =0/ F | (w, 1)

100 do
- (op—wi+EH) 7
/_m 2me kFy(@), (73)

where

a
Fi(w,n) = e 2 K_EO + foe"H>
(lo ()] H:|
+ - e” )
< ’ a)) w” = ay/(27%)

S R D
Fao) = (7= 2) s (74)

becomes Aﬁy J:

Then at p = ¢ amplitude AW

_ d 100 d
A = [ et ) = [ 5 ek )

100 271 100 271
(75)
and therefore in the deeply virtual region
0) _ "9 i)
Ay = Sl Fi
4 /_ e m KFy(w,n)
- [ e iep ), (76)
100 2701

The second integral in Eq. (76) can be dropped because it
does not contain the standard Mellin factor e®” (or ¢®(2=%))
which would prevent closing the integration contour to the
right, where the integrand does not have singularities.
Closing the contour to the right, we find that the integration
over @ yields a zero. So, we arrive at the following
expression which is true for any ordering of y,, and for
the case y; = y»:

(D) _ [1°d® pirriyr), | (%0 il do @ il
AL / n 20 n _0y T Ll

[ dw s @ 0%\ ag ¥ ag w W
_/_m%<\/Q%Q%> (G2) (=) (0-5) wz-ao/(zn%ew]’ 7

where we have denoted Q2,, =

maX[Q%,z] and Qrznin = min[Q%,z].
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The amplitudes A%W) in Eq. (70) and A%,n in Egs. (77),
(99) are represented in the form different from the expres-
sions for the same amplitudes obtained in Ref. [4], which is
unessential. The main difference between our approach and
Ref. [4] is our accounting for the running QCD coupling. In
this case ay depends on w [see Eq. (59)]. Now let us remind

that A;Iym and A,(,Iy)) are not complete expressions for
amplitudes of the process (1) in the collinear kinematics.
In order to account for the missing contributions, we
replace s by u in Egs. (70) and (77), obtaining the
amplitudes A’W) and A’}(,y). Adding them to A%w) and
A§,7) respectively, we arrive at the complete expressions for
the DLA amplitude of the process (1) in the collinear
kinematics. In the moderately virtual region (32) it is

~(M M M
AJ(’}’ )= AJ(’}’ ) + A/;y ) (78)
|

ool
Il

whereas in the deeply virtual region (41)
~(D D D
AJ(’}’) = AJ(’}’) + A/ﬁy)' (79)

VI. NONCOLLINEAR PHOTON-PHOTON
SCATTERING

In this section we extend the results obtained above to the
forward Regge kinematics (2) with ¢ # 0. In order to avoid
confusing new amplitudes with A;Iym and A}(,I,?) obtained
under assumption that t~0, we introduce a generic
notation M,, for new amplitudes in DLA and will provide
this notation with superscripts to specify the kinematics.
The Born amplitude, Mp is [cf. Eq. (6)]

My—B+B, (80)

with

and B’ is obtained from B’ with replacing ¢ — —q. It is
obvious that the integration over k in Eq. (81) yields a DL
contribution from the region

et dadpdk? w*k?
a3 2 N2 2 2 (81)
167° ) k*(k+4q—q')*(x,w + pw — ax,w + k%) (x,w 4 aw — px,w + k°)
|
when Q103 < s|t| and
o
MB = —WIHZ(S/Q%)IH(S/Q%), (87)

o> —t=—(q' - q)* (82)

In other words, |¢] acts in Eq. (81) as a new IR cutoff.
Therefore in the Born approximation (and beyond it) the
amplitude M, in DLA is IR stable. All results we obtained
in the previous sections, studying the amplitudes in the
collinear kinematics, can easily be extended to the region of
nonzero ¢ by the simple replacement

w2 = . (83)

A further advancement strongly depends on the hier-
archy between QF, and |¢|. When

12 <ltl. (84)
amplitude Mp does not depend on QF, under the DL
accuracy. In this case
4

oW/, (89)

MB — MB _ -
When s > QF , > ||, there are again two cases:

MB:_

[In®(s/|#]) — In*(Q7/|1]) — In*(Q3

)l
(86)

e
1672

when Q202 > s|t|. Now let us to extend our results for
amplitudes A,, to the case of nonzero |¢| beyond the Born
approximation. To this end, we introduce new logarithmic
variables p, ¥, ¥, instead of the variables p, y,, y, defined
in Eq. (23):

= In(s/l1), Ta/lt). (88)

In the case when s > Q% > |¢| and Q3 < |1, i.e., when

Y12 =1In(

p > ¥ > ¥, &0, amplitude

- 10 da a

M , = o(p=31) yifo/(82%) _ 20 .
yy(w yl) /—1002 l |: 0( )é @

(89)

In the more involved case of moderate virtualities, when
s> 01,03 > |t| but s|t| > 0103, i.e., when

p >y + o (90)

the scattering amplitude M;(,]y) is

M 10 dm
ng)—/ o

ePk[W, + Wy, (91)
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with

W, = e~ 0E+il)/2 <_“0+f08qy>
w

_— R w
W, = (fo w) —a)2 —ao/(2ﬂ2)
X

[e—(EHﬁ\)w/ZHf?IH - e&(—w+H)]. (92)
whereas in the new deeply virtual region

p<y1+¥y (93)

the scattering amplitude Mﬁf) is

MD / 24 ot | (—90 1 f et
" 100 2701 0]

Replacing s by u in Eqgs. (91) and (94), we obtain
amplitudes M’ W) and M’ 5’3’. Adding them to the expres-
sions in Egs. (91), (94) and multiplying them by the factor
2ny, with ny being the number of involved flavors, we
arrive at the DL expressions for the scattering amplitudes
M;Iy) [in the moderately virtual region (90)] and M%,)) [in
the deeply virtual region (93)]:

~ (M M M

M;y = 2”f[M§y ) + M/}('r )]’

~ (D D D

wy) =20, My + M), (95)

Amplitudes M%D) in Eq. (95) account for the total

resuimmation of DL corrections to the Born amplitude Ap
of Eq. (5) in the forward kinematic region (2).

VIIL. DISCUSSION OF THE OBTAINED RESULTS

In this section we discuss the results obtained in the
previous sections.

A. Comment on deeply virtual and
moderately virtual regions

The deeply virtual (DV) and moderately virtual (MV)
kinematics are introduced in Egs. (16), (32) and (18), (41),

respectively. The scattering amplitude Aﬂ“, being calcu-
lated in MV kinematics explicitly depends on the IR cutoff
u. Often, y is an artificial parameter with arbitrary value but
on the other hand, there are cases, when y has a physical
meaning. For instance, it can be the heavy quark mass or
the masses of W, Z bosons in standard model. In such cases
the range of p in the region (41) is quite restricted:

max|[y;, y»] < p <y + y. (96)

As a result, A%))

asymptotics of A

cannot be used for calculating the

when s — co. The asymptotics in this

vy
case can be obtained from A}(,[y). The same is true also in the

case when the running coupling effects for amplitudes in
the Regge kinematics are accounted for.

On the contrary, when p is not associated with an
appropriate mass scale and «, is fixed or regarded as
u- independent, the value of x4 can be chosen arbitrary
small. and, as the DV region ensures the IR stability
independently of p, one can choose u very small. This
considerably broadens the applicability region for the DV
kinematics and makes possible to use it at very high
energies. So, despite the kinematics is the Regge one, it
is as IR stable as the hard kinematics.

B. Impact of higher-loop DL radiative corrections

The s-dependent parts, B%VI’D) of the photon-photon

scattering amplitudes in the lowest-order approximation
at t = 0 are given by Egs. (17), (19) for the MV and DV
photons respectively. Accounting for the radiative correc-

tions in DLA converts them into amplitudes AJ(,;W’D). Let us

estimate the impact of the DL radiative corrections on

B%/[’D) in the simplest case when Q7 ~ Q3 = 02, so the

involved amplitudes in this case depend on x = Q?/s only.
In order to be independent of choice of i, we will do it for
the amplitudes with deeply virtual photons, where A%)) (x)
is given by Eq. (99). We define the ratio R, as follows:

R,(x) = Ay /B (97)

and show the plot of R, against x in Fig. 5.

Figure 5 explicitly demonstrates that the radiative
corrections become sizable since x ~ 1073, They double
the Bon amplitude at x ~ 1074,

C. High-energy asymptotics

At very high energies scattering amplitudes are often
approximated by their asymptotics. The asymptotics are
much easier to work on than the explicit expressions.

RAD(y = 0)

‘as

107%107210310*10°10 %10 710%10° ¥

FIG. 5. Dependence of R, on x.
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However, the applicability region for the asymptotics
cannot be deduced from theoretical consideration. Below
we first show how to calculate the asymptotics and then
outline its applicability region. Very small x asymptotics at
p — oo of all amplitudes we calculated above can be
obtained by using the saddle point method and is given
by similar expressions. For the sake of simplicity we

consider the small-x asymptotics of amplitudes AW’D) of
Egs. (70), (77) in the particular case when Q? ~ Q3 = Q°.

In this case Eq. (70) is reduced to

100 a
AW) (x,y)= / %x_wk <f0 ——0>

@ (| i) |

[ w” —ao/(27°) | )
(98)

where x = 02/s and y = Q?/s. In contrast, A'Y) depends

on x only:

(D) 100 _ a [0)
A = —xk(fo-=) |1+ ——— ——|.
v () /_,oozmx K<f° w)[ a0l )

(99)

The saddle point method, being applied to Egs. (98),
(99), immediately yields that the rightmost stationary point
@ is the same for the both amplitudes and it is given by the
rightmost root of the equation

w? — ay/(27%) = 0. (100)

The further progress depends on the treatment of a;.

When «; is fixed (o, = al ix), it is easy to obtain an analytic
expressions for w:

(,UO =1/ 2a§iXCF/7T + 1/(2Z)

A numerical estimate for o™ in Eq. (101) was obtained in
Ref. [28]. According to it, a, =~ 0.24.

When the running coupling effects are taken into
account, a, depends on @ [see Eq. (59)] and therefore
Eq. (100) has to be solved numerically (see Ref. [22]). It

leads to the estimate wq =~ 0.4. The small-x asymptotics

[AW‘D)]M of amplitudes A}(,[;/I’D)

(101)

respectively are

[A<M,D>

144 ]as - H(M'D)x_wo’

(102)

with the factors TI™) and I1®) being

R
1 ________________
0.8
0.6
0.4
0.2
10'10%10°10*10°10°10 710 %10° 7
FIG. 6. Dependence of RﬁM) on X.
4
e 1 wyZ
oM = - |1+ —22(1 — e 2/7)],
oy \2nw0y 7 2
4
(D) — %#’ (103)
dr°wiy \/Toyz

where we have denoted z = In(1/x).
Now let us consider the x dependence of the ratio

Ras _ [AJ/JEM])as )
AJ’J’

(104)

The x-dependence of R%) is plotted in Fig. 5. For the

sake of simplicity, the graph in Fig. 6 is done for y ~ 0. The
greater y, the lower the graph runs.
Similarly to Eq. (104), we define the ratio

(105)

The x-dependence of RE}S)) is plotted in Fig. 7.

Figures 6 and 7 display that the amplitudes A,(,y‘D) are
reliably represented by their asymptotics at very small x.
Indeed, R%'D) ~0.8 at x <1078, It perfectly agrees with
the results of Ref. [26] where it was proved that the small-x
asymptotics of the nonsinglet DIS structure functions F}'S
and gy S reliably represent these structure functions at

x <1078, In terms of the Reggeology, the only difference

RD)

as
1 - - - —- = — — = = = = = - — = =

0.8

0.6

10%10210%10%10°10°10 710 %107° ¥

FIG. 7. Dependence of RE,D) on x.
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between FVS and AYY”) is the difference in the impact

factors while the Reggeons are the same. This proves
that the applicability region for the use of nonvacuum
Reggeons is

x <1078, (106)
i.e., Eq. (106) manifests that the nonvacuum Reggeons

should not be used for description of hadronic reactions at
available energies.

VIII. CONCLUSION

We have calculated the amplitudes of the process (1) in
DLA. We considered this process in both the collinear
kinematics (amplitudes A%w and A%,))), where ¢t = 0, and
the forward kinematics (2) (amplitudes Mf,}yw) and M%))) at
t # 0. So as to calculate those amplitudes we constructed
and solved the infrared evolution equations for them.
According to the general technology of solving IREE,
any general solution to IREE for a scattering amplitude in a
certain kinematics is specified through matching with the
known amplitude of the same process in a simpler

kinematics. So, before solving IEEE for the amplitudes

M%/[’D) in the ¢ # 0 -kinematics, we had to calculate the

amplitudes A%W’D) of the same process in the collinear

kinematics. Doing so, we confirmed the results of Ref. [4]
and generalized them to the case of running QCD coupling
while «; in Ref. [4] was fixed.

At very high energies the scattering amplitudes are often
considered in the asymptotic form and such asymptotics are
addressed as Reggeons. Such Reggeons are much easier to
use than their parent amplitudes. However, applicability
regions for the asymptotics (Reggeons) cannot be fixed
from theoretical grounds. We do it numerically, calculating
the asymptotics of amplitudes A%}’I'D) and comparing the
asymptotics to the amplitudes. In order to calculate the
asymptotics, we use the saddle point method. The results
are plotted in Figs. 5 and 6. They outline the applicability
region of the nonvacuum Reggeons and perfectly agree
with the observation of Ref. [26] that nonvacuum Reggeons
should not be used for describing available experimen-
tal data.
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