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We perform a numerical study of the phase diagram of the model proposed in [M. Shifman, Phys. Rev. D
87, 025025 (2013).], which is a simple model containing non-Abelian vortices. As per the case of
Abrikosov vortices, we map out a region of parameter space in which the system prefers the formation of
vortices in ordered lattice structures. These are generalizations of Abrikosov vortex lattices with extra
orientational moduli in the vortex cores. At sufficiently large lattice spacing the low energy theory is
described by a sum of CPð1Þ theories, each located on a vortex site. As the lattice spacing becomes smaller,
when the self-interaction of the orientational field becomes relevant, only an overall rotation in internal
space survives.
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I. INTRODUCTION

Non-Abelian vortices, first constructed in [1–3], are
Abrikosov-Nielsen-Olesen (ANO) vortices that support
additional orientational (non-Abelian) moduli on their
world sheets. They have been widely studied in the
literature (see, for example, [4–9] and references therein)
as candidates for the vortices responsible for the dual
confinement mechanism [10–12], as originally proposed in
[13,14]. Although the original models in which they
appeared contained a relevant degree of complexity (for
example, most models involved supersymmetry) recently a
particularly simple extension of ANO’s original model
(based on Witten’s superconducting string model [15]) was
proposed that was shown to also contain them [16]. In fact,
the general idea behind this model was successfully applied
to many solitonic solutions with the same outcome: the
condensation of a scalar field in the core of the solutions
leading to orientational degrees of freedom [17–23]. More
rencently, the model was also used in a holographic setup to
find non-Abelian vortices in a dual 2þ 1-dimensional
superconductor [24]. The appearance of the non-Abelian
degrees of freedom has been attributed to distinct sources. In
[25], mainly focusing on cosmic string applications, these
were thought to originate from a dark matter sector. In
[20,22], however, a more condensed matter approach was
taken and the superconducting system with such additional

directional degrees of freedom was shown to have a close
analogue in liquid crystals. In particular, it was argued that
this particular kind of superconductor can be thought of as a
superconducting liquid crystal state, with the non-Abelian
degrees of freedom playing the part of the director. It remains
unclear whether this kind of superconductor can be realized
in nature, and if it has any relation to the confining phase of
QCD. Therefore, this research can be thought of as a toy
model for many physical setups. In a cosmic setup it predicts
the existence of periodic arrays of cosmic strings, stabilized
by dark matter condensates. From a condensed matter point
of view it describes a new phase of matter in which a
superconducting liquid crystal forms periodic vortex solu-
tions. Finally, from a particle physics perspective it describes
the lowest energy configurations of non-Abelian vortices,
candidates to be responsible for confinement of quarks.
The starting setup is the following action,

S ¼ SANO þ Sχ ; ð1Þ

where

SANO¼
Z

d4x

�
−
1

4
FμνFμνþðDμψÞðDμψÞ�−λðjψ j2−v2Þ2

�
;

ð2Þ

Sχ ¼
Z

d4x½∂μχ
i∂μχi − γðð−μ2 þ jψ j2Þχ2 þ βχ4Þ�: ð3Þ

In the above we assume λ, β, γ > 0 (all of which with mass
dimensions 0) and v > μ (with mass dimension ½þ1�). We
work with the conventions

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 97, 076003 (2018)

2470-0010=2018=97(7)=076003(17) 076003-1 Published by the American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.97.076003&domain=pdf&date_stamp=2018-04-09
https://doi.org/10.1103/PhysRevD.87.025025
https://doi.org/10.1103/PhysRevD.87.025025
https://doi.org/10.1103/PhysRevD.97.076003
https://doi.org/10.1103/PhysRevD.97.076003
https://doi.org/10.1103/PhysRevD.97.076003
https://doi.org/10.1103/PhysRevD.97.076003
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


Fμν ¼ ∂μAν − ∂νAμ; ð4Þ

Dμψ ¼ ∂μψ − ieAμψ ; ð5Þ

χ2 ¼ χiχi; ð6Þ

ημν ¼ð1;−1;−1;−1Þ: ð7Þ

The action enjoys a local Uð1Þ gauge symmetry in the ψ
sector and a globalOð3Þ symmetry in the χi sector. We take
χi to be a real triplet field. In recent related work, the
additional χ sector was interpreted as dark matter [25].
The standard quartic potential in the ψ sector breaks the
Uð1Þ symmetry spontaneously. In general there is an
interesting range of vacua in this model; the vacuum
equations ∂ψV ¼ 0 and ∂χV ¼ 0 lead to several branches
of solutions,

ψ ¼ 0; χ2 ¼ μ2

2β
; ð8Þ

jψ j2 ¼ v; χ ¼ 0; ð9Þ

jψ j2 ¼ γμ2 − 4v2βλ
γ − 4βλ

; χ2 ¼ 2λðv2 − μ2Þ
γ − 4βλ

; ð10Þ

with the second and third branch coalescing at the special
point v ¼ μ. We are interested in the second branch of
vacuum solutions, which is only a global minimum if

1 <
γ

4βλ
< ðv=μÞ4: ð11Þ

Vacua in which the χ field condenses are interesting and
have been important in specific studies of cholesteric
non-Abelian vortices [20,22] but are not treated here.
The condensation of the scalar field “Higgses” the photon
and gives it a mass

m2
A ¼ 2e2v2; ð12Þ

defining the penetration depth of the superconductor as
d ≈ ð1=mAÞ. The scalar field is also massive with mass

m2
ψ ¼ 4λv2: ð13Þ

This mass defines the coherence length ξ ≈ ð1=mψÞ of the
superconductor. The mass of the χ field is

m2
χ ¼ γðv2 − μ2Þ: ð14Þ

The coupling potential between the two scalar fields, with
the assumption that v > μ, leads to χi not condensing in the
vacuum. However, whenever ψ vanishes (in general,
whenever its value is less than μ), the potential destabilizes

the χ field, which therefore condenses. In particular, this
happens in the core of an ANO vortex formed by ψ, which
is a well-known solution of the χi ¼ 0 theory. This
mechanism leads to the existence of non-Abelian vortices,
as shown in [16]. These vortices are lower in mass than the
ANO vortices, so that the condensation of the additional
field lowers their energy. The low energy theory describing
the orientational gapless excitations is given by a CPð1Þ
nonlinear sigma model on the vortex world sheet. This is
most easily seen by the pattern of global symmetry
breaking of the χi sector, SUð2Þ=Uð1Þ → CPð1Þ, the
remaining Uð1Þ symmetry group corresponding to rota-
tions in the plane defined by the direction of the χi field in
internal space (this is apparent later when we discuss the
ansatz).
It is well known however that, for the case of super-

conductors of type II for whichmψ > mA, the above system
with χi ¼ 0 has an energy minimizing periodic solution
describing a lattice of ANO vortices, each carrying a unit of
magnetic flux, the so-called “Abrikosov lattice.”
This point of transition between superconducting types,

and in general whether the condensation of the additional
core field, leading to orientational degrees of freedom,
supports periodic structures, has not yet been investigated
in this model and is essential in order to understand its
general behavior over the whole region of parameter space.
It is the purpose of this paper to numerically map out the
precise nature of the superconducting transition in this
model, classifying the superconductor type. The result of
the numerical study is Fig. 13, which shows that in the
presence of the χ field the condition for type-II super-
conductors changes and provides a whole view of the phase
transition line plotted against the relevant parameters of the
system. In the region marked type II, the system allows
periodic vortex structures supporting non-Abelian moduli
in their cores, which we also find and present numerically.
It is important for the rest of the paper to give a short

review of Abrikosov’s solution for the lattice near the
superconducting critical point and of its extension to the
full range of magnetic fields (see [26] for an application to
color magnetism). We do this below.
The set of coupled equations of motion derived from (1)

is (we apply no gauge-fixing condition yet)

∂μ∂μψ − ieð∂μAμ þ 2Aμ∂μÞψ − e2AμAμψ

þ 2λψðjψ j2 − v2Þ þ γψχ2 ¼ 0; ð15Þ

∂μFμn þ 2e2Anjψ j2 þ ieð∂nψψ� − ψ∂nψ�Þ ¼ 0; ð16Þ

∂μ∂μχn þ γχnðð−μ2 þ jψ j2Þ þ 2βχ2Þ ¼ 0; ð17Þ

and the energy-momentum tensor functional reads
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Tρσ ¼ 1

4
gρσFμνFμν − gmnFρ

mFσ
n þ 2ðDρψÞðDσψÞ�

− ηρσðDμψÞðDμψÞ� þ 2∂ρχi∂σχi − ηρσ∂μχ
i∂μχi

þ ηρσðλðjψ j2 − v2Þ2 þ γðð−μ2 þ jψ j2Þχ2 þ βχ4ÞÞ:
ð18Þ

We can generally parametrize the fields in order to gauge
away the phase of the scalar field. Therefore, we pick a
parametrization of the form ψ ¼ fðx; yÞeiϕðx;yÞ, where
fðx; yÞ and ϕðx; yÞ are real, and Aμ ¼ Qμ þ 1

e ∂μϕ. From
here on we fix the gauge so that ∂μAμ ¼ 0 and consider
only static solutions with A0 ¼ Q0 ¼ 0. We also define the
dimensionless parameters ðx̃; ỹÞ ¼ mψffiffi

2
p ðx; yÞ,

a ¼ m2
A

m2
ψ
; b ¼ γ

4λ

c − 1

c
; c ¼ v2

μ2
: ð19Þ

Note that in terms of these parameters global vacuum
stability requires

b
cðc − 1Þ < β; ð20Þ

for type-II superconductors we require a < 1.
We pick an ansatz for the χi field that points in one

direction only in the internal space,

χi ¼ χðx; yÞð0; 0; 1Þ: ð21Þ

Rescaling the dimensionless fields to be f̃ ¼ f=v,

χ̃ ¼
ffiffiffiffi
2β
μ2

q
χ, and Q̃ ¼ Q=v, the dimensionless equations

of motion become (we drop all tildes from the fields or
derivative operators)

∇2f−
�
aðQ2

xþQ2
yÞþðf2−1Þþ b

βðc−1Þχ
2

�
f¼ 0; ð22Þ

∇2χ −
2b

c − 1
ð−1þ cf2 þ χ2Þχ ¼ 0; ð23Þ

∇2Qx − 2aQxf2 ¼ 0; ð24Þ

∇2Qy − 2aQyf2 ¼ 0: ð25Þ

For the time being let us ignore the χ sector (this is
equivalent to setting b ¼ 0). Then, following Abrikosov, we
can find periodic solutions to the above equations in the
vicinity of f ≈ 0, which is the point at which superconduc-
tivity is destroyed close to the criticalmagnetic field. In order
to do so begin by expanding the fields as the series

fðx; yÞ ¼ ϵf0ðx; yÞ þ ϵ3f1ðx; yÞ þ…; ð26Þ

Q⃗ðx; yÞ ¼ Q⃗bðx; yÞ þ ϵ2Q⃗1ðx; yÞ þ…; ð27Þ

where ϵ is a small parameter denoting the deviation
of the applied magnetic field B to the critical one Bc where
superconductivity is completely destroyed, ϵ¼ðBc−BÞ=Bc.
At first order the Q⃗b gives us the applied magnetic field;
hence we take this as Q⃗b ¼ ð−By; 0; 0Þ, and B is a constant.
Abrikosov showed that, in this background and at first order,
a periodic solution for the scalar field equation exists for
which

f0ðx; yÞ ¼
���� exp

�
−
e
2
By2

�
θ1

�
π

x1
ðxþ iyÞ; x2 þ iy2

x1

�����;
ð28Þ

where θ1 is the first elliptic theta function and x1, x2, and y2
are parameters that determine the lattice structure. The
surface area of the lattice cell is simply S ¼ x1y2. For a
square lattice y2 ¼ x1 and x2 ¼ 0, for a triangular lattice

instead y2 ¼
ffiffi
3

p
2
x1 and x2 ¼ 1

2
x1. This result can alterna-

tively be written as a Fourier series as

ωA ¼ f20 ¼
����X
m;n

ð−1Þmnþmþn exp

�
K2

mn

4eB

�
eiK⃗·r⃗

����; ð29Þ

where

K⃗mn ¼ eBðmy2;−mx2 þ nx1Þ; r⃗ ¼ ðx; yÞ: ð30Þ

The common procedure to extend the lattice solution to
the full range of magnetic fields is to use this solution as a
seed to determine the full nonlinear structure of the vortex
lattice, for an arbitrary magnetic flux. It can be understood
as a way to fix the total flux (or equivalently vortex number
density) in the action minimization problem, as explained
below. Note that for a fixed flux B there are infinitely many
solutions corresponding to lattices given by parameters x1
and y2 (nature then presumably chooses these values so as
to minimize the energy).
To find the lattice solution for any value of the magnetic

flux (and not just those values close to the critical field) the
strategy is the following: one must first fix the total flux B̄
passing through the integration domain and the lattice
structure (given by x1 and y2) and then solve in this
background for the local gauge field given by Qμ and the
scalar field f. To do this consider the modified action

SANO ¼
Z

d4x

�
−
1

4
FμνFμν −

1

2
FμνGμν

þ ðDμψÞðDμψÞ� − λðjψ j2 − v2Þ2
�
; ð31Þ

where Gμν is the field strength of an external Uð1Þ gauge
field Gμ whose magnetic flux is
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Z Z
ð∇ ×GÞidSi ¼ B̄; ð32Þ

where S here denotes the integration domain (which may
comprise more than a single unit cell of the lattice).
Therefore G denotes an external constant field, while
FμνðAÞ denotes the internal electromagnetic response of
the superconductor.
This leads to the equations of motion

∇2f − ½aðQ2
x þQ2

yÞ þ ðf2 − 1Þ�f ¼ 0; ð33Þ

∇2Qx − 2aQxf2 ¼ ∇2Gx; ð34Þ

∇2Qy − 2aQyf2 ¼ ∇2Gy: ð35Þ

It is convenient to use the field variable Q → Qb
i þ Gi, that

is, to split the gauge field into the external gauge field plus
an internal one,1 so that the equations become

∇2f− ½aððQb
xþGxÞ2þðQb

yþGyÞ2Þ−ðf2−1Þ�f¼0; ð37Þ

∇2Qb
x − 2aðQb

x þGxÞf2 ¼ 0; ð38Þ

∇2Qb
y − 2aðQb

y þGyÞf2 ¼ 0: ð39Þ

Given a fixed flux B̄ we must now look for periodic
lattice solutions of the above equations with the require-
ment that Qb

i has to satisfy a zero flux requirement. A
particularly clever way to achieve this is to pick the external
gauge field of the form [27–29]

G⃗ ¼ −
∇ωAðB̄Þ × ẑ
2κωAðB̄Þ

þ ð−B̄y; 0; 0Þ; ð40Þ

where ωAðB̄Þ is given in terms of the original Abrikosov
lattice solution for the scalar field (28) but with B replaced
by B̄ (this is what we meant when saying that this solution
was used as a seed in the full nonlinear problem). In
this definition κ ¼ d=ξ is the ratio of the magnetic
penetration depth to the coherence length. For type-II
superconductors κ ≥ 1=

ffiffiffi
2

p
. In terms of the units used in

this paper we have that

κ ¼ 1ffiffiffiffiffiffi
2a

p ; ð41Þ

so that the critical a is a ¼ 1 corresponding to the point
where the scalar and gauge field masses are equal. In terms
of these units the critical magnetic fields are Bc2 ¼ κ and

Bc1 ≈ ðlnðκÞ þ 0.5Þ 1

2κ
; ð42Þ

corresponding to the upper critical magnetic field (field
above which superconductivity is completely destroyed)
and lower critical fields (approximate field value below
which a vortex does not want to form), respectively. Note
that in these units the critical fields, and as shown later also
the flux quantum, depend on κ and hence on a. This is very
important and it amounts to a choice of convention. In order
to discuss results at fixed flux quanta we change con-
ventions in a later section.
This definition for G⃗ allows one to pick the lattice

structure by effectively choosing x1 and y2 in the definition
of ωA. The external gauge field Gi is then singular at the
vortex positions. This definition satisfies

∇ × G⃗ ¼
�
Φ0

Xn
i

δð2Þðr − riÞ
�
ẑ; ð43Þ

where Φ0 ¼ B̄=nv (nv being the number of vortices in the
cell) is the single vortex flux and δð2Þ denotes the two-
dimensional delta function. The external flux requirement
(32) then trivially follows. In the above ri denote the vortex
positions in the lattice with coordinates (xi, yi). Note that
this definition does not restrict B̄ to be in the vicinity of the
critical flux Bc. It rather defines a vortex lattice structure
with the appropriate magnetic field singularities located at
the vortex cores, supporting a total flux B̄. The delta
function originates from the fact that close to the vortex
cores ωA ≈ r̃2, where r̃ ¼ r − r0 and r0 is the coordinate

position of the vortex core, so that G⃗ ≈ ⃗ẑ× ⃗r̃
r̃2 and we have the

important result that

∇ ×
⃗ẑ × ⃗r̃
r̃2

¼ 2πδð2Þðr̃Þ: ð44Þ
Therefore, for a particularly chosen lattice at fixed B̄, once

x1 is specified and its relation to x2 and y2 is fixed [and
thereforeωAðB̄Þ is known], this can be used to determine the
local gauge fieldQb

i appearing in Eq. (37) from a numerical
minimization problem. In terms of the parameters of our
model, the external total flux over the integration domain is
given by B̄ ¼ 2πn=κ; therefore, themagnetic field carried by
each unit cell is B ¼ 2π

x1y2κ
where n counts the number of

lattice cells in our numerical integration domain.
Somemodel solutions are shown in Fig. 1. In these figures

B is the magnetic field of Qi whose total flux is B̄. The
solutions represent Abrikosov lattices for a generic flux B̄
per unit cell of both square and triangular geometries. The
energy of these solutions is discussed in a later section.

A. Numerical procedure

The equations are solved numerically using a relaxation
procedure. The derivatives are discretized using a second
order central finite difference method. The accuracy of the
procedure isOð10−6Þ. The results are further checked using

1Note that for the total flux of the cell to be B̄, the flux of the
field Qb

i must satisfyZ Z
ð∇ ×QbÞidSi ¼ 0: ð36Þ
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a Newton-Rhapson method, which reproduced the same
results. We impose periodic boundary conditions at the
borders of the lattice and demand that the scalar field f
vanish at the vortex centers.

II. NON-ABELIAN VORTEX LATTICES

It is the purpose of this paper to investigate the extension
of the above setup to include the condensation of the
additional χ field. At large enough lattice spacing the
condensation of the χ field should resemble that of isolated
non-Abelian vortices. However, as the lattice spacing is
reduced, these self-interactions become relevant and the
structure of the lattice must change.

A. Non-Abelian vortex-vortex forces

Let us discuss briefly the relevant aspects of the non-
Abelian vortex interactions, which are important for the rest
of the paper.

The vortex-vortex interaction can most easily be calcu-
lated by an analysis of the far-distance behavior of the fields
and an assumption of large vortex separation (we follow the
discussion in [30]). We restrict our considerations to the
case of largely separated non-Abelian vortex orientations
(a general case can be found in [31]). If we consider the
case of an isolated non-Abelian vortex, we must go back to
Eqs. (15)–(17) and, switching to cylindrical coordinates
with radial variable ρ, use the ansatz

Ai ¼ −ϵij
xj
ρ2

ðne −QðrÞÞ; ð45Þ

ψ ¼ feineθ; ð46Þ

χi ¼ χðρÞi; ð47Þ

all of which are understood in a-dimensional units. Here ne
is the quantum of flux carried by each vortex. With this
ansatz the field equations reduce to

FIG. 1. Vortex lattice plots with χ ¼ 0 for a square lattice (top row) and triangular lattice (bottom row) with x1 ¼ 5 at a ¼ 0.9.
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∂2
rfþ

1

r
∂rf−

�
Q2

r2
þðf2−1Þþ b

βðc−1Þχ
2

�
f¼ 0; ð48Þ

∂2
rχ

i þ 1

r
∂rχ

i −
2b

c − 1
ð−1þ cf2 þ χ2Þχi ¼ 0; ð49Þ

∂2
rQ −

1

r
∂rQ − 2aQf2 ¼ 0: ð50Þ

Note that we have rescaled the field Q → Q=
ffiffiffi
a

p
compared to (37); this rescaling is important in discussing
the phase diagram in a later section.2 This change of
convention is important as it removes the dependence on a
in the flux quanta. Therefore, it allows us to change the
parameter a appearing in the equations of motion without
changing the flux of the vortices. Throughout the paper we
use the first convention when displaying solutions to the
lattice system (this is done in order to remain in contact
with [27]) and the latter convention when discussing single
vortex results (such a convention is adopted in [16], for
example). Either convention is especially simple in dis-
cussing both aspects separately, and hence we choose to
switch between both when needed.
The magnetic field is B ¼ 1

r Q
0, with 0 denoting differ-

entiation with respect to r. Linearising the fields around
their leading behaviours far from the vortex cores,

f ≈ 1 − σðρÞ; Q ≈ 0; χi ≈ 0 ð51Þ
the resulting leading behaviours are given by the usual
modified Bessel functions

σðρÞ≈c1K1ð
ffiffiffi
2

p
ρÞ; Q≈c2ρK0ð

ffiffiffiffiffiffi
2a

p
ρÞ; χi≈ci3K1ð

ffiffiffiffiffiffi
2b

p
ρÞ

ð52Þ
where ci are integration constants, which have leading
order expansions at large ρ of the form

σðρÞ≈ c̃1ffiffiffi
ρ

p eð−
ffiffi
2

p
ρÞ; Q≈ c̃2

ffiffiffi
ρ

p
e−ð

ffiffiffiffi
2a

p
ρÞ; χi≈

c̃i3ffiffiffi
ρ

p e−ð
ffiffiffiffi
2b

p
ρÞ

ð53Þ

where c̃i are in general different constants from ci (these are
obtained from numerical integration of the vortex profiles).
As expected, the scalar field χ has a general behavior which
is very similar to the scalar field f in terms of its
exponential decay.
The magnetic field is B ¼ 1

r Q
0, with 0 denoting differ-

entiation with respect to r. The corresponding expression
for the energy of the isolated vortex is

E ¼ Ef þ Eχ ; ð54Þ

where

Ef¼2π

Z
drr

�
ð∂rfÞ2þ

1

2r2
ðQ0Þ2þ1

2
ðf2−1Þ2þ a

r2
f2Q2

�
;

ð55Þ
and

Eχ¼2π

Z
drr

�
1

2cβ
ð∂rχÞ2þ

1

β

b
cðc−1Þ

�
1

2
χ4−χ2ð1−cf2Þ

��
:

ð56Þ
The vortex-vortex interaction energy Eint at large vortex

separations is generally calculated by subtracting from the
total energy of a vortex-vortex configuration the energy of
the two isolated vortices. To do so one must first take a
vortex-vortex solution ansatz. The good ansatz is given by

f¼ f1×f2; Q¼Q1þQ2; χi ¼ χi1þχi2; ð57Þ
where the subscript on the fields indicates that they are the
field profiles of vortex 1 and 2, respectively. Therefore, to
conserve the right topological properties one must take the
product of the scalar field profile f. Then, at large vortex
separations, it is sufficient to consider only the far field
behaviors of the fields in the energy,

f≈ ð1−σ1−σ2Þ; Q≈Q1þQ2; χi≈χi1þχi2; ð58Þ
where we understood the field profiles to be those given by
Eq. (53) in the above. Then, inserting these expressions into
(54) and subtracting the energies of each isolated vortex we
find, at leading order,

Eint ¼ 2π

Z
dρρ

�
2

ρ2
Q0

1Q
0
2 þ 2σ01σ

0
2 þ

1

cβ
χ01 · χ

0
2

þ 2a
ρ2

Q1Q2 þ 4σ1σ2 þ
2b
cβ

χ1 · χ2

�
: ð59Þ

Using the field expansions (53), assuming similar
profiles for all the χi, and the techniques outlined in
[32], this expression can be integrated to give

Eint ¼ −c̃12K0ð
ffiffiffi
2

p
sÞ − ĉ · ĉK0ð

ffiffiffiffiffiffi
2b

p
sÞ þ c̃22K0ð

ffiffiffiffiffiffi
2a

p
sÞ;
ð60Þ

where ĉ is the constant vector of constants appearing from
the integration of χi and s is the vortex separation assumed
to be large. If χ ¼ 0, in the standard Abrikosov vortex case,
when a ¼ 1, at the so-called critical point, c̃1 ¼ c̃2 and
therefore Eint ¼ 0. In the presence of the χ field, which is
after all adding a scalar sector, we have an additional force
channel between the vortices. When the vortices have
parallel internal orientations, then ĉ · ĉ > 0 and the force
is attractive. This attractive mechanism was also observed

2This is simply the change of convention where the gauge
coupling e appears in the denominator of the field strength term
in the action, rather than in the covariant derivative.
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separately in a numerical study of skyrmions [19]. When
the vortices are antiparallel, ĉ · ĉ < 0 and the force is
repulsive. When they are completely transverse instead, the
χ field interaction vanishes. In particular, it is no longer true
that at a ¼ 1 critical vortices have zero interaction energy
(we expect that at this order however c̃1 ¼ c̃2 should
remain true). This means that the condition on type-II
vortices and the point of criticality is generally expected to
be different than before. In field terms, there is no
Bogomol’nyi-Prasad-Sommerfield (BPS) condition at
a ¼ 1 even though it does not exclude the possibility that
there is one since Eint might still vanish in general for
specifically chosen values of the parameters. This should
now be determined numerically from the full field profiles.
We do not perform a numerical investigation on the values
of the parameters c̃i in this paper as we generally solve the
full field equations. However, this would be an interesting
avenue of research per se.
Note also that the change in nature of the interaction

force between non-Abelian vortices with respect to their
internal orientation is indicative of the possibility of

alternative (as in besides the parallel orientation case)
lattice structures. We devote a section of this paper to
the exploration of such structures.

B. Solutions

Now we wish to find the full two-dimensional solutions
that describe lattices of non-Abelian vortices. We therefore
switch back to the conventions of (37). In the presence of
the χ field the equations we must solve are

∇2f −
�
aððQb

x þGxÞ2 þ ðQb
y þ GyÞ2Þ þ ðf2 − 1Þ

þ b
βðc − 1Þ χ

2

�
f ¼ 0; ð61Þ

∇2χ −
2b

c − 1
ð−1þ cf2 þ χ2Þχ ¼ 0; ð62Þ

∇2Qb
x − 2aðQb

x þGxÞf2 ¼ 0; ð63Þ

FIG. 2. Non-Abelian square vortex lattice x1 ¼ 20 at a ¼ 0.9, b ¼ 0.1, c ¼ 1.2, and β ¼ 1.4b=ðcðc − 1ÞÞ.

NON-ABELIAN VORTEX LATTICES PHYS. REV. D 97, 076003 (2018)

076003-7



FIG. 3. Non-Abelian triangular vortex lattice x1 ¼ 20 at a ¼ 0.9, b ¼ 0.1, c ¼ 1.2, and β ¼ 1.4b=ðcðc − 1ÞÞ.
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FIG. 4. Field profiles for f and χ are shown at y ¼ 0 for the square lattice with various vortex spacings. The profiles for the spacings
x1 ¼ 20, 10, and 8 are shown in solid, dashed, and dotted curves, respectively.
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FIG. 5. Field profiles for f and χ are shown at y ¼ 0 for the triangle lattice with various vortex spacings. The profiles for the spacings
x1 ¼ 20, 10, and 8 are shown in solid, dashed, and dotted curves, respectively.

FIG. 6. Non-Abelian square vortex lattice with antiparallel χ field configurations at x1 ¼ 20 at a ¼ 0.6, b ¼ 0.4, c ¼ 1.2, and
β ¼ 1.4b=ðcðc − 1ÞÞ.
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∇2Qb
y − 2aðQb

y þGyÞf2 ¼ 0: ð64Þ

We use an identical numerical procedure as outline
above in order to find the solutions. Figures 2 and 3
show solutions at large lattice spacing (of square and
triangular geometries, respectively). These represent a
lattice of isolated non-Abelian vortices, with the χ field
condensing only in the core of the Abrikosov vortices
and quickly decaying to 0 outside. As we bring the
vortices closer together by decreasing the lattice spac-
ing, self-interactions of the χ field become important.
The field gradually and smoothly lifts and becomes
nonvanishing over the whole lattice (see Figs. 4 and 5).
These solutions do not represent a lattice of non-Abelian

vortices; in this case the χ field is nonzero over the
whole lattice, which implies that the internal orienta-
tional moduli are delocalized from the vortex cores.

C. Antiparallel configurations on the square lattice

In addition to the solutions we have found in the
previous subsection, we have considered more general
orientations of the χ field on the square lattice. Since we
deal with a numerical relaxation procedure, we must
make sure we start with an initial configuration that is
close to an actual solution. To this end, it is difficult to
imagine a case where the parallel configuration from
lattice site to lattice site would not be the most stable
state. However, it may be possible that such alternative

FIG. 7. Non-Abelian square vortex lattice with antiparallel χ field configurations at x1 ¼ 10 at a ¼ 0.6, b ¼ 0.4, c ¼ 1.2, and
β ¼ 1.4b=ðcðc − 1ÞÞ.
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FIG. 8. Time step evolution of the χ⃗ field in the initially antiparallel configuration at lattice sites with lattice spacing x1 ¼ 10. The
perturbation was given by introducing a small vector wave on the χ⃗ field with Fourier coefficients generated randomly.
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FIG. 9. An example of a randomly generated χ⃗ field relaxing to the parallel configuration. Here x1 ¼ 10.
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configurations could achieve some metastability for
certain cases of the lattice spacing and constants. For
example, we are unable to rule out the possibility that the
antiparallel configuration of χ fields (analogous to an
antiferromagnet) is metastable. In Figs. 6 and 7 we show
the solutions for the f, χ, and B fields for two values of
the lattice spacing. These are generated using a similar
ansatz for the f and B fields as the cases above, and an
antiparallel configuration for χ.
In order to test the stability of these antiparallel configu-

rations we may consider small perturbations of the χ⃗ field,
and observe the response. For the case of solution shown in
(7) we find that small perturbations leave χ⃗ disordered from
site to site,with directors pointing in randomdirections. This
is as expected since the large spacing between lattice sites
prevents interaction of the χ field localized at each site. We
conclude that in this particular case, no configuration of χ
directors is preferred. This is simply a confirmation that, for
large lattice spacing (or small vortex interaction) the system
has independent orientational moduli on each vortex site
(see the following section).
On the other hand, for closer lattice spacings, such as the

case presented in (8), we find that a small perturbation of
the initial antiparallel configuration leads to an instability.
In this case, the χ directors reorient in the parallel
configuration. In Fig. 8 we illustrate the field configuration
at various time steps in the minimization procedure. We
generate the initial perturbation of χ⃗ by introducing a small
wave form in χ⃗ with Fourier coefficients generated ran-
domly. We conclude that the antiparallel configuration is
not stable in this case either.
Of course we cannot argue on general grounds that stable

antiparallel configurations for χ⃗ may exist for particular
ranges of the parameter space and lattice spacings. For all
cases we have considered we find that either the parallel or
the disordered configuration for the χ⃗ field is the only stable
solution, depending on lattice spacing.

D. Searching for other metastable configurations

In an effort to be more complete with the solution
space for the χ⃗ field configuration, we attempted to find
additional configurations for the χ⃗ lattice. A priori it is hard
to imagine any relaxation seed besides the parallel or
antiparallel configurations; therefore we resorted to a more
statistical approach based on random initial orientations per
lattice site, repeating this many times for different con-
figurations. This was done by Fourier decomposing the χ⃗
field with randomly generated coefficients. The minimiza-
tion procedure was then carried out with this initial ansatz
for χ⃗, and was continued until convergence was achieved.
This procedure was repeated several times for several
different values of the parameter space. In Fig. 9 we show
the relaxation procedure for a particular initial χ⃗ configu-
ration. In all cases considered, the χ⃗ configuration relaxed
to either a disordered state or a parallel configuration

depending on the spacing between lattice sites. As pre-
viously mentioned, this is no surprise when interaction
strength between lattice sites is considered.
We mention that this analysis is far from complete, and

the possibility of parameter ranges where other metastable
configurations appearing cannot be ruled out. In order to
find them, however, it is necessary to start with an
intelligent seed and hence a clear idea of what these might
look like.

III. ENERGY

In this section we present the numerical results regarding
the energetics of our solutions. We compare the energies of
square and triangular lattice configurations and, more
importantly, those with and without the condensation of
the χ field in or around the vortex cores. In the dimension-
less units used, the energy functional is

E ¼ Ef þ Eχ ; ð65Þ
where

Ef ¼
Z

d2x

�
ð∇fÞ2þB2þ1

2
ðf2−1Þ2þaf2ðQ2

xþQ2
yÞ
�
;

ð66Þ

and

Eχ ¼
Z

d2x

�
1

2cβ
ð∇χÞ2þ1

β

b
cðc−1Þ

�
1

2
χ4−χ2ð1−cf2Þ

��
:

ð67Þ

In the absence of the χ sector it is a well-known result
that the triangular lattice has lower energy per unit cell
compared to the square one. We have indeed confirmed this
numerically. For example, for the solutions shown in Fig. 1,
comparing the energies per unit cell we obtained

Ef
□
¼ 6.78; Ef

▵ ¼ 6.57; ð68Þ

where the subscript on the energy indicates the geometry of
the lattice. The energy of the triangular geometry is lower,
as is well known. This result holds in general for all the
ranges of parameters considered in this paper; we present
some representative data in the table shown in Fig. 10.
A more interesting and new comparison is that between

Abrikosov lattices and non-Abelian vortex lattices. The
energy for the solution shown in Fig. 2, for example, is
E2 ¼ 7.991. The corresponding energy without χ is
Eχ¼0
2 ¼ 7.999. Similarly, the solution of Fig. 3 has energy

E3 ¼ 7.988 and that without χ (that of the corresponding
pure Abrikosov lattice) Eχ¼0

2 ¼ 7.997. Therefore, once
again, even in the presence of the additional field, the
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triangular lattice has the least energy per unit cell. Note
that it is energetically favorable for the lattice to nucleate
the χ field in the vortex cores. This is not surprising; these
solutions represent an ideal non-Abelian vortex lattice
with well-separated non-Abelian vortices. These vortices
have lower energy than the corresponding ANO vortices
[23]; a lattice of them should therefore also have lower
energy if these do not interact. Interestingly the energy is
lower but not significantly so; this was also found in [23],
which allowed an approximate kink solution to be
constructed.
In this system the non-Abelian vortex lattices of triangu-

lar geometries are therefore the lowest energy solutions, in
the limit of large separation of vortices. This result holds for
all numerical values of the parameters we investigated, and
seems to be a general result of this setup. We present some
numerical data of representative solutions in the table
shown in Fig. 11.
When the non-Abelian vortices are more tightly packed,

for smaller lattice spacing, we must verify whether the
solutions with a delocalized χ field over the whole lattice
are actually energetically preferred over solutions in which
χ vanishes. We numerically checked that this was the case;
some representative values are shown in the table in Fig. 12
(these lattice spacing values correspond to the solutions
shown in Figs. 4 and 5). Therefore, for all lattice spacings,
even when the χ field does not vanish outside of the vortex
cores, the system always prefers to have the orientational
field than not.

A. Phase diagram of ideal non-Abelian vortex lattices

As shown in Sec. II A the condition of type-II super-
conducting vortices changes in the presence of the χ field.
In particular, we must check for what values of the
parameters it is energetically convenient for a non-
Abelian vortex of flux Φ to form a lattice of n vortices

of flux Φ=n. Only then is the lattice formation preferred for
this type of superconductor. This section is devoted to
carrying out such a numerical analysis and therefore
mapping out the phase space of this system. This deter-
mines the kind of superconductor that exists (type I or type
II) as a function of parameters.
Our strategy is the following: we solve the isolated

vortex ordinary differential equations (ODEs) for non-
Abelian vortices as a function of the parameters a and b
for a single vortex of two flux quanta and calculate its
energy; we then compare this energy to that of two vortices
of a single flux quantum, at the same parameter values
assuming no interaction (large separation). If the energy of
the latter is smaller, then the system will want to be in a
vortex lattice state and is a superconductor of type II. As
discussed previously, the transition to this kind of super-
conductivity for the standard Abrikosov system (corre-
sponding to χ ¼ 0 or equivalently b ¼ 0) happens at
a ¼ 1, when the gauge boson and scalar field masses are
equal. This is commonly known as the BPS point, where the
vortex interaction energy vanishes. For this comparison, we
want to keep the flux constant and vary only the parameters
of the equations. Therefore, we switch back to the rescaled
convention adopted in Sec. II A. In this convention, the

FIG. 10. Representative energies at different parameters
and lattice spacings for square or triangular lattices of the
Abrikosov type.

FIG. 11. Representative energies at different parameters and
lattice spacings for square or triangular lattices of the non-
Abelian type. c ¼ 1.07.

FIG. 12. Representative energies at different parameters and
lattice spacings for square or triangular lattices of the non-
Abelian type. a ¼ 0.9, b ¼ 0.7, β ¼ 4.08, c ¼ 1.07.
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FIG. 13. Superconductivity type as a function of parameters a
and b at fixed flux for the non-Abelian vortices at c ¼ 1.07
and β ¼ 26.8.
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quantum flux is Φ ¼ 2π
ffiffiffi
2

p
n, and importantly is indepen-

dent of a (this in turns makes the upper critical field also
independent of a).
To study isolated non-Abelian vortices we must go back

to Eqs. (48)–(50) and solve them with the boundary
conditions

fð0Þ ¼ 0; fð∞Þ ¼ 1; ð69Þ

χ0ð0Þ ¼ 0; χð∞Þ ¼ 0; ð70Þ

Qð0Þ ¼
ffiffiffi
2

p
n; Qð∞Þ ¼ 0: ð71Þ

Our comparison is therefore between energies of sol-
utions with n ¼ 2 and n ¼ 1 as we vary a and b. The result
of this analysis is shown in Fig. 13. We can distinguish two
main sections of this plot. The section marked II in this plot
corresponds to a region in which the energy of two
separated vortices of a single flux is less than that of a
single vortex of flux 2. This region corresponds to type-II
superconductivity. We see immediately that for b ¼ 0,
which corresponds to the usual Abrikosov vortex with
χ ¼ 0, the critical point of this phase is at a ¼ 1, as
discussed in Sec. XXXVII. As we vary b we enter the
non-Abelian vortex solutions. Here we find that there is a
whole dome of parameter space of type-II superconductive
behavior. We can label this as non-Abelian type-II super-
conductivity. Beyond this region, in the region on the plot
called I, the high flux single vortex solution is energetically
preferred and the system is no longer of type II. It appears
that as we increase b, and make the system increasingly
more non-Abelian (in the sense of increasing the core value
of χ), the critical point of transition in the a parameter is
lowered, i.e., the extra scalar field means criticality is
achieved at higher Higgs scalar masses, and no longer when
this is equal to the gauge boson mass. This was the result
anticipated in the discussion of Sec. XXXVII, but it is now
mapped numerically. The additional scalar channel pro-
vides an attractive force between the vortices; hence the χ
field pushes the system towards type I. Note that the upper

value of b ≈ 2 here is actually physical in the sense that
above this line we violate the vacuum condition (20) and
enter a phase in which the χ field wants to condense in the
vacuum. We repeat this analysis for several values of c and
β and find similar results for the shape of the critical line.
The main difference is that the physical limit line on the b
axis changes as one changes c or β.
This diagram illustrates neatly where the solutions

discussed in Sec. II (which adopted the other convention)
actually exist. They are representatives of the energy
minimizing solutions, at fixed flux, that exist in the region
of type-II non-Abelian superconductivity.
Finally, as an aside, we reinstated the full two-dimen-

sional convention and also used the isolated vortex to
compare our numerical lattice solutions with the one-
dimensional radial plots. First we compare the lattice
solutions with single vortices carrying the total flux of the
unit cell; this is shown in Fig. 14. In this figure the single
vortex (solid line) carries four flux quanta, while the isolated
vortices of the lattice each carry just one. In Fig. 15 we show
the isolated vortex (solid line) carrying the same flux as a
vortex of the lattice (not the whole flux of the lattice). As
seen by the figure there is a remarkable agreement between
the isolated and lattice solutions demonstrating that our
numerical procedure for the two-dimensional solver repro-
duces the radial ODE solutions well.

5 10 15
x

0.2

0.4

0.6

0.8

1.0
f

(a) (b)

FIG. 14. Scalar field and χ field profiles comparing lattice (dotted line) and isolated vortex (solid line) of the same total flux at
a ¼ 0.53, x1 ¼ 20, b ¼ 0.1, c ¼ 1.2, and β ¼ 1.4b=ðcðc − 1ÞÞ.
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FIG. 15. The field profile for f for an isolated vortex (solid line)
is shown with the profile for the lattice (dotted). This illustrates
the consistency of the numerical procedure.
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IV. LOW ENERGY THEORY

The solutions represent lattices of non-Abelian vortices.
In the core of the vortices, where ψ ¼ 0, the χ field
condenses and breaks the Oð3Þ global symmetry down
to Uð1Þ, the rotations in the (1,2) plane of internal space. If
the lattice spacing is sufficiently large for the vortices to be
well separated, as per the solutions shown in Fig. 2 or
Fig. 3, the low energy theory is a lattice of CPð1Þ nonlinear
sigma models localized on each vortex site. In order to see
this let us consider a small neighborhood around a vortex
core (defined approximately as a region of area in which χ
is nonvanishing) in the ðx; yÞ plane and take the ansatz

χi ¼
ffiffiffiffiffi
μ2

2β

s
χðx; yÞSiðt; zÞ; ð72Þ

where Siðt; zÞ are orientational fields depending on the
world sheet coordinates and satisfying SiSi ¼ 1. Inserting
this ansatz into the action gives the low energy action for
the orientational moduli as

So ¼ α

Z
dzdt∂kSi∂kSi; ð73Þ

with k ¼ ðt; zÞ, and α ¼ μ2

2β

R
v dxdyχ

2, where the integral
runs over the neighborhood of the vortex site. The overall
action is then the sum of all the vortex site contributions
so that

Stot ¼
X
i

αi

Z
dzdt∂kS

j
i∂kSji ; ð74Þ

where the index i runs on over each vortex site and αi refers
to the integral α performed over connecting neighborhoods
of each vortex site. It is important to stress that for this kind
of lattice all core moduli are independent to rotate on each
vortex site since the χ fields are well localized.
When the lattice spacing is lowered, such that the χ field

delocalizes from the vortex cores (see Fig. 4), only part of
these orientational degrees of freedom survives as gapless
excitations. These are the global rotations of the internal
orientation throughout the whole lattice, namely, locked
rotations in internal space of all vortex sites. In this case each
vortex site is not independent to rotate freely in internal
space; the only gapless excitation is for each vortex to lock
onto each other and rotate equally throughout the lattice.
Then, the low energy theory is described by theCPð1Þmodel

S ¼
Z

dzdt∂kSj∂kSj; ð75Þ

where the integral now runs over the whole lattice. This is
similar to what happened for skyrmions in [19].

V. CONCLUSIONS

This paper extends the previously known features of the
Abrikosov string supporting non-Abelian moduli proposed

in [16]. In particular, it concludes the investigation on the
nature of the superconducting regimes in it, with a complete
map of superconducting type in parameter space. This
model is a toy model of several physical systems, ranging
from dark matter considerations [25] to confinement in
QCD, wherever solitonic solutions of this type play an
important role [12,33,34]. Previous results in this model
showed that such isolated vortices exist, and some studies
on the properties of these vortices were made [16,23]. This
paper extends the investigation to the full analysis of what
type of superconductivity is involved, and what the real low
lying energy solutions the system adopts are, in the case of
parallel orientation. In particular, we first provide analytical
evidence that the additional scalar field sector, providing
the orientational degrees of freedom, acts as an additional
attractive channel between isolated vortices. In turn, this
modifies the usual a ¼ 1 BPS point of no vortex interaction
energy. We then demonstrate numerically the existence of
periodic arrays of parallely oriented non-Abelian vortices,
both in the limit of large separations and when they are
tightly packed, in square and triangular geometries. We
map out the phase diagram of this superconductor and
deduce the critical line of phase transition between type-2
and type-1 superconductivity in parameter space. When the
system is in the type-2 region, the lowest energy solutions
at fixed external flux and lattice spacing correspond to
triangular non-Abelian vortex lattices. When the lattice
spacing is large, the low energy theory of this system is
described by an array of CPð1Þ theories described by the
local independent rotations of the orientational degrees of
freedom at each lattice site. When the spacing is reduced,
the self-interactions of such degrees of freedom become
important and the only remaining gapless excitation is a
locked rotation of all lattice sites. This is similar to a
ferromagnetic phase transition, in which independent spins
couple into a single orientation under an applied magnetic
field. With this in mind it would be interesting to allow all
possible “spin” orientations of the vortices, rather than
restricting to parallel ones.
We have considered alternate possible configurations

of the spin lattice. For the “antiferromagnetic” case (anti-
aligned spins per vortex site), we determined that the
configuration is unstable in the case of small lattice
spacing. We also tried starting with random initial orienta-
tions and repeating the relaxation procedure with the hope
that the system would spontaneously find alternative spin
configurations. No such configurations were found. Based
on this analysis we can conclude that the parallel orienta-
tion lattice is the most stable solution at small lattice
spacings. However, we admit that this analysis is far from
concluded (alternative spin configurations might arise, for
example, for lattice geometries besides the triangular or
square case). A more complete investigation of other
potential stable configurations will have to wait for future
projects.
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