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We study the low-virtuality inclusive leptoproduction of open charm, p↑l → D0 þ X as a probe of the
gluon Sivers function. We perform the analysis in a generalized parton model framework. At leading order,
this process is sensitive only to the gluon content of the proton. Hence any detection of a transverse single-
spin asymmetry in this process would be clear indication of a non-zero gluon Sivers function (GSF).
Considering COMPASS and a future Electron-Ion Collider (EIC), we present predictions for asymmetry
using fits for the GSF available in literature. Predictions for peak asymmetry values lie in the range of 0.8%
to 13%. We also present estimates of the upper bound on the asymmetry as obtained with a maximal
gluon Sivers function. Further, for the case of the Electron-Ion Collider, we evaluate the asymmetry in the
muons decaying from the D-meson and find that the asymmetry is well preserved in the kinematics of
the muons. Peak values of the muon asymmetry are close to those obtained for the D-meson and lie in the
range 0.75% to 11%.
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I. INTRODUCTION

Transverse single-spin asymmmetries (SSA) can provide
crucial information on the three-dimensional structure of
hadrons and have hence been a subject of increasing
interest in the past two decades. While such asymmetries
have been observed since the mid-70 s in the hadropro-
duction of pions, i.e., p↑p → π þ X [1–3], the past few
years have provided a large amount of high quality data on
SSAs in a wide variety of processes such as p↑p → π þ X,
p↑p → K� þ X, p↑p → J=ψ þ X, lp↑ → π þ X, lp↑ →
K þ X etc., (see Refs. [4,5] for reviews on the subject).
A theoretical approach based on factorization in terms of
a hard-part and transverse momentum dependent (TMD)
parton distribution functions (PDFs) and fragmentation
function (FFs) has been formally established for processes
which have two scales: a hard, high energy scale such as
the virtuality of the photon in the Drell-Yan process and
a relatively soft scale of the order of ΛQCD, such as the
transverse momentum of the Drell-Yan lepton-pair.

Another approach based on factorization in terms of
twist-3 parton correlators has been shown to be valid for
the description of SSAs in processes with a single hard
scale such as the transverse momentum of a pion in
hadronic collisions.
Despite the absence of a formal proof, a lot of work has

been done on a TMD description of single hard-scale
processes under the assumption of factorization, in what
is generally referred to as the generalized parton model
(GPM) approach. This approach has been quite successful
in describing unpolarized cross sections in the hadropro-
duction of pions [6]. The leading-order (LO) GPM is able
to describe (up to a K-factor) experimental data on pion
production in high energy hadron-hadron collisions better
than either the LO or the NLO collinear pQCD. It is also
able to provide a good description of data on SSA in
p↑p → π þ X at widely different c.o.m energies [4]. One
of the important transverse-momentum-dependent distri-
butions which can lead to SSAs is the Sivers distribution
[7,8], which encodes the correlation between the azimuthal
anisotropy in the distribution of an unpolarized parton
and the spin of its parent hadron. This anisotropy in the
parton’s transverse momentum distribution can lead to an
azimuthal anisotropy in the distribution of the inclusive
final state, i.e., a SSA. Fits of the u and d quark Sivers
functions (QSF) obtained using data on ANðp↑p → π þ XÞ
at E704 (

ffiffiffi
s

p ¼ 19.4 GeV), do a good job of describing
the main features of the asymmetry observed at STAR
(

ffiffiffi
s

p ¼ 200 GeV) [4]. While the quark Sivers functions
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have been widely studied over the years, the gluon Sivers
function (GSF) still remains poorly understood.
A first indirect estimate of the gluon Sivers function in a

GPM framework was obtained in Ref. [9]. The analysis
consisted of fitting the GSF to midrapidity data on SSA in
pion production at RHIC. In this analysis, the quark
contribution to the SSA was calculated using quark
Sivers functions (QSF) as extracted from semi-inclusive
deep inelastic scattering data. The GSF fits obtained by this
analysis predict asymmetries much smaller than allowed by
the positivity bound on the GSF, viz. twice the unpolarized
TMD gluon distribution. On the other hand, a recent study
of large-pT hadron pair production in COMPASS indicates
a substantial negative gluon Sivers asymmetry for both
proton and deuteron targets [10]. Since large-pT hadron
pairs are produced through the photon-gluon fusion, this
process is indeed sensitive to the GSF. However the final
state also receives contributions from the QCD Compton
process, which is quark initiated. Hence an extraction of the
GSF using large-pT hadron production is contaminated by
the quark contributions to the SSA and would therefore
depend on the extent to which these different processes can
be separated in a data sample. With this being the first
significant evidence for a nonzero GSF, it is important to
study processes such as closed and open charm production
which probe the gluon channel cleanly and directly.
In this work, using a GPM approach, we study the low-

virtuality leptoproduction (Q2 ≈ 0) of open-charm as a
possible probe of the poorly understood gluon Sivers
function (GSF). At the leading-order (LO) of this process,
the production of open-charm happens only via photon-
gluon fusion (PGF), making it a direct probe of the gluon
content of the proton. The GPM study of open-charm
production as a probe of the gluon Sivers function was first
proposed in Ref. [11] for the process p↑p → D0 þ X. In
that study they considered two extreme scenarios for the
GSF: zero and maximal. The term “maximal” here refers to
the Sivers function with its positivity bound of twice the
unpolarized TMD (jΔNfi=p↑ðx; k⊥Þj=2fi=pðx; k⊥Þ ≤ 1),
saturated for all values of x—we shall refer to this as
the “saturated” Sivers function henceforth. Their study
indicated that a measurement of SSA at RHIC for this
process can give a direct indication of a nonzero gluon
Sivers function. Further in Ref. [12] we calculated the SSA
for the same process (open charm hadroproduction) using
the fits of Ref. [9] and found that these fits predict sizeable,
measurable asymmetries.
The low-virtuality leptoproduction of J=ψ has also been

suggested as a probe of the GSF [13–15]. However,
leptoproduction of open-charm may have some more
advantages over the above mentioned processes. First,
unlike the case with p↑p → D0 þ X, one need not worry

about possible factorization breaking initial state inter-
actions. p↑l → D0 þ X would have the same initial/final
state interactions as SIDIS, for which TMD factorization
has been established. A study of SSA in this process
might therefore complement studies of SSA in SIDIS and
lp↑ → hþ X [16,17] by providing an additional handle on
the gluon Sivers function. Second, open-charm production
is free from dependence on production model, as is the case
with closed-charm [18].
We therefore consider the process lp↑ → D0 þ X in the

low-virtuality regime in a GPM framework and see how it
could serve as a probe of the GSF at both the COMPASS
experiment and a future Electron-Ion Collider (EIC). While
present data on open-charm production in COMPASS is
limited due to statistics, the proposed Electron-Ion Collider
[19] would have a significantly higher luminosity and
should be able to provide better data on open/closed charm
production. For both experiments, we present estimates for
the maximum magnitude of SSA as obtained using the
saturated GSF, and also the expected values of SSA
obtained using the fits of Ref. [9].
In Sec. II, we give the expressions for the relevant

quantities in the GPM framework. In Sec. III, we give
parametrizations for the different TMDs used, and in
Sec. IV, we discuss results for both the COMPASS and
the EIC kinematics.

II. THE GPM FORMALISM

In this work, we are concerned with the single-spin
asymmetry in the low-virtuality leptoproduction of open
charm,

AN ¼ dσ↑ − dσ↓

dσ↑ þ dσ↓
ð1Þ

where dσ↑ð↓Þ is the invariant differential cross section for
the process p↑ð↓Þl → Dþ X with the spin of the trans-
versely polarized proton being aligned in the ↑ð↓Þ direction
with respect to the production plane. Here, ↑ would be the
þy direction in a frame where the polarized proton is
moving along the þz direction and the meson is produced
in the xz plane. Note that this is the convention for collider
experiments (such as EIC). In case of fixed target experi-
ments (such as COMPASS), by convention, the polarized
proton would be considered to be moving along the −z
direction with everything else remaining the same
(cf. Fig. 1).
Following the treatment of open-charm hadroproduction

[11], we can write the denominator and numerator of
Eq. (1) as,
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dσ↑ þ dσ↓ ¼ EDdσp
↑l→DX

d3pD
þ EDdσp

↓l→DX

d3pD
¼ 2

EDdσpl→DX

d3pD

¼ 2

Z
dxgdxγdzd2k⊥gd2k⊥γd3kDδðkD · p̂cÞδðŝþ t̂þ û − 2m2

cÞCðxg; xγ; z; kDÞ

× fg=pðxg; k⊥gÞfγ=lðxγ; k⊥γÞ
dσ̂gγ→cc̄

dt̂
ðxg; xγ; k⊥g; k⊥γ; kDÞDD=cðz; kDÞ ð2Þ

and

dσ↑ − dσ↓ ¼ EDdσp
↑l→DX

d3pD
−
EDdσp

↓l→DX

d3pD

¼
Z

dxgdxγdzd2k⊥gd2k⊥γd3kDδðkD · p̂cÞδðŝþ t̂þ û − 2m2
cÞCðxg; xγ; z; kDÞ

× ΔNfg=p↑ðxg; k⊥gÞfγ=lðxγ; k⊥γÞ
dσ̂gγ→cc̄

dt̂
ðxg; xγ; k⊥g; k⊥γ; kDÞDD=cðz; kDÞ: ð3Þ

In the above expressions, xgðγÞ is the light-cone momentum
fraction of the incoming gluon (photon) with the z-axis
along the parent proton (lepton) direction, z ¼ pþ

D=p
þ
c is

the light-cone momentum fraction of the D-meson with the
z-axis along the fragmenting charm quark direction, kgðγÞ is
the intrinsic transverse momentum of the gluon (photon)
with respect to the parent particle direction, kD is the
transverse momentum with which the meson fragments
from the charm quark, p̂ is the unit vector along the heavy
quark direction, mc is the charm quark mass, and ŝ, t̂ and û
are the Mandelstam variables for the photon-gluon fusion
process γg → cc̄.
ΔNfg=p↑ðx; k⊥Þ and fg=pðx; k⊥Þ stand for the gluon

Sivers function and unpolarized TMD respectively.
fγ=lðx; k⊥Þ is the transverse-momentum-dependent distri-
bution of quasireal photons in an unpolarized lepton, and
DD=cðz; kDÞ is the transverse-momentum-dependent frag-
mentation function. We will discuss the functional forms
for all these distributions in Sec. III.

As mentioned earlier, the Sivers function, ΔNfi=p↑

ðx; k⊥;QÞ describes the azimuthal anisotropy in the trans-
verse momentum distribution of an unpolarized parton in
transversely polarized hadron, and we have

fi=h↑ðx; k⊥; S;QÞ

¼ fi=hðx; k⊥;QÞ þ 1

2
ΔNfi=h↑ðx; k⊥;QÞ ϵabk

a⊥Sb
k⊥

¼ fi=hðx; k⊥;QÞ þ 1

2
ΔNfi=h↑ðx; k⊥;QÞ cosϕ⊥ ð4Þ

where k⊥ ¼ k⊥ðcosϕ⊥; sinϕ⊥Þ. In a generalized parton
model (GPM) description of this process, the only possible
source of an asymmetry would be a nonzero gluon Sivers
function. Since photon-gluon fusion results in unpolarized
final state quarks, there cannot be any contribution from the
Collins effect, which would require transversely polarized
final state quarks.

FIG. 1. Kinematics for COMPASS (left) and EIC (right). P⃗N is the proton momentum and S⃗ is its spin orientation. P⃗l is the lepton
momentum. The D-meson momentum, P⃗D is taken to be on the x-z plane.
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The partonic cross section for photon-gluon fusion into a
heavy quark pair is given by [20],

dσ̂gγ→cc̄

dt̂
¼ 4π

8 × 9

αemαs
ŝ2ðt̂ −m2

cÞ2ðû −m2
cÞ2

× ½−ðt̂ − ûÞ4 − 4ŝðt̂þ ûÞðt̂ − ûÞ2
− 4ŝ2ððt̂ − ûÞ2 þ 2ðt̂þ ûÞ2Þ
− 12ŝ3ðt̂þ ûÞ − 3ŝ4� ð5Þ

where the Mandelstam variables are defined in the usual
way,

ŝ¼ðPgþPγÞ2; t̂¼ðPg−PcÞ2; û¼ðPγ−PcÞ2: ð6Þ

The factor Cðxg; xγ; z; kDÞ in Eqs. (2) and (3) contains the
parton flux and the Jacobian relating the partonic phase-
space to the mesonic phase-space. It is give by,

Cðxg; xγ; z; kDÞ ¼
ŝ
πz2

ŝ
xgxγs

�
ED þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2D − k2⊥D

p �
2

4ðp2D − k2⊥DÞ

×

�
1 −

z2m2
c

ðED þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2D − k2⊥D

p
Þ2
�
2

ð7Þ

The on-shell condition ŝþ t̂þ û ¼ 2m2
c in Eqs. (2) and (3),

gives a quartic equation in z. z can then be fixed by using
this equation as shown in Ref. [12].
The delta function δðkD · p̂cÞ in Eqs. (2) and (3) ensures

that the region of integration for kD is confined to the
two-dimensional plane perpendicular to the direction of the
charm quark, i.e.,Z

d3kDδðkD · p̂cÞDD=cðz; kDÞ…

¼
Z

d2k⊥DDD=cðz; k⊥DÞ… ð8Þ

where k⊥D represents values of transverse momenta on the
allowed plane.
An outline of the treatment of the parton level kinematics

and the TMD fragmentation is given in Appendix A.

III. PARAMETRIZATION OF THE TMDS

Since we give predictions using the GSF fits of Ref. [9],
for consistency we have to use the unpolarized gluon TMD
and Sivers function used therein. We use standard factor-
ized Gaussian form for the unpolarized gluon TMD,

fg=pðx; k⊥;QÞ ¼ fg=pðx;QÞ 1

πhk2⊥i
e−k

2⊥=hk2⊥i ð9Þ

with hk2⊥i ¼ 0.25 GeV2.

For the photon distribution fγ=lðx; k⊥Þ, we consider
two cases:
(1) The Weizsacker-Williams distribution of quasireal

photons with a Gaussian transverse momentum
spread [13–15],

fγ=lðxγ; k⊥γ; sÞ

¼ fγ=lðxγ; sÞ
1

πhk2⊥γi
e−k

2⊥g=hk2⊥γi ðGaussian WWÞ

ð10Þ

where the Weizsacker-Williams distribution is given
by [21–23],

fγ=lðxγ; sÞ ¼
αem
π

�
1þ ð1 − xγÞ2

xγ

�
log

ffiffiffi
s

p
2ml

−
1

2

��

ð11Þ

and the width of the Gaussian is hk2⊥γi ¼ 0.1 GeV2.
(2) The leading order result for the TMD distribution of

photons in a lepton from Ref. [24],

fγ=lðxγ;k⊥γÞ

¼ αem
2π2

k2⊥γ½1þð1− xγÞ2� þm2x4γ
xγ½k2⊥γ þm2x2γ �2

ðPhoton TMDÞ

ð12Þ

where m is the mass of the lepton.
The first choice, which we will refer to as Gaussian WW,
was used in earlier studies of low-virtuality leptoproduction
by us [13–15] (and also in an analysis of low-Q2 con-
tributions to ep↑ → hþ X [16], but without the Gaussian
spread) when first-principles result for the photon TMD
distribution was not available. The second choice, which
we will refer to as Photon TMD, is the first analytical
result available in literature for the transverse-momentum-
dependent distribution of photons in a lepton [24]. Here we
present results using both choices for completeness.
As with the unpolarized densities, we take the trans-

verse-momentum-dependence of the FF to be Gaussian,

DD=cðz; kDÞ ¼ DD=cðzÞ
1

πhk2⊥Di
e−k

2
D=hk2⊥Di ð13Þ

with hk2⊥Di ¼ 0.25 GeV2.
The gluon Sivers function is parametrized as follows [9],

ΔNfg=p↑ðx; k⊥;QÞ ¼ 2N gðxÞfg=pðx;QÞ
ffiffiffiffiffi
2e

p

π

×

ffiffiffiffiffiffiffiffiffiffiffi
1 − ρ

ρ

s
k⊥

e−k
2⊥=ρhk2⊥i

hk2⊥i3=2
ð14Þ
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with 0 < ρ < 1. N gðxÞ parametrizes the x-dependence of
the GSF and is generally written as

N gðxÞ ¼ Ngxαgð1 − xÞβg ðαg þ βgÞαgþβg

α
αg
g β

βg
g

ð15Þ

It must obey jN gðxÞj < 1 in order for the Sivers function to
satisfy the positivity bound,

jΔNfg=p↑ðx; k⊥Þj
2fg=pðx; k⊥Þ

≤ 1 ∀x; k⊥: ð16Þ

In this work, for the predictions we consider two options
for the gluon Sivers function:
(1) the Sivers function with the positivity bound satu-

rated, i.e., N gðxÞ ¼ 1 and ρ ¼ 2=3.
(2) the SIDIS1 and SIDIS2 extractions of the Sivers

function from Ref. [9].
As mentioned in the Introduction, we will refer to the

first choice as the “saturated” Sivers function. It would give
an upper bound on the asymmetry for a fixed width hk2⊥i.
The parameter ρ is set to 2=3 in order to maximize the first
k⊥-moment of the Sivers function, following Ref. [25]. It
must be kept in mind though, that this cannot be treated as
giving an absolute upper bound on AN—an increased width
hk2⊥i, for a fixed value of ρ, naturally would result in an
increased asymmetry since the effects of the parton trans-
verse momenta are more pronounced.
The SIDIS1 and SIDIS2 GSFs from Ref. [9] are the first

(and so far, only) available extractions of the GSF in a GPM
framework. They were obtained by fitting to PHENIX data
on AN in inclusive pion production in the midrapidity
region at RHIC. The QSFs used in these extractions, also
labelled SIDIS1 and SIDIS2 respectively, were fit to data
on semi-inclusive deep inelastic scattering. The SIDIS1
QSF set [26] (which was used in the extraction of the
SIDIS1 GSF) was fitted to data on pion production in
HERMES and positive hadron production in COMPASS
with fragmentation functions by Kretzer [27]. It contains
only the u and d quark Sivers functions since the data
was not sensitive to sea quark contributions. The SIDIS2
QSF set [28] was fitted to flavor segregated data on pion
and kaon production from HERMES and COMPASS
and hence included sea quark Sivers functions as well.
It used fragmentation functions by de Florian, Sassot, and
Stratmann (DSS) [29].
Both QSF sets give a good description of their respective

SIDIS data sets. Furthermore both the GSFs (taken along
with their associated QSF sets) describe the data on AN in

midrapidity pion production equally well. Despite this the
two fits show very different x-dependencies, with SIDIS1
being larger in the moderate-x region and SIDIS2 being
larger in the low-x region. The values of the parameters of
the two GSF fits are given in Table I.

IV. RESULTS

In this section we present results on the unpolarized cross
section and SSA for COMPASS and EIC kinematics.
Before going into the results, we should first make a note
on the differing kinematic conventions of the two experi-
ments: As COMPASS is a fixed target experiment, by
convention the lepton is taken to be along the þz direction.
This means that, in the definition of AN in Eq. (1), keeping
the conventions for proton spin direction and production
plane the same, positive xF and η correspond to the
backward hemisphere of the proton, whereas negative xF
and η correspond to the forward hemisphere of the proton.
Note that this convention differs from that adopted Sec. II
where, following the RHIC convention, the proton is taken
to be moving along theþz direction. Since EIC, like RHIC,
is also a collider experiment, we shall use the same
convention for it. In the interest of clarity, the conventions
used for the two experiments are illustrated in Fig. 1.
Please note that since we are interested in quasireal

photoproduction, we have put a cut, Q2 < 1 GeV2, where
Q2 ¼ −ðPl − Pl0 Þ2 is the photon virtuality. This was moti-
vated by the COMPASS antitagging cuts. In regions of
large photon transverse momenta, the lepton-photon vertex
becomes hard and the photon becomes off-shell. Hence one
cannot use hard-parts defined for on-shell initial and final
states. The cut on the photon virtuality Q2 can be imple-
mented by considering its relation to k⊥γ and xγ ,
Q2 ¼ k2⊥γð1þ xγ

1−xγ
Þ. In this work, all results associated with

both COMPASS as well as EIC were obtained with theQ2 <
1 GeV2 cut. When using the Gaussian WW approximation,
this cut does not make a huge difference since the steeply

falling k⊥γ-dependence for k⊥γ >
ffiffiffiffiffiffiffiffiffiffiffi
hk2⊥γi

q
prevents large

contributions from regions of large virtuality. However, this
is not the case with the Photon TMD as it has a much longer
tail due to its 1=k2⊥γ dependence. One must also note here
that the opposite is true in the low-k⊥γ region. At low k⊥γ the
Photon TMD falls off very sharply with increasing k⊥γ

whereas the Gaussian WW approximation, by virtue of
being a Gaussian, has a flat kT-dependence at very low kT.
The numerical results were obtained using the

GRV98LO set for the collinear gluon density and for the

TABLE I. Parameters of the GSF fits from Ref. [9].

SIDIS1 Ng ¼ 0.65 αg ¼ 2.8 βg ¼ 2.8 ρ ¼ 0.687 hk2⊥i ¼ 0.25 GeV2

SIDIS2 Ng ¼ 0.05 αg ¼ 0.8 βg ¼ 1.4 ρ ¼ 0.576
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collinear part of the FF, the LO parametrization of the
c → D0 fragmentation function by Kniehl and Kramer [30]
was used. The QCD scale was chosen to be Q2¼m2

DþP2
T .

A. COMPASS

The COMPASS experiment is a fixed target experiment
involving a 160 GeV muon beam colliding on a proton
target with a centre of mass energy

ffiffiffi
s

p ¼ 17.4 GeV. The
COMPASS spectrometer covers hadrons in the l − p c.o.m
frame pseudorapidity range −0.1 < ηh < 2.4 and detects
D0 mesons through their D0 → K−πþ decay mode. The
geometry of the detector allows a proper reconstruction of
the D0’s produced only in the backward hemisphere of the
proton and hence we restrict our analysis to the xF, η > 0
region.
In Fig. 2, we show results for the unpolarized invariant

cross section using both the Gaussian WW approximation
and the Photon TMD with the Q2 < 1 GeV2 cut. We show
the cross section as a function of xF at fixed PT ¼ 1 GeV
(left panel) and as a function of PT at a fixed pseudorapidity
η ¼ 1 (right panel). At a fixed PT , the cross sections
obtained with both the Gaussian WW and Photon TMD
vary by two orders of magnitude in the region 0<xF <0.8.
The Photon TMD result is generally smaller than the
Gaussian WW result by 30%–40%, except at very large
xF where both become comparable. At fixed pseudorapid-
ity, for both choices of the photon density, the cross section
decreases by three orders of magnitude with increasing PT
in the range 0.5 < PT < 3.0 GeV. The cross section
obtained with the Photon TMD is smaller by roughly
30%–40% over the entire PT range. For a larger value of
the width of unpolarized gluon TMD, viz. hk2⊥i ¼ 1 GeV2

instead of 0.25 GeV2, the cross section at fixed PT is not

affected much whereas, the cross section at fixed pseudor-
apidity spreads out in PT somewhat—becoming smaller by
6% at PT ¼ 0.5 GeV and larger by 40% at PT ¼ 3 GeV—
as one would expect. Overall, cross section estimates for
COMPASS are not very sensitive to the unpolarized gluon
TMD width. Varying the width of the TMD FF in the range
0 < hk2⊥Di < 0.25 GeV2 also does not have any significant
effect on the cross section.
Figure 3 shows estimates for the maximal value of the

magnitude of the asymmetry jAmax
N j, obtained by using the

saturated gluon Sivers function viz., N gðxÞ ¼ 1, ρ ¼ 2=3.
The results are presented as a function of xF at fixed PT ¼
1 GeV (left panel) and as a function of PT at a fixed
pseudorapidity η ¼ 1 (right panel). At fixed PT , estimates
of jAmax

N j range from a minimum of about 12% at xF ≈
0.2–0.3 to up to 24% at xF ¼ 0.8. At fixed η, jAmax

N j shows a
general increase with the meson transverse momentum,
ranging from around 8% at PT ¼ 0.5 GeV to 24% at
PT ¼ 3 GeV. Both the Gaussian WW distribution and the
Photon TMD give similar results with the former being
slightly smaller at low xF=PT and vice versa.
Figure 4 shows the asymmetries obtained using the

SIDIS1 and SIDIS2 fits [9]. As was the case with the
saturated asymmetry, the results obtained with the Gaussian
WWapproximation and Photon TMD are generally similar,
with the former being slightly smaller at low xF=PT and
vice versa. Both fits give asymmetry predictions much
smaller than allowed by the positivity bound with SIDIS2
giving significantly smaller asymmetries than SIDIS1. This
is because the kinematic regions we consider probe the
region 0.08 < xg < 0.5, where SIDIS2 is much smaller
than SIDIS1, as can be seen from the numbers in Table I.
At fixed PT , SIDIS1 gives a peak asymmetry of 4.2% at
xF ¼ 0 and SIDIS2 gives a peak asymmetry of 0.8% at
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xF ¼ 0.8. At fixed η ¼ 1, SIDIS1 gives a peak asymmetry
of 7% and SIDIS2 gives a peak asymmetry of almost 1%,
both at PT ¼ 3.0 GeV.We have verified that changes in the
width of the TMD FF in the range 0 < hk2⊥Di < 0.25 GeV2

do not alter the results for either SIDIS1 or SIDIS2
substantially and the general features of the AN predictions
stay the same.

B. EIC

The Electron-Ion Collider (EIC) is a proposed experi-
ment with colliding electron and proton/ion beams, with the
possibility of both being polarized. It is meant to be capable

of attaining high luminosities, with a center of mass energy
of up to 140 GeV in the ep configuration.
In Fig. 5, we show results for the unpolarized invariant

cross section using both the Gaussian WW approximation
and the Photon TMD with the same Q2 < 1 GeV2 cut as
used for COMPASS. We show the cross section as a
function of xF at fixed PT ¼ 1.5 GeV (left panel) and as a
function of PT at a fixed pseudorapidity η ¼ 3 (right panel).
At fixed PT , in the forward region, the cross section
decreases with increasing xF by more than six orders of
magnitude in the range 0 < xF < 0.7. In contrast, in the
backward region, the decrease in the cross section with
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increasing jxFj, is only around one order of magnitude.
This is because, for xF < 0 the gluon density is being
probed in the small-x region and both the Weiszacker-
Williams distribution and the Photon TMD are being
probed in the moderate-to-large-x region. In the small-x
region the gluon density rises faster with decreasing x than
both photon distributions, which behave as 1=x. Further, in
the moderate-to-large-x region, the photon distributions fall
much less steeply with increasing x than the gluon density.
These two effects combine to give the widely differing
behaviour of the cross section in the backward and forward
regions. In the forward region (xF, η > 0), both the Photon
TMD and the Gaussian WW approximation give almost
identical results, whereas in the backward region the
Photon TMD gives slightly smaller results for moderate
values of negative xF. This is similar to what was observed
at COMPASS. At fixed η, the cross section decreases with
increasing PT by four orders of magnitude in the range
0.5 < PT < 3.0 GeV. With a larger value of the unpolar-
ized TMD width hk2⊥i ¼ 1.0 GeV2, the cross section at
fixed PT is found to be unaffected in the forward region,
but shows a decrease in the backward region of about 40%
on average. The increase in the PT-spread of the cross
section is also observed at fixed η, but the effect is very
small. The cross section is also found to be insensitive to
changes in the width of the fragmentation function in the
range 0 < hk2⊥Di < 0.25 GeV2.
In Fig. 6, we show estimates for the maximal value of the

magnitude of the asymmetry jAmax
N j obtained by using the

saturated gluon Sivers function, as a function of xF at fixed
PT ¼ 1.5 GeV (left panel) and as a function of PT at fixed
pseudorapidity η ¼ 3 (right panel). With the fairly large
centre of mass energy of the EIC, we find that the general
features of jAmax

N j are similar to what was obtained for

proton-proton collisions at RHIC [11,12]. At fixed η ¼ 3,
for the Photon TMD, the asymmetry peaks at 21% at
PT ¼ 2 GeV. At fixed PT , large asymmetries are allowed
in the forward region, with estimates being upto almost
25% at xF ¼ 0.8. Overall, in the forward region (xF, η > 0)
the Photon TMD gives results that are up to 18% larger than
the what is obtained with the Gaussian WWapproximation.
This difference can be understood qualitatively, from the
much smaller values of k⊥γ contributing to production in
the case of the Photon TMD and the resultant change in the
values of xg, k⊥g and xγ which contribute for a given PT

and xF. As is the case for calculations at RHIC energy and
kinematics [11,12], the asymmetry is suppressed in the
backward hemisphere of the proton (xF < 0). This is
because, in the backward region, the hard-part dσ=dt̂
depends very weakly on the azimuthal angle of the gluon
transverse momentum ϕ⊥g. This weak dependence, along
with the cosϕ⊥g term that is present in the Sivers function
[see Eq. (4)] leads to a suppression when the azimuthal
angle is integrated over. The same has been observed in
Ref. [11]. It must be mentioned however, that this feature is
energy dependent and the suppression is weaker at lower
centre of mass energies. This can be seen from the large
values of jAmax

N j at xF ≳ 0.3 for COMPASS shown in Fig. 3.
Figure 7 shows the asymmetries obtained using the

SIDIS1 and SIDIS2 fits [9]. As was the case for COMPASS
kinematics, both fits give asymmetries much smaller than
allowed by the positivity bound, with SIDIS1 giving the
larger results of the two. As was found at COMPASS
energy, the Photon TMD gives results that are a few percent
larger than those obtained using the Gaussian WW
approximation. At fixed PT , in the forward region,
SIDIS1 gives a peak asymmetry of 13% at xF ¼ 0.4 and
SIDIS2 gives a peak asymmetry of 0.8% at xF ¼ 0.3. In the
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backward region xF < 0, D production gets contributions
mainly from xg < 0.08, where SIDIS2 is larger than
SIDIS1. However the overall values of both fits in this
region are very small. Combined with the azimuthal
suppression, this makes the asymmetries from both fits
almost negligible. At fixed pseudorapidity, SIDIS1 gives
a peak asymmetry of around 11.5% at PT ¼ 2.5 GeV
and SIDIS2 gives a peak asymmetry of around 0.8%
at PT ¼ 1.6−2.2 GeV.

C. Single-spin asymmetry in open-charm decay muons

So far we have considered the SSA in terms of the
D-meson kinematics. It would also be interesting to

consider the SSA in terms of the kinematics of the decay
muons. A detector such as the proposed ePHENIX [31]
would be able to study open heavy flavor production
through the leptonic decay channels. With this in mind,
we consider the semileptonic decay of the D’s in order to
obtain the SSA for the decay muons, Aμ

N ,

Aμ
N ¼ dσP

↑l→DþX→μþX0 − dσP
↓l→DþX→μþX0

dσP
↑l→DþX→μþX0 þ dσP

↓l→DþX→μþX0 ð17Þ

where dσPl→DþX→μþX0
is the Lorentz-invariant inclusive

decay-muon cross section,
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dσPl→DþX→μþX0 ≡ Eμ
dσPl→DþX→μþX0

d3pμ
:

In keeping with the conventions for the D-meson asym-
metry defined in Eq (1), we take the muon to be produced

in the xz plane with the proton moving along the þz
direction and its spin parallel or antiparallel to the y-axis.
Using the narrow width approximation, the expression for
the Lorentz-invariant decay-muon cross section can be
written for a general n-body decay channel as follows:

Eμ
dσPl→DþX→μþX0

d3pμ
¼

Z
d3pD
ED

�
ED

d3σPl→DþX

d3pD

�
1

2ð2πÞ3EDΓtotal

�Yn−1
i¼1

d3pxi
ð2πÞ32Exi

�

× jMD0→μþþx1þ���þxn−1 j2ð2πÞ4δ4
�
PD − Pμ −

X
Pxi

�
× BR ð18Þ

where the xi are the n − 1 decay products produced
along with the muon. Γtotal is the total decay width of
the D-meson and BR stands for the branching ratio for the
considered n-body decay channel. The above expression
consists of the meson production cross section, the decay
matrix element and a phase-space integral over all the
decay products except the muon. It makes use of the fact
that the decay of a scalar meson can be treated as
independent of its production, allowing a factorized form
involving the meson cross section convoluted with the
differential decay rate. This can be shown to be true by
using the narrow width approximation.
To account for all possible open-charmed meson decays

in to muons through all possible channels would be a
complex task. To simplify things, we make the following
assumptions: First, we consider only the decay of the D0 to
muons. Muons can also be produced through the decay
of other charmed mesons states but we do not consider
those decays here. For the D0 we consider the two major
semileptonic decay channels, D0 → K−μþνμ which as a

branching ratio of 3.33% and D0 → K�ð892Þ−μþνμ which
has a branching ratio of 1.92%. Second, in the calculation
of the three-body decays, we set the decay matrix elements
jMD0→K−μþν̄μ j and jMD0→K�−μþν̄μ j to 1, and only account
for the phase-space kinematics. In Eq. (18), the momentum
pD must be integrated over the entire region of phase-space
from which a D-meson can decay to produce a muon
of given momentum pμ. The derivation of the closed
form expression for decay-muon invariant cross section,

Eμ
dσPl→DþX→μþX0

d3pμ
and the integration limits for the momentum

of the D-meson, pD is given in Appendix B.
The results for the decay-muon invariant cross section

and SSA, Aμ
N are presented in Fig. 8. The asymmetry is

shown for the case of the saturated GSF and the SIDIS1
and SIDIS2 [9] fits. Aμ

N is presented as a function of
xFμ ≡ 2PLμ=

ffiffiffi
s

p
, with the muon transverse momentum

PTμ ¼ 1.5 GeV. It appears that an azimuthal anisotropy
in D production would be retained significantly in the
decay-muons. The general dependence of the Aμ

N on xFμ is
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similar to the dependence of the D-meson SSA on xF.
As with the D-meson, the muon SSA is also suppressed in
the backward hemisphere. Peak values of the Aμ

N are close
to those obtained for the meson: With the Gaussian WW
approximation and SIDIS1 GSF, Aμ

N has a peak value of
11% at xFμ ¼ 0.3 whereas AN has a peak value of almost
12% at xF ¼ 0.4. With the SIDIS2 GSF, Aμ

N has a peak
value of 0.75% at xFμ ¼ 0.23 whereas AN has a peak value
of 0.8% at xF ¼ 0.3.

V. CONCLUSIONS

In this work, we have presented results for SSA in the
low-virtuality leptoproduction of open-charm at both
COMPASS and a future Electron-Ion Collider. We find
that an asymmetry of up to around 25% is allowed by the
saturated gluon Sivers function at both COMPASS and
EIC. We also find that, for EIC kinematics, the asymmetry
is significantly retained in the distribution of the decay
muons. In calculating the asymmetry we used two different
forms for the TMD distribution of quasi-real photons in the
lepton. The first was the Weizsacker-Williams distribution
with a Gaussian transverse-momentum spread (Gaussian
WW) and the second was the LO analytical result for the
TMD distribution of photons in a lepton (Photon TMD)
from Ref. [24]. At COMPASS energy the two forms give
similar results, whereas at EIC energy, the Photon TMD
gives slightly larger asymmetries in the forward region. The
differences in the result for the two distributions can be
attributed to the interplay of different k⊥γ , xγ , xg and k⊥g

values that get sampled in the two cases for a given value
of xF=η and PT .
The two GSF fits of Ref. [9] for which we give

predictions, were extracted from data on midrapidity pion
production at RHIC. As mentioned earlier, the two differ in
the flavour structure of the QSFs used as well as the light
quark fragmentation functions used in the extraction.
SIDIS1 was obtained using an extraction of the QSFs
[26] that included only the u and d flavours and used
fragmentation functions by Kretzer [27]. SIDIS2 was
obtained using an extraction of the QSFs that also included
sea quarks [28] and used more recent fragmentation
functions by de Florian, Sassot and Stratmann [29].
While both the GSF fits, taken along with their associated
QSF sets, describe the input data on SSA in midrapidity
pion production equally well, they have widely differing
x-dependencies. This indicates that pion production in the
midrapidity region at RHIC is only weakly sensitive to the
gluon Sivers function.
In this work, we find that the low-virtuality leptopro-

duction of open-charm, which probes the gluon content of
the proton directly, is able to discriminate well between
these two fits. Thus we see that this process offers a good
probe of the gluon Sivers function and can be of help in a
global extraction of the Sivers function in a generalized

parton model framework. In general, at COMPASS and in
the forward region of EIC, SIDIS2 gives small, but non-
negligible asymmetry predictions on the level of significant
fractions of a percent, whereas SIDIS1 predicts larger
asymmetries of the order of a few percent. This indicates
that the leptoproduction of open-charm could be a vital
probe in constraining the gluon Sivers function, and also in
testing the validity of the GPM framework.
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APPENDIX A: TREATMENT OF
GPM KINEMATICS

In this work, we have considered inclusive single-
particle leptoproduction in the low virtuality regime.
This allows us to handle the process in terms of a TMD
distribution of quasi-real photons in a lepton, not unlike a
TMD distribution of partons in a hadron. The treatment of
parton kinematics here is thus similar to the treatment
of transverse-momentum-dependent parton kinematics for
inclusive single-particle hadroproduction, which can be
found in quite a few places [32,33] including Ref. [6],
where heavy meson final states have been considered.
The momenta of the proton, lepton and theD-meson can

be written in the p − l centre of mass frame as,

PP ¼
ffiffiffi
s

p
2

ð1; 0; 0; 1Þ; Pl ¼
ffiffiffi
s

p
2

ð1; 0; 0;−1Þ and

PD ¼ ðED; PT; 0; PLÞ ðA1Þ

where the masses of the proton and lepton have been
neglected.
The gluon and the quasireal photon carry light-cone

momentum fractions xg ¼ Pþ
g =P

þ
P , xγ ¼ P−

γ =P−
l and trans-

verse momenta kg and kγ respectively. Their momenta are
given by,

Pg¼xg

ffiffiffi
s

p
2

�
1þk2⊥g

x2gs
;
2k⊥g

xg
ffiffiffi
s

p cosϕ⊥g;
2k⊥g

xg
ffiffiffi
s

p sinϕ⊥g;1−
k2⊥g

x2gs

�

Pγ ¼xγ

ffiffiffi
s

p
2

�
1þk2⊥γ

x2γs
;
2k⊥γ

xγ
ffiffiffi
s

p cosϕ⊥γ;
2k⊥γ

xγ
ffiffiffi
s

p sinϕ⊥γ;−1þ
k2⊥γ

x2γs

�

ðA2Þ
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where ϕ⊥g and ϕ⊥γ are the azimuthal angles of gluon and
photon transverse momenta.
The heavy quark is produced through photon-gluon

fusion gγ → cc̄ and then fragments into the heavy meson.
The momentum of the heavy quark is described by z, the
light-cone momentum fraction of the heavy meson and
kD, the transverse momentum of the meson with respect
to direction of heavy quark. In a choice of coordinates
where the heavy quark momentum, pc is along the z-axis,
the D-meson momentum can be written as

PD ¼ ðED; 0; 0; jpD − kDjÞ þ ð0; kDÞ ðA3Þ

where the first term on the right is the component along the
heavy quark direction and the second term is the compo-
nent transverse to it. Here, kD is simply ðkDx

; kDy
; 0Þ ¼

ðkD⊥; 0Þ. In the lab coordinates however, kD can have all
three components nonzero and is specified as,

kD ¼ kDðsin θ cosϕ; sin θ sinϕ; cos θÞ; with

jkDj ¼ jkD⊥j ðA4Þ

and the orthogonality condition kD:pc ¼ 0 ensures that
kD lies in a plane perpendicular to pc. The light-cone
momentum fraction z is given by,

z ¼ Pþ
D

Pþ
c
¼ ED þ jpD − kDj

Ec þ jpcj
¼ ED þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2D − k2D

p
Ec þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
c −m2

c

p ðA5Þ

This gives us the expression for the energy of the heavy
quark,

Ec ¼
m2

c þ
��

ED þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2D − k2D

p �
=z
�
2

2
��

ED þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2D − k2D

p �
=z
� : ðA6Þ

The expression for pc can be obtained from the fact that it is
collinear with pD − kD and that the unit vector constructed
out of both must therefore be equal,

pc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
c −m2

c

q
pD − kD
jpD − kDj

: ðA7Þ

Equations (A6) and (A7) relate the energy and momentum
of the observed D-meson with that of the fragmenting
heavy quark for given values of kD and z.
The term d3kDδðkD · p̂cÞ in Eqs. (2) and (3) ensures that

the kD integration is only over momenta transverse to the
fragmenting parton:

d2kD⊥ ¼ d3kDδðkD · p̂cÞ

¼ dkDkDdθdϕ
jpD − kDj
PT sinϕ1

× ½δðϕ − ϕ1Þ þ δðϕ − ð2π − ϕ1ÞÞ� ðA8Þ

where,

cosϕ1 ¼
kD − PL cos θ

PT sin θ
: ðA9Þ

Limits on kD can be obtained by requiring j cosϕ1j ≤ 1,

max ½PL cos θ − PT sin θ; 0�
≤ kD ≤ max ½PL cos θ þ PT sin θ; 0�: ðA10Þ

Furthermore, the inclusion of intrinsic transverse
momenta in the kinematics calls for the following con-
straints: (a) the energy of the incoming parton should not
be greater than that of its parent particle, EgðγÞ ≤ EpðlÞ and,
(b) the energy of the D-meson should not be greater than
the energy of the heavy quark ED ≤ Ec. The first leads to
the following bound on the transverse momenta of the
incoming partons,

k⊥gðγÞ <
ffiffiffi
s

p
min

h
xgðγÞ;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xgðγÞð1 − xgðγÞÞ

q i
: ðA11Þ

The second constraint, ED ≤ Ec is inherently fulfilled by
Eq. (A6). However, this alone does not ensure that the
heavy quark is more energetic than the D-meson in
the photon-gluon c.o.m frame. By demanding Ec > ED
in the γ − g c.o.m frame, we get a lower bound on ŝ,

ŝ ≥ 2PD:ðPγ þ PgÞ: ðA12Þ

In our earlier work on open charm production (Ref. [12])
we had not implemented this bound in our calculations.
We find that the inclusion of this bound significantly
improves the convergence of the integral in the close
vicinity of xF ¼ 0.

APPENDIX B: DERIVATION OF
LORENTZ-INVARIANT DECAY-MUON

CROSS SECTION

With the decay matrix element set to unity, the three
body decay width can be written as follows,

ΓðD → x1; x2; μÞ ¼
1

2mD

1

ð2πÞ5
Z

d3pμ
2Eμ

π

�
s −m2

x1

s

�
ðB1Þ

where s ¼ ðpx1 þ px2Þ2 ¼ ðpD − pμÞ2 is a Lorentz-invari-
ant quantity. Here, x1 and x2 are the decay products
produced along with the μ. We take x1 to be K− or K�−
and x2 to be ν̄μ. Here we consider the muon to be massless.
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Since we know the decay factorizes, we can write the
production and decay as a convolution,

σPl→DþX→μþX0 ¼
Z

dσPl→DþX � dΓ
Γtotal × BR ðB2Þ

where dΓ is the decay-width for an infinitesimal muon
momentum region d3pμ. Then using Eq. (B1) we finally
have,

Eμ
dσPl→DþX→μþX0

d3pμ
¼

Z
d3pD
ED

�
ED

d3σPl→DþX

d3pD

�
π

4EDð2πÞ5

×

�
s −m2

1

s

�
1

Γtotal × BR: ðB3Þ

The allowed phase-space region for pD can be obtained
determined by considering the decay in the rest frame of the
D-meson. In it, one can see that the allowed values of muon
energy lie in the range 0 < EDcom

μ < ðm2
D −m2

KÞ=2mD,
where mK is the mass of the kaon. This constraint on the
muon energy in the rest frame of the D, can be translated
into the following constraint on the Lorentz-invariant
quantity constructed from the D-meson and muon four-
momenta:

m2
K ≤ s ¼ ðPD − PμÞ2 ≤ m2

D ðB4Þ

The expression for s in terms of the momenta involved is,

s ¼ ðPD − PμÞ2
¼ ðED − EμÞ2 − P2

T − P2
Tμ þ 2PTPTμ cosϕPT

− ðPL − PLμÞ2 ðB5Þ

where we have assumed that the muon is massless and is
in the xz-plane, P⃗Tμ ¼ ðPTμ; 0Þ. Here PTμ and PLμ are the x
and z components of the muon momentum respectively.
The lower inequality in Eq. (B4) can be cast as follows:

cosϕPT
≥
2ðEDEμ − PLPLμÞ − ðm2

D −m2
KÞ

2PTPTμ
ð≡YÞ: ðB6Þ

Wewill call the quantity on the right-hand side of the above
expression, Y. This gives us a constraint on the angle of the
D-meson transverse momentum,

− cos−1 Y ≤ ϕPT
≤ cos−1 Y ðB7Þ

Naturally, we also require Y ≤ 1, since the lower bound on
a cosine term cannot be greater than 1. Demanding this
gives us upper and lower limits on PL:

Pmax
L ¼ 1

2P2
Tμ

�
PLμðm2

D −m2
K þ 2PTPTμÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
μððm2

D −m2
KÞ2 þ 2PTμðPTðm2

D − 2m2
KÞ −m2

DPTμÞÞ
q �

ðB8Þ

Pmin
L ¼ 1

2P2
Tμ

�
PLμðm2

D −m2
K þ 2PTPTμÞ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
μððm2

D −m2
KÞ2 þ 2PTμðPTðm2

D − 2m2
KÞ −m2

DPTμÞÞ
q �

ðB9Þ

Demanding Y ≤ 1 also gives us a lower bound on PT :

Pmin
T ¼ max

�
0;
4m2

DP
2
Tμ − ðm2

D −m2
KÞ2

4ðm2
D −m2

KÞPTμ

�
ðB10Þ
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