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We propose a neutrinophilic two-Higgs-doublet model with hidden local Uð1Þ symmetry, where active
neutrinos are Dirac type, and a fermionic dark matter (DM) candidate is naturally induced as a result of
remnant symmetry even after the spontaneous symmetry breaking. In addition, a physical Goldstone boson
arises as a consequence of two types of gauge singlet bosons and contributes to the DM phenomenologies
as well as an additional neutral gauge boson. Then, we analyze the relic density of DMwithin the safe range
of direct detection searches and show the allowed region of dark matter mass.
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I. INTRODUCTION

The neutrinophilic two-Higgs-doublet model (NTHDM)
[1–4] is one of the appropriate explanations to relax the
neutrino Yukawa coupling where one of Higgs doublets has
only the neutrino Yukawa interaction and develops a tiny
vacuum expectation value (VEV) to generate the neutrino
masses. To discriminate the neutrinophilic Higgs doublet
from the standard model (SM)-like Higgs doublet, one
usually imposes an additional symmetry such as a global
and/or gauged one [5–12], and this symmetry often plays a
role in assuring stability of a dark matter (DM) candidate.
We can construct a NTHDM with extra Uð1Þ gauge

symmetry assigning its charge to right-handed neutrinos
and one Higgs doublet so that this Higgs doublet only has
Yukawa couplings associated with right-handed neutrino
and lepton doublets. In such a case, other SM fermions
would be required to have extra Uð1Þ charges for anomaly
cancellation as in the Uð1ÞB−L model. Alternatively, we
find that we can cancel the gauge anomaly among only SM
singlet fermions by adding extra fermions in addition to
right-handed neutrinos and extraUð1Þ gauge symmetry is a
hidden gauge symmetry. As a result of the gauge symmetry,
the lightest extra fermions are stable and can be good DM
candidates.
In this paper, we introduce a local hidden Uð1Þ sym-

metry [Uð1ÞH], and neutrino masses are Dirac type [9]

induced by the VEV of the neutrinophilic Higgs doublet,
which has Uð1ÞH charge. After spontaneous symmetry
breaking, a fermionic DM candidate arises as a result of
remnant symmetry. Simultaneously, a physical Goldstone
boson (GB) can contribute to the DM phenomenologies as
well as an additional neutral gauge boson, as a result of
introducing two types of gauge singlet bosons that break
Uð1ÞH. We then show the observed relic density of DM can
be explained either by GB interactions or Z0 interactions.
This paper is organized as follows. In Sec. II, we show

our model and formulate the boson sector, fermion sector,
and dark matter sector. Then, we analyze DM through the
relic density and discuss the allowed region in terms of DM
mass. Finally, we conclude and discuss in Sec. III.

II. MODEL SETUP AND PHENOMENOLOGIES

First of all, we introduce a Uð1ÞH hidden gauge
symmetry and add six right-handed neutral fermions
ðNRi

; NR3
Þ and νRa

with i ¼ 1, 2 and a ¼ 1–3, which are
charged under the new gauge symmetry. As we discuss
below, gauge anomalies are canceled among these addi-
tional fermions, and active neutrinos are Dirac type with
right-handed neutrinos νRa

. In the scalar sector, we intro-
duce an isospin doublet scalar Φ that has Uð1ÞH charge 1
and two isospin singlet bosons ðφ;φ0Þ with Uð1ÞH charges
(1,8). Here, H is expected to be the SM-like Higgs doublet
field. All the field contents and their assignments are
summarized in Table I. Then, one finds the relevant
Lagrangian associated with the lepton Yukawa interactions
and scalar potential as

−LLepton ¼ yla L̄La
eRa

H þ yνab L̄La
Φ̃νRb

þ yφi
φ�N̄c

Ri
NR3

þ yφ0
ij
φ0N̄c

Ri
NRj

þ c:c:; ð1Þ
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V ¼ −μ2HH†H − μ2ΦΦ†Φ − μ2φφ
†φ − μ2φ0φ0†φ0

þ λ1ðΦ†ΦÞ2 þ λ2ðH†HÞ2 þ λφðφ†φÞ2 þ λφ0 ðφ0†φ0Þ2
þ λ3ðH†HÞðΦ†ΦÞ þ λ4ðH†ΦÞðΦ†HÞ
þ λHφðH†HÞðφ†φÞ þ λHφ0 ðH†HÞðφ0†φ0Þ
þ λΦφðΦ†ΦÞðφ†φÞ þ λΦφ0 ðΦ†ΦÞðφ†φÞ
þ λφφ0 ðφ†φÞðφ0†φ0Þ − μ0½ðΦ†HÞφþ c:c:�; ð2Þ

where Φ̃≡ ðiσ2ÞΦ� with σ2 being the second Pauli matrix,
a runs over 1 to 3, and i and j run over 1 to 2. The first term
of the Yukawa coupling provides the SM charged-lepton
masses, while the second term induces the active neutrino
masses of Dirac type. The term μ0 plays a role in forbidding
a massless Goldstone boson appearing from Higgs doublets
after spontaneous gauge symmetry breaking [3]. Note that
we have Z2 symmetry even after scalar fields developing
VEVs where extra fermions fNRi

; NR3
g are Z2 odd and the

other particles are Z2 even at renormalizable level.1

Here, we check anomaly cancellations for new gauge
symmetry in the model. In our case, we need to check only
Uð1ÞH and ½Uð1ÞH�3 anomalies since all theUð1ÞH charged
fermions are SM singlet. We then find

Uð1ÞH∶ 1þ1þ1−4−4þ5¼ 0

½Uð1ÞH�3∶ ð1Þ3þð1Þ3þð1Þ3þð−4Þ3þð−4Þ3þð5Þ3 ¼ 0:

ð3Þ

Therefore, our charge assignment is anomaly free.
The scalar fields are parametrized as

H ¼
� wþ
vHþhþizffiffi

2
p

�
; Φ ¼

� ϕþ
vϕþϕRþiϕIffiffi

2
p

�
;

φ ¼ vφ þ φRffiffiffi
2

p ei
α
vφ ; φ0 ¼ vφ0 þ φ0

Rffiffiffi
2

p e
i α

0
v
φ0 ; ð4Þ

where the lightest mass eigenstate after diagonalizing the
matrix in the basis of ðw�;ϕ�Þ, which is massless, is

absorbed by the SM singly charged gauge boson W� and
2 degrees of freedom in the CP-odd boson sector
ðz;ϕI; α; α0Þ are also absorbed by the neutral SM gauge
boson Z and Uð1ÞH gauge boson Z02; z is dominantly a
Nambu-Goldstone (NG) boson absorbed by Z, and one
linear combination of fα; α0g is absorbed by Z0 as discussed
below. The nonzero VEVs of scalar fields can be obtained
from the condition ∂V=∂vH;ϕ;φ;φ0 ¼ 0. Then, we can
simply obtain

vφ ≃

ffiffiffiffiffi
μ2φ
λφ

s
; vφ ≃

ffiffiffiffiffiffi
μ2φ0

λφ0

s
; vH ≃

ffiffiffiffiffiffi
μ2H
λH

s
;

vϕ ≃
ffiffiffi
2

p
μ0vHvφ

−2μ2Φ þ ðλ3 þ λ4Þv2H
; ð5Þ

where we assumed couplings in the potential fλHφ;
λHφ0 ; λΦφ; λΦφ0 ; λφφ0g and vϕ to be sufficiently small,
and we require fμ2H; μ2φ; μ2φ0 ; μ0g > 0 and −2μ2Φ þ ðλ3 þ
λ4Þv2H > 0 to make all VEVs positive. Note that vϕ is
expected to be tiny in order to generate active neutrino
mass, which can be realized taking a tiny μ0 value [3,9].

One thus finds that v≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2H þ v2ϕ

q
∼ vH. The mass matrix

squared of a singly charged boson is diagonalized by the
mixing matrix as

O≡
�
cβ sβ
−sβ cβ

�
; sβ ¼

vϕffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2ϕ þ v2H

q ; ð6Þ

where we define Diagð0; m2
H�Þ ¼ Om2ðw�;ϕ�ÞOT .

Therefore, we obtain

ϕ� ≃H�: ð7Þ
The mass of the charged Higgs boson is given by

m2
ϕ� ≃ −μ2Φ þ 1

2
ðλ3 − λ4Þv2H: ð8Þ

Then, μ2Φ is further constrained, requiring m2
ϕ� > 0 in

addition to the condition for obtaining a positive VEV
of Φ. On the other hand, the mass squared matrix of the
CP-odd boson is in the basis of ðz;ϕI; α;α0Þ. After diagonal-
izing themass matrix, we obtain one massiveCP-odd scalar,
two NG bosons absorbed by Z and Z0 bosons, and one
massless physical Goldstone boson. We can identify the
massive CP-odd scalar as ϕI , the mass of which is given by

m2
ϕI
≃ −μ2Φ þ 1

2
ðλ3 þ λ4Þv2H: ð9Þ

TABLE I. Field contents of bosons and fermions and their
charge assignments under SUð2ÞL ×Uð1ÞY × Uð1ÞH in the
lepton sector, where a ¼ 1–3 and i ¼ 1, 2 are flavor indices.

Fields Φ H φ φ0 LLa
eRa

NRi
NR3

νRa

SUð2ÞL 2 2 1 1 2 1 1 1 1
Uð1ÞY 1

2
1
2

0 0 − 1
2

−1 0 0 0
Uð1ÞH 1 0 1 8 0 0 −4 5 1

1At the nonrenormalizable level, there exists a dimension-6
operator of ν̄cRa

NR3
ðφ0Þ�φ2. We consider such a term highly

suppressed by sufficiently a large cutoff scale as well as its
coupling and suppose not to affect the stability of DM and
phenomenology.

2Since the structure of the scalar sector is more or less the same
as the one in Ref. [9], we minimally explain properties of the
scalar bosons.
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In general, scalar bosons fϕR;ϕI;ϕ�gmix with other scalar
degrees of freedom that have the same quantum number.
However, those mixings are highly suppressed in our
scenario in which vϕ is assumed to be tiny in realizing
neutrino mass. For example, if we take yν ¼ 10−6ð∼me=vÞ,
the required value ofvϕ is less than∼100 KeV asmν ∼ yνvϕ,
and themixing effect is roughly given by vϕ=mscalar, which is
negligibly tiny taking the mscalar ¼ Oð100Þ GeV scale.
The NG boson absorbed by the Z0 and physical Goldstone

bosons is written in terms of a linear combination of α andα0,
where the mixing angle is determined by relative sizes of
VEVs of φ and φ0. We then obtain NG and physical
Goldstone modes denoted by αNG and αG such that3

αNG ¼ cXαþ sXα0; αG ¼ −sXαþ cXα0; ð10Þ
cX ≡ cosX ¼ vφffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

v2φ þ 64v2φ0

q ;

sX ≡ sinX ¼ 8vφ0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2φ þ 64v2φ0

q : ð11Þ

Notice that the existence of this physical Goldstone boson
does not cause serious problem in particle physics or
cosmology since it does not couple to SM particles directly
and decouples from thermal bass in the early Universe.
The extra gauge boson Z0 obtains mass after Uð1ÞH

symmetry breaking as

m2
Z0 ¼ g2Hðv2φ þ 64v2φ0 Þ; ð12Þ

where gH denotes the gauge couplings for Uð1ÞH gauge
symmetry. Note that we can have Z − Z0 mixing through
the VEV of Φ since it has both electroweak and Uð1ÞH
charge. In our case, however, it is negligibly small due to
small vϕ, where mixing is suppressed by the ðvϕ=mZ0 Þ2
factor.
Inserting tadpole conditions, the mass matrix for CP-

even boson in basis of ðh;ϕR;φR;φ0
RÞ with nonzero VEVs

is defined bym2
R. Then the mixing matrixOR to diagonalize

the mass matrix is defined by mha ¼ ORm2
RO

T
R and

ðh;ϕR;φR;φ0
RÞT ¼ OT

Rha where mha is diagonal mass
matrix and the mass eigenstate is ha (a ¼ 1 − 4). Here,
h1 ≡ hTSM is the SM Higgs; therefore, mh1 ¼ 125 GeV. In
addition, we assume mixing among SM Higgs and other
CP-even scalars are small to avoid experimental constraints
for simplicity.

A. Fermion sector

First of all, we formulate the mass matrix of the SM
leptons. The masses for charged leptons are induced via yl
after symmetry breaking, and active neutrino masses are
also done via the yν term where neutrinos are supposed to

be Dirac type fermions. Their masses are symbolized by
mla ≡ vHyla=

ffiffiffi
2

p
and mνab ≡ vϕyνab=

ffiffiffi
2

p
. Since the

charged-lepton mass matrix is diagonal, the neutrino
mixing matrix V arises from the neutrino mass matrix
squared; ðm2

νÞab ¼
P

c¼1–3ðmνacm
†
νcbÞ, where V is mea-

sured by the neutrino oscillation data [13]. Notice here that
three active neutrinos can have nonzero mass due to the
rank-3 matrix. In our scenario, we take yν to not be very
large such as yν ∼ 10−6ð∼me=vÞ. Note that our right-
handed neutrinos decouple from the thermal bath suffi-
ciently earlier than left-handed neutrinos since yν coupling
is small and Z0 mass is heavier than the electroweak scale.
Thus, they do not affect cosmological issues such as big
bang nucleosynthesis.
Then, we formulate the mass matrix of exotic Majorana

fermions MN in the basis of ðNR1
; NR2

; NR3
ÞT , which is

given by

MN ≡
2
64
m11 m12 M1

m12 m22 M2

M1 M2 0

3
75; ð13Þ

after spontaneous Uð1Þ breaking, where mijð¼ mjiÞ≡
yφ0

ij
vφ0=

ffiffiffi
2

p
and Mi ≡ yφi

vφ=
ffiffiffi
2

p
, with i, j ¼ 1, 2. Then,

MN is diagonalized by DðMψ1
;Mψ2

;Mψ3
Þ ¼ VNMNVT

N.
Thus, one finds ðNR1

; NR2
; NR3

ÞT ≡ VT
Nðψ1;ψ2;ψ3ÞT ,

where VN is a unitary mixing matrix in general. Here,
we takeNR1

as the lightest mass eigenstate, and it is a stable
particle due to the remnant Z2 symmetry as discussed
above. Thus, we writhe XR ≡ ψ1 and MX ≡Mψ1

for our
DM candidate in the following analysis.

B. Dark matter

In this subsection, we discuss a dark matter candidate,
XR. First, we assume the contribution from the Higgs
mediating interaction is negligibly small and DM annihi-
lation processes are dominated by the gauge interaction
with Z0 and/or GB αG; we can thus easily avoid the
constraints from direct detection searches such as LUX
[14], XENON1T [15], and PandaX-II [16].
We have annihilation modes with Yukawa and kinetic

terms to explain the relic density of DM, Ωh2 ≈ 0.12 [17],
and their relevant Lagrangian in the basis of the mass
eigenstate is found to be

−L ⊃
1

2
QX

HgHX̄γ
μγ5XZ0

μ þ gHQν
H ν̄γ

μPRνZ0
μ

þ i
M̃1β

ṽφφ0
X̄PRψβαG þ c:c:;

þ igHZ0μð∂μH−Hþ −H−∂μHþÞ
þ gHZ0μð∂μϕIϕR − ϕI∂μϕRÞ; ð14Þ3Derivation of these states is summarized in the Appendix.
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M̃αβ

ṽφφ0
≡X

i¼1;2

Mi

vφ
sXðVNÞαiðVT

NÞ3βþ
X
i;j¼1;2

mij

vφ0
cXðVNÞαiðVT

NÞjβ;

ð15Þ

where Mi ¼ yφi
vφ=

ffiffiffi
2

p
, mij ≡ yφ0

ij
vφ0=

ffiffiffi
2

p
, QX

H ≡ −4þ
9jVN13

j2 is the DM charge of hidden symmetry, and Qν
H ¼

1 is the active neutrino charge of hidden gauge symmetry.
Notice here that we have used the unitarity of VN to derive
QX

H;
P

3
a¼1 V

�
N1a

VT
Na1

¼ 1. The first and second terms
induce the mode of the active neutrino final state via Z0
vector boson exchange in the s channel; the last two terms
also provide a final state containing new scalar bosons from

the second Higgs doublet. On the other hand, the third term
induces the annihilation process in which the final state is
GB via the diagrams with neutral fermions in the t and u
channels. The relic density of DM is then given by [18,19]

Ωh2 ≈
1.07 × 109ffiffiffiffiffiffiffiffiffiffiffiffiffi

g�ðxfÞ
p

MPlJðxfÞ ½GeV�
; ð16Þ

where g�ðxf ≈ 25Þ is the degrees of freedom for
relativistic particles at temperature Tf ¼ MX=xf,

MPl ≈ 1.22 × 1019 GeV, and JðxfÞð≡ R
∞
xf
dx hσvreli

x2 Þ is given
by [20,21]

JðxfÞ ¼
Z

∞

xf

dx

"R∞
4M2

X
ds

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s − 4M2

X

p
½WZ0 ðsÞ þWαGðsÞ�K1ð

ffiffi
s

p
MX

xÞ
16M5

Xx½K2ðxÞ�2
#
; ð17Þ

WZ0 ðsÞ ≈ ðs − 4M2
XÞ

8π

���� g2HQ
X
H

s −m2
Z0 þ imZ0ΓZ0

����2
�
sþ 1

2
ðs − 4m2

ΦÞ
�
; ð18Þ

WαGðsÞ≃
jM̃11j4
64πṽ4φφ0

"
ð3s2−4M4

XÞ
�

π

2sM2
X

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M4

X

4sM2
X− s2

s
−
tan−1½ s−2M2

Xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sð4M2

X−sÞ
p �

s3=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4M2

X− s
p �

−4

#
; ð19Þ

where we implicitly impose the kinematical constraint
above, we take degenerate H�ðϕR;IÞ mass as mΦ, and
the XX → Z0Z0 process is omitted here for simplicity. Here,
Z0 can decay into νRν̄R, ψαψα, and HþH−ðϕRϕIÞ if
kinematically allowed. The decay width of Z0, which
consists of ΓZ0≡ΓZ0→νR ν̄RþΓZ0→XX̄þΓZ0→HþH−þΓZ0→ϕRϕI

,
is given by

ΓZ0→νRν̄R ¼ g2HmZ0

8π
; ð20Þ

ΓZ0→XX̄ ¼ g2HmZ0

96π
jQX

Hj2
�
1 −

4M2
X

m2
Z0

�
3=2

; ð21Þ

ΓZ0→HþH−ðϕRϕIÞ ¼
g2H
48π

mZ0

�
1 −

4m2
Φ

m2
Z0

�3
2

; ð22Þ

where we assume masses of ψ2;3 are heavier than mZ0=2
and Nf

c is a color factor. Remember here that the Z0 mass is

given by mZ0 ¼ gH
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2φ þ ð8vφ0 Þ2

q
in Eq. (12).

In Fig. 1, we show the relic density in terms of MX,
where we fix the following parameters4:

gH ¼ 0.05; jVN13
j ¼ 0.1; mZ0 ¼ 250 GeV;

ṽφφ0 ¼ 100 GeV; jM̃11j ¼ 20 GeV;

Mψ2
¼ 500 GeV; Mψ3

¼ 1000 GeV;

mΦ ¼ 500 GeV: ð23Þ

The figure suggests the allowed range for 0.05 ≤ gH,

40GeV≲MX≲110GeV; and 125GeV≲MX; ð24Þ

while for gH ≤ 0.05,

MX≲40GeV; and 110GeV≲MX≲125GeV; ð25Þ

when all the parameters except gH are fixed and this region
indicates that the observed relic density is obtained around
resonant point MX ∼mZ0=2 where mZ0 is proportional to
gH. Here, we search for a parameter region satisfying the
observed relic density in general, and we apply
micrOMEGAs4.3.5 [22] to estimate the annihilation cross
sections. Note that the XX → Z0Z0 process is also included
in the following analysis. Then, we scan the parameter
region as follows:

4In principle, one has to derive this mixing and its masses by
diagonalizingMN in the neutral fermions. But here we expect any
values can be taken, since all the mass parameters except the DM
mass and its mixing are free.
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MX ∈ ½10; 1000� GeV; mZ0 ∈ ½100; 2000� GeV;
M̃αβ

ṽφφ0
∈ ½0.025; 0.4�; gH ∈ ½0.05; 0.4�;

V13 ∈ ½0.1; 1=
ffiffiffi
2

p
�; Mψ1;2

∈ ½MX; 1500� GeV;
mΦ ∈ ½100; 300� GeV: ð26Þ

In Fig. 2, we also show the parameter points on the
MX −mZ0 plane, which gives the relic density 0.11 <
Ωh2 < 0.13, fixing the other parameters as given in
Eq. (26). We find that several specific regions can explain
the relic density of DM:
(1) In the light MX region, the XX → αGαG process is

the dominant one and insensitive to mZ0 .
(2) The line-shaped region indicates mZ0 ∼ 2MX, in

which the relic density is explained with a resonant
effect.

(3) In the heavy MX region, the relic density can be
explained by the XX → Z0Z0 process with a relevant
value of gH.

In addition, we show DM annihilation cross section at the
current Universe for the parameter region giving the right
relic density in Fig. 3. The cross section is suppressed for
αGαG and Z0Z0 modes, while it can be ∼10−26 cm3=s for
νRν̄R and HþH−ðϕRϕIÞ modes. Since the ratio of the
HþH− mode is around 10% in the latter case, our scenario
is safe from constraints of indirect detection experiments,
and it will be tested in future measurements of gamma-ray
and neutrino flux from DM annihilation.

III. CONCLUSION

We have proposed a neutrinophilic two-Higgs-doublet
model with hidden local Uð1ÞH symmetry introducing
right-handed neutrinos and exotic SM singlet fermions
for anomaly cancellation. The active neutrino masses are
Dirac type induced by the tiny VEV of a neutrinophilic
Higgs doublet, the interaction with other SM fermions of
which is forbidden by the Uð1ÞH symmetry. We formulated
the boson and fermion sectors where a fermionic DM
candidate naturally arises as the lightest mass eigenstate of
an exotic fermion since it is stable due to a remnant
symmetry even after the spontaneous symmetry breaking.
Then, the DM candidate interacts with active neutrinos by
exchanging the Z0 boson fromUð1ÞH. Moreover, a physical
GB is induced as a consequence of two types of gauge
singlet scalar fields and contributes to the DM annihilation
processes determining the relic density. Then, we analyzed
the relic density of DM, within the safe range of direct
detection searches, and found another allowed range with
lighter DM mass that directly comes from the contribution
of the GB mode in addition to the resonant allowed range
via the Z0 boson.
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given in Eq. (23).
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estimated relic density is 0.11 < Ωh2 < 0.13. The other param-
eters are fixed as given in Eq. (26).
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APPENDIX: DERIVING αG AND αNG IN EQS. (10) AND (11)

Here, we derive the NG boson αNG and physical Goldstone boson αG from φ and φ0 expressed as in Eq. (4), in which
mixing between ϕI is ignored, assuming tiny vϕ. The covariant derivative of φðφ0Þ is given by

Dμφðφ0Þ ¼ e
i αðα0Þ
v
φðφ0Þ

�
∂μ þ i

1

vφðφ0Þ
∂μαðα0Þ − igHQφðφ0ÞZ0

μ

�
rφðrφ0 Þ; ðA1Þ

where Qφðφ0Þ ¼ 1ð8Þ is the Uð1ÞH charge of φðφ0Þ and rφðφ0Þ ¼ ½vφðφ0Þ þ φRðφ0
RÞ�=

ffiffiffi
2

p
. We then have

Lkinetic ¼ ðDμφÞ†ðDμφÞ þ ðDμφ
0Þ†ðDμφ0Þ

¼ 1

2
∂μφR∂μφR þ 1

2
∂μφ

0
R∂μφ0

R þ 1

2
ðv2φ þ 2vφφR þ φ2

RÞ
�
1

v2φ
∂μα∂μα −

2gHQφ

vφ
∂μαZ0μ þ g2HQ

2
φZ0

μZ0μ
�

þ 1

2
ðv2φ0 þ 2vφ0φ0

R þ φ02
RÞ
�

1

v2φ0
∂μα

0∂μα0 −
2gHQφ0

vφ0
∂μα

0Z0μ þ g2HQ
2
φ0Z0

μZ0μ
�
: ðA2Þ

Here, we add the gauge fixing term,

LG ¼ −
1

2
G2;

G ¼ 1ffiffiffi
ξ

p ð∂μZ0μ þ ξgHQφvφαþ ξgHQφ0vφ0α0Þ; ðA3Þ

where ξ is a gauge fixing parameter. Combining Eqs. (A2) and (A3), we obtain mass terms for Z0 and αðα0Þ such that

LM ¼ 1

2
g2HðQ2

φv2φþQ2
φ0v2φ0 ÞZ0

μZ0μ−
1

2
ξg2HðQ2

φv2φþQ2
φ0v2φ0 Þ

"
Qφvφffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Q2
φv2φþQ2

φ0v2φ0

q αþ Qφ0vφ0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2

φv2φþQ2
φ0v2φ0

q α0
#
2

: ðA4Þ

Thus, the second term corresponds to the gauge-dependent mass term for the NG boson, and the physical Goldstone boson
state is orthogonal to the NG boson one. Therefore, the αNG and αG are given as Eqs. (10) and (11).
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