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Non-Abelian dark gauge forces that do not couple directly to ordinary matter may be realized in nature.
The minimal form of such a dark force is a pure Yang-Mills theory. If the dark sector is reheated in the early
Universe, it will be realized as a set of dark gluons at high temperatures and as a collection of dark glueballs
at lower temperatures, with a cosmological phase transition from one form to the other. Despite being dark,
the gauge fields of the new force can connect indirectly to the standard model through nonrenormalizable
operators. These operators will transfer energy between the dark and visible sectors, and they allow some or
all of the dark glueballs to decay. In this work we investigate the cosmological evolution and decays of dark
glueballs in the presence of connector operators to the standard model. Dark glueball decays can modify
cosmological and astrophysical observables, and we use these considerations to put very strong limits on
the existence of pure non-Abelian dark forces. On the other hand, if one or more of the dark glueballs are
stable, we find that they can potentially make up the dark matter of the Universe.
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I. INTRODUCTION

New gauge forces may be realized in nature beyond the
SUð3Þc × SUð2ÞL ×Uð1ÞY structure of the standard model
(SM). If a new gauge force connects directly to SM matter,
it must have a characteristic mass scale above about a TeV
to be consistent with experimental tests of the SM [1–3].
On the other hand, new dark gauge forces that couple only
very weakly to the SM can be significantly lighter [4–6].
Such dark forces can be very challenging to probe directly
in experiments, and in many scenarios the strongest bounds
on them come from astrophysical and cosmological obser-
vations [7–10].
In this work we investigate the cosmological evolution

and constraints on new non-Abelian dark forces. Such dark
forces are well motivated, and arise in string theory
constructions [11], models of dark matter or baryogenesis
[12–32], neutral naturalness scenarios [33–37], and within
the hidden valley paradigm [38–40]. The requirement of
gauge invariance in theories of non-Abelian dark forces
implies that the new gauge vector bosons can only couple to
the SM through nonrenormalizable operators [39,40]. This
stands in contrast to Abelian dark forces that can connect to
the SM at the renormalizable level through kinetic mixing

with hypercharge. As a result, direct low-energy searches
for non-Abelian dark forces are very difficult, and cosmo-
logical observations usually provide the most powerful
tests of them [19–32].
The particle spectrum in theories of non-Abelian forces

is diverse and complicated, and depends on both the gauge
group and the representations of the matter fields charged
under it. We focus on the minimal realization of a non-
Abelian dark force consisting of a pure Yang-Mills theory
with a simple gauge group Gx. Such theories can be
described in terms of self-interacting dark gluons at high
energies, but are expected to confine to a set of gauge-
neutral glueball bound states below a dynamically gen-
erated confinement scale Λx [41]. Both phases can be
realized in the hot early Universe, with a transition from the
gluon phase to the glueball phase occurring as the temper-
ature (of the dark sector) falls below the critical temperature
Tc ∼ Λx [42].
If the visible and dark sectors do not interact, they evolve

independently with distinct temperatures T and Tx. After
confinement at Tx ¼ Tc, the dark glueballs undergo a
complicated freeze-out process. The energy density of
the dark sector is dominated by the lightest glueball state,
which on general grounds is expected to have JPC ¼ 0þþ
[43]. The lightest 0þþ number density changes mainly
through (3 → 2) self-annihilation processes [25,44]. While
these reactions are active, the dark temperature changes
very slowly, only falling off as the logarithm of the
cosmological scale factor [45,46]. As a result, the lightest
glueballs form a massive thermal bath in which the other
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heavier glueballs annihilate through 2 → 2 processes and
eventually freeze out [44,47,48]. In the end, a collection
of relic glueball densities is left over, dominated by
the 0þþ with exponentially smaller yields for the heavier
states [44,48].
The process of glueball freeze-out can change drastically

if there are operators that connect the visible and dark
sectors. Such operators are always expected at some level;
quantum gravitational effects are thought to induce gauge-
invariant operators involving both SM and dark sector
fields suppressed by powers of the Planck mass [49–52].
Even stronger connections can arise if there exist new
matter fields that couple directly to both the visible and
dark sectors [39,40]. As long as the new physics generating
these operators is much larger than the confinement scale,
their effects can be parametrized in terms of a set of
nonrenormalizable connector operators.
With connectors, energy can be transferred between the

dark and visible sectors [14,25,29,30,44]. After confine-
ment, connector operators can also modify the glueball
freeze-out dynamics and induce decays of some or all of the
dark glueballs to the SM. If one of the glueballs is long-
lived or stable, it contributes to the density of dark matter
(DM) [21]. However, glueball lifetimes that are not exceed-
ingly long will inject energy into the cosmological plasma
and modify the standard predictions for big bang nucleo-
synthesis (BBN) [53,54] and the cosmic microwave back-
ground (CMB) [55,56], as well as act as astrophysical
sources of cosmic and gamma rays [9].
The aim of this work is to estimate the bounds on pure

non-Abelian dark forces in the presence of connector
operators from cosmology and astrophysics. We focus
mainly on the dark gauge group Gx ¼ SUð3Þ with glueball
masses above m0 ≥ 100 MeV, and we study the leading
connector operators between the dark vector bosons and the
SM with characteristic mass scale M ≫ m0. As an initial
condition, we assume inflation (or something like it)
followed by preferential reheating to the visible sector to
a temperature above the confinement scale but below that
of the connectors. With these assumptions, we find very
strong limits on non-Abelian dark forces.
Cosmological effects of dark gluons and glueballs were

studied previously in Refs. [9,14,19,21,22,24,25,29–
31,44]. We extend these earlier works with a more detailed
analysis of the leading (two-body) connector operators and
their effects on energy transfer between the visible and dark
sectors. We also investigate the effects of heavier glueballs
in the spectrum beyond the lightest mode, and we show that
the lightest C-odd glueball can play an important role in
some cases and even make up the observed DM density
when it is long lived or stable.
Following this introduction, we discuss the general

properties of glueballs relevant to our analysis in Sec. II.
Next, we present the leading connector operators to the SM
and investigate their implications for glueball decays in

Sec. III. In Sec. IV we study the cosmological evolution of
the dark gauge theory and we compute glueball yields both
with and without connector operators. These results are
then applied to derive cosmological constraints on dark
glueballs in Sec. V. Finally, Sec. VI is reserved for our
conclusions. Some technical details about gluon thermal-
ization and the cosmological and astrophysical bounds we
apply are collected in Appendixes A and B.

II. GLUEBALL PROPERTIES

Glueballs have been studied using a variety of methods
for a wide range of non-Abelian gauge groups [41,57]. In
this section we review and derive some general results for
SUðNÞ glueballs that are essential for the analysis to follow.

A. Glueball masses

Detailed lattice studies of glueballs have been performed
for SUðNÞ with N ¼ 2; 3;…, and a number of stable states
are found. Since the minimal Yang-Mills action respects
angular momentum (J), parity (P), and charge conservation
(C), glueballs can be classified according to their JPC

quantum numbers. The lightest state is found to have
JPC ¼ 0þþ [58,59], as expected on general grounds [43].
The masses and quantum numbers of the stable glueballs
found for SUð2Þ and SUð3Þ are listed in Table I. They are
expressed in terms of the length scale r0 where the
intergluon potential goes from Coulombic to linear,
and for SUð3Þ is related to the strong coupling scale by
r0Λx ¼ 0.614ð2Þð5Þ [60].
For reasons to be explained below, we focus our attention

on two specific glueball states [for SUðN ≥ 3Þ]: the lightest
overall JPC ¼ 0þþ glueball in the spectrum, together with
the lightestC-odd glueball with JPC ¼ 1þ−. With the gauge
group SUð3Þ, the mass of the lightest 0þþ glueball is
m0 ≃ 6.9Λx, and the 1þ− mass is m1 ¼ 1.71ð5Þm0 [59].
Going beyond SUð3Þ to larger N, the glueball mass

spectrum is found to be similar, with mass corrections

TABLE I. Masses of known stable glueballs in SUð2Þ [61] and
SUð3Þ [58].
JPC m r0 (N ¼ 2) m r0 (N ¼ 3)

0þþ 4.5(3) 4.21(11)
2þþ 6.7(4) 5.85(2)
3þþ 10.7(8) 8.99(4)
0−þ 7.8(7) 6.33(7)
2−þ 9.0(7) 7.55(3)
1þ− � � � 7.18(3)
3þ− � � � 8.66(4)
2þ− � � � 10.10(7)
0þ− � � � 11.57(12)
1−− � � � 9.50(4)
2−− � � � 9.59(4)
3−− � � � 10.06(21)
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suppressed by powers of 1=N2 [61]. Similar results are also
expected for other gauge groups with nonvanishing
anomaly coefficient dabc ¼ trðtaftb; tcgÞ, where ta is the
generator of the fundamental representation [41] (which we
normalize according to trðtatbÞ ¼ δab=2 for the N of
SUðNÞ). However, let us point out that for SUð2Þ and
other groups with vanishing dabc such as SOð2N þ 1Þ and
Spð2NÞ, there are no C-odd states in the spectrum [39].
A further extension of the minimal Yang-Mills theory is the
inclusion of a topological theta term. This would break P
and T, but not C. It would also shift the glueball masses
[62], and induce mixing between glueball states with
different P quantum numbers [62,63].

B. Glueball couplings and matrix elements

Glueball self-couplings and transition matrix elements
are needed to compute their cosmological evolution. These
quantities have not been studied in as much detail on the
lattice as the glueball mass spectrum. Here, we collect the
relevant existing lattice results, and we use naive dimen-
sional analysis (NDA) [64–66] and large-N scaling [67,68]
to make estimates when no lattice data are available.
Glueball interactions are expected to be perturbative in

the limit of large N [for an underlying SUðNÞ gauge
group], and this motivates writing an effective Lagrangian
in terms of glueball fields. Combining the N scaling of
gluon n-point functions with dimensional analysis suggests
the form

Leff ¼
�
N
4π

�
2

m4
xFðϕ=mx; ∂=mxÞ; ð1Þ

where ϕ represents a glueball field interpolated by a single-
trace gluon operator, mx is a characteristic glueball mass
scale, and Fðx; yÞ is a smooth function that is finite as
N → ∞. Expanding this function in a power series and
rescaling to obtain a canonical kinetic operator, the effec-
tive Lagrangian becomes

Leff ¼
1

2
ð∂ϕÞ2 −X

n

an
n!

m4−n
x

�
4π

N

�
n−2

ϕn þ � � � ð2Þ

where the coefficients an are expected to be of order unity.
Note that shifting the gluon field to remove the linear term
does not alter this general form. In the analysis to follow,
we identify mx ¼ m0 with the mass of the lightest glueball.
We also need glueball matrix elements in the analysis to

follow. Specific glueball states can be identified with
gauge-invariant gluon operators, in the sense that the
operators can create one-particle glueball states from the
vacuum. For example [39],

S ¼ trðXμνXμνÞ → 0þþ

P ¼ trðXμνX̃μνÞ → 0−þ

Tμν ¼
1

2
trðXμαXν

αÞ − 1

4
ημνS → 2þþ; 1−þ; 0þþ

Ωð1Þ
μν ¼ trðXμνXαβXαβÞ → 1−−; 1þ−

Ωð2Þ
μν ¼ trðXμ

αXα
βXβνÞ → 1−−; 1þ−: ð3Þ

Here, Xμν ¼ Xa
μνta is the dark gluon field strength con-

tracted with the generators of the fundamental representa-
tion of the group normalized to trðtatbÞ ¼ δab=2.
The two matrix elements of greatest interest to us are

αxFS
0þþ ≡ αxh0jtrðXμνXμνÞj0þþi ∼m3

x ð4Þ

α3=2x M1þ−0þþ ≡ α3=2x h0þþj
�
Ωð1Þ

μν −
5

14
Ωð2Þ

μν

�
j1þ−i

∼
ffiffiffiffiffiffi
4π

N

r
m3

x; ð5Þ

where the estimates on the right-hand sides are based on
large-N and NDA, and αx ¼ g2x=4π is the dark gauge
coupling. In the second line, we have also suppressed
the Lorentz structure of the matrix element, ϵμναβpαϵβ,
where pα is the outgoing momentum and ϵβ is the
polarization of the initial state [39]. The first of these
matrix elements, FS

0þþ , has been computed on the lattice for
N ¼ 3 with the result [59,69]

4παxFS
0þþ ¼ 2.3ð5Þm3

x; ð6Þ
which agrees reasonably well with our large-N and NDA
estimate and is scale independent. In contrast, the second
matrix element has not been calculated on the lattice. We
use the lattice value of FS

0þþ and the NDA estimate

α3=2x M1þ−0þþ ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
4π=N

p
m3

x in the analysis to follow.

III. CONNECTIONS TO THE SM
AND GLUEBALL DECAYS

With the SM uncharged under the dark gauge group Gx,
gauge invariance forbids a direct renormalizable connection
of the dark gluons to the SM. However, massive mediator
states that couple to both sectors can generate nonrenorma-
lizable operators connecting them. If the characteristic mass
scale of themediators isM ≫ Λx, the leading operators have
mass dimension of 8 and 6, and take the form [39,40]

Oð8aÞ ∼
1

M4
trðFSMFSMÞtrðXXÞ; ð7Þ

Oð8bÞ ∼
1

M4
BμνtrðXXXÞμν; ð8Þ

Oð6Þ ∼
1

M2
H†HtrðXXÞ; ð9Þ
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where X and FSM refer to the dark gluon and SM field
strengths. If present, these operators allow some or all of
the glueballs to decay to the SM. In this section we illustrate
simple mediator scenarios that generate these operators,
and we compute the glueball decay rates they induce.

A. Dimension-8 operators

Dimension-8 operators of the form of Eqs. (7) and (8)
lead to glueball decays with characteristic rate

Γ8 ∼
m9

x

M8
: ð10Þ

Here, we present an explicit scenario of mediator fermions
that generates these operators and we compute the glueball
decay rates they induce.
Before proceeding, it is helpful to organize the dimension-

8 operators according to a dark charge conjugation operation
Cx under which Xa

μ → −ηðaÞXa
μ, where ηðaÞ is the sign

change of the fundamental generator ta under charge con-
jugation [70],with the SMvector bosons being invariant. The
operators of Eq. (7) are even underCx and those of Eq. (8) are
odd. Furthermore, Cx coincides with the Cx-number assign-
ments of the glueball states. Correspondingly, the operators
of Eq. (7) only allowdirect decays ofCx-even glueballs to the
SM, or glueball transitions from even to even or odd to odd.
In particular, at d ¼ 8 the operator of Eq. (8) is required for
the lightest Cx-odd 1þ− glueball to decay.
Consider now a set of massive vectorlike fermions with

massesMr ∼M ≫ Λx, each transforming as a fundamental
or antifundamental under Gx ¼ SUðNÞ and the represen-
tation r of the SM gauge group (defined with respect to the
left-handed component of the fermion). Direct collider and
precision electroweak limits on such fermions imply
Mr ≳ 100 GeV if they only have electroweak charges,
and Mr ≳ 1000 GeV if they are charged under QCD
[39,40,71]. The effective Lagrangian generated by integrat-
ing the fermions out is [39]

Leff ⊃
αx
M4

ðα1χ1BμνBαβ þ α2χ2Wc
μνWc

αβ þ α3χ3Ga
μνGa

αβÞ

×

�
1

60
Sημνηαβ þ 1

45
Pϵμναβ þ � � �

�
ð11Þ

þ α3=2x α1=21

M4
χYBμν

14

45

�
Ωð1Þ

μν −
5

14
Ωð2Þ

μν

�
: ð12Þ

Here, the dark gluon operators S, P, and Ωð1;2Þ
μν correspond

to Eq. (3), and the coefficients χi are given by

χi ¼
X
r

dðriÞT2ðriÞ=ρ4r ; ð13Þ

χY ¼
X
r

dðriÞYr=ρ4r ; ð14Þ

where the sums run over the SM representations r of the
fermions, and ρr ¼ Mr=M. For each such representation,
we define subrepresentations r ¼ ðr1; r2; r3Þ with respect
to the SM gauge factorsGi ¼ Uð1ÞY , SUð2ÞL, SUð3Þc. The
quantity dðriÞ is the number of copies of the ith sub-
representation within r, and T2ðriÞ is the trace invariant for
that factor [normalized to 1=2 for the N of SUðNÞ and Y2

for Uð1ÞY].1
Generic representations of mediator fermions break the

dark charge conjugation number Cx explicitly and generate
both operator types of Eqs. (7) and (8). This is explicit in
Eq. (11), with both even (χi ≠ 0) and odd operators
(χY ≠ 0). However, there exist mediator fermion combina-
tions that preserveCx [72] and yield χY ¼ 0. From Eq. (14),
we see that this requires a specific combination of fermion
charges as well as masses. The presence of masses also
implies that Cx can be broken softly. In contrast, the χi
coefficients of Eq. (13) are positive semidefinite and not
subject to cancellation.
The Cx-preserving operator of Eq. (11) allows direct

decays of the 0þþ glueball to pairs of SM vector bosons.
The corresponding decay widths are [39]

Γð0þþ → ggÞ ¼ ðN2
c − 1Þ α23

16π

�
2

60

�
2

χ23
m3

0ðαxFS
0þþÞ2

M8
;

ð15Þ

Γð0þþ → γγÞ
Γð0þþ → ggÞ ¼

1

ðN2
c − 1Þ

�
αχγ
α3χ3

�
2

ð16Þ

Γð0þþ → ZZÞ
Γð0þþ → ggÞ ¼ 1

ðN2
c − 1Þ

�
α2χZ
α3χ3

�
2
�
1 − 4

m2
Z

m2
0

�
1=2

×
�
1 − 4

m2
Z

m2
0

þ 6
m4

Z

m4
0

�
ð17Þ

Γð0þþ → WþW−Þ
Γð0þþ → ggÞ ¼ 2

ðN2
c − 1Þ

�
α2χ2
α3χ3

�
2
�
1 − 4

m2
W

m2
0

�
1=2

×

�
1 − 4

m2
W

m2
0

þ 6
m4

W

m4
0

�
ð18Þ

Γð0þþ → γZÞ
Γð0þþ → ggÞ ¼

2

ðN2
c − 1Þ

� ffiffiffiffiffiffiffiffi
αα2

p
χγZ

α3χ3

�
2
�
1−

m2
Z

m2
0

�
3

; ð19Þ

where m0 ¼ mx is the 0þþ glueball mass, FS
0þþ is given by

Eq. (4), N2
c − 1 ¼ 8, the χi are defined in Eq. (13),

χγ ¼ χ1 þ χ2, χZ ¼ ðs4Wχ1 þ c4Wχ2Þ=c2W , and χγZ ¼
ðc2Wχ2 − s2Wχ1Þ=cW , with sW being the sine of the weak
mixing angle. Note that the decay width to gluons in
Eq. (15) only applies form0 ≫ 1 GeV; at lower masses the

1Note that our χ2;3 are smaller by a factor of 1=2 than the
corresponding terms in Ref. [39].
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final states consist of hadrons. We do not attempt to model
this hadronization, and instead we apply a factor offfiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ð2mπ=m0Þ2

p
to the decay width. In evaluating the

width of Eq. (15), we take α3 at scale m0 since the
corresponding gluon operator is renormalized (at one loop)
in the same way as the standard field strength operator.
Decays of the lightest 1þ− glueball occur through the

Cx-odd operator term in Eq. (11), with the leading decay
channels expected to be 1þ− → 0þþ þ fγ; Zg. The widths
are [39]

Γð1þ− → 0þþγÞ ¼ α

24π
χ2Y

�
1 −

m2
x

m2
1

�
3m3

1ðα3=2x M1þ−0þþÞ2
M8

ð20Þ

Γð1þ− → 0þþZÞ ¼ α

24π
t2Wχ

2
Y

��
1þm2

x

m2
1

−
m2

Z

m2
1

�
2

− 4
m2

x

m2
1

�
3=2

×
m3

1ðα3=2x M1þ−0þþÞ2
M8

ð21Þ

with m1 ¼ m1þ− , and M1þ−0þþ defined in Eq. (5).
The total decay lifetimes τ ¼ 1=Γ of the 0þþ and 1þ−

glueball states from the dimension-8 operators above with
χi ¼ χY ¼ 1 and Gx ¼ SUð3Þ are shown in the left and
right panels of Fig. 1. In the upper left of both plots, we
mask out the regions withm0 > M=10 where our treatment
in terms of effective operators breaks down. The dotted,
solid, and dashed lines indicate reference lifetimes of
τ ¼ 1=Γ ¼ 0.1 s, 5 × 1017 s, 1026 s. These lifetimes cor-
respond to decays that occur early in the history of the
Universe, at the present day, and long-lived glueballs,
respectively. Both decay rates follow the approximate
scaling of Eq. (10). All other known [SUð3Þ] glueballs

can decay through these dimension-8 operators as well with
parametrically similar rates, although there can be numeri-
cally significant differences due to coupling factors and
phase space [39].

B. Dimension-6 operators

Glueball decays through the dimension-6 operator of
Eq. (9) proceed with characteristic rate

Γ6 ∼
m5

0

M4
: ð22Þ

We present here two mediator scenarios that generate the
operator of Eq. (9) and we compute the decay rates they
induce.
Our first mediator scenario follows Ref. [40] and consists

of mediator fermions with Yukawa couplings to the SM
Higgs boson. A minimal realization contains a vectorlike
SUð2ÞL doublet P with gauge quantum numbers (rx, 1, 2,
−1=2), and a vectorlike singlet N with quantum numbers
(rx, 1, 1, 0) together with the interactions [40,71]

−L ⊃ MPP̄PþMNN̄N þ λP̄HN þ ðH:c:Þ: ð23Þ

For MN, MP ≫ mh, the leading glueball effective operator
from integrating out the fermions can be obtained using the
low-energy Higgs theorem [73],

Leff ⊃
αx
6π

T2ðrÞ
λ2

M2
H†HXa

μνXa μν; ð24Þ

whereM2 ≃MPMN and T2ðrxÞ ¼ 1=2 is the trace invariant
of the fermion representation rx under the dark gauge group
Gx. In addition to the dimension-6 operator above, the

FIG. 1. Decay lifetimes τ ¼ 1=Γ of the 0þþ (left) and 1þ− (right) glueball states due to the dimension-8 operators as a function
of M and m0 for χi ¼ χY ¼ 1 and Gx ¼ SUð3Þ. The masked regions at the upper left show where m0 > M=10 and our treatment in
terms of effective operators breaks down, while the white dotted, solid, and dashed lines indicate reference lifetimes of
τ ¼ 0.1 s, 5 × 1017 s, 1026 s.
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massive fermions also generate dimension-8 operators of
the form of Eq. (11).
A second mediator scenario consists of a complex scalar

Φx charged under the dark gauge group with a Higgs-portal
coupling,

−L ⊃ M2
ΦjΦxj2 þ κjΦxj2jHj2: ð25Þ

Applying the low-energy Higgs theorem to this state (for
MΦ ≫ mh), we find

−Leff ⊃ −
αx
48π

T2ðrÞ
κ

M2
Φ
H†HXa

μνXa μν: ð26Þ

In passing, we note that the Higgs-portal coupling of
Eq. (25) respects dark Cx number.
The operator generated in either mediator scenario can

be written in the form

−Leff ⊃
αxy2eff
6πM2

H†HXa
μνXa μν; ð27Þ

with the dimensionless coefficient yeff . Since this operator
is even under Cx, it only allows direct decays of Cx-even
glueballs to the SM, or even-to-even or odd-to-odd glueball
transitions. It was shown in Ref. [40] that this is sufficient
to allow all known SUð3Þ glueballs to decay, except for the
1þ− and 0−þ modes. The absence of a 1þ− decay follows
from Cx considerations, while the conclusion for 0−þ is a
result of spin and parity, rather than Cx. This mode can
decay at the dimension-6 level if a topological dark gluon
term is added to the UV Lagrangian or by extending to a
two-Higgs doublet model [40].
Using the parametrization of Eq. (27), the direct decay of

the 0þþ glueball to the SM has rate [40]

Γð0þþ → SMÞ ¼
�
y2eff
3π

�
2 ð ffiffiffi

2
p hHiÞ2ðαxFS

0þþÞ2
M4½ðm2

0 −m2
hÞ2 þ ðmhΓhÞ2�

× Γhðmh → m0Þ; ð28Þ

where
ffiffiffi
2

p hHi ¼ 246 GeV is the electroweak vacuum
expectation value, FS

0þþ is defined in Eq. (4), mh ¼
125 GeV is the Higgs mass, Γh ¼ 4.1 MeV is the Higgs
width, and Γhðmh → m0Þ is the total width the SM Higgs
would have if its mass were m0 (and includes decays to
Higgs final states for m0 > 2mh). We evaluate this width
using the expressions of Refs. [74,75].
In Fig. 2 we show the decay lifetime τ ¼ 1=Γ of the 0þþ

glueball from the dimension-6 (and dimension-8) operators
above with yeff ¼ 1 and Gx ¼ SUð3Þ. The upper region of
the plot is masked out since it corresponds to m0 > M=10
where our treatment in terms of effective operators breaks
down. The dotted, solid, and dashed lines indicate lifetimes
of τ ¼ 0.1 s, 5 × 1017 s, 1026 s. For m0 ≫ mh, the 0þþ
lifetime scales according to Eq. (22), while for m0 < mh

there is an additional suppression from small Yukawa
couplings. Comparing to the 1þ− lifetime in Fig. 1, we
see that it is parametrically long lived compared to the 0þþ
when both dimension-6 and dimension-8 operators are
present.

C. Decay scenarios

Based on the discussion above, we present four glueball
decay scenarios organized by the dimensions of the relevant
decay operators and the dark conjugation charge Cx.
(1) Dimension-8 decays with broken Cx

In this scenario glueballs decay exclusively
through the dimension-8 operators of the form of
Eq. (11). All glueballs are able to decay with
parametrically similar rates. To realize this scenario,
we use the effective interactions in Eq. (11)
with χi ¼ χY ¼ 1.

(2) Dimension-8 decays with exact Cx
This scenario is similar to the first, but now with

χY ¼ 0. Conservation of Cx implies that the lightest
1þ− glueball is stable. The other glueballs are all
able to decay with parametrically similar rates.

(3) Dimension-6 decays with broken Cx
Glueball decays occur through the dimension-6

operator of Eq. (27) and the dimension-8 operators
of Eq. (11). We realize the scenario by setting
yeff ¼ 1 together with χi ¼ χY ¼ 1. With the ex-
ception of the 1þ− mode (and possibly the 0−þ),
glueballs decay primarily through the dimension-6
operator. In contrast, the 1þ− glueball only decays
through the Cx-breaking dimension-8 operator with

FIG. 2. Decay lifetime τ ¼ 1=Γ of the 0þþ glueball due to the
combined dimension-6 and dimension-8 operators as a function
of M and m0 for χi ¼ χY ¼ 1, yeff ¼ 1, and Gx ¼ SUð3Þ. The
masked region at the upper left shows wherem0 > M=10 and our
treatment in terms of effective operators breaks down, while the
dotted, solid, and dashed white lines indicate lifetimes of
τ ¼ 0.1 s, 5 × 1017 s, 1026 s.
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a parametrically suppressed rate, making it much
longer lived than the other glueballs, which in turn
leads to different cosmological scenarios when
considering the constraints we can place on this
model.

(4) Dimension-6 decays with exact Cx
Decays occur through the dimension-6 operator of

Eq. (27) and the Cx-conserving terms in Eq. (11).
We realize the scenario by taking yeff ¼ 1, χi ¼ 1,
and χY ¼ 0. The 1þ− glueball is stable, while the
other glueballs decay mainly through the dimension-
6 operator.

We study the cosmological implications of these four decay
scenarios in the analysis to follow.

IV. GLUEBALL DENSITIES
IN THE EARLY UNIVERSE

Glueballs are formed in the early Universe in a confining
transition as the dark sector temperature Tx falls below a
critical temperature Tc ∼m0. After they are created, the
glueballs undergo a complicated freeze-out process involv-
ing a range of 2 → 2 and 3 → 2 reactions. These dynamics
become even more complicated when the dark sector
connects to the SM through the operators discussed above,
with new effects such as energy transfer between the visible
and dark sectors and glueball decays. In this section we
review the formation and freeze-out of glueballs in the
absence of connectors to the SM, and we investigate how
this picture changes when connectors are present.

A. Glueball formation and freeze-out
without connectors

In the absence of operators that connect to the SM, the
visible and dark sectors do not thermalize with each other.
We assume that enough energy is liberated by reheating the
following primordial inflation (or something similar), that
both sectors are able to thermalize independently with
temperatures T and Tx [76], and furthermore that Tx ≥ Tc
at this point.2

As the Universe expands and cools, dark glueballs are
formed in a confining transition. This transition has been
studied in detail using lattice methods for Gx ¼ SUðNÞ
[42,77–80], and the critical temperature of the transition is
found to be [79]

Tcr0 ¼ 0.709ð6Þ þ 0.546ð22Þ=N2; ð29Þ

corresponding to Tc ≃m0=5.5 for N ¼ 3.3 The confining
transition is also found to be second order for N ¼ 2, very
weakly first order for N ¼ 3, and increasingly strongly first

order for larger N [42,78]. Generalizing the analysis of
Ref. [24] as in Ref. [44], we estimate that the fractional
entropy change in the transition is negligible for N ≲ 10
over the full range of parameters considered in this work.
Following the transition, as Tx falls below the critical
temperature, the glueball masses quickly settle to their
zero-temperature values [82,83]. Based on these results, we
assume the phase transition occurs instantaneously at
Tx ¼ Tc. This should be a good approximation for
N ¼ 3, but could be inaccurate for much larger N.
Entropy is conserved independently in both sectors while

kinetic equilibrium is maintained. This implies that the ratio
of entropy densities s and sx in the two sectors remains
constant,

R≡ sx
s
¼ constant: ð30Þ

We take R as an input to our calculation; in the absence of
connectors its value is set by the unspecified dynamics of
reheating after inflation [76]. However, we do assume
R < 1 corresponding to preferential reheating to the visible
sector. For Tx ≫ Tc and Gx ¼ SUðNÞ, the entropy ratio is
related to the temperatures in the two sectors by

R ¼ 2ðN2 − 1Þ
g�S

�
Tx

T

�
3

; ð31Þ

where g�S is an effective number of degrees of freedom in
the visible sector at temperature T. This ratio is maintained
through the confining transition provided it is not too
strongly first order [24].
Once formed, dark glueballs interact with each other and

undergo a freeze-out process in which they depart from
thermodynamic equilibrium and develop stable relic den-
sities. This process was studied in detail in Refs. [24,25,44].
In the last work, the evolution of glueball numbers was
computed numerically using a network of Boltzmann
equations containing the most important 2→2 and 3 → 2
reactions, with thermally averaged cross sections estimated
using the glueball effective Lagrangian of Eq. (2).
For the purposes of our cosmological analysis of glueball

effects to follow, the results of Ref. [44] are captured to an
excellent approximation by a simplified two-state model
for the densities of the 0þþ and 1þ− glueballs. In this
model, the evolution equations for the 0þþ density n0 and
the 1þ− density n1 are [44]

dn0
dt

þ 3Hn0 ¼ −hσ32v2in20ðn0 − n̄0Þ

þ hσ22vi
�
n21 −

�
n0
n̄0

�
2

n̄21

�
; ð32Þ

dn1
dt

þ 3Hn1 ¼ −hσ22vi
�
n21 −

�
n0
n̄0

�
2

n̄21

�
; ð33Þ

2If not, the glueball relic density is set by the details of
inflationary reheating.

3We have used the results of Ref. [81] to convert between
different lattice conventions.
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where H is the Hubble factor, n̄i are the equilibrium
number densities at temperature Tx, and hσ32vi and
hσ22vi correspond to the 3ð0þþÞ → 2ð0þþÞ and
ð1þ−1þ−Þ → ð0þþ0þþÞ processes. In detail, the Hubble
factor is given by

H2 ¼ 1

3M2
Pl

ðρþ ρxÞ; ð34Þ

where ρ is the energy density of the SM and ρx is that of the
dark sector. Since kinetic equilibrium is expected to hold in
the dark sector throughout the freeze-out process, the
number densities take the form

ni ¼ gi

Z
d3p
ð2πÞ3 ½e

ðEi−μiÞ=Tx − 1�−1; ð35Þ

where Ei ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

i þ p⃗2
p

, gi is the number of internal
degrees of freedom, μi is a chemical potential, and Tx is
the common dark sector temperature. The precise definition
of the equilibrium densities is then n̄i ¼ niðTx; μi → 0Þ.
For the thermally averaged cross sections, we estimate
them using Eq. (2),

hσ32v2i ≃
1

ð4πÞ3
�
4π

N

�
6 1

m5
0

; ð36Þ

hσ22vi ≃
1

4π

�
4π

N

�
4 1

m2
1

: ð37Þ

To evaluate Eqs. (32) and (33), it is necessary to track the
time evolution of the dark temperature Tx. This can be
achieved using the constancy of the entropy ratio R together
with

Txsx ¼
X
i

ðρi þ pi − μiniÞ: ð38Þ

Prior to freeze-out of the 0þþ mode (and after dark
confinement), the dark temperature falls as Tx ∝ 1= lnðaÞ
due to the energy injected by 3 → 2 annihilations [45].
After 0þþ freeze-out, the dark temperature falls as
Tx ∝ a−2.
Our two-state simplified model provides an excellent

approximation of the full analysis of Ref. [44]. A central
feature of the analysis is that near equilibrium at Tx < Tc
the 2 → 2 reactions are parametrically faster than the
3 → 2. This keeps the ratio of the 0þþ and 1þ− densities
close to the equilibrium ratio throughout the freeze-out
process,

n1
n0

≃
n̄1
n̄0

¼ 3

�
m1

m0

�
3=2

e−xxðΔm=m0Þ; ð39Þ

with Δm ¼ ðm1 −m0Þ and xx ¼ m0=Tx. Thus, the 2 → 2
reactions push the 1þ− density to be exponentially smaller
than the 0þþ.
The exponential suppression of heavier modes also

means that the freeze-out of the 0þþ mode can be computed
reliably in isolation, neglecting the effects of the 1þ− and
keeping only the 3 → 2 reactions. Calculations of single-
state freeze-out through 3 → 2 annihilation have been
performed in Refs. [25,45,47,48]. For freeze-out at
xfox ¼ Tfo

x =m0, the 0þþ relic yield is approximately

Y0 ≡ n0
s
≃

R
xfox

: ð40Þ

Numerically, we find xfox ∈ ½5; 20� for R ∈ ½10−12; 0.1� and
m0 ∈ ½10−3; 109� GeV. The less-abundant 1þ− mode
freezes out in the background of the massive bath of
0þþ glueballs [44,48]. This occurs after 0þþ freeze-out, but
before the kinetic self-equilibration of the 0þþ states is lost.
In Fig. 3 we show the relic yields of 0þþ (left) and 1þ−

(right) glueballs in the absence of connectors to the SM in
the m0–R plane for Gx ¼ SUð3Þ. The white lines in both
panels indicate where the relic density of that species
coincides with the observed DM density, ΩDMh2 ¼
0.1188ð10Þ [84]. The shaded regions at the lower right
of both panels show where xfox < 5 implying the glueball
densities are set by the nonperturbative dynamics of the
confining phase transition. As expected, the 1þ− yield is
always much lower than the 0þþ yield.
Going beyond the two-state model, our arguments

regarding the exponential suppression of the 1þ− density
relative to the 0þþ also apply to the other heavier glueball
modes [44]. The total glueball relic density is strongly
dominated by the 0þþ density, while 2 → 2 annihilation
reactions push the heavier glueball densities tomuch smaller
values. In fact, these reactions tend to be much more
efficient for the other heavier glueballs than the 1þ− due
to coannihilation with the 0þþ. For example, 2þþ þ 0þþ →
0þþ þ 0þþ efficiently depletes the second-lightest 2þþ
glueball up to very large xx, while reactions such as
1−− þ 0þþ → 1þ− þ 0þþ quickly transfer the density of
heavier C-odd glueballs to the lighter 1þ−. Conservation of
Cx number in the dark sector implies that the net density
of C-odd glueballs cannot be reduced by coannihilation. As
a result, the 1þ− state generally develops the second largest
relic density, with the densities of the other dark glueballs
being much smaller. This, combined with the unique decay
properties of the 1þ− glueball when connectors are included,
is the reasonwhywe only consider the effects of the 0þþ and
1þ− glueballs in our analysis of glueball cosmology.

B. Glueball freeze-out with connectors

Connector operators can modify the freeze-out of glue-
balls in a number of ways. Scattering and decay reactions
mediated by such operators transfer energy between the
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visible and dark sectors, and may allow them to thermalize.
Decays through the connector operators after confinement
also deplete glueballs, and can occur before or after the
freeze-out of the various (3 → 2) and (2 → 2) reactions. We
investigate these effects here, both before and after confine-
ment, with a focus on the 0þþ and 1þ− glueballs. Our goal
is to compute the yields of these species prior to their decay.
As in the freeze-out analysis without connectors, we take

as an initial condition primordial inflation (or something
like it) with preferential reheating to the visible sector
characterized by a temperature TRH that is larger than the
confinement transition temperature Tc ≃m0=5.5. With
connectors, we also assume TRH ≪ M. Reheating above
the connector scale M is likely to thermalize the dark and
visible sectors at TRH, and can produce a relic abundance of
the connector particles themselves. These can have inter-
esting cosmological effects in their own right, acting as
quirks if they carry Gx charge [34,85,86], and potentially
creating dark glueballs nonthermally [31,32,87,88]. By
taking TRH ≪ M, the production of connector particles
in the early Universe is strongly suppressed allowing us to
focus on the effects of the glueballs.

1. Energy transfer before confinement

Consider first the transfer of energy at temperatures T
well above the confinement temperature Tc. In the absence
of connectors, preferential reheating to the visible sector
produces Tx ≪ T. Connector operators allow reactions of
the form SMþ SM ↔ X þ X that transfer energy from the
visible sector to the dark sector. For Tx > Tc, the evolution
equation for the energy density of the dark sector is [89,90]

dρx
dt

þ 4Hρx ¼ −hΔE · σviðn2x − ñ2xÞ; ð41Þ

where hΔE · σvi is the thermally averaged energy transfer
cross section for X þ X → SMþ SM, nx is the dark gluon
number density, and ñx ¼ g̃xðζð3Þ=π2ÞT3 is the value it
would have in full equilibrium with the visible sector with
g̃x dark gluon degrees of freedom [equal to g̃x ¼ 2ðN2 − 1Þ
for Gx ¼ SUðNÞ].4 For Tx ≪ T, the ñ2x term on the right
side above dominates and leads to a net energy transfer to
the dark sector. This transfer saturates and ceases when
Tx → T and nx → ñx.
For visible radiation domination with constant g�,

Eq. (41) can be rewritten as

d
dT

�
ρx
T4

�
¼ 1

HT5
hΔE · σviðn2x − ñ2xÞ: ð42Þ

With the connector operators of Eqs. (7) and (9) and
T ≫ Tx, the right side of Eq. (42) takes the parametric form

ΔC≡ hΔE · σviðn2x − ñ2xÞ ð43Þ

∼ −Dn
MPlTn−2

Mn ; ð44Þ

where n ¼ 4, 8. Integrating from temperature T to the
reheating temperature TRH, the approximate solution is

�
ρx
T4

�
−
�
ρx
T4

�
RH

∼
Dn

ðn−1Þ
MPlTn−1

RH

Mn

�
1−

�
T

TRH

�
n−1

�
: ð45Þ

FIG. 3. Mass-weighted relic yields of the 0þþ (left) and 1þ− (right) glueballs in the m0–R plane in the absence of connectors for
Gx ¼ SUð3Þ. The solid white lines in each panel indicate where the relic density saturates the observed dark matter abundance. The dark
masked region at the lower right of both panels shows where 0þþ freeze-out occurs for xfox < 5 and our freeze-out calculation is not
applicable due to the unknown dynamics of the confining phase transition.

4Implicit in Eq. (41) is the assumption of self-thermalization of
the energy injected into the dark sector to a temperature Tx > Tc.
Thermalization of non-Abelian gauge theories tends to be
efficient [91], and we expect this assumption to be valid provided
the total energy transfer is not exceedingly small.
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This expression is dominated by the contribution near the
reheating temperature, and represents the contribution to
the dark energy density from transfer reactions.
The approximate forms of Eqs. (44) and (45) are only

valid for T < TRH and T > Tx ≥ Tc. The first of these
conditions corresponds to the upper limit on the era of
radiation domination. An even higher radiation temperature
can be achieved prior to reheating, but for standard
perturbative reheating and n < 29=3 ≃ 9.67 we find that
the energy transfer before the radiation era is also domi-
nated by reactions near T ∼ TRH. The second condition
T > Tx ≥ Tc is needed to justify our neglect of the n2x term
on the right side of Eq. (42) and our assumption of a
deconfined phase. As Tx approaches T due to the energy
transfer, this term becomes important and the net energy
transfer goes to 0, corresponding to the thermalization of
the two sectors.
Motivated by these considerations, let us define

Δ
�
ρx
T4

�
≡

Z
T

·
dT 0

�
ΔC
HT 05

�
ð46Þ

∼
Dn

ðn − 1Þ
MPlTn−1

Mn : ð47Þ

This represents the contribution to the dark sector energy
from thermal transfer in the vicinity of temperature T.
Thermalization occurs when

Δ
�
ρx
T4

�
≥
π2

30
g̃x; ð48Þ

where g̃x is the number of dark gluon degrees of freedom.
Let Tth be the temperature that solves Eq. (48) as an
equality. If Tth < Tc, the visible and dark sectors remain
thermalized at least until confinement. Conversely, if
Tth > Tc thermalization is lost at T ¼ Tth and the dark
and visible sectors evolve independently thereafter with
separately conserved entropies.
The dark to visible entropy ratio R is constant for

T < Tth and depends on reheating. If Tth < TRH, thermal-
ization occurs after reheating and is maintained until
T ¼ Tth. The entropy ratio R (for Tth > Tc) after thermal-
ization ceases is then

R ¼ Rmax ≡ g̃x
g�SðTthÞ

: ð49Þ

Thermalization need never have occurred after reheating if
TRH < Tth. In this case, (for Tth > Tc) we can define

TxRH ¼ TRH

�
30

π2g̃x
Δ
�
ρx
T4

�
RH

�
1=4

: ð50Þ

This implies a lower bound on the entropy ratio of

R ≥
g̃x

g�SðTRHÞ
�
TxRH

TRH

�
3

: ð51Þ

In general, lower reheating temperatures allow for smaller
values of R. We define Rmin to be the value of R such that
TxRH ¼ Tc, the lowest possible reheating temperature
given our assumption of TxRH ≥ Tc.

5 When Tth > Tc,
the range of R values is therefore Rmin ≤ R ≤ Rmax.
In Appendix A we present explicit expressions for the

collision term ΔC needed to compute the energy transfer
Δðρx=T4Þ via Eq. (46). The results obtained for Rmin are
shown in Fig. 4 in the m0–M plane for energy transfer via
dimension-8 (left) and dimension-6 (right) operators for
Gx ¼ SUð3Þ. The shaded region at the upper left has m0 >
M=10 and indicates where our treatment in terms of
effective operators breaks down. The black dotted, solid,
and dashed lines show reference values of Rmin ¼ 10−3,
10−6, 10−9. In the cyan region in the right panel, thermal-
ization between the visible and dark sectors is maintained at
least until confinement, corresponding to Tth < Tc.

2. Evolution of the 0++ density

Glueballs form at Tx ¼ Tc and undergo freeze-out,
transfer, and decay reactions. In the absence of connectors,
the dominant glueball species is the lightest 0þþ mode. To
track its evolution with connector operators, it is convenient
to organize the analysis according to the thermalization
temperature Tth, computed above in the unconfined phase,
relative to the confinement temperature.
Tth < Tc: This condition implies that thermalization is

maintained at least until confinement, and thus we expect
T ¼ Tx ¼ Tc as an initial condition for the glueball
evolution. To compute the 0þþ density and thermal transfer
after confinement we adapt the analysis of Refs. [93,94]
based on Refs. [89,90,95], which is applicable here since T,
Tx ≤ Tc ≃m0=5.5. If thermal equilibrium is maintained
independently within both the dark and visible sectors, the
dark temperature evolves as [93,94]

dTx

dt
≃ −2HTx þ

2

3n0
ðCρ −m0CnÞ ð52Þ

where Cρ and Cn are the collision terms appearing in the
evolution equations for the 0þþ energy and number
densities. The Hubble term in Eq. (52) gives the usual
1=a2 redshifting of the effective temperature of an inde-
pendent massive species, while the second term describes
energy transfer from scattering and decay processes.

5Even lower values of R are possible for TxRH < Tc, but this
also implies that reheating can interfere with the freeze-out
process [92], and goes beyond the scope of this work.
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The explicit forms of the collision terms are

Cn ≃ −hσ32v2in20ðn0 − n̄0Þ
− Γ0½n0ð1 − 3Tx=2m0Þ − ñ0ð1 − 3T=2m0Þ�; ð53Þ

where n̄0 ¼ n0ðTxÞ and ñ0 ¼ n0ðTÞ, as well as

Cρ ≃ n0nSMhσelv · ΔEi −m0Γ0ðn0 − ñ0Þ: ð54Þ

The only new piece in these expressions is the elastic
scattering term n0nSMhσelv · ΔEi in Eq. (54). It corre-
sponds to reactions of the form SMþ 0þþ → SMþ 0þþ,
and was studied in detail in Refs. [89,90].
Combined in Eq. (52), the (3 → 2) scattering term from

Eq. (53) tends to heat the dark glueballs, and the elastic
scattering and decay terms tend to drive Tx → T. Applied
to the 0þþ glueball with either the dimension-8 or dimen-
sion-6 connector operators, we find that thermalization
below confinement implies Γ0 > HðT ¼ m0Þ. Thus, the
0þþ density simply tracks the equilibrium value with
temperature T following confinement.6

Tth > Tc: With Tth > Tc, the visible and dark sectors
are not thermally connected at confinement, and thus
T ≥ Tx at this point with a well-defined entropy ratio in
the range Rmin ≤ R ≤ Rmax. Using the scaling arguments
applied above, it can be shown that R ≥ Rmin implies
T ≤ m0 when the 0þþ decays set in at Γ0 ≃HðTÞ.7 The
evolution equations for the 0þþ number density and temper-
ature can thus be written as (to leading order in Tx=m0)

dn0
dt

¼ −3Hn0 − hσ32v2in20ðn0 − n̄0Þ − Γ0ðn0 − ñ0Þ; ð55Þ

dTx

dt
¼ −2HTx þ

2

3
m0hσ32v2in0ðn0 − n̄0Þ

þ Γ0Tx

�
1 −

ñ0
n0

T
Tx

�
; ð56Þ

where again n̄0 is the equilibrium value at temperature Tx
and ñ0 is the equilibrium value at temperature T. Note that
we have neglected the elastic scattering term because it can
be shown to be parametrically small relative to the Hubble
term for T < Tth and R ≥ Rmin.
When the decay terms are neglected, the evolution

equations of Eqs. (55) and (56) are equivalent to those
we used previously with no connector operators (to leading
order in Tx=m0). Glueball decays only become significant
when Γ0 ≃HðTÞ, and quickly drive Tx → T and n0 → ñ0.
It follows that our previous analysis without connectors can
be applied to compute the 0þþ relic yield prior to decay
(which may occur before freeze-out). The only significant
effect of energy transfer on this calculation is to limit the
range of the initial entropy ratio to Rmin ≤ R ≤ Rmax.

3. Evolution of the 1+− density

Even though the lightest 0þþ glueball dominates the total
glueball density and controls the dark temperature prior
(and even after) its decay, the heavier 1þ− glueball can also
be relevant for cosmology due to its longer lifetime. Recall
that the 1þ− is parametrically long lived relative the 0þþ in
the decay scenarios 2�4 listed in Sec. III C, where the 0þþ
decays through a dimension-6 operator while the 1þ− is
stable or only decays at dimension 8. Even in decay
scenario 1, where both states decay at dimension 8, the

FIG. 4. Values of the minimal entropy ratio Rmin in theM–m0 plane for energy transfer via dimension-8 (left) and dimension-6 (right)
operators for Gx ¼ SUð3Þ. The black shaded region at the upper left indicates where our treatment in terms of effective operators breaks
down. The diagonal black dotted, solid, and dashed lines show reference values of Rmin ¼ 10−3, 10−6, 10−9. In the cyan region in the
right panel, thermalization between the visible and dark sectors is maintained at least until confinement.

6In the absence of decays, massive glueballs with connectors
would give an explicit realization of the SIMP [96] or
ELDER [93,94] DM scenarios.

7Our numerical analysis confirms this as well.
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0þþ decay rate tends to be larger than the 1þ− by a factor
of ðN2

c − 1Þα3=α.
The evolution of the 1þ− density is sensitive to the 0þþ

density in several ways. Prior to decay, the 0þþ density acts
as a massive thermal bath that cools very slowly relative to
the visible temperature, thereby delaying the freeze-out of
the 1þ− state. This thermal bath collapses and disappears
when the 0þþ decays, which can hasten 1þ− freeze-out. If
the 0þþ density is large when it decays, the entropy
transferred to the visible sector can also dilute the densities
of the remaining 1þ− glueballs. We investigate these
effects here, dividing the analysis into Tth < Tc and
Tth > Tc cases.
Tth < Tc: Recall that this case is only realized for

dimension-6 transfer operators, and implies that the 0þþ
decay rate is larger than Hubble following confinement.
This means the 0þþ density tracks its equilibrium value
with effective temperature Tx ¼ T, and there is no longer a
separately conserved entropy in the dark sector. The
evolution of the 1þ− number density in this context is

dn1
dt

þ 3Hn1 ¼ −hσ22viðn21 − ñ21Þ − Γ1ðn1 − ñ1Þ; ð57Þ

where ñ1 denotes the equilibrium density of the 1þ− at
temperature T. Note that Eq. (57) assumes the 1þ− mode
also thermalizes with the visible sector. This is expected
prior to freeze-out since the equilibrium density of the 1þ−

is smaller than that of the 0þþ, and elastic scattering
between these two species is at least as efficient as the
annihilation reaction.
Tth > Tc: This second case implies Tx ≤ T at confine-

ment, with 0þþ decays inactive (Γ0 < H) until T < m0. To
compute the resulting 1þ− relic density, we treat the 0þþ
decay as instantaneous and match the density evolution
immediately before and after it occurs. Prior to the decay,
the dark and visible entropies are conserved independently
with ratio R, and the glueball densities evolve according to
Eqs. (32) and (33). Decays of the 0þþ are implemented at
Γ0 ¼ H, where the Hubble rate includes contributions from
both the visible and dark energy densities. If Ti < m0 is
the visible temperature prior to the decay, the visible
temperature afterwards is obtained from local energy
conservation,

ρðTfÞ ¼ ρðTiÞ þ ρxðTiÞ; ð58Þ

where we have neglected the exponentially subleading
contribution of the 1þ− mode to the energy density. Note
that Tf > Ti is always smaller than m0 as well. The
evolution of the 1þ− number density after the 0þþ decays
is given by Eq. (57). Since the 1þ− number density is not
changed by the decays, n1ðTfÞ ¼ n1ðTiÞ is used as the
initial condition at T ¼ Tf.

The interplay of glueball annihilation, transfer, and
decays leads to many different qualitative behaviors.
These were investigated in Refs. [47,48] for a simplified
model consisting of an unstable massive bath particle and a
heavier DM state. Dark glueballs provide an explicit
realization of this scenario, with the 0þþ making up the
massive bath and the 1þ− acting as (metastable) dark
matter. Compared to the simple model studied in
Refs. [47,48], the 0þþ massive bath particle always freezes
out (or decays) before the would-be 1þ− dark matter,
corresponding to the chemical or decay scenarios discussed
there. A potential further behavior that we have not
captured in our approximations is the late production of
1þ− glueballs through transfer reactions while T > m1 but
after 1þ− freeze-out has occurred in the dark sector. We
estimate that this is potentially relevant in a very limited
corner of the parameter space, and will only increase the
limits we find.

C. Comments on theoretical uncertainties

Before applying our results for dark glueball lifetimes
and densities to derive cosmological and astrophysical
constraints on them, it is worth taking stock of the
theoretical uncertainties in our calculations. It is also useful
to identify how some of these uncertainties might be
reduced with improved lattice calculations.
The glueball lifetimes computed in Sec. III rely on

glueball masses and transition matrix elements. Masses for
Gx ¼ SUð3Þ have been obtained to a precision greater than
5% in Refs. [58,59], while the matrix element relevant for
0þþ decay was determined to about 20% in Refs. [59,69].
Thus, we expect our determination of the 0þþ decay width
to be reasonably accurate. The situation is less clear for the
1þ− width, which relies on a 1þ− → 0þþ transition matrix
element that we were only able to estimate using NDA. In
the absence of lattice calculations for this matrix element,
we estimate that our 1þ− width is only reliable to within a
factor of a few.
Turning next to the cosmological evolution of the dark

gluons and glueballs, we implicitly treated their inter-
actions as being perturbative. This is a good approximation
at temperatures well above the confinement scale, but
significant deviations can arise as the temperature falls
to near confinement [80]. For the range of entropy ratios R
due to energy transfer computed above, this implies that
values of Rmax with Tth ≫ Tc are reliable, but the specific
values of Rmin and Rmax for TRH ∼ Tc could receive large
corrections. Similarly, the glueball interactions used to
compute the (3 → 2) and (2 → 2) cross sections are quite
strong for N ¼ 3. It is difficult to quantify how this affects
the predecay glueball relic densities, but we do note that the
densities typically depend roughly linearly on R and
the annihilation cross sections. Our naive estimate is that
the predecay glueball densities we find are accurate to
within about an order of magnitude.
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V. COSMOLOGICAL CONSTRAINTS

In the analysis above we showed that dark glueballs can
have a wide range of decay rates and a variety of formation
histories in the earlyUniverse.Very long-lived dark glueballs
can potentiallymake up the cosmological darkmatter. On the
other hand, shorter-lived glueballs are strongly constrained
by the modifications they can induce in the standard
predictions for BBN [53,54,97], the CMB [56,98] and the
spectrum of cosmic rays [9]. We investigate the bounds from
cosmology and astrophysics on dark glueballs in this section
for the four decay scenarios discussed in Sec. III. Throughout
the analysis, we focus onGx ¼ SUðN ¼ 3Þ, and we assume
reheating such that TRH ≪ M and TxRH ≥ Tc. Details of
how we implement the bounds from BBN, the CMB, and
cosmic rays are collected in Appendix B.

A. Decay scenario 1: Dimension-8 decays
with broken Cx

This scenario has all the dimension-8 operators of
Eq. (11) with χi ¼ χY ¼ 1. Both the 0þþ and 1þ− glueballs
decay with parametrically similar rates, as shown in Fig. 1.

The cosmological constraints on this scenario are shown
in Fig. 5 in the M-m0 plane for various values of the
entropy ratio R. The upper two panels have R ¼ Rmin, Rmax

respectively,8 and the lower three panels show R ¼ 10−9,
10−6, 10−3. The grey shaded regions indicate where our
theoretical assumptions break down. The rising diagonal
portion of the gray shaded region corresponds to
m0 > M=10; we demand smaller values of m0 to justify
our treatment in terms of effective operators suppressed by
powers of M. The upper part of the grey shaded region
indicates Tx fo > Tc, corresponding to glueball densities set
by the nonperturbative dynamics of the confining phase
transition. To the left of the diagonal dotted lines in the
lower three panels, the given fixed value of R is less than
Rmin and is inconsistent with minimal energy transfer by the
connector operators for TxRH > Tc.

FIG. 5. Cosmological constraints on dark glueballs in theM–m0 plane for decay scenario 1 with dominant dimension-8 operators and
broken Cx. The upper two panels have R ¼ Rmin, Rmax, while the lower three panels have fixed R ¼ 10−9, 10−6, 10−3. The grey shaded
region in each panel indicates where our theoretical assumptions fail, while R < Rmin to the left of the dashed line.

8Recall from Eq. (49) that Rmax corresponds to thermalization
after reheating, while from Eq. (51) Rmin is the lowest possible
entropy ratio consistent with energy transfer and TxRH > Tc.
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We see from Fig. 5 that dark glueballs are strongly
constrained by cosmological and astrophysical observa-
tions. When the 0þþ is long-lived, corresponding to small
m0=M, its relic density tends to be too large unless the
entropy ratio R is much less than unity. With sufficiently
small R the 0þþ can make up all the dark matter corre-
sponding to the white line in the left panel of Fig. 3. Such a
DM candidate would be very difficult to probe, with the
most promising avenues being high-energy gamma rays
and modifications to cosmic structure from glueball
self-interactions. Using large-N and NDA, the 2 → 2
self-interaction cross section of 0þþ glueballs is [21,25]

σ2→2=m0 ≃ ð10 cm2=gÞ
�
3

N

�
4
�
100 MeV

m0

�
3

: ð59Þ

This is at (or slightly above) the current limit for N ≥ 3 and
m0 ≥ 100 MeV and could have observable effects close to
these values [99], but falls off very quickly with higher
mass or if the 0þþ glueball is only a small fraction of the full
DM density. For larger m0=M ratios, the 0þþ and 1þ−

glueballs both decay quickly enough to alter BBN or the
CMB or create high-energy gamma rays. Not surprisingly,

the bounds from glueball decays in this scenario come
primarily from the 0þþ which has a much larger relic yield
prior to decay.

B. Decay scenario 2: Dimension-8 decays
with exact Cx

Our second decay scenario has dominant dimension-8
operators with χi ¼ 1 and a conserved Cx charge that
implies χY ¼ 0 and a stable 1þ− glueball. The cosmological
bounds on this scenario are shown in Fig. 6 for various
values of the entropy ratio R. The upper two panels have
R ¼ Rmin, Rmax respectively, and the lower three panels
show R ¼ 10−9, 10−6, 10−3. As above, the grey shaded
regions indicate where our theoretical assumptions are not
satisfied, and the diagonal dashed lines have R < Rmin to
their left.
The cosmological exclusions on this scenario are nearly

identical to those on scenario 1 except for the new bounds
from the 1þ− relic density. At the lower edge of the cyan
excluded region, the 1þ− glueball can make up all the dark
matter. This occurs primarily when the 0þþ decays rela-
tively quickly, since otherwise it tends to dilute the 1þ−

FIG. 6. Cosmological constraints on dark glueballs in theM–m0 plane for decay scenario 2 with dominant dimension-8 operators and
conserved Cx. The upper two panels have R ¼ Rmin,Rmax, and the lower three panels have fixed R ¼ 10−9, 10−6, 10−3. The grey shaded
region indicates where our theoretical assumptions fail, while to the left of the dashed line we find R < Rmin.
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relic density too strongly. Note as well that the 1þ− glueball
can make up the dark matter for a wide range of values of
the entropy ratio R, and for masses well above the weak
scale, between about 102 GeV≲ 105 GeV. For smaller
values of m0=M, the 0þþ is long lived and remains the
dominant species as in scenario 1.

C. Decay scenario 3: Dimension-6 decays
with broken Cx

The third decay scenario 3 has both dimension-6 and
dimension-8 operators with yeff ¼ 1 and χi ¼ χY ¼ 1, and
broken Cx. This leads to 0þþ decays dominated by the
dimension-6 operator, but decays of the 1þ− only through
the dimension-8 operators. As a result, the 1þ− glueball is
parametrically long lived relative to the 0þþ (and the other
glueball states).
We show the cosmological and astrophysical bounds on

this scenario in Fig. 7 for various values of the entropy ratio
R. The upper two panels have R ¼ Rmin, Rmax respectively,
and the lower three panels show R ¼ 10−9, 10−6, 10−3.
As above, the grey shaded regions indicate where our
theoretical assumptions are not satisfied, and the diagonal

dashed lines have R < Rmin to their left, except in
the R ¼ Rmax panel. Here, thermalization is maintained
all the way to confinement (and beyond) to the left of
the line.
Decays of both the 0þþ and 1þ− glueballs lead to

relevant exclusions in this scenario. The 0þþ relic density
tends to be much larger than the 1þ− prior to decay, and
produces the strongest constraints for small values of
m0=M when it is long lived. For very long lifetimes and
small R, it can make up all the DM as before. However,
larger values of m0=M lead to relatively short-lived 0þþ
glueballs that decay before the start of BBN. In this case,
the longer-lived 1þ− can decay late enough to disrupt
nucleosynthesis or the CMB in an unacceptable way. Note
as well that in the region in which the 1þ− relic density is
potentially large, it decays too quickly to make up the dark
matter.

D. Decay scenario 4: Dimension-6 decays
with exact Cx

Our final decay scenario 4 has has both dimension-6 and
dimension-8 operators with yeff ¼ 1 and χi ¼ 1, together

FIG. 7. Cosmological constraints on dark glueballs in theM–m0 plane for decay scenario 3 with dominant dimension-6 operators and
broken Cx. The upper two panels have R ¼ Rmin,Rmax, and the lower three panels have fixed R ¼ 10−9, 10−6, 10−3. The black shaded
region indicates where our theoretical assumptions fail, while to the left of the dashed line we find R < Rmin.
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with conserved Cx (and χY ¼ 0). The 0þþ mode decays as
in the previous scenario, but now the 1þ− is stable.
The cosmological bounds on this scenario are shown in

Fig. 8 for various values of the entropy ratio R. The upper
two panels have R ¼ Rmin, Rmax respectively, and the lower
three panels show R ¼ 10−9, 10−6, 10−3. As above, the grey
shaded regions indicate where our theoretical assumptions
are not satisfied, and the diagonal dashed lines have
R < Rmin to their left, except in the R ¼ Rmax panel.
Here, thermalization is maintained all the way to confine-
ment (and beyond) to the left of the line.
The exclusions on this scenario from the 0þþ are

identical to those on scenario 3. However, the constraints
from the 1þ− are now from its relic density rather than the
effects of its decays on BBN and the CMB. This state can
make up the dark matter for a range of values of its mass
and the entropy ratio R. Compared to the analogous
scenario 2, the relic density of the 1þ− tends to be larger
here because it experiences less dilution from the more
rapid decay of the 0þþ.

VI. CONCLUSIONS

In this work we have investigated the cosmological
constraints on non-Abelian dark forces with connector
operators to the SM. We have focused on the minimal
realization of such a dark force in the form of a pure Yang-
Mills theory. In the early Universe, the dark gluons of such

theories confine to form a set of dark glueballs. Connector
operators allow the transfer of energy between the visible
(SM) and dark sectors, modify the freeze-out dynamics of
the glueballs, and induce some or all of the dark glueballs to
decay. Late decays of glueballs can modify the standard
predictions for BBN, the CMB, and cosmic ray spectra,
while very long-lived or stable glueballs must not produce
too much dark matter. Using these considerations, we have
derived strong constraints on the existence of new non-
Abelian dark forces.
A significant new feature of our work compared to

previous studies [14,19,21,22,24,25,29–31,44] is the inclu-
sion of the heavier 1þ− glueball species. This state can be
parametrically long lived or stable relative to the other
glueballs. It freezes out in conjunctionwith the 0þþ, with the
0þþ density forming a massive thermal bath, leading to a
rich array of freeze-out and decay dynamics [47,48]. In
general, the (predecay) relic density of the1þ−mode ismuch
smaller than the 0þþ. Even so, the 1þ− can sometimes yield
the strongest cosmological bounds due to its longer lifetime.
Specifically, the 0þþ could decay before impacting standard
cosmological processes such as BBN, while the 1þ− decays
late enough to directly interfere. In some cases, the 1þ−

glueball could even make up the observed DM density.
Our study also concentrated on the dark gauge group

Gx ¼ SUðN ¼ 3Þ with a lightest 0þþ glueball mass
above m0 ≥ 100 MeV. The constraints found here could
also be generalized to other dark gauge groups and lower

FIG. 8. Cosmological constraints on dark glueballs in theM–m0 plane for decay scenario 4 with dominant dimension-8 operators and
conserved Cx. The upper two panels have R ¼ Rmin, Rmax, and the lower three panels have fixed R ¼ 10−9, 10−6, 10−3. The black
shaded region indicates where our theoretical assumptions fail, while to the left of the dashed line we find R < Rmin.
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masses. A very similar glueball spectrum is expected for
SUðN > 3Þ [61], but the confining phase transition is
more strongly first order and its effect on glueball freeze-
out deserves further study [24,79]. For Gx ¼ SUð2Þ,
SOð2N þ 1Þ, Spð2NÞ there are no Cx-odd glueballs
[39,41], but otherwise we expect the constraints based on
the 0þþ glueballs to be applicable here. In the case of
SOð2N > 6Þ, the Cx-odd states are expected to be signifi-
cantly heavier than the 0þþ, and thus the additional con-
straints on the lightest Cx-odd mode would typically be
weakened. Our focus on m0 > 100 MeV was motivated by
the ranges of masses considered in studies of the effects of
late decays onBBN, theCMB, and gamma rays. Limits from
the CMBcan still be applied tomuch lowermasses, but those
from BBN and gamma ray production are very different. We
leave a study of lower glueball masses to a future work.
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APPENDIX A: THERMALIZATION RATES

The collision term appearing in Eq. (41) relevant for
thermalization corresponds to the process X þ X →
SMþ SM, and is given by

ΔC ¼ hσv · ΔEiñ2x
¼

Z
dΠ1

Z
dΠ2f1f2WðsÞΔE; ðA1Þ

where E1 and E2 are the initial-state energies, ΔE ¼
ðE1 þ E2Þ is to be evaluated in the comoving frame,
dΠi ¼ gid3pi=ð2πÞ32Ei, fi are the equilibrium distribution
functions at temperature T, and the scattering kernel is
defined by [100,101]

WðsÞ ¼ 4E1E2σv

¼ S
g1g2

Z
d3p3

ð2πÞ32E3

Z
d3p4

ð2πÞ32E4

ð2πÞ4

× δð4Þðp1 þ p2 − p3 − p4Þ
X
fintg

jMj2: ðA2Þ

Here, S is the symmetry factor for identical particles, gi are
the numbers of degrees of freedom of the initial-state
particles, the sum runs over all internal degrees of freedom,
and jMj2 is the squared matrix element for the reaction.
Note that this quantity is Lorentz invariant, and can
therefore only depend on s ¼ ðp1 þ p2Þ2.
Following Refs. [100,101], the expression of Eq. (A1)

can be reduced to a single integral if we approximate the
distribution functions by Maxwell-Boltzmann forms,
fi ¼ expð−Ei=TÞ,

ΔC ¼ g1g2T2

32π4

Z
∞

ðm1þm2Þ2
dsp12F ð ffiffiffi

s
p

=TÞWðsÞ

¼ g1g2
32π4

T5

Z
∞

xþ
dx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx2 − x2þÞðx2 − x2−Þ

q

× F ðxÞWðs ¼ x2T2Þ; ðA3Þ

where F ðxÞ ¼ ðK1ðxÞ þ x
2
½K0ðxÞ þ K2ðxÞ�Þ ¼ ½2K1ðxÞ þ

xK0ðxÞ� and x� ¼ ðm1 �m2Þ=T.

1. Cross sections for dimension-8 operators

The relevant operator has the general form

O8 ¼
A
M4

Xa
αβX

aαβFC
μνFCμν; ðA4Þ

where FC
μν is a SM field strength. This operator generates

XX → AA transfer reactions for T ≫ mA, m0, as well as
XA → XA elastic scattering. Concentrating on XX → AA,
the corresponding matrix element for ðp1; aÞ þ ðp2; bÞ →
ðp3; CÞ þ ðp4; DÞ is

M ¼ 4A
s2

M4
δabδCDðϵ�1 · ϵ�2Þðϵ3 · ϵ4Þ; ðA5Þ

where a, b, C, D are “colors” and ϵi are polarization
vectors. From this expression, we find (neglecting possible
masses)

WðsÞ ¼ 1

π

�
g̃A
g̃x

�
A2

s4

M8
; ðA6Þ

where g̃x and g̃A ¼ 2ðN2
A − 1Þ are the dark and visible

numbers of degrees of freedom. The energy-transfer
collision term is then

ΔC ¼ g̃xg̃A
32π5

A2

�Z
∞

0

dx x10F ðxÞ
�
T13

M8
: ðA7Þ

The integral is dominated by x ¼ ffiffiffi
s

p
=T ∼ 10, correspond-

ing to scattering at the high end of the thermal distribution.
The coupling A can be obtained by matching to our

previous results for dark gluon connector operators. While
there are several operators that can contribute, we keep only
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the S component corresponding to the operator listed
above, which yields

Ai ¼
αiαx
120

χi; ðA8Þ

with Ai ¼ Y,2,3 for each of the SM gauge factors.
For χi → 1, the gluon contribution dominates with
g̃A ¼ 2ðN2

c − 1Þ, and we focus on it exclusively. Note that
since we are considering T ≳m0 ≳ 100 MeV and the
integration is dominated by

ffiffiffi
s

p
∼ 10T, we should always

be safely above the QCD confinement scale.

2. Cross sections for dimension-6 operators

The operator of interest is now

O6 ¼
B
M2

jHj2Xa
αβX

aαβ; ðA9Þ

with

B ¼ αxy2eff
6π

: ðA10Þ

To treat scattering through this operator, we should dis-
tinguish between temperatures above and below the
electroweak phase transition at TEWPT ≃ 100 GeV.
Above the transition, all the SM states are massless and
we can treat the Higgs field as a complex scalar doublet.
Below the transition, we must account for masses.
For T > TEWPT, the dominant transfer reaction is

X þ X → H þH†, for which the scattering kernel is

WðsÞ ¼ 1

π

1

g̃x

B2

M4
s2: ðA11Þ

This yields the collision term

ΔC ¼ g̃x
32π5

B2

�Z
∞

0

dx x6F ðxÞ
�
T9

M4
; ðA12Þ

where now the integral is dominated by
ffiffiffi
s

p
∼ 6T.

Below the transition temperature, we have ff̄, hh,
WþW−, and ZZ final states at leading order. Their con-
tributions to the scattering kernels are

WfðsÞ ¼
NðfÞ

c

π

1

g̃x

B2

M4
s2
�
m2

f

s

��
s

s −m2
h

�
2
�
1 −

4m2
f

s

�3=2

;

ðA13Þ

WhðsÞ ¼
1

4π

1

g̃x

B2

M4
s2
�
1 −

4m2
h

s

�
1=2

; ðA14Þ

WZðsÞ ¼
1

4π

1

g̃x

B2

M4
s2
�

s
s −m2

h

�
2
�
1 −

2m2
Z

s
þ 12m4

Z

s2

�

×

�
1 −

4m2
Z

s

�
1=2

; ðA15Þ

WWðsÞ ¼
1

2π

1

g̃x

B2

M4
s2
�

s
s −m2

h

�
2
�
1 −

2m2
W

s
þ 12m4

W

s2

�

×

�
1 −

4m2
W

s

�
1=2

: ðA16Þ

These results only apply for
ffiffiffi
s

p
> 2mi; they are 0 other-

wise. Note that for
ffiffiffi
s

p
≫ 2mh, 2mf, the sum of these

kernels is equal to the result of Eq. (A11).

APPENDIX B: COSMOLOGICAL CONSTRAINTS

In this appendix we review the cosmological and
astrophysical constraints imposed on massive dark
glueballs.

1. Decay constraints from BBN

Particle decays during or after BBN can modify the
primordial abundances of light elements including tritium,
deuterium, helium, and lithium [53,54,102,103]. The
observed abundances of these light elements (with the
exception of lithium) agree well with the predictions of
standard BBN when the baryon density deduced from the
CMB is used as an input [103]. If there was nonstandard
physics present during the era of BBN, such as the decays
of dark glueballs to SM fields, the predictions the elemental
abundance would be altered. Thus, constraints can be
placed upon decays of glueballs after the onset of BBN.
Hadronic decays of a long-lived relic after t ≃ 0.05 s can

modify the neutron (n) to proton (p) ratio and increase the
helium fraction through charge exchange reactions such as
π− þ p → π0 þ n, or destroy light elements through spalla-
tion reactions like nþ 4He → Dþ pþ 2n [102,103].
Electromagnetic decays are only constrained at later times,
after about t ∼ 104 s, since energetic electromagnetic decay
products emitted before this thermalize with the photon-
electron plasma before they can destroy light elements by
photodissociation [102–104].
The combined effects of hadronic and electromagnetic

decays on BBN have been studied in a number of works,
including Refs. [53,54,97]. We apply the exclusions
derived in Ref. [97] to place limits on decaying glueballs,
using a simple interpolation to generalize their results to
arbitrary relic mass values between the range 30 GeV ≤
mx ≤ 106 GeV they studied, and matching to the appro-
priate set of final states. For masses outside these ranges,
we apply the constraint for the nearest mass boundary.

2. Decay constraints from the CMB

Particle decays during or after recombination at
t ≃ 1.2 × 1013 s can modify the temperature and polariza-
tion spectra of the CMB. They do so by injecting energy
that increases the ionization fraction and temperature of
the cosmological plasma. In turn, this broadens the last
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scattering surface and alters the correlations among the
temperature and polarization fluctuations [56].
Detailed studies of the impact of such energy injection

on the CMB have been performed in Refs. [98,105–110].
Corresponding limits on particle decays based on the
CMB measurements of Planck [84] were extracted in
Refs. [98,110]. Given the theoretical uncertainties in our
calculation of the predecay glueball yields, we apply a very
simple parametrization of the results of Ref. [98],

miYi < ð4.32 × 10−10 GeVÞ
�

τ

1024 s

�
F ðτÞ; ðB1Þ

where F ðτÞ accounts for the effects of early decays. It is
obtained by fitting to the curve of Fig. 4 of Ref. [98], and is
normalized to unity for τ ≫ 1.2 × 1013 s. The form of
Eq. (B1) neglects mild dependences on the mass of the
decaying glueball and the specific final state, but these
effects are smaller than the uncertainties in the calculation of
the predecay yield. We also apply this limit to relic masses
well above the largest value of mx ∼ 10 TeV studied in
Ref. [98] (and elsewhere). Such large masses lead to
injections of highly energetic photons and electrons that
deposit their energy very efficiently in the cosmological
plasma [107]. As a result, we do not expect any major loss of
sensitivity for glueball masses well above 10 TeV.

Bounds on glueball decays can also be obtained from
their effects on the CMB frequency spectrum [111,112].
We find that these are subleading compared to those
derived from BBN and the CMB power spectra.

3. Decay constraints from gamma rays

Glueballs with lifetimes greater than the age of the
Universe t0 ≃ 4.3 × 1017 s can produce observable signals
in gamma ray and cosmic ray telescopes, even if their
density is only a small fraction of the total DM value.
Limits on the lifetimes of decaying DM were derived in
Ref. [9] for dimension-6 glueball decays and other final
states over a broad range of masses using galactic gamma
ray data from Fermi [113]. With the theoretical uncertainty
on glueball yields in mind, we use a simple parametrization
of the limits on the glueball yield,

miYi < ð4.32 × 10−10 GeVÞ
�

τ

5 × 1027 s

�
et0=τeð10 GeV=miÞ;

ðB2Þ
where the last two factors account for the depletion of the
signal if the decay occurs before the present time and the
loss of sensitivity of Fermi at lower masses [114]. This limit
is fairly conservative and can be applied safely to all
dominant 0þþ decays, which occur on their own or shortly
after being created in a 1þ− decay.
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