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We quantitatively analyze a quark-lepton flavor model derived from a six-dimensional supersymmetric
theory with SOð10Þ × Uð1Þ gauge symmetry, compactified on an orbifold with magnetic flux. Two
bulk 16-plets charged under the Uð1Þ provide the three quark-lepton generations whereas two uncharged
10-plets yield two Higgs doublets. At the orbifold fixed points mass matrices are generated with rank one or
two. Moreover, the zero modes mix with heavy vectorlike split multiplets. The model possesses no flavor
symmetries. Nevertheless, there exist a number of relations between Yukawa couplings, remnants of the
underlying grand unified theory symmetry and the wave function profiles of the zero modes, which lead to
a prediction of the light neutrino mass scale, mν1 ∼ 10−3 eV and heavy Majorana neutrino masses in the

range from 1012 to 1014 GeV. The model successfully includes thermal leptogenesis.
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I. INTRODUCTION

The Standard Model (SM) of particle physics is a chiral
gauge theory with three copies of a quark-lepton generation
containing a quark doublet q ¼ ðu; dÞ, a lepton doublet
l ¼ ðν; eÞ and four singlets, uc, dc, ec and nc, of Weyl
fermions in different representations of the gauge group
GSM ¼ SUð3Þ × SUð2Þ ×Uð1Þ. This gauge theory has a
Uð3Þ6 flavor symmetry which is almost completely broken
by 36 complex Yukawa couplings and six complex
Majorana mass terms. Only a Z2 matter parity and the
global Uð1Þ of baryon number survive, which is broken by
an anomaly. Most of the 84 real parameters are unphysical
and can be eliminated by a redefinition of the quark and
lepton fields, leaving 25 observables: six quark masses,
three charged lepton masses, six Majorana neutrino masses,
six mixing angles in the charged current and four CP-
violating phases. The traditional goal of flavor physics is to
reduce the number of independent input parameters by
means of symmetries in order to obtain relations among the
various observables. These relations would then shed light
on the origin of the Yukawa couplings.
Relations between quark and lepton Yukawa matrices are

obtained in grand unified theories (GUTs) where the

Standard Model gauge group is embedded in the non-
Abelian gauge groups SUð4Þ × SUð2Þ × SUð2Þ [1], SUð5Þ
[2], SOð10Þ [3,4] or flipped SUð5Þ [5,6]. For example, in
SUð5Þ GUTs the 36 SM Yukawa couplings are reduced to
24 couplings and in SOð10Þ GUTs with two Higgs 10-plets
only 12 independent couplings are left. However, the
obtained relations between Yukawa couplings are only
partially successful and in order to account for all measured
observables one needs higher-dimensional Higgs represen-
tations and/or higher-dimensional operators [see for exam-
ple Refs. [7–22] for quantitative analyses of the fermion
mass spectrum in some SOð10Þ models].
A partial understanding of the hierarchies among quark

and lepton Yukawa couplings can be obtained by means of
Uð1Þ flavor symmetries [23] or discrete symmetries
[24,25]. Such flavor symmetries have also been derived
in string compactifications [26–30]. They are of particular
importance in supersymmetric compactifications where
they can forbid operators leading to proton decay. Note,
however, that none of these flavor symmetries are exact.
They are all spontaneously or explicitly broken.
Hierarchical Yukawa couplings can also be obtained in

toroidal compactifications of superYang-Mills theorieswith
magnetic flux in ten or fewer dimensions. The couplings
between bulk Higgs and matter fields are calculated as
overlap integrals of wave functions that have nontrivial
profiles in themagnetized extra dimensions [31]. In a similar
way, Yukawa couplings of magnetized toroidal orbifolds
have been analyzed [32–37]. The resulting flavor structure
depends on the number of pairs of Higgs doublets. In the
simplest cases it appears difficult to obtain the measured
hierarchies of quark and lepton masses [34,35].
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In this paper we pursue an alternative avenue. Our
starting point is the six-dimensional (6D) orbifold GUT
model with gauge group SOð10Þ ×Uð1Þ considered in
Ref. [38]. The GUT group SOð10Þ is broken to different
subgroups at the orbifold fixed points where also the
Yukawa couplings are generated [39,40]. Abelian magnetic
flux generates three quark-lepton families from two
bulk 16-plets, ψ and χ, and, together with two uncharged
16�-plets vectorlike split multiplets. Moreover, the mag-
netic flux breaks supersymmetry [41]. Two uncharged bulk
10-plets yield two Higgs doublets. The 6D theory has no
flavor symmetry. All quarks and leptons arise as zero
modes of bulk 16-plets. But since their wave functions
are different, they couplewith different strengths to theHiggs
fields at the fixed points. As a consequence, also the effective
four-dimensional (4D) theory has no flavor symmetries.
Nevertheless, the GUT symmetry and the flux compactifi-
cation lead to a number of relations between the Yukawa
matrices. The 36SMcomplexYukawa couplings are reduced
to 12 complex couplings. In addition there are nonrenorma-
lizable terms generating the heavyMajorana neutrinomasses
and mass mixing terms between the chiral quark-lepton
generations and thevectorlikemultiplets. In the followingwe
shall study to what extent such a structure can quantitatively
describe the measured observables, extending the previous
work on two quark-lepton generations [42].
The paper is organized as follows. In Sec. II we describe

symmetry breaking and zero modes of the model under
consideration. Moreover, we list the values of the zero mode
wave functions at the various fixed points and work out the
Yukawa couplings which determine the flavor spectrum.
Section III is devoted to numerical fits of the model to
measured observables. In a first fit, light and heavy neutrino
masses and the baryon asymmetry are predicted, whereas in
a second fit the observed baryon asymmetry is also fitted.
A summary and conclusions are given in Sec. IV. Some
technical features of numerical fits and results are described
in Appendices A and B, respectively.

II. GUT MODEL AND YUKAWA COUPLINGS

In this section we describe the six-dimensional SOð10Þ
GUT model introduced in Ref. [38], extended by a pair of
bulk 16-plets. This allows to account for the flavor structure
of three quark-lepton generations, with some predictions
for neutrino masses. Two additional 10-plets, needed to
cancel the 6D SOð10Þ gauge anomalies, do not mix with
quarks and leptons and will not be discussed in the
following.
The starting point is an N ¼ 1 supersymmetric

SOð10Þ ×Uð1Þ gauge theory in six dimensions with vector
multiplets and hypermultiplets, compactified on the orbi-
fold T2=Z2. One conveniently groups 6D vector multiplets
into 4D vector multiplets A ¼ ðAμ; λÞ and 4D chiral
multiplets Σ ¼ ðA5;6; λ0Þ, and 6D hypermultiplets into
two chiral multiplets, ðϕ; χÞ and ðϕ0; χ0Þ [43,44], where

ðϕ0; χ0Þ transform in the complex-conjugate representation
compared to ðϕ; χÞ. The origin ζI ¼ 0 is a fixed point under
reflections, Ry ¼ −y, where y denotes the coordinates
of the compact dimensions. Imposing chiral boundary
conditions on the orbifold, 6D N ¼ 1 supersymmetry is
broken to 4D N ¼ 1 supersymmetry, and the chiral super-
fields Σ and ϕ0 are projected out.
The bulk SOð10Þ symmetry is broken to the Standard

Model group bymeans of twoWilson lines. The fixed points
ζi, i ¼ PS, GG, fl are invariant under combined lattice
translations and reflection: T̂iζi ¼ ζi (see, for instance,
Ref. [42]). Demanding that gauge fields on the orbifold
satisfy the relations

PiAðx; T̂iyÞP−1
i ¼ ηiAðx; yÞ; i ¼ PS;GG; ð1Þ

with appropriately chosen SOð10Þ matrices Pi and parities
ηPS, ηGG ¼ �, the gauge group SOð10Þ is broken to the Pati-
Salam (PS) subgroup GPS ¼ SUð4Þ × SUð2Þ × SUð2Þ and
the Georgi-Glashow (GG) subgroup GGG ¼ SUð5Þ×Uð1ÞX
at the fixed points ζPS and ζGG, respectively (see Fig. 1). In
four dimensions the SM gauge group arises from the
intersection of the Pati-Salam and Georgi-Glashow sub-
groups of SOð10Þ, GSM0 ¼GPS∩GGG¼SUð3Þ×SUð2Þ×
Uð1ÞY×Uð1ÞX. Group theory implies that SOð10Þ is broken
to flipped SUð5Þ, Gfl ¼ SUð5Þ0 ×Uð1ÞX0 at ζfl.
Like the vector multiplets, the hypermultiplets satisfy the

relations

Piϕðx; T̂iyÞ ¼ ηiϕðx; yÞ; i ¼ PS;GG; ð2Þ

where the matrices PPS and PGG now depend on the
representation of the hypermultiplet (see Ref. [42]). The
SOð10Þmultipletsϕ can be decomposed into SMmultiplets,
ϕ ¼ fϕαg. Each of them belongs to a representation of GPS
as well asGGG and is therefore characterized by two parities,

ϕβðx;T̂PSyÞ¼ ηβPSϕ
βðx;yÞ; ϕβðx;T̂GGyÞ¼ ηβGGϕ

βðx;yÞ:
ð3Þ

FIG. 1. Orbifold T2=Z2 with two Wilson lines and the fixed
points ζI, ζPS, ζGG, and ζfl.
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They can be freely chosen subject to the requirement of
anomaly cancellations. A given set of parities then defines a
4D model with the SM gauge group. The model [38]
contains two pairs of 16- and 16�-plets, ψ and ψc with
parities ηPS ¼ −1; ηGG ¼ þ1, and Ψ and Ψc with parities
ηPS ¼ −1; ηGG ¼ −1. Two 10-plets contain the Higgs dou-
blets Hu and Hd. We now introduce a third pair of 16- and
16�-plets, χ and χc with parities ηPS ¼ −1; ηGG ¼ −1.
Magnetic flux is generated by a Uð1Þ background gauge

field. For a bulk 16-plet with charge q and magnetic flux
f ¼ −4πN=q one obtains N left-handed 16-plets of zero
modes. In addition there is a split multiplet of zero modes
whose quantum numbers depend on the choice of ηPS
and ηGG. We choose the charges q ¼ 2 and q ¼ 1 for ψ
and χ, respectively, whereas ψc, χc, Ψ and Ψc carry zero
Uð1Þ charge.1 The resulting zero modes are summarized in

Table I. Note that the expectation values of Nc and N break
Uð1ÞX, and therefore B − L.
The zero modes of the charged hypermultiplets have

nontrivial wave function profiles. The decomposition of all
bulk 16- and 16�-plets reads

ψ ¼
X
i¼1;2

h
qiψ

ðiÞ
−þ þ liψ ðiÞ

−− þ ðdci þ nci Þψ ðiÞ
þ−

i

þ
X

α¼1;2;3

ðucα þ ecαÞψ ðαÞ
þþ; ð4Þ

χ ¼ q3χð1Þ−− þ l3χ
ð1Þ
−þ þ ðuc4 þ ec4Þχð1Þþ−

þ
X
i¼1;2

ðdciþ2 þ nciþ2ÞχðiÞþþ; ð5Þ

Ψ ¼ Dc þ Nc; ψc ¼ uþ e;

χc ¼ dþ n; Ψc ¼ Dþ N: ð6Þ

Here the chiral multiplet q ¼ ðu; dÞ contains an SUð2Þ
doublet of left-handed up and down quarks, l ¼ ðν; eÞ

TABLE I. PS and GG parities for bulk 10-plets, 16-plets and 16�-plets. The index i ¼ 1, 2 labels two quark-lepton families of
zero modes.

SOð10Þ 10
GPS (1, 2, 2) (1, 2, 2) (6, 1, 1) (6, 1, 1)
GGG 5�−2 5þ2 5�−2 5þ2

Parities ηPS ηGG ηPS ηGG ηPS ηGG ηPS ηGG
H1 þ − þ þ − − − þ

Hu
H2 þ þ þ − − þ − −

Hd

SOð10Þ 16
GPS (4, 2, 1) (4, 2, 1) (4�, 1, 2) (4�, 1, 2)
GGG 10−1 5�þ3 10−1 5�þ3, 1−5
Parities ηPS ηGG ηPS ηGG ηPS ηGG ηPS ηGG
ψ − þ − − þ þ þ −

qi li uci , e
c
i dci , n

c
i

uc3, e
c
3

χ − − − þ þ − þ þ
q3 l3 uc4, e

c
4 dc3, n

c
3

dc4, n
c
4

Ψ − − − þ þ − þ þ
Dc, Nc

SOð10Þ 16�
GPS (4�, 2, 1) (4�, 2, 1) (4, 1, 2) (4, 1, 2)
GGG 10�þ1 5−3 10�þ1 5−3, 1þ5

Parities ηPS ηGG ηPS ηGG ηPS ηGG ηPS ηGG
ψc − þ − − þ þ þ −

u, e
χc − − − þ þ − þ þ

d, n
Ψc − − − þ þ − þ þ

D, N

1We expect that charged and neutral SOð10Þ singlets can be
added such that all gauge and gravitational anomalies cancel.
For themodel of Ref. [38] this was recently shown in Ref. [45].We
also neglect the possible effect of zero modes localized at the fixed
points, which may be needed to cancel fixed-point anomalies.
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contains a doublet of a left-handed neutrino and an
electron, and the charge-conjugate states of right-handed
up and down quarks, neutrinos and electrons are contained
in uc, dc, nc and ec, respectively.
All Yukawa couplings and mass mixing terms depend on

the values of the wave functions at the four fixed points. For

ψ ðaÞ
ηPS;GG and χ

ðaÞ
ηPS;GG we use expressions given in Ref. [42]. For

N flux quanta, a wave function φðaÞ
ηPS;ηGGðy1; y2Þ is given as

φðaÞ
ηPS;ηGGðy1; y2;NÞ
¼ N e−2πNy2

2

X
n∈Z

e−2πNðn− a
2NÞ2−iπðn− a

2NÞðikPS−kGGÞ

× cos

�
2π

�
−2nN þ aþ kPS

2
ðy1 þ iy2Þ

��
; ð7Þ

where ηPS ¼ eiπkPS , ηGG ¼ eiπkGG and kPS, kGG ¼ 0, 1. For
ηPS ¼ ηGG ¼ þ1, one gets N þ 1 massless modes with
a ¼ 0; 1;…; N. In the remaining cases, one obtains N zero
modes with a ¼ 0; 1;…; N − 1. We choose the ordering

ψ ð2Þ
ηPS;ηGGðy1; y2Þ ¼ φð0Þ

ηPS;ηGGðy1; y2; 2Þ;
ψ ð1Þ
ηPS;ηGGðy1; y2Þ ¼ φð1Þ

ηPS;ηGGðy1; y2; 2Þ;
ψ ð3Þ
þþðy1; y2Þ ¼ φð2Þ

þþðy1; y2; 2Þ;
χð1ÞηPS;ηGGðy1; y2Þ ¼ φð0Þ

ηPS;ηGGðy1; y2; 1Þ;
χð2Þþþðy1; y2Þ ¼ φð1Þ

þþðy1; y2; 1Þ: ð8Þ

The wave functions evaluated at the different
fixed points ζI∶ðy1¼0;y2¼0Þ, ζPS∶ðy1¼1=2;y2¼0Þ,
ζGG∶ðy1¼0;y2¼1=2Þ, ζfl∶ðy1¼1=2;y2¼1=2Þ are given
in Table II.
The Yukawa interactions arise at the four fixed points in

the model. Considering the unbroken symmetries and the
corresponding matter multiplets (see Table I) at the differ-
ent fixed points, one obtains the following Yukawa super-
potential from the lowest-dimensional operators2:

WY ¼ δI

��
1

2
yIuaψψ þ yIubψχþ

1

2
yIucχχ

�
H1 þ

�
1

2
yIdaψψ þ yIdbψχþ

1

2
yIdcχχ

�
H2 þ

�
1

2
yInaψψ þ yInbψχ þ

1

2
yIncχχ

�
ΨcΨc

�

þ δPS

�
1

2
yPSna4�ψ4�ψ þ yPSnb4

�
ψ4

�
χ þ

1

2
yPSnc4�χ4�χ

�
FF

þ δGG

�
1

2
yGGua 10ψ10ψH5 þ yGGdb 10ψ5

�
χH5� þ yGGνc 5�χ1χH5 þ

1

2
yGGnc 1χ1χNN

�

þ δfl

�
yflea5̃

�
ψ 1̃ψH5̃ þ yflub5̃

�
ψ 1̃0χH5̃� þ

1

2
yfldc1̃0χ 1̃0χH5̃ þ

1

2
yflnc1̃0χ 1̃0χ T̃�T̃�

�
; ð9Þ

where 1ψ ¼ nc and 1̃χ ¼ ec. In addition to the above, the mixing between the ψ , χ and ψc, χc at various fixed points can be
written as3

TABLE II. Wave functions at different fixed points for one flux quantum N ¼ 1. ψ ðαÞ, α ¼ 1, 2, 3, and ψ ðiÞ, i ¼ 1, 2, are mode
functions of the bulk field ψ with q ¼ 2; χðiÞ, i ¼ 1, 2, and χð1Þ are mode functions of the bulk field χ with q ¼ 1.

ζI ζPS ζGG ζfl

ψ ðαÞ
þþ (1.086, 1.6818, 0.1454) ð−1.086; 1.6818; 0.1454Þ (1.0864, 0.1454, 1.6818) ð−1.0864; 0.1454; 1.6818Þ

ψ ðiÞ
þ−

ð0.7654ð1þ iÞ; 1.6818Þ ð−0.7654ð1þ iÞ; 1.6818Þ (0, 0) (0, 0)

ψ ðiÞ
−þ (0.4238, 1.9546) (0, 0) (1.9546, 0.4238) (0, 0)

ψ ðiÞ
−− ð0.2749ð1þ iÞ; 1.9546Þ (0, 0) (0, 0) ð1.3819ð1 − iÞ; 0.3887iÞ

χðiÞþþ (1.4195, 0.5880) ð1.4195;−0.5880Þ (0.5880, 1.4195) ð0.5880;−1.4195Þ
χð1Þþ−

1.4089 1.4089 0 0

χð1Þ−þ 1.4089 0 1.4089 0

χð1Þ−− 1.2920 0 0 1.2920i

2The magnetic flux generates a Stueckelberg mass term for the Uð1Þ vector boson [46]. By means of the corresponding axion the
Yukawa couplings can be made invariant with respect to the Uð1Þ symmetry.

3Note that the structure of the mixing terms is considerably simpler than the one found in Ref. [42]. This is due to the fact that no
mixings with color triplets from bulk 10-plets have to be taken into account to obtain satisfactory flavor mixings.
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Wmix ¼
X

p¼I;PS;GG;fl

δpðμpaψcψ þ μpbψ
cχ þ μpc χcχ þ μpdχ

cψÞ: ð10Þ

For simplicity, we assume universal mass terms at fixed points and set μIi ¼ μPSi ¼ μGGi ¼ μfli ≡ μi for i ¼ a, b, c, d.
After the electroweak symmetry breaking the mass Lagrangian for up-type quarks obtained from Eqs. (9) and (10) can be

written as

−Lup
m ¼ vu

� X
p¼I;GG

ypuaðψ ðiÞ
−þψ

ðαÞ
þþÞ

���
p
uiucα þ yIubðψ ðiÞ

−þχ
ð1Þ
þ−Þ

���
I
uiuc4 þ

X
p¼I;fl

ypubðχð1Þ−−ψ
ðαÞ
þþÞ

���
p
u3ucα þ yIucðχð1Þ−−χ

ð1Þ
þ−Þ

���
I
u3uc4

�

þ
X

p¼I;PS;GG;fl

μaψ
ðαÞ
þþ

���
p
uucα þ

X
p¼I;PS

μbχ
ð1Þ
þ−

���
p
uuc4 þ H:c:; ð11Þ

where i, j ¼ 1, 2 and α ¼ 1, 2, 3. The mass Lagrangian for the down-type quarks can be obtained from Eq. (9) in the same
way. We obtain

−Ldown
m ¼ vd

�
yIdaðψ ðiÞ

−þψ
ðjÞ
þ−Þ

���
I
didcj þ

X
p¼I;GG

ypdbðψ ðiÞ
−þχ

ðjÞ
þþÞ

���
p
didcjþ2 þ yIdbðχð1Þ−−ψ

ðiÞ
þ−Þ

���
I
d3dci þ

X
p¼I;fl

ypdcðχð1Þ−−χ
ðjÞ
þþÞ

���
p
d3dcjþ2

�

þ
X

p¼I;PS

μdψ
ðiÞ
þ−

���
p
ddci þ

X
p¼I;PS;GG;fl

μcχ
ðjÞ
þþ

���
p
ddcjþ2 þ H:c: ð12Þ

Similarly, the charged lepton mass terms are given by

−Lcl
m ¼ vd

�X
p¼I;fl

ypeaðψ ðiÞ
−−ψ

ðαÞ
þþÞ

���
p
eiecα þ yIebðψ ðiÞ

−−χ
ð1Þ
þ−Þ

���
I
eiec4 þ

X
p¼I;GG

ypebðχð1Þ−þψ
ðαÞ
þþÞ

���
p
e3ecα þ yIecðχð1Þ−þχ

ð1Þ
þ−Þ

���
I
e3ec4

�

þ
X

p¼I;PS;GG;fl

μaψ
ðαÞ
þþ

���
p
eecα þ

X
p¼I;PS

μbχ
ð1Þ
þ−

���
p
eec4 þ H:c:; ð13Þ

where yIea ¼ yIda, yIeb ¼ yIdb, yIec ¼ yIdc and yGGeb ¼ yGGdb . For the Dirac-type neutrino mass terms one obtains
from Eq. (9)

−LDirac
m ¼ vu

�
yIνaðψ ðiÞ

−−ψ
ðjÞ
þ−Þ

���
I
νincj þ

X
p¼I;fl

ypνbðψ ðiÞ
−−χ

ðjÞ
þþÞ

���
p
νincjþ2 þ yIνbðχð1Þ−þψ

ðiÞ
þ−Þ

���
I
ν3nci þ

X
p¼I;GG

ypνcðχð1Þ−þχ
ðjÞ
þþÞ

���
p
ν3ncjþ2

�

þ
X

p¼I;PS;GG;fl

μcχ
ðjÞ
þþ

���
p
nncjþ2 þ

X
p¼I;PS

μdψ
ðiÞ
þ−

���
p
nnci þ H:c:; ð14Þ

where yIνa ¼ yIua, yIνb ¼ yIub, y
I
νc ¼ yIuc and yflνb ¼ yflub. Note that the mass mixing terms μa and μb decouple one linear

combination of ucα; uc4 and ecα; ec4 from the low-energy effective theory whereas μc and μd decouple one linear combination
of dci ; d

c
iþ2.

The two mass mixing terms in the Dirac neutrino mass matrix for n; nci and n; n
c
iþ2 are comparable to the large Majorana

mass terms for nci and n
c
iþ2. From Eq. (9) one obtains for the Majorana mass terms generated by the B − L breaking vacuum

expectation value (VEV) vB−L ¼ hΨci

−LN
m ¼ v2B−L

MP

�
1

2

X
p¼I;PS

ypnaðψ ðiÞ
þ−ψ

ðjÞ
þ−Þ

���
p
nci n

c
j þ

X
p¼I;PS

ypnbðψ ðiÞ
þ−χ

ðjÞ
þþÞ

���
p
nci n

c
jþ2 þ

1

2

X
p¼I;PS;GG;fl

ypncðχðiÞþþχ
ðjÞ
þþÞ

���
p
nciþ2n

c
jþ2

�
þ H:c:

ð15Þ

Here MP ¼ 2 × 1017 GeV is the reduced 6D Planck scale. The eigenvalues of the corresponding 4 × 4 matrix Mn are
Oðv2B−L=MPÞ. Together, Eqs. (14) and (15) yield an 8 × 8 neutrino mass matrix,
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Mν;n ¼

0
BB@

03×3 vuðYDÞ3×4 03×1

vuðYT
DÞ4×3 ðMnÞ4×4 ðμTDÞ4×1

01×3 ðμDÞ1×4 0

1
CCA; ð16Þ

where vuðYDÞ3×4 connects νi, ν3 with nci ; n
c
iþ2, and μD

connects n with nci ; n
c
iþ2. We denote the lower right 5 × 5

block of the matrix by MN, which has five Majorana mass
eigenstates. MD ¼ ðvuðYDÞ3×4; 03×1Þ is a 3 × 5 Dirac
neutrino mass matrix. Integrating out the five heavy
Majorana neutrinos one obtains the seesaw formula for
the 3 × 3 light neutrino mass matrix,

Mν ¼ −MDM−1
N MT

D; ð17Þ

from which we can extract the relevant neutrino
observables.
The above mass matrices contain the complete informa-

tion about the flavor spectrum of quarks and leptons. In the
following section, we shall study in detail the viability of
Eqs. (11)–(17) in reproducing the experimentally observed
fermion spectrum and the predictions for neutrino masses
and the baryon asymmetry via leptogenesis [47].
It is tempting to speculate that a fit of quark and lepton

mass matrices with the expressions in Eqs. (11)–(17) is
straightforward, given the large number of free parameters.
However, this is not the case since the flavor structure of the
matrices is determined by the wave function profiles, with
matrix elements of Oð1Þ, which naively is at variance with
hierarchical quark and charged lepton masses. In fact, in the
model of Ref. [42], which has only one bulk 16-plet, a
successful fit turned out to be impossible, despite many
parameters. One quark-lepton generation always remained
massless. The reason is, that before mass mixings, the mass
matrices are generically rank one. In addition, there are
relations between Yukawa couplings, which reflect the
different unbroken GUT groups at the different fixed
points. For example, at the SOð10Þ fixed point there are
several relations [see Eqs. (11)–(14)],

yIea ¼ yIda; yIeb ¼ yIdb; yIec ¼ yIdc;

yIνa ¼ yIua; yIνb ¼ yIub; yIνc ¼ yIuc; ð18Þ

and at the Georgi-Glashow and flipped SUð5Þ fixed points
one has

yGGeb ¼ yGGdb ; yflνb ¼ yflub: ð19Þ

Note that the SOð10Þ relation for yIνa, yIνb and yIνc implies
that B − L has to be broken at the GUT scale in order to
generate a viable mass scale for the SM neutrinos.
Considering these interrelationships between the quark
and lepton sectors, it is not guaranteed that one can

correctly reproduce all the observables using Eqs. (11)–
(17) despite having a substantial number of parameters.
The magnetic flux is quantized in units of the inverse

volume V−1
2 of the compact dimensions. This leads to scalar

quark and lepton masses of GUT scale size [41],

m2
q̃ ¼ m2

l̃
∼
4π

V2

∼ ð1015 GeVÞ2: ð20Þ

An analysis of supersymmetry breaking and moduli stabi-
lization shows that also gravitinos and gauginos are heavy
(see Refs. [42,48]),

mg̃ ∼mW̃ ∼mB̃ ∼m3=2 ∼ 1014 GeV: ð21Þ

One is therefore left with an extension of the Standard
Model where, depending on radiative corrections, only two
Higgs doublets and Higgsinos can be light. It is interesting
that such a model can be consistent with gauge coupling
unification, which imposes constraints on tan β and the
Higgs boson masses [49].
The presented model assumes that all the quarks and

leptons arise as zero modes of bulk fields, caused by
magnetic flux. This is the standard picture of flux com-
pactifications in field and string theory. Of course, in
principle there could also be “twisted sectors,” i.e. matter
localized at fixed points. Matter from bulk fields and
twisted sectors has previously been considered in orbifold
GUTs (see, for example, Ref. [50]) and heterotic string
compactifications (see, for example, Ref. [51]). However,
in all these models magnetic flux has not been included. An
analysis of flux compactifications containing twisted sec-
tors remains a challenging question for further research.

III. NUMERICAL ANALYSIS OF THE
FLAVOR SPECTRUM

As described in the previous section, Eqs. (11)–(17)
determine the masses and mixing parameters of the SM
fermions. In order to check whether the model correctly
describes the known fermion spectrum, we perform a χ2

test. For this we construct a χ2 function

χ2 ¼
Xn
i¼1

�
Oth

i ðx1; x2;…; xmÞ −Oexp
i

σexpi

�
2

; ð22Þ

where Oth
i ðx1; x2;…; xmÞ are the observables estimated

from Eqs. (11)–(17). They depend on the various param-
eters of the model denoted as xj. The Oexp

i are the
experimentally measured values of the corresponding
observables and σexpi are the standard deviations. As of
now, 18 of these observables are directly measured in
various experiments. They include nine charged fermion
masses, two neutrino mass differences, three mixing angles
and a phase in the Cabibbo-Kobayashi-Maskawa (CKM) or
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quark mixing matrix and three mixing angles in the
Pontecorvo-Maki-Nakagawa-Sakata (PMNS) or lepton
mixing matrix [52]. There also exists preliminary and
indirect information about the Dirac CP phase in the
lepton sector through global fits of neutrino oscillation
data [53–55].
The spectrum computed from Eqs. (11)–(17) holds at the

GUT scale.We therefore choose the GUT scale extrapolated
values of the various observables as Oexp

i for consistency.
The flux compactification also breaks supersymmetry and
leads to a two-Higgs-doublet model (2HDM) of type-II
below the GUT scale [38].4 For this reason, we use the GUT
scale values of charged fermion masses extrapolated in the
2HDM with vu=vd ¼ tan β ¼ 10 from the latest analysis
[56] as an example set of data for our analysis. The effects of
the renormalization group equations (RGE) are known to be
very small in the case of the CKM parameters, and therefore
we use their low scale values from Ref. [52]. The RGE
effects are small also in the case of neutrino masses and
mixing angles if the light neutrino masses are hierarchical
and follow normal ordering. Therefore we use the low scale
values of solar and atmospheric mass-squared differences
and leptonic mixing angles from the recent global fit of
neutrino oscillation data performed in Ref. [53]. In order to
account for RGE effects, various threshold corrections and
uncertainties due to neglecting next-to-leading-order cor-
rections in the theoretical estimations of flavor observables,
we adopt a conservative approach and consider 30%
standard deviation in the masses of the light quarks (up,
down and strange) and the electron and 10% standard
deviation in the remaining quantities instead of using the
extrapolated experimental values of standard deviations in
Eq. (22). Further, we assume normal ordering for the
neutrino mass spectrum. The various Oexp

i we use are listed
in the third column of Table III.
The details of our procedure of extracting physical

observables from Eqs. (11)–(17) are described in
Appendix A. For an estimation of Oth

i in the case of
charged fermions, we first integrate out the heavy vector-
like states and obtain effective 3 × 3 matrices for each
flavor. In the case of neutrinos, five Weyl fermions, namely
n in Eq. (14) and nci ; n

c
iþ2, i ¼ 1, 2 in Eqs. (15) and (17)

form a 5 × 5 Majorana mass matrix MN with GUT scale
eigenvalues. The mass matrix of three light neutrinos is
then given by the seesaw mass formula (17). The various
fermion masses and the CKM and PMNS matrices are
obtained using the diagonalization procedure described in
Appendix A. The elements of the CKM matrix are denoted
as Vij while we use the Particle Data Group [52] convention
for the parametrization of the PMNS matrix to represent its
elements in terms of the mixing angles θij.

The function χ2 is numerically minimized in order to
check the viability of the model in different cases. The
model contains a large number of free parameters [20
complex couplings in Eq. (9), four real mass parameters in
Eq. (10) and a real VEV vB−L]. For simplicity, we first
assume that all couplings in Eq. (9) are real. This leads to
m ¼ 25 real parameters to account for n ¼ 19 observed
quantities. We the find that one can correctly reproduce the
entire fermion spectrum with vanishing leptonic Dirac CP
phase. The reason for this can be understood as follows. In
the case of real couplings in Eq. (9), the CP violations in
the quark and lepton sectors arise entirely from the complex
profile factors given in Table II. By choosing an appropriate
basis, it can be shown that the CP violation in the lepton
sector due to the profile factors can be completely rotated
away while the same cannot be done for the quarks. It turns
out that the model can still successfully account for the
observed CP violation in the quark sector while it leads to a
CP-conserving lepton sector.
The recent T2K data [57] and the global fits of neutrino

oscillation data show a mild preference for maximal Dirac
CP violation, sin δMNS ∼ −1. Moreover, in order to account
for the observed baryon asymmetry of the Universe through
leptogenesis, the model would require CP phases in the

TABLE III. Fit without leptogenesis: the results obtained for
the best fit corresponding to χ2 ¼ 0.5.

Observables Oth Oexp Deviations (in %)

mu [GeV] 0.00048 0.00048 0
mc [GeV] 0.23 0.23 0
mt [GeV] 74.0 74.1 0
md [GeV] 0.0011 0.0011 0
ms [GeV] 0.018 0.021 −16
mb [GeV] 1.19 1.16 3
me [GeV] 0.00043 0.00044 −2
mμ [GeV] 0.093 0.093 0
mτ [GeV] 1.60 1.61 −1
m2

sol [eV
2] 0.000075 0.000075 0

m2
atm [eV2] 0.0025 0.0025 0

Vus 0.22 0.23 −3
Vcb 0.041 0.041 0
Vub 0.0036 0.0036 0
sin2 θ12 0.31 0.31 0
sin2 θ23 0.44 0.44 0
sin2 θ13 0.022 0.022 0
JQCP 0.000031 0.000030 1
δMNS [ o] 281 261 8

Predictions
α21 [ o] 273 MN1

[GeV] 1.8 × 1010

α31 [ o] 215 MN2
[GeV] 6.3 × 1010

mν1 [eV] 0.0043 MN3
[GeV] 1.1 × 1011

mββ [eV] 0.0004 MN4
[GeV] 1.7 × 1012

mβ [eV] 0.0098 MN5
[GeV] 2.7 × 1013

ηB 5.2 × 10−12

4This feature automatically suppresses the contribution of
dimension-five operators in proton decay.
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lepton sector. Motivated by this, we shall consider more
general Yukawa couplings in Eq. (9). Since CP violation in
the quark sector is already explained without complex
couplings, we consider the minimal case in which only the
Yukawa couplings of SM singlet fermions are complex, i.e.
ypna; y

p
nb; y

p
nc with p ¼ I; PS and yGGnc ; yflnc. This introduces

eight new parameters in the model. In the following, we
discuss two different χ2 fits obtained for this case.

A. Predicting neutrino masses and baryon asymmetry

For the above choice of couplings the χ2 function
includes n ¼ 19 observables as functions of m ¼ 33 real
parameters. We minimize χ2 numerically in order to find
solutions for the parameters which can reproduce the data.
We find a very good fit corresponding to χ2 ¼ 0.5 at the
minimum. The results of this fit are listed in Table III. It is
remarkable that all observables are fitted to their exper-
imental values with very small deviations. The maximum
deviation is found in the strange quark mass which is still
smaller than the allowed 30% deviation from its exper-
imental value extrapolated at the GUT scale. The fitted
values of parameters are listed in Appendix B.
At the bottom of Table III we show predictions for

various quantities that can be estimated from the fitted
values of the parameters. These include the Majorana
phases (α21, α31), the mass of the lightest SM neutrino
mν1 , the effective neutrinoless double beta decay massmββ,
the mass measured in standard beta decay mβ and the
masses of the heavy neutrinos MNα

with α ¼ 1;…; 5. As a
comparison with the subsequent fit will show, the order of
magnitude of the absolute neutrino mass scale, i.e. mν1 , is a
robust prediction whereas the remaining quantities can
change significantly if the fit is slightly varied.
The baryon asymmetry generated by decays and inverse

decays of the lightest singlet neutrino can be written as
[58,59]

ηB ¼ 0.96 × 10−2ϵ1κf; ð23Þ

where the CP asymmetry is given by [60]

ϵ1 ¼ −
3

16πm̃1

Im½ðh†Mνh�Þ11�; ð24Þ

and washout processes are taken into account by the
efficiency factor

κf ≃ 2 × 10−2 ×

�
0.01 eV

m̃1

�
1.1
: ð25Þ

CP asymmetry and washout processes depend on the
effective neutrino mass

m̃1 ¼
v2u
MN1

ðh†hÞ11: ð26Þ

In Eqs. (24) and (26), h denotes the Dirac neutrino
Yukawa matrix in a basis where the mass matrix
of the heavy neutrinos is diagonal, i.e. h ¼ YDUN with
UT

NMNUN ¼ diagðMN1
;…;MN5

Þ. In order to obtain the
expression (24) for the CP asymmetry, a summation over
lepton flavors in the final state has to be carried out.
Using the parameters of the fit, one obtains for the

baryon asymmetry generated from N1, ηB ≃ 5.2 × 10−12,
which is 2 orders of magnitude smaller than the observed
value ηB ≃ ð6.10� 0.04Þ × 10−10 [52]. However, for the
heavy Majorana masses given in Table III, the baryon
asymmetry calculated from Eqs. (23)–(25) can be modified
by flavor effects of charged leptons and other heavy
neutrinos by more than an order of magnitude [61,62].
To obtain a realistic estimate of the baryon asymmetry, the
flavor effects of charged leptons and in particular the
contributions of the heavier Majorana neutrinos have to
be taken into account.
From Eqs. (17) and (23)–(26) one can easily read off

how a rescaling of couplings may lead to a baryon
asymmetry enlarged by 2 orders of magnitude. Rescaling
h by a factor of 10 while keeping the neutrino masses
constant, i.e. rescaling MN by a factor of 100, enhances ϵ1
by a factor of 100, leaving m̃1 and κf unchanged. Hence, ηB
is indeed enlarged by a factor of 100. It is not clear,
however, whether such a rescaling can be made consistent
with a description of the quark sector since the Dirac
neutrino Yukawa couplings and the up-quark Yukawa
couplings are related.

B. Predicting neutrino masses

We now perform a fit including the baryon asymmetry ηB
in the χ2 function in order to check the viability of the
model in reproducing the correct baryon asymmetry
together with the flavor spectrum. The number of input
parameters is the same as the before. The results are
displayed in Table IV. We obtain the minimal χ2 ¼ 0.95
which is slightly higher compared to the previous case but it
can be still considered a very good fit. The resulting input
parameters are listed in Appendix B.
Compared to the first fit the Majorana phases α21 and α31

have changed by about 50%. The order of magnitude of the
light neutrino masses has remained the same whereas the
heavy neutrino masses have increased by 2 orders of
magnitude, as expected. Correspondingly, the B − L break-
ing VEV has increased by a factor of 10. The increase of the
heavy Majorana masses has the interesting effect that the
baryon asymmetry is now indeed dominated by decays and
inverse decays of the Majorana neutrino N1. Since
MN2

…MN5
∼ 1014 GeV, they are likely not to be produced

from the thermal bath and therefore they have no effect on
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the baryon asymmetry. Moreover, the enhanced mass
MN1

∼ 1012 GeV now lies in the unflavored regime where
flavor effects of charged leptons can be neglected. For the
effective light neutrino mass we find

m̃1 ¼ 0.023 eV; ð27Þ

lying precisely in the mass range

ffiffiffiffiffiffiffiffi
m2

sol

q
< m̃1 <

ffiffiffiffiffiffiffiffiffi
m2

atm

q
: ð28Þ

Hence, leptogenesis takes place in the preferred strong
washout regime where the final asymmetry is independent
of initial conditions. For this value of m̃1 the heavy
Majorana neutrino mass has to satisfy the lower bound
M1 > 1011 GeV (see Fig. 10 in Ref. [58]), which is also
satisfied. We conclude that the estimation of the baryon
asymmetry and the fit to the fermion spectrum are self-
consistent.
It is instructive to reconstruct from the fitted values of the

input parameters given in Table V how the description of
the flavor spectrum and baryogenesis is accomplished. The
mixing of the zero modes of ψ and χ via the heavy

vectorlike multiplets is difficult to disentangle but it is clear
that the largest up-type and down-type Yukawa couplings
scale as one expects for the heaviest generation,

yIuc ∼ yflub ∼
mt

mb

yIdc
tan β

∼
mt

mb

yfldc
tan β

: ð29Þ

The relations at the SOð10Þ fixed point yIea ¼ yIda and
yIνc ¼ yIuc are also very important [see Eqs. (13) and (14)].
The last one implies that B − L is broken at the GUT scale
and therefore mν1 ∼ 10−3 eV.
The Yukawa couplings vary over a range comparable to

the range in the Standard Model. This, together with mass
mixings with vectorlike states and wave function values
differing by an order of magnitude leads to a successful fit
of the measured observables.

IV. SUMMARY AND CONCLUSIONS

Six-dimensional supersymmetric theories with GUT
gauge symmetries are an attractive intermediate step
towards embedding the Standard Model in string theory.
We have analyzed the structure of Yukawa couplings and
mass mixings that occur in an orbifold compactification of
a 6D SOð10Þ GUT model with Abelian magnetic flux.
Three quark-lepton generations are generated as zero
modes of bulk 16-plets together with two Higgs doublets
obtained from two bulk 10-plets and further vectorlike split
multiplets. Although all quarks and leptons have the same
origin, they have different wave functions in the compact
dimensions and therefore different couplings to the Higgs
fields at the orbifold fixed points.
The underlying GUT symmetry and the wave function

profiles of the zero modes imply a number of relations
between the various Yukawa couplings. In a minimal setup
the model has 33 real parameters. It is nontrivial that a good
fit is possible to quark and lepton masses and mixings, CP-
violating phases and the baryon asymmetry via leptogenesis
(20 observables). Due to SOð10Þ relations between up-
quark and Dirac neutrino Yukawa couplings, B − L is
broken at the GUT scale. The smallest neutrino mass is
predicted to bemν1 ∼ 10−3 eV and also the neutrino masses
mβ and mββ, to be measured in standard beta decay and
neutrinoless double beta decay, are very small. Heavy
Majorana neutrino masses are predicted in the range from
1012 to 1014 GeV, and the effective light neutrino mass is
m̃1 ¼ 0.023 eV. Hence, the baryon asymmetry is indeed
dominated by decays and inverse decays of the lightest GUT
scale Majorana neutrino and flavor effects on the generated
asymmetry are negligible. It is remarkable that all light
neutrinomasses lie in the neutrino mass window 10−3 eV <
mνi < 0.1 eV where thermal leptogenesis works best.
The model presented in this paper addresses the question

of flavor physics in flux compactifications, but it is
incomplete in several respects. First of all, the vacuum

TABLE IV. Fit with leptogenesis: the results obtained for the
best fit corresponding to χ2 ¼ 0.95.

Observables Oth Oexp Deviations (in %)

mu [GeV] 0.00048 0.00048 0
mc [GeV] 0.23 0.23 0
mt [GeV] 74.1 74.1 0
md [GeV] 0.00096 0.00113 −15
ms [GeV] 0.018 0.021 −18
mb [GeV] 1.16 1.16 0
me [GeV] 0.00051 0.00044 16
mμ [GeV] 0.094 0.093 1
mτ [GeV] 1.61 1.61 0
m2

sol [eV
2] 0.000075 0.000075 0

m2
atm [eV2] 0.0025 0.0025 0

Vus 0.23 0.23 0
Vcb 0.041 0.041 0
Vub 0.0035 0.0035 0
sin2 θ12 0.31 0.31 0
sin2 θ23 0.44 0.44 0
sin2 θ13 0.022 0.022 0
JQCP 0.000030 0.000030 0
δMNS [ o] 279 261 7
ηB 6.1 × 10−10 6.1 × 10−10 0

Predictions
α21 [ o] 129 MN1

[GeV] 1.3 × 1012

α31 [ o] 353 MN2
[GeV] 2.0 × 1014

mν1 [eV] 0.0017 MN3
[GeV] 3.5 × 1014

mββ [eV] 0.0026 MN4
[GeV] 3.7 × 1014

mβ [eV] 0.0089 MN5
[GeV] 4.6 × 1014
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expectation values hHui, hHdi and hNi correspond to flat
directions of the model. Hence, the determination of the
scales of electroweak breaking and B − L breaking require
further interactions and parameters which remain to be
specified. Another important point concerns the effect of
the large mass mixing terms on the zero mode profiles (for a
recent discussion, see Ref. [37]). In principle, one has to
analyze numerically the differential equations for the bulk
wave functions including the mixing terms. This may lead
to Oð1Þ effects on the wave functions at the fixed points.
However, since the values of the wave functions at fixed
points are alreadyOð1Þ, we expect no qualitative change of
our discussion, but rather a quantitative change in the
numerical values of the free parameters. These questions
will be studied in detail in a future analysis.
Our results provide a nonstandard perspective on the

flavor problem. Traditionally, one searches for flavor
symmetries to understand the hierarchies of fermion masses
and mixings. In the considered model with flux compacti-
fication the quarks and leptons of the three generations have
different internal wave functions and therefore different
couplings to the Higgs fields. As a consequence, there is no
fundamental flavor symmetry. The effective 6D theory
still contains unexplained Yukawa couplings which
may be related to geometry and fluxes if the orbifold
singularities are resolved in a ten-dimensional theory. The
presented model illustrates that in string compactifications
flavor symmetries are not fundamental, although they may
occur as approximate accidental symmetries in specific
compactifications.
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APPENDIX A: EXTRACTION OF MASSES
AND MIXING PARAMETERS

In this appendix we discuss our method of extracting
physical observables from Eqs. (11)–(17). For the charged
fermions, f ¼ u, d, e, Eqs. (11), (12) and (13) can
generally be written as

−Lf
m ¼ ð f1 f2 f3 f ÞMf

0
BBBB@

fc1
fc2
fc3
fc4

1
CCCCAþ H:c:; ðA1Þ

where

Mf ¼
� vfYf

μfα

�
; ðA2Þ

ve ¼ vd ¼ v cos β, vu ¼ v sin β and v ¼ 174 GeV. Yf is a

3 × 4 Yukawa coupling matrix and μfα, α ¼ 1;…; 4, are the
GUT scale mass mixing terms. We then obtain a Hermitian
matrix

Hf ≡MfM
†
f ¼

�
v2fYfY

†
f vfðYfÞiαμ�α

vfðY�
fÞiαμα μ̃2f

�
; ðA3Þ

with μ̃2f ¼ P
αjμfαj2. One typically finds ðHfÞ44 ≫

ðHfÞi4 ≫ ðHfÞij with i ¼ 1, 2, 3. One linear combination
of f1, f2 and f3 forms together with f a Dirac fermion with
GUT scale mass and decouples from the low-energy
spectrum. After integrating it out, we obtain an effective
3 × 3 matrix H̃f for the three families of SM fermions,

ðH̃fÞij ¼ v2fðYfY
†
fÞij −

1

μ̃2f
ðHfÞi4ðH�

fÞj4

¼ v2fðYfY
†
fÞij − v2fðYfÞiαðY�

fÞjβ
μf�α μfβ
μ̃2f

: ðA4Þ

In the case of the three families of light neutrinos we
similarly construct H̃ν ¼ MνM

†
ν using the 3 × 3 Majorana

neutrino mass matrix Mν obtained from Eq. (17). The
Hermitian matrices H̃f obtained for f ¼ u, d, e, ν are then

diagonalized using U†
fH̃fUf ¼ Diagðm2

f1
; m2

f2
; m2

f3
Þ where

mfi are the physical masses of corresponding fermions.
The CKM and PMNS mixing matrices are constructed
using V ¼ U†

uUd and U ¼ U†
l Uν, respectively.

The effective masses for standard beta decay and
neutrinoless double beta decay denoted by mβ and mββ,
respectively, are obtained using

mβ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðMνfM

†
νfÞee

q
and mββ ¼ jðMνfÞeej; ðA5Þ

whereMνf is the neutrino mass matrix in the diagonal basis

of charged leptons and is given by Mνf ¼ U†
l MνU�

l .
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APPENDIX B: FITTED VALUES OF PARAMETERS

We list in Table V the values of input parameters of the model defined in Eqs. (9) and (10) obtained from the two fits. The
GUT scale mixing parameters μa;b;c;d are given in units of the reduced Plank scale, MP ¼ 2 × 1017 GeV.
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TABLE V. The fitted values of input parameters obtained for Fit 1 and Fit 2 displayed in Tables III and IV,
respectively.

Parameters Fit 1 (Table III) Fit 2 (Table IV)

yIua −0.5115 × 10−3 0.1148 × 10−2

yIda 0.4472 × 10−4 −0.1314 × 10−3

yIna ð0.8090þ0.9252iÞ×10−3 ð0.2728þ0.0583iÞ×10−3

yIub 0.7538 × 10−2 0.2691 × 10−1

yIdb −0.2982 × 10−2 0.8655 × 10−3

yInb ð−0.0829−0.3117iÞ×10−2 ð−0.6072þ0.6514iÞ×10−2
yIuc −0.2341 −0.2311
yIdc 0.4630 × 10−1 −0.3160 × 10−1

yInc −0.4134 − 0.6924i ð−0.3838þ0.2643iÞ×10−1

yGGua −0.9908 × 10−6 −0.9914 × 10−6

yGGdb 0.1278 × 10−3 0.1186 × 10−3

yGGνc 0.2355 × 10−1 0.2220

yGGnc ð0.0951 − 0.1447iÞ × 10−1 0.1422 − 0.0589i

yflea 0.1756 × 10−2 −0.2330 × 10−1

yflub −0.1058 × 10−1 −0.1616
yfldc −0.5899 × 10−2 0.1149 × 10−1
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