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We apply the covariant derivative expansion of the Coleman-Weinberg potential to the sfermion sector in
the minimal supersymmetric standard model, matching it to the relevant dimension-6 operators in the
standard model effective field theory at one-loop level. Emphasis is paid to nondegenerate large soft
supersymmetry breaking mass squares, and the most general analytical Wilson coefficients are obtained for
all pure bosonic dimension-6 operators. In addition to the non-logarithmic contributions, they generally
have another logarithmic contributions. Various numerical results are shown, in particular the constraints in
the large Xt branch reproducing the 125 GeV Higgs mass can be pushed to high values to almost
completely probe the low stop mass region at the future FCC-ee experiment, even given the Higgs mass
calculation uncertainty.
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I. INTRODUCTION

The first task of next generation colliders such as the
ILC, the CEPC and the FCC-ee is precision measurement,
of Higgs physics as well as Z-pole physics and trigauge
boson physics and so on. If there is new physics, it is
expected to show up first as corrections to the standard
model (SM) processes, subject to such precision measure-
ments. The corrections can be naturally sorted by dimen-
sion-6 operators in the SM effective field theory (EFT),
which has a total of 59 independent operators for one
family of fermions as a complete basis [1]. Precision
measurements can be translated into a set of constraints
on (part of) the operators.
The operator level fitting process is (UV) model inde-

pendent. On the other hand, in literature there are many
popular new physics models with various motivations and
merits. Previously the matching of new physics to the
model independent operator constraints are mostly electro-
weak precision test (EWPT) and Higgs cross sections/
decay branching ratios. For the most important subset of
pure bosonic operators and at one-loop level which is
usually leading with occasional exceptions, a method called
the covariant derivative expansion (CDE) [2,3] has greatly
facilitate the matching procedure, with advantage of being
complete for matching all operators simultaneously, model

independence in computation process, and giving analyti-
cal results.
One can match any desirable UV models to the SM EFT

[2–6], but before that some generalizations of the CDE
technique need tobemade. In addition to thegeneralization to
fermionic degree of freedom (DOF) which has extra gamma
matrices related contributions [3,6], for realistic model
parameters the original treatment of only degenerated large
scales in [2,3] is based on an oversimplified assumption to be
dropped. Since the CDE has already been formulated in
matrix basis, it is not a difficult generalization to use non-
degenerate large scales, and use heavily the integration of
Feynmanparametrization at textbook level after taking traces.
Here we do sample calculations for the sfermion sector of

the minimal supersymmetric standard model (MSSM). We
expand the Coleman-Weinberg (CW) potential with covar-
iant derivatives, matching it to a maximal set of bosonic
operators, getting theirWilson coefficients. In addition to the
nondegeneracy of soft mass squares we keep the small
bottom/tau Yukawa couplings, and the differences between
the squark sector and the slepton sector are accounted by
different SUð3Þc representations and Uð1ÞY hypercharges.
The analytical results at one-loop level should be complete
and realistic to use for various purposes.
A lot of works have been done in the indirect precision

constraints of the squark sector of the MSSM, including the
one-loop level Feynman diagram calculation. To provide
some new useful numerics here we consider the MSSM
Higgs mass constraint in detail, in particular we solve the
mixing term Xt for the required SM like Higgs mass. There
are in general two solutions for a required SM like Higgs
mass, and we find the precision constraints are especially
effective for the large Xt branch.

*ran.huo@ipmu.jp

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 97, 075013 (2018)

2470-0010=2018=97(7)=075013(13) 075013-1 Published by the American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.97.075013&domain=pdf&date_stamp=2018-04-12
https://doi.org/10.1103/PhysRevD.97.075013
https://doi.org/10.1103/PhysRevD.97.075013
https://doi.org/10.1103/PhysRevD.97.075013
https://doi.org/10.1103/PhysRevD.97.075013
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


This paper is organized as follows. In Sec. II, we briefly
review the dimension-6 operator basis and the bosonic CDE
formulism, then we discuss the structure needed for large
mass nondegeneracy. Next in Sec. III we show the sfermion
sector input to the CDE formulism, and then the main
analytical results. Section IVis devoted to various numerical
applications of the analytical results. We conclude in Sec. V.
At last, Appendix provides a list of useful auxiliary formulas
for the integration of Feynman parameters.

II. FORMULISM

The operator basis we use is listed in Table I, which
includes only Higgs and electroweak gauge boson fields.
The basis is natural in sense that it directly captures all the
possibilities generated by the CDE formulism, before
removing any redundant operators.
The bosonic CDE formulism given in [6] can be

summarized as the dimension-6 terms generated by the
one-loop integration

LCDE ¼ nB
2

Z
∞

0

du
Z

ddpE

ð2πÞd
X∞
m¼1

ð−1Þmtr
��

1

p2
E þM2 þ u

½δṼ 00 þ G̃�
�

m 1

p2
E þM2 þ u

�
; ð1Þ

where

δṼ00 ¼ e−iD
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In Eq. (1) nB is the DOF for each entry, being 1 for a real
bosonic DOF and 2 for a complex bosonic DOF. The
dimension-2 auxiliary number u is introduced as a trick
to regularize orders of commutators of ∂

∂p s acting on

ðp2 −M2Þs [7]. AWick rotation is performed and subscript
“E” indicates Euclidean. The CDE assumes in the CW
potential the double derivatives (indicated by 0) to the
beyond SM fields acting on the Lagrangian potential terms
can be decomposed as V 00 ¼ M2 þ δV 00, whereM2 is some
large constant squared mass term which is irrelevant to
Higgs vacuum expectation value (VEV), and δV 00 on the
other hand captures the spacetime dependent part (namely
the SMHiggs) of potential terms, with not only the physical
Higgs boson but the Nambu-Goldstone modes before
electroweak symmetry breaking. At last ∼ generally in-
dicates a Baker-Campbell-Hausdorff expansion with covar-
iant derivatives and ∂

∂p s, which can be understand as
introducing spacetime dependence in the momentum space

[8] (and the covariant generalization in gauge field ∂ →
D ¼ ∂ − igA is given in [9,10], in which the G̃ terms arise).
Note that the δṼ 00 and G̃ are all matrices, with each entry

coupling to a gauge DOF of new particle to be integrated
out. So is the large spacetime independent mass term M2,
which in all known models is a diagonal matrix (ifM2 is not
diagonal the new physics has intrinsic mixing irrelevant to
the SM, such a model seems difficult to get motivated).
This directly shows the way of generalizing the CDE
formulism with nondegenerate large mass parameters,
namely treating 1=ðp2

E þM2 þ uÞ as a diagonal matrix
ðp2

E þM2 þ uÞ−1 and doing the multiplication with full
respect to their matrix nature and noncommutativity with
the ðδṼ 00 þ G̃Þs. The ∂

∂p action on any ðp2
E þM2 þ uÞ−1

factor (as well as the factor p in the first term of G̃) will give
a commutative p number on the numerator and introduce
no ambiguity. Eventually the overall trace operation
reduces the matrix to numbers.

TABLE I. Independent CP-even dimension-6 operators composed of only the Higgs and gauge boson fields that are relevant to the
analysis in this work.

Symbol Operator expression Symbol Operator expression Symbol Operator expression

O6 ðH†HÞ3 OGG g2sH†HGa
μνGaμν OW igðH†D

↔

μtaHÞDνWaμν

OH
1
2
ð∂μðH†HÞÞ2 OWW g2H†HWa

μνWaμν OB ig0ðH†D
↔

μHÞ∂νBμν

OT 1
2
ðH†D

↔

μHÞ2 OBB g02H†HBμνBμν OHW 2igðDμHÞ†taðDνHÞWaμν

OR ðH†HÞðDμH†DμHÞ OWB 2gg0H†taHWa
μνBμν OHB 2ig0YHðDμHÞ†ðDνHÞBμν

OD ðDμDμH†ÞðDνDνHÞ
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The later jobs such as the textbook trick of Feynman para-
metrization for each term, the dimensional regularization/
reduction integration over

R
ddpE and the integration overR

du (with the boundary u → ∞ dropped as M̄S subtrac-
tion) are quite tedious, but possible especially with a
symbolic calculation tool such as the Mathematica.

III. THE SFERMION SECTOR

In the following we do the CDE matching for the squark
sector explicitly. Without specifying the Yq, Yt, Yb values
the slepton sector results can be correspondingly obtained,
though one should keep in mind that the cGG vanishes and
every other Wilson coefficient should be divided by a factor
of 3 as the SUð3Þc color multiplicity.

The CW potential matrix in the basis of ðt̃L; b̃L; t̃R; b̃RÞ
has large spacetime independent masses (suppressing the
SUð3Þc components)

M2 ¼

0
BBBBB@

M2
q̃ 0 0 0

0 M2
q̃ 0 0

0 0 M2
t̃ 0

0 0 0 M2
b̃

1
CCCCCA
; ð4Þ

and the spacetime dependent terms can be written in a
decomposition δV 00 ¼ δV 00

F þ δV 00
D þ δV 00

X, with

δV00
F ¼

0
BBBB@

y2t H0�H0 þ y2bH
−Hþ ð−y2t þ y2bÞH0�Hþ 0 0

ð−y2t þ y2bÞH−H0 y2t H0�H0 þ y2bH
−Hþ 0 0

0 0 y2t ðH0�H0 þH−HþÞ 0

0 0 0 y2bðH0�H0 þH−HþÞ

1
CCCCA; ð5Þ

δV00
D¼cos2β

0
BBBBBBBBBBBB@

�
g2

4
−Yqg02

2

�
H0�H0

−
�
g2

4
þYqg02

2

�
H−Hþ −g2

2
H0�Hþ 0 0

−g2

2
H−H0 −

�
g2

4
þYqg02

2

�
H0�H0þ

�
g2

4
−Yqg02

2

�
H−Hþ 0 0

0 0 Ytg02
2
ðH0�H0þH−HþÞ 0

0 0 0 Ybg02
2
ðH0�H0þH−HþÞ

1
CCCCCCCCCCCCA

;

ð6Þ

δV00
X ¼

0
BBBBB@

0 0 ytH0�Xt ybHþXb

0 0 −ytH−Xt ybH0Xb

ytH0Xt −ytHþXt 0 0

ybH−Xb ybH0�Xb 0 0

1
CCCCCA
; ð7Þ

which count the supersymmetric F-term, D-term and
the trilinear X-term contributions respectively. Here the
Yukawa couplings are defined as their SM values such as
yt ¼

ffiffiffi
2

p
mt=v ¼ yMSSM

t sin β with v ¼ 246 GeV, and we
have ignored any possible CP phases. Plugging them into
Eq. (1) and collecting the dimension-6 operators as
described in the Appendix of [6], we tabulate the resulting
Wilson coefficient for each operator in the following
long table.
Here we have a few comments:
(i) In general every Wilson coefficient has a nonlogar-

ithmic contribution and logarithmic contribution,

the latter of which is proportional to the logarithm
of the soft breaking mass ratio. This is the general
way the scales nondegeneracy comes. In that case
the denominators of both contributions contain
factors of certain powers of the nondegeneracy, with
the logarithmic one higher by one in power, con-
sistent with the behavior of the Feynman parameter
integration listed in the Appendix. It is straightfor-
ward to check that, while each contribution is
singular in the degeneracy limit, the combination
of the two are finite and reproducing an expansion
around the degenerated results.
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TABLE II. The Wilson coefficients of integrating out the sfermion sector. The operators are listed in Table I and the Wilson
coefficients are defined with dimension-−2.

Nonlogarithmic contributions Logarithmic contributions

− 1
32M2

q̃
ððy2t þ y2b − g02Yq cos 2βÞð16ðy4t þ y4b − y2by

2
t Þ

þð12g2ðy2t − y2bÞ − 8g02Yqðy2b þ y2t ÞÞ cos 2β
þð3g4 þ 4g04Y2

qÞcos22βÞÞ
− 1

16M2
t̃
ð2y2t þ g02Yt cos 2βÞ3 − ðt ↔ bÞ þ 3y2t X

2
t

16ðM2
q̃−M

2
t̃
Þ3 ððg2 − 2g02ðYq þ YtÞÞð4ðM2

q̃ −M2
t̃ Þy2t

þ 3y2t X
2
t

32M2
q̃M

2
t̃
ðM2

q̃−M
2
t̃
Þ2 ð16ðM2

q̃ −M2
t̃ Þ2y4t −ðg2M2

t̃ − 2g02ðM2
q̃Yt þM2

t̃ YqÞÞ cos 2β)
−8ðM2

q̃ −M2
t̃ Þy2t ðg2M2

t̃ − 2g02ðM2
q̃Yt þM2

t̃ YqÞÞ cos 2β × cos 2βÞ lnM2
q̃

M2
t̃
þ ðt ↔ b; g2 → −g2Þ

ð4πÞ2c6 þðg4M2
t̃ ðM2

q̃ þM2
t̃ Þ − 4g2g02M2

t̃ ðM2
q̃ðYq þ 2YtÞ þM2

t̃ YqÞ þ 3y4t X
4
t

4ðM2
q̃−M

2
t̃
Þ4 ð4ðM2

q̃ −M2
t̃ Þy2t − ðg2ðM2

q̃ þ 2M2
t̃ Þ

þ4g04ðM4
q̃Y

2
t þM2

q̃M
2
t̃ ðY2

q þ 4YqYt þ Y2
t Þ þM4

t̃ Y
2
qÞÞ −2g02ðM2

q̃ðYq þ 2YtÞ þM2
t̃ ð2Yq þ YtÞÞÞ

×cos22βÞ þ ðt ↔ b; g2 → −g2Þ × cos 2βÞ lnM2
q̃

M2
t̃
þ ðt ↔ b; g2 → −g2Þ

− 3y4t X
4
t

8M2
q̃M

2
t̃
ðM2

q̃−M
2
t̃
Þ3 ð4ðM4

q̃ −M4
t̃ Þy2t − 3y6t X

6
t

ðM2
q̃−M

2
t̃
Þ5 ðM2

q̃ þM2
t̃ Þ ln

M2
q̃

M2
t̃
− ðt ↔ bÞ

−ðg2ð5M2
q̃M

2
t̃ þM4

t̃ Þ − 2g02ðM4
q̃Yt þM4

t̃ Yq

þ5M2
q̃M

2
t̃ ðYq þ YtÞÞÞ cos 2βÞ − ðt ↔ b; g2 → −g2Þ

þ y6t X
6
t

2M2
q̃M

2
t̃
ðM2

q̃−M
2
t̃
Þ4 ðM4

q̃ þ 10M2
q̃M

2
t̃ þM4

t̃ Þ þ ðt ↔ bÞ

þ 1
4M2

q̃
ðy2t þ y2b − g02Yq cos 2βÞ2

þ 1
8M2

t̃
ð2y2t þ g02Yt cos 2βÞ2 þ ðt ↔ bÞ þ 3y2t X

2
t M

2
t̃

4ðM2
q̃−M

2
t̃
Þ4 ð2M2

t̃ ðy2t − y2bÞ þ ðg2ð2M2
q̃ þM2

t̃ Þ
− y2t X

2
t

8M2
q̃M

2
t̃
ðM2

q̃−M
2
t̃
Þ3 ð8M6

q̃y
2
t − 2M4

q̃M
2
t̃ ð13y2t − y2bÞ −4g02M2

q̃ðYq þ YtÞÞ cos 2βÞ lnM2
q̃

M2
t̃

−4M6
t̃ ðy2t þ y2bÞ þ 2M2

q̃M
4
t̃ ð17y2t − 5y2bÞ þðt ↔ b; g2 → −g2Þ

þð3g2M2
q̃M

2
t̃ ðM2

q̃ þ 5M2
t̃ Þ þ 4g02ðM6

t̃ Yq þM6
q̃Yt þ 3y4t X

4
t M

2
t̃

2ðM2
q̃−M

2
t̃
Þ5 ð5M2

q̃ þM2
t̃ Þ ln

M2
q̃

M2
t̃
þ ðt ↔ bÞ

ð4πÞ2cH −M2
q̃M

4
t̃ ð5Yq þ 2YtÞ −M4

q̃M
2
t̃ ð2Yq þ 5YtÞÞÞ cos 2βÞ − 3y2t y

2
bX

2
t X

2
b

2ðM2
q̃−M

2
t̃
Þ4ðM2

q̃−M
2

b̃
Þ4ðM2

t̃
−M2

b̃
Þ ½ððM8

q̃ −M4
t̃ M

4
b̃
Þ

−ðt ↔ b; g2 → −g2Þ ×ðM4
t̃ −M4

b̃
Þ − 4M2

q̃M
2
t̃ M

2
b̃
ðM2

t̃ ðM4
q̃ þM4

b̃
Þ

þ y4t X
4
t

4M2
q̃M

2
t̃
ðM2

q̃−M
2
t̃
Þ4 ð2M6

q̃ − 15M4
q̃M

2
t̃ − 24M2

q̃M
4
t̃ þM6

t̃ Þ −M2
b̃
ðM4

q̃ þM4
t̃ ÞÞÞ lnM2

q̃

þðt ↔ bÞ −ðM2
q̃ −M2

b̃
ÞM4

t̃ lnM
2
t̃

þ y2t y
2
bX

2
t X

2
b

4M2
q̃ðM2

q̃−M
2
t̃
Þ3ðM2

q̃−M
2

b̃
Þ3 ð2M8

q̃ −M4
q̃ðM4

t̃ þM4
b̃
Þ þ 2M4

t̃ M
4
b̃

þðM2
q̃ −M2

t̃ ÞM4
b̃
lnM2

b̃
�

þ5ðM4
q̃ þM2

t̃ M
2
b̃
ÞM2

q̃ðM2
t̃ þM2

b̃
Þ − 22M4

q̃M
2
t̃ M

2
b̃
Þ

− 3y2t X
2
t M

4
t̃

4ðM2
q̃−M

2
t̃
Þ4 ð2y2t − 2y2b þ g2 cos 2βÞ lnM2

q̃

M2
t̃

þ 1
16M2

q̃
ð2y2t − 2y2b þ g2 cos 2βÞ2 −ðt ↔ b; g2 → −g2Þ

− y2t X
2
t

8M2
q̃ðM2

q̃−M
2
t̃
Þ3 ðð2y2t − 2y2b þ g2 cos 2βÞ − 3y4t X

4
t M

2
t̃

2ðM2
q̃−M

2
t̃
Þ5 ðM2

q̃ þM2
t̃ Þ ln

M2
q̃

M2
t̃
− ðt ↔ bÞ

ð4πÞ2cT ×ðM4
q̃ − 5M2

q̃M
2
t̃ − 2M4

t̃ ÞÞ − ðt ↔ b; g2 → −g2Þ þ 3y2t y
2
bX

2
t X

2
b

2ðM2
q̃−M

2
t̃
Þ4ðM2

q̃−M
2

b̃
Þ4ðM2

t̃
−M2

b̃
Þ ½ððM8

q̃ −M4
t̃ M

4
b̃
Þ

þ y4t X
4
t

4M2
q̃ðM2

q̃−M
2
t̃
Þ4 ðM4

q̃ þ 10M2
q̃M

2
t̃ þM4

t̃ Þ þ ðt ↔ bÞ ×ðM4
t̃ −M4

b̃
Þ − 4M2

q̃M
2
t̃ M

2
b̃
ðM2

t̃ ðM4
q̃ þM4

b̃
Þ

− y2t y
2
bX

2
t X

2
b

4M2
q̃ðM2

q̃−M
2
t̃
Þ3ðM2

q̃−M
2

b̃
Þ3 ð2M8

q̃ −M4
q̃ðM4

t̃ þM4
b̃
Þ þ 2M4

t̃ M
4
b̃

−M2
b̃
ðM4

q̃ þM4
t̃ ÞÞÞ lnM2

q̃

þ5ðM4
q̃ þM2

t̃ M
2
b̃
ÞM2

q̃ðM2
t̃ þM2

b̃
Þ − 22M4

q̃M
2
t̃ M

2
b̃
Þ −ðM2

q̃ −M2
b̃
ÞM4

t̃ lnM
2
t̃

þðM2
q̃ −M2

t̃ ÞM4
b̃
lnM2

b̃
�

(Table continued)
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(ii) For a hierarchy of the large scales, only the non-
logarithmic contribution survives, the logarithmic
contribution will always be more suppressed by

one extra large scale square. It is straightforward to
read them out, for example the leading contribution
to cT is

TABLE II. (Continued)

Nonlogarithmic contributions Logarithmic contributions

− 3y2t X
2
t

4ðM2
q̃−M

2
t̃
Þ4 ð4M4

q̃y
2
t − 4M4

t̃ y
2
b

þ 1
8M2

q̃
ð2y2t − 2y2b þ g2 cos 2βÞ2 −ðg2ð2M2

q̃M
2
t̃ −M4

t̃ Þ − 2g02ðM4
t̃ Yq

þ y2t X
2
t

8M2
q̃ðM2

q̃−M
2
t̃
Þ3 ð8M4

t̃ ðy2t − y2bÞ − 4M2
q̃M

2
t̃ ð7y2t þ 5y2bÞ þ2M2

q̃M
2
t̃ ðYq þ YtÞ þM4

q̃YtÞÞ cos 2βÞ lnM2
q̃

M2
t̃

þ4M4
q̃ð11y2t þ y2bÞ − ðg2ð5M4

q̃ þ 5M2
q̃M

2
t̃ − 4M4

t̃ Þ −ðt ↔ b; g2 → −g2Þ
ð4πÞ2cR −6g02M2

q̃ðM2
q̃ðYq þ 5YtÞ þM2

t̃ ð5Yq þ YtÞÞÞ cos 2βÞ þ 3y4t X
4
t M

2
q̃

ðM2
q̃−M

2
t̃
Þ5 ðM2

q̃ þ 3M2
t̃ Þ ln

M2
q̃

M2
t̃
þ ðt ↔ bÞ

þðt ↔ b; g2 → −g2Þ þ 3y2t y
2
bX

2
t X

2
b

ðM2
q̃−M

2
t̃
Þ4ðM2

q̃−M
2

b̃
Þ4ðM2

t̃
−M2

b̃
Þ ½ððM8
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ð4πÞ2cT →

8>>><
>>>:

ð2y2t − 2y2b þ g2 cos 2βÞ2
16M2

q̃
þ y2t ð2y2t − 2y2b þ g2 cos 2βÞX2

t

4M2
q̃M

2
t̃

þ y4t X4
t

4M2
q̃M

4
t̃

; Mq̃ ≪ Mt̃;

ð2y2t − 2y2b þ g2 cos 2βÞ2
16M2

q̃
−
y2t ð2y2t − 2y2b þ g2 cos 2βÞX2

t

8M4
q̃

þ y4t X4
t

4M6
q̃
; Mq̃ ≫ Mt̃:

ð8Þ

Note that in the second hierarchy even the leading con-
tributions are suppressed by Mq̃.
(iii) The symmetry between the up type and the down

type is manifested in the top-bottom switching
t ↔ b, which by definition is yt → yb, Mt̃ → Mb̃,
Xt → Xb, Yt → Yb, and yb → yt, Mb̃ → Mt̃,
Xb → Xt, Yb → Yt in some cases that the “down”
type quantities also appear in a “up” type term. The
SUð2ÞL couplings includes a t3 induced flipping
between the up and down sector, since they are the
same for both squarks and sleptons we do not keep it
explicitly like the hypercharge YtðYbÞ. Their effect is
to flipping the sign of g2 → −g2. And note the sign
flip of the cWB, cB and cHB in the top-bottom
switching.

(iv) In addition to the above operators, there are “uni-
versal” contributions to the pure gauge boson
operators. Since the new particle couplings to SM
gauge group are always within a gauge representa-
tion so that share the same large scale, for example
in our sfermion case the SUð2ÞL gauge bosons only
couple to left hand sfermions so that only feel the
Mq̃ðMl̃Þ, and the other SUð3Þc and Uð1ÞY gauge
bosons couplings are block diagonal in the
M2 þ δV 00 matrix, they do not show the above
nondegeneracy property. Here we adapt the results
in [3] for completeness

LEFT ⊃
1

ð4πÞ2
��

Y2
qg02

10M2
q̃
þ Y2

t g02

20M2
t̃

þ Y2
bg

02

20M2
b̃

�
O2B

þ g2

20M2
q̃
ðO2WþO3WÞ

þ
�

g2s
30M2

q̃
þ g2s
60M2

t̃

þ g2s
60M2

b̃

�
ðO2GþO3GÞ

�
:

ð9Þ

Only the operator O3W is directly constrained
by the tri-gauge boson precision experiments,
and is generally expected to have a relatively
low sensitivity. We do not include them in the
following fit.

(v) After the original version of this paper, [11] ap-
peared and pointed out some discrepancies between
the Wilson coefficients here and theirs. In this
updated version the omission in the first calculation
has been corrected, which matches with [11]. The

calculation here differs from [11] in the trick of
expanding the logarithm in the effective potential,
see [12] for discussion of the regularization options.
The degenerated mass case result is obtained in
[2,3]. The nondegenerate mass results for cGG, cWW ,
cBB and cWB are obtained in [4], however the latter
three are in a different basis. Here it is straightfor-
ward to check that for the Higgs diphoton coupling
the combination of terms proportional to y2t X2

t from
the latter three operators conspires to cancel the
ðM2

q̃ −M2
t̃ Þ−1 and the logarithmic term, going back

to a form consistent with the Higgs low energy
theorem. The alternative Feynman diagram calcu-
lation dates back to [13].

(vi) The results which focus at one loop level and
dimension-6 operators here, are the leading contri-
butions to various SM precision test of integrating
out the MSSM sfermion sector. Further improve-
ment can be made by going beyond one loop level or
operators of dimension 6 or both. The former
improvement includes not only a straightforward
two loop calculation, but also other effects such as
an renormalization group running of the one loop
sized contributions from the matching scale Mt̃ to
the individual scales for each precision experiment
[14], or the effort to make the definition of T and S
parameters gauge invariant [15]. The latter improve-
ment on the other hand, is recovered in the tradi-
tional Feynman diagram calculation, in which the
one loop results are not truncated at dimension-6
operators level. But according to the comparison
made in [4], for our interested Mt̃1 > 500 GeV
region the difference between the two methods
are negligible.

(vii) In the following numerical works we will focus on
the four most stringent constraints, but completely
matching to EFT indeed has an advantage of

TABLE III. The uncertainties achieved or expected at each
experiments, for the four most constraining model independent
operators or observables.

Observable T S ΔΓhgg=ΓSM
hgg ΔΓhγγ=ΓSM

hγγ

Current 0.07 [17] 0.09 [17] 4.6% [18]
ILC (1 TeV) 0.022 [17] 0.016 [17] 3.1% [19] 8.5% [19]
CEPC 0.009 [20] 0.014 [20] 1.9% [20] 9.1% [20]
FCC-ee 0.004 [21] 0.007 [21] 1.4% [22] 3.0% [22]
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providing much more information. For example,
following [3] the hZγ, hWW, hZZ can also
be calculated and constrained with the Wilson
coefficients.

IV. NUMERICAL CONSTRAINTS

The afore calculated Wilson coefficients can be used
straightforwardly to transfer the model independent con-
straints to a set of constraints of the sfermion parameters. In
the following we will ignore the subdominant slepton

sector contribution, and in the squark sector we will ignore
the much smaller bottom Yukawa couplings. Consequently
the dependence on Xb is eliminated, for Xb is always
multiplied by yb.

1 In that case theMb̃ dependence is always
proportional to only the small g0 and therefore weak, for
simplicity we assume Mb̃ ¼ Mt̃.

2 While the results in
Table II depend on the two soft breaking parameters Mq̃

andMt̃, they can be translated to the physical masses of the
two stop squarks, through mixing determined by diago-
nalization of stop mixing matrix

M2 þ δV 00 ¼

0
B@M2

q̃ þm2
t þm2

Z

�
1
2
− 2

3
sin2θW

�
cos 2β mtXt

mtXt M2
t̃ þm2

t þm2
Z
2
3
sin2θW cos 2β

1
CA: ð10Þ

Note that the mixing matrix is just the first and third rows
and columns of the matrix V 00 ¼ M2 þ δV 00

F þ δV 00
D þ δV 00

X
in Eqs. (4),(5),(6),(7), while the Higgs components are
replaced by their VEVs. We will ignore any loop correction
to the above squark mass matrix.
There are four most stringent operator level constraints

in the SM EFT. Two of them are the EWPT Peskin-
Takeuchi T and S parameters [16], and the other two
correspond to two channels of Higgs production/decay
coupled to gluon pairs and photon pairs, which are
generated at one-loop level in the SM even in leading

order. The four constraints in our operator basis of Table I
are represented [3]

T¼ 1

αEM
v2cT; S¼ 4πv2ð4cWBþcW þcBÞ; ð11Þ

ΔΓhgg

ΓSM
hgg

¼ ð4πÞ2
ReMhgg

8v2cGG;

ΔΓhγγ

ΓSM
hγγ

¼ ð4πÞ2
ReMhγγ

4v2ðcWW þ cBB − cWBÞ; ð12Þ

whereMhgg andMhγγ is the SM amplitude of the (looped)
hgg and hγγ couplings. Note in the Higgs precision experi-

ments usuallymeasurements are not for ΔΓhgg

ΓSM
hgg

ðΔΓðhγγÞΓSMðhγγÞÞ or ΔBRBR

but for Δσ·BR
σ·BR , and there are subdominant contributions

induced by other operators beyond the interference of
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FIG. 1. The 2σT parameter (blue curves), S parameter (cyan curves), and hgg coupling (red curves) constraints, shown for the left
Xt ¼ 1 TeV,middleXt ¼ 3 TeV, and rightXt ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6Mt̃1Mt̃2

p
panels. For each group of theT,S, andhgg curves the current constraints, ILC

expected constraints, CEPC expected constraints, and FCC-ee expected constraints are denoted by solid curves, dashed curves, dot-dashed
curves, and dotted curves respectively, if the constraint is strong enough to be shown on the plot. The shaded region is theoretically
inaccessible for the Xt choice with mixing indicated by Eq. (10). Here we choose tan β ¼ 20 but the tan β dependence is weak.

1In the large tan β region this can be not true, but for simplicity
here we will not consider such scenario.

2Numerically ifMb̃ varies by a factor of two, for the following
typical parameter choices the most sensitive cGG will vary by a
few percent.
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new physics and the SM amplitude, but for simplicity we
will ignore all of them. The current best measurements and
projected future sensitivities are listed in Table III.
A lot of numerical fittings have already been performed

in the literature [4,23,24]. In Fig. 1 we focus on the 2σ
constraints of the T and S operators as well as the hgg
coupling for comparison with [4] for different choices of
Xt, with nondegenerate Mq̃ and Mt̃ substituted by the
physical stop massesMt̃1 andMt̃2 . The Xt introduces some

splitting between the two stop masses, so for nonzero Xt a
region with Mt̃1 ≃Mt̃2 is inaccessible and shaded gray in
the plots (also regions with very small Mt̃1 and large Mt̃2).
We assume t̃1 has larger mixing component of left handed
stop and t̃2 of right handed stop, so that the bottom right
corner of each plot shows the constraints for Mq̃ < Mt̃,
while the Mq̃ > Mt̃ case is shown in the top left corner.
Since the Xt ¼ 0 slice will not satisfy the SM like Higgs
mass constraint of 122 GeV < Mh < 128 GeV in the
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FIG. 2. The expected constraints from future ILC (the left column), CEPC (the middle column), and FCC-ee (the right column)
experiments (see Table III) for fixed SM like Higgs mass value ofMh ¼ 122 GeV (the first row),Mh ¼ 125 GeV (the second row), and
Mh ¼ 128 GeV (the third row). The 1σ and 2σ allowed region are green and yellow hatched. The individual 2σ constraint from T, S
parameters and hgg, hγγ couplings are shown for each experiment again as blue, cyan, red, and magenta curves respectively, if strong
enough to be shown. There are still theoretically inaccessible region as hatched in gray. Here we choose tan β ¼ 20, and the small Xt
solution to reproduce the required SM like Higgs mass.
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MSSM anyway (except for exponentially large soft mass)
we will not show such result, and the three plots shown are
for Xt ¼ 1 TeV, 3 TeV, and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6Mt̃1Mt̃2

p
respectively.

In all the three panels the most constraining operator
arises between the hgg and T. The hgg coupling constraints
are usually the most stringent, with exceptions on theMq̃ <
Mt̃ side when the two stops mass splitting is large, in that
case the T parameter constraints will take over. In the first
panel the constraints vanish at Mt̃1 ≃ Xt or Mt̃2 ≃ Xt of
1 TeV, that’s the “blind spot” discussed in [23,24]. Except
for the blind spot, the constraint for the heavier stops will
naively extend to large values, that’s another interesting

feature of the indirect constraint method. We have checked
that the constraints depend very weakly with tan β, which
can be understood through the fact that it always comes in
the cos 2β factor of the small D-term.
In supersymmetric theories the SM like Higgs mass is

calculable, from the D-term tree level contribution and the
large radiative corrections mainly from the top/stop sector.
For stop masses of a few TeVs, the Xt term needs to
contribute significantly to tune the Higgs mass to the
measured 125 GeV, which predicts Xt itself to be a
considerable value with roughly the same scaling with
stop masses, potentially contributing significantly through
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FIG. 3. Same as Fig. 2, but for large Xt solution to reproduce the required SM like Higgs mass. The brown curves are the charge and

color breaking vacuum constraint of Xt=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

t̃1
þM2

t̃2

q
≲ ffiffiffi

3
p

, and the region below and on the left are allowed.
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the X2
t and X4

t terms in the Wilson coefficients. So the SM
like Higgs mass imposes another constraint of the param-
eter region, and it is interesting to stick to that parameter
slice. Note that there is still some uncertainty in calculating
the SM like Higgs mass, especially in the low SUSY scale
region, different code may give up to 3 GeV discrepancy.
We use the FEYNHIGGS 2.11.2 [25] to calculate the MSSM
Higgs mass (for an estimation of hierarchical stops two-
loop contribution, see Eq. (5.3) of [26]), then solve for the
Xt values which are consistent with a SM like Higgs mass
of 122–128 GeV.
In Figs. 2 and 3 we show such numerical constraints for

three future experiments and a range of SM like Higgs
masses at tan β ¼ 20 and decoupling large CP odd Higgs
mass. Again we use the same notations and methods for the
two cases ofMq̃ < Mt̃ andMq̃ > Mt̃, and gray shading for
theoretically inaccessible region. The green 1σ region and
yellow 2σ region are determined by fitting to all the EWPT
and Higgs precision observables in [17,19–22] (including
the hWW, hZZ, and Higgs to fermion pairs expectations
ignored in Table III), and four individual 2σ constraints
corresponding to Table III are shown as well. For a fixed
SM like Higgs mass value there are in general two Xt

solutions as shown respectively in the two sets of plots, and
the most effective constraints are seen in the large Xt
branch. While the CEPC can probe most low stop mass
(<2 TeV) region except for two corners, the FCC-ee can
completely cover the whole region, even with a 3 GeV SM
like Higgs mass uncertainty. On the large Xt branch one
also need to worry about the possibility of other vacuum
deeper than our electroweak symmetry breaking one
with nonzero VEVof stops scalars, which may be induced
by the large nondiagonal Xt. We show the bound of

Xt=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

t̃1
þM2

t̃2

q
≲ ffiffiffi

3
p

of [27–29] in Fig. 3 for comparison.

At last we check the tan β dependence, which has a large
effect on the SM like Higgs mass. As can be seen from
Fig. 4, smaller tan β will allow a smaller Xt on the large Xt
branch, so that weaken the constraints compared with the
large tan β case. Still we can see that even if tan β is as low
as 5, the low stop mass (<2 TeV) region on the large Xt
branch can be almost completely probed.

V. CONCLUSION

In this paper as an example of the CDE generalization,
we perform the one-loop integration out of the sfermion
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FIG. 4. The expected constraints from future ILC (the left column), CEPC (the middle column), and FCC-ee (the right column)
experiments (see Table III) for fixed SM like Higgs mass value of Mh ¼ 125 GeV, with small Xt solution (the first row) and large Xt
solution (the second row). Other notations are the same with Fig. 2. In the large Xt branch all the theoretically accessible region are

consistent with the charge and color breaking vacuum constraint of Xt=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

t̃1
þM2

t̃2

q
≲ ffiffiffi

3
p

.
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sector in the MSSM, with full respect to all the coupling
constants and nondegeneracy of the soft mass squares,
and matching it to a basis of dimension-6 pure bosonic
operators. Analytical expressions are given for each Wilson
coefficient, with in general nonlogarithmic contributions
and logarithmic contributions.
Nevertheless without any ambiguity, numerically in the

language of EFT, the most constraining T parameter are
taken into account in a general way, and comparison is
made among all the most stringent operators. Assuming
the SM like Higgs mass relation in the MSSM, the probed
region for each future experiments are shown. In particular
in the large Xt branch the constraints can be pushed to very
high values, and probably rule out the low scale stop
sector, by precisions provided by, e.g., the FCC-ee
experiment.
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APPENDIX: MORE ON FEYNMAN
PARAMETRIZATION AND ITS INTEGRATION

After taking trace, the denominator of each term is a
multiplication of ðp2

E þM2
i þ uÞ. Each term eventually

contributing to dimension-6 operators in Table I actually
falls into one of the following categories

1QP
ni¼4

ðp2
E þM2

i þ uÞni ;
p2
EQP

ni¼5
ðp2

E þM2
i þ uÞni ;

XiXjQP
ni¼5

ðp2
E þM2

i þ uÞni ;
p2
EXiXjQP

ni¼6
ðp2

E þM2
i þ uÞni ;

p4
EXiXjQP

ni¼7
ðp2

E þM2
i þ uÞni ;

XiXjXkXlQP
ni¼6

ðp2
E þM2

i þ uÞni ;
p2
EXiXjXkXlQP

ni¼7
ðp2

E þM2
i þ uÞni ;

XiXjXkXlXmXnQP
ni¼7

ðp2
E þM2

i þ uÞni : ðA1Þ

Here Xi generally indicates some dimension-1 quantity,
which could be the Xt, Xb terms in our sfermion sector, or
the large scale itself in the vectorlike fermion model.
To see this is the case we should at first go through the

following calculation steps. The standard textbook trick of
Feynman parametrization allows the loop integration overR
ddpE, with dimensional regularization/reduction which

makes no difference at one loop level. Then the integration
over

R
du can always be performed, with the boundary

u → ∞ dropped as MS subtraction. The first integration
increase the dimension by 4 and the second integration

by 2, and all the above categories eventually give correct
dimension of −2, as required for the dimension-6 operators.
Note that each pE on the numerator corresponds to a ∂

∂p and
so that a covariant derivative in the δṼ 00 þ G̃, checking with
all possible combinatorics for each operator in Table I (see
the Appendix of [6]), the only p4

E term arise from the
OD calculation3 and no term falls into the category
of p4

E=
QP

ni¼6
ðp2

E þM2
i þ uÞni .

After finishing the loop integration and
R
du, the

Feynman parameter integration we actually need to do is

Fððp2Þnp ; ðM2
1Þn1 ; ðM2

2Þn2 ; � � �Þ ¼
ðP ni − 1Þ!Qðni − 1Þ!

�YZ
1

0

dxi

�
δ

�X
xi − 1

� Q
xni−1i

ðPM2
i xiÞ

P
ni−np−3

: ðA2Þ

Herewe do not keep the factors from loop integration, and the np and n1; n2; � � � corresponds to categories in Eq. (A1). In our
model of sfermion there are at most three different large mass scales. For the case of two large mass squares we list them all

Fððp2Þ0; ðM2
1Þ3; ðM2

2Þ1Þ ¼
3ðM2

1 − 3M2
2Þ

2ðM2
1 −M2

2Þ2
þ 3M4

2

ðM2
1 −M2

2Þ3
ln
M2

1

M2
2

; ðA3Þ

Fððp2Þ0; ðM2
1Þ2; ðM2

2Þ2Þ ¼
3ðM2

1 þM2
2Þ

ðM2
1 −M2

2Þ2
−

6M2
1M

2
2

ðM2
1 −M2

2Þ3
ln
M2

1

M2
2

; ðA4Þ

3The field strength related p4
E term such as in the combinatoric of 4

3!
gpμtaDρFa

νμ
∂
∂p

ρ ∂
∂p

ν always cancels due to the antisymmetric
property of Fa

νμ.
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Fððp2Þ0; ðM2
1Þ4; ðM2

2Þ1Þ ¼
2ðM4

1 − 5M2
1M

2
2 − 2M4

2Þ
M2

1ðM2
1 −M2

2Þ3
þ 12M4

2

ðM2
1 −M2

2Þ4
ln
M2

1

M2
2

; ðA5Þ

Fððp2Þ0; ðM2
1Þ3; ðM2

2Þ2Þ ¼
6ðM2

1 þ 5M2
2Þ

ðM2
1 −M2

2Þ3
−
12M2

2ð2M2
1 þM2

2Þ
ðM2

1 −M2
2Þ4

ln
M2

1

M2
2

; ðA6Þ

Fððp2Þ0; ðM2
1Þ5; ðM2

2Þ1Þ ¼
5ðM6

1 − 7M4
1M

2
2 − 7M2

1M
4
2 þM6

2Þ
2M4

1ðM2
1 −M2

2Þ4
þ 30M4

2

ðM2
1 −M2

2Þ5
ln
M2

1

M2
2

; ðA7Þ

Fððp2Þ0; ðM2
1Þ4; ðM2

2Þ2Þ ¼
10ðM2

1 þ 10M2
1M

2
2 þM4

2Þ
M2

1ðM2
1 −M2

2Þ4
−
60M2

2ðM2
1 þM2

2Þ
ðM2

1 −M2
2Þ5

ln
M2

1

M2
2

; ðA8Þ

Fððp2Þ0; ðM2
1Þ3; ðM2

2Þ3Þ ¼ −
90ðM2

1 þM2
2Þ

ðM2
1 −M2

2Þ4
þ 30ðM4

1 þ 4M2
1M

2
2 þM4

2Þ
ðM2

1 −M2
2Þ5

ln
M2

1

M2
2

; ðA9Þ

Fððp2Þ0; ðM2
1Þ6; ðM2

2Þ1Þ ¼
3M8

1 − 27M6
1M

2
2 − 47M4

1M
4
2 þ 13M2

1M
6
2 − 2M8

2

M6
1ðM2

1 −M2
2Þ5

þ 60M4
2

ðM2
1 −M2

2Þ6
ln
M2

1

M2
2

; ðA10Þ

Fððp2Þ0; ðM2
1Þ5; ðM2

2Þ2Þ ¼
5ð3M6

1 þ 47M4
1M

2
2 þ 11M2

1M
4
2 −M6

2Þ
M4

1ðM2
1 −M2

2Þ5
−
60M2

2ð2M2
1 þ 3M2

2Þ
ðM2

1 −M2
2Þ6

ln
M2

1

M2
2

; ðA11Þ

Fððp2Þ0; ðM2
1Þ4; ðM2

2Þ3Þ ¼ −
20ð10M4

1 þ 19M2
1M

2
2 þM4

2Þ
M2

1ðM2
1 −M2

2Þ5
þ 60ðM4

1 þ 6M2
1M

2
2 þ 3M4

2Þ
ðM2

1 −M2
2Þ6

ln
M2

1

M2
2

; ðA12Þ

Fððp2Þ1; ðM2
1Þ4; ðM2

2Þ1Þ ¼
2ð2M4

1 − 7M2
1M

2
2 þ 11M4

2Þ
3ðM2

1 −M2
2Þ3

−
4M6

2

ðM2
1 −M2

2Þ4
ln
M2

1

M2
2

; ðA13Þ

Fððp2Þ1; ðM2
1Þ3; ðM2

2Þ2Þ ¼
2ðM4

1 − 5M2
1M

2
2 − 2M4

2Þ
ðM2

1 −M2
2Þ3

þ 12M2
1M

4
2

ðM2
1 −M2

2Þ4
ln
M2

1

M2
2

; ðA14Þ

Fððp2Þ1; ðM2
1Þ5; ðM2

2Þ1Þ ¼
5ðM6

1 − 5M4
1M

2
2 þ 13M2

1M
4
2 þ 3M6

2Þ
3M2

1ðM2
1 −M2

2Þ4
−

20M6
2

ðM2
1 −M2

2Þ5
ln
M2

1

M2
2

; ðA15Þ

Fððp2Þ1; ðM2
1Þ4; ðM2

2Þ2Þ ¼
10ðM4

1 − 8M2
1M

2
2 − 17M4

2Þ
3ðM2

1 −M2
2Þ4

þ 20M4
2ð3M2

1 þM2
2Þ

ðM2
1 −M2

2Þ5
ln
M2

1

M2
2

; ðA16Þ

Fððp2Þ1; ðM2
1Þ3; ðM2

2Þ3Þ ¼
10ðM4

1 þ 10M2
1M

2
2 þM4

2Þ
ðM2

1 −M2
2Þ4

−
60M2

1M
2
2ðM2

1 þM2
2Þ

ðM2
1 −M2

2Þ5
ln
M2

1

M2
2

; ðA17Þ

Fððp2Þ2; ðM2
1Þ5; ðM2

2Þ1Þ ¼
5ð3M6

1 − 13M4
1M

2
2 þ 23M2

1M
4
2 − 25M6

2Þ
12ðM2

1 −M2
2Þ4

þ 5M8
2

ðM2
1 −M2

2Þ5
ln
M2

1

M2
2

; ðA18Þ

Fððp2Þ2; ðM2
1Þ4; ðM2

2Þ2Þ ¼
5ðM6

1 − 5M4
1M

2
2 þ 13M2

1M
4
2 þ 3M6

2Þ
3ðM2

1 −M2
2Þ4

−
20M2

1M
6
2

ðM2
1 −M2

2Þ5
ln
M2

1

M2
2

; ðA19Þ

Fððp2Þ2; ðM2
1Þ3; ðM2

2Þ3Þ ¼
5ðM6

1 − 7M4
1M

2
2 − 7M2

1M
4
2 þM6

2Þ
2ðM2

1 −M2
2Þ4

−
30M4

1M
4
2

ðM2
1 −M2

2Þ5
ln
M2

1

M2
2

; ðA20Þ

Fððp2Þ2; ðM2
1Þ6; ðM2

2Þ1Þ ¼
3M8

1 − 17M6
1M

2
2 þ 43M4

1M
4
2 − 77M2

1M
6
2 − 12M8

2

2M2
1ðM2

1 −M2
2Þ5

þ 30M8
2

ðM2
1 −M2

2Þ6
ln
M2

1

M2
2

; ðA21Þ
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Fððp2Þ2; ðM2
1Þ5; ðM2

2Þ2Þ ¼
5ðM6

1 − 7M4
1M

2
2 þ 29M2

1M
4
2 þ 37M6

2Þ
2ðM2

1 −M2
2Þ5

−
30M6

2ð4M2
1 þM2

2Þ
ðM2

1 −M2
2Þ6

ln
M2

1

M2
2

; ðA22Þ

Fððp2Þ2; ðM2
1Þ4; ðM2

2Þ3Þ ¼
5ðM6

1 − 11M4
1M

2
2 − 47M2

1M
4
2 − 3M6

2Þ
ðM2

1 −M2
2Þ5

þ 60M2
1M

4
2ð3M2

1 þ 2M2
2Þ

ðM2
1 −M2

2Þ6
ln
M2

1

M2
2

: ðA23Þ

The three different large mass scales case can be worked out similarly.
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