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The link between a modified Higgs self-coupling and the strong first-order phase transition necessary for
baryogenesis is well explored for polynomial extensions of the Higgs potential. We broaden this argument
beyond leading polynomial expansions of the Higgs potential to higher polynomial terms and to
nonpolynomial Higgs potentials. For our quantitative analysis we resort to the functional renormalization
group, which allows us to evolve the full Higgs potential to higher scales and finite temperature. In all cases
we find that a strong first-order phase transition manifests itself in an enhancement of the Higgs self-
coupling by at least 50%, implying that such modified Higgs potentials should be accessible at the LHC.
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I. INTRODUCTION

The existence of a scalar Higgs potential is the most
fundamental insight from the LHC to date. It is based on the
observation of a likely fundamental Higgs scalar in combi-
nation with measurements of the massive electroweak
bosons, fixing the infrared theory and its model parameters
after electroweak symmetry breaking to high precision. The
one remaining parameter is the Higgs self-coupling and its
relation to the Higgs mass, defining a standard benchmark
measurement for current and future colliders. This in itself
very interesting measurement may also be related to more
fundamental physics questions. A prime candidate for such
a question is electroweak baryogenesis, specifically the
nature of the electroweak phase transition.
For the singleHiggs boson of the renormalizable Standard

Model we can test the electroweak phase transition through
the Higgs mass. Here, electroweak baryogenesis [1,2]
requires a Higgs mass well below the observed value of
125 GeV [3–5]. Only then will the electroweak phase
transition be strongly first order. If we consider the
Standard Model an effective field theory (EFT), a sizable
dimension-6 contribution to the Higgs potential, ðϕ†ϕÞ3=Λ2,
is known to circumvent this bound [6–9]. In principle, this

scenario can be tested through a measurement of the Higgs
self-coupling at colliders [7–10]. The problem with this link
is that the new physics scale required by a first-order phase
transition is typically not large, Λ≳ v ¼ 246 GeV. If LHC
data should indeed point to a dimension-6 Lagrangian with a
low new physics scale, we will see this in many other
channels long beforewewill actuallymeasure theHiggs self-
coupling [11]. As a matter of fact, a global analysis of the
effective Higgs Lagrangian including ðϕ†ϕÞ3=Λ2 might
never probe the required values of the Higgs self-coupling
once we take into account all operators and all uncertainties,
so it hardly serves as a motivation to measure a SM-like
Higgs self-coupling.
In this paper we take a slightly different approach. First,

we assume that the new physics responsible for the strongly
first-order electroweak phase transition only appears in the
Higgs sector. In the EFT framework we would consider,
for example, the operator ðϕ†ϕÞ3=Λ2 [7–9]. While this
approach systematically includes higher-dimensional oper-
ators in a power-counting expansion, it is not at all guaranteed
that such an expansion is appropriate for the underlying new
physics. Furthermore, a description of first-order phase
transitions requires one to extract global information about
the effective potential.Again, a simplepolynomial expansion
around a vanishing Higgs field might not be sufficient to
resolve the fluctuation-driven competition between different
minima of the effective potential that induce a first-order
phase transition.
A simple global approximation to the effective potential

is provided by mean-field theory, which works remarkably
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well for Standard Model parameters [12–15] because of the
dominance of the top quark. Depending, however, on the
strength of the bosonic and order-parameter fluctuations in
the new physics model, mean-field approaches may become
unreliable. We demonstrate this explicitly using a simple
example case in this paper. This situation calls for non-
perturbativemethods.Recently, lattice simulations have been
used to study the possibility of first-order phase transition in
the presence of the operator ðϕ†ϕÞ3=Λ2, both in a Higgs-
Yukawa model [16] and in a gauged-Higgs system [17].
Here we use the functional renormalization group (FRG)

[18] as a nonperturbative tool; for reviews see, e.g., [19]. It
is able to provide global information about the Higgs
potential, bridge a wide range of scales, include fluctua-
tions of bosonic and fermionic matter fields as well as
gauge bosons and deal with extended classes of Higgs
potentials. The two questions which will guide us are the
following:
(1) Do extended Higgs potentials help with electroweak

baryogenesis?
(2) Can they be systematically tested by measuring the

Higgs self-coupling?
We study the influence of operators or functions of
operators in the Higgs sector on the electroweak phase
transition using several representative examples. We deter-
mine the consequences for the Higgs self-coupling for
suitable extended Higgs potentials supporting electroweak
baryogenesis and being compatible with the standard-
model mass spectrum.
The global properties of the Higgs potential are also

intimately related to the questions of vacuum stability and
Higgs mass bounds [20–22]. In fact, higher-dimensional
operators can also increase the stability regime of the
vacuum [13,16,23–27]. The example Higgs potentials
studied in this paper suggest new-physics scales well below
a possible instability scale of 1010���12 GeV of the Standard
Model. While vacuum instability is therefore not an issue
for our study, extended potentials generally do have the
potential to both support electroweak baryogenesis and
stabilize the Higgs vacuum. A measurement of the Higgs
self-coupling can therefore be indicative for both aspects.

A. Electroweak phase transition

The asymmetry between the matter and antimatter
contents in the Universe is one of the great mysteries in
cosmology and particle physics. Experimentally, the effec-
tive absence of antimatter in the Universe has been proven
in many different ways [28]. A quantitative measurement is
given by the baryon-to-photon ratio nB=nγ ≈ 6 × 10−10,
which is many orders of magnitude larger than what we
would expect from the thermal history in the presence of
antimatter. It can be explained by a small initial asymmetry
in the number of baryons and antibaryons which leads to a
finite density of baryons after essentially all antibaryons
have annihilated away.

Theoretically, the mechanisms behind the baryon asym-
metry are well understood. Most notably, it can be shown
that the presence of an asymmetry is equivalent to the three
Sakharov conditions for our fundamental theory [1]:
baryon number violation, C as well as CP violation, and
departure from thermal equilibrium. The first two con-
ditions can be probed by precision measurements of the
Lagrangian of the Standard Model and its extensions. The
third condition can in principle be achieved at the time of
the electroweak phase transition, where it then requires a
strong first-order phase transition. The nature of the
electroweak phase transition can be read off from the
scalar potential in or beyond the Standard Model.
The strength of the phase transition which occurs at the

critical temperature Tc is measured by the ratio ϕc=Tc,
where ϕc ¼ hϕiTc

is the expectation value of the Higgs at
the critical temperature. The critical temperature describes
the transition where for small temperatures T < Tc the
potential exhibits a single, nontrivial minimum for some
value of the scalar field ϕ. The field value at the minimum
is temperature dependent, approaching v ¼ 246 GeV for
T → 0. With increasing temperature, a second minimum at
zero field value and with an unbroken electroweak sym-
metry appears in a first-order scenario. At the critical
temperature Tc, the two minima of the potential, i.e. the
one at finite field value and the one at vanishing field value,
are degenerate, and the system undergoes a phase transition
from the symmetry-broken regime with a finite Higgs
expectation value to the symmetric regime.
The field value at the minimum constitutes an order

parameter. For ϕc ≠ 0 the transition is of first order, i.e. the
vacuum does not evolve continuously through the phase
transition. For electroweak baryogenesis, the transition has
to be a strong first-order one,

ϕc

Tc
≳ 1; ð1Þ

otherwise the baryon asymmetry is washed out [5].

B. Higgs self-coupling measurement

At energy scales relevant for the LHC, the self-
interaction of the Higgs boson is described by the infrared
(IR) Higgs potential in the broken phase. In the renorma-
lizable Standard Model, and ignoring Goldstone modes, it
reads at tree level

V ¼ μ2

2
ðvþHÞ2 þ λ4

4
ðvþHÞ4; ð2Þ

where H is the physical Higgs field. The two parameters
describing the SM-Higgs potential in the IR, μ and λ4 can
be traded for the vacuum expectations value v and the
Higgs mass mH [29]
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v ¼
ffiffiffiffiffiffiffi
μ2

2λ4

s
¼ 246 GeV; mH ¼

ffiffiffiffiffiffiffi
2λ4

p
v ¼ 125 GeV:

ð3Þ

The interaction between three and four physical Higgs
bosons in the Standard Model is then given by

λH3;0 ¼
3m2

H

v
; λH4;0 ¼

3m2
H

v2
: ð4Þ

In the limit of heavy top quarks, 2mt > mH, an effective
Higgs-gluon Lagrangian [30]

LggH ¼ αs
12π

GμνGμν log

�
1þH

v

�

¼ αs
12π

GμνGμν
1

v

�
H −

H2

2v
þ � � �

�
; ð5Þ

with the gluon field strength tensor Gμν and the strong
coupling αs, can be used to describe many relevant LHC
observables.
When we include new physics contributions in the

Higgs potential, the relations in Eq. (3) change. It is
instructive to follow the simple example of the modified
Higgs potential [29]

V ¼ μ2

2
ðvþHÞ2 þ λ4

4
ðvþHÞ4 þ λ6

Λ2
ðvþHÞ6: ð6Þ

The modified relations between the observables become

mH ¼
ffiffiffiffiffiffiffi
2λ4

p
v

�
1þ 12

λ6v2

λ4Λ2

�
;

λH3 ¼ 3m2
H

v

�
1þ 16λ6v4

m2
HΛ2

�
≡ λH3;0

�
1þ 16λ6v4

m2
HΛ2

�
;

λH4 ¼ 3m2
H

v2

�
1þ 96λ6v4

m2
HΛ2

�
≡ λH4;0

�
1þ 96λ6v4

m2
HΛ2

�
: ð7Þ

Because mH and v have to keep their measured values,
we need to adjust λ4 to compensate for the effect of λ6 on
the Higgs mass. This shift has to be accounted for in the
expressions for the Higgs self-couplings as a function of
mH and v. The reference couplings λHn;0 keep their
Standard Model values in terms of the unchanged param-
eters mH and v, but the physical Higgs couplings λHn

change.
The standard channel to measure λH3 at the LHC is Higgs

pair production in gluon fusion, as illustrated in Fig. 1,
[10,31–35]. Its production rate is known including NLO
[36] and NNLO [37]. One of the problems with such a
measurement is that the link between the total di-Higgs
production rate and the Higgs self-coupling requires us to
know the top Yukawa coupling. An appropriate framework

is the global Higgs analysis [11,38], which is expected to
give at best a 10% measurement of the top Yukawa
coupling. A model-independent precision measurement
of the top Yukawa coupling at the percent level will only
be possible at a 100 TeV collider [39].
The experimental situation improves once we include

kinematic information in the di-Higgs production process.
Two kinematic regimes are well known to carry informa-
tion on the Higgs self-coupling, both exploiting the
(largely) destructive interference between the two graphs
shown in Fig. 1. While the continuum contribution domi-
nates over most of the phase space, the two diagrams
become comparable close to threshold [10,32]. The low-
energy theory of Eq. (5) gives us for the combined di-Higgs
amplitude

A ∝
αs

12πv

�
λH3

s −m2
H
−
1

v

�
⟶
λH3¼λH3 ;0 αs

12πv2

�
3m2

H

3m2
H
− 1

�
¼ 0

for mHH → 2mH; ð8Þ

where mHH is the invariant di-Higgs mass. An exact
cancellation occurs in the Standard Model. Whereas the
heavy-top approximation is known for giving completely
wrong kinematic distributions for Higgs pair production
[10], it does correctly predict this threshold behavior.
Note that the momenta of the outgoing particles in such
processes are typically small compared to the Higgs mass
and the low-energy regime of the theory is probed. In the
analysis in Sec. III, we thus read off the Higgs self-
couplings from the low-energy effective potential.
The second relevant kinematic regime is boosted Higgs

pair production [40], because of top threshold contributions
to the triangle diagram around mHH ¼ 2mt. In terms of
the transverse momentum this happens around pT;H ≈
100 GeV, where the combined amplitude develops a
minimum for large Higgs self-couplings.
At the LHC, we define di-Higgs signatures simply based

on Higgs decay combinations. The most promising channel
is the bb̄γγ final state [34,41–43], where we can easily
reconstruct one of the two Higgs bosons and measure the
continuum background in the side bands. We can also use
the bb̄ττ final state [33,40], assuming very efficient tau
tagging. The combination bb̄WW [44] requires an efficient
suppression of the tt̄ background, while the 4b [33,45] and
4W [10,46] signatures are unlikely to work for SM-like
Higgs bosons. Finally, the bb̄μμ is in many ways similar for

FIG. 1. Feynman diagrams contributing to Higgs pair produc-
tion at the LHC. Figure from Ref. [10].
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the bb̄γγ channel [34], but with a much lower rate in the
Standard Model.
To get an idea of what to expect, we quote the optimal

reach of the high-luminosity LHC run with 3 ab−1, based on
theNeyman-Pearson theoremapplied to thebb̄γγ channel for
self-couplings relatively close to the Standard Model [41],

λH3

λH3;0
¼ 0.4…1.7 at 68% C:L:; ð9Þ

so any value for λH3=λH3;0 outside the range given abovewill
not be compatible with the vanishing di-Higgs amplitude in
Eq. (8). This reach will be improved when we combine
several Higgs decay channels, but will also suffer from
systematic uncertainties. In addition, it assumes a perfect
knowledge of the top Yukawa coupling. This implies that
models which predict a change in the Higgs self-coupling by
less than 50% will not be testable at the LHC.

II. MODIFIED HIGGS POTENTIALS

Similar to the EFT approach we assume that beyond an
ultraviolet (UV) scale or cutoff scale Λ new physics exists
and modifies the form of the Higgs potential. As the
additional degrees of freedom are heavy, their effects below
Λ can be parametrized by additional terms in the Higgs
potential, without modifying the propagating degrees of
freedom. The details of the new physics are encoded in the
initial condition for the RG flow of the Standard Model at
k ¼ Λ. Exploring different higher-order terms thus pro-
vides access to large classes of high-scale physics scenar-
ios, for which we do not have to investigate the detailed
matching of the additional terms in the Higgs potential and
the underlying high-scale degrees of freedom at k ¼ Λ.
Our system features three relevant energy scales. First,

the RG scale k ranges between k ¼ 0, where all quantum
fluctuations are taken into account, and k ¼ Λ, where we
initialize the flow. Second, the temperature T defines the
external physics scale with which we probe our system.
Third, the field value ϕ defines an additional, internal
energy scale of our system. As is usual in EFTanalyses, it is
important to clearly disentangle these three scales, even
though ϕ and T can in principle act similarly to the RG
scale k in that they suppress IR quantum fluctuations [23].
We employ a method that can straightforwardly account for
the RG flow in the presence of these different scales,
namely the functional renormalization group. In this set-
ting, quantum fluctuations in the presence of further
internal and external scales are taken into account by a
functional differential equation that is structurally one-loop,
without being restricted to a weak-coupling regime. This
provides access to classes of nonperturbative microscopic
models with a manageable computational effort. Most
importantly, the functional RG approach enables us to
keep track of the separate dependence of the potential on
the RG scale k, the temperature and the field value even in

cases with nonperturbative UV potentials, where, e.g. a
mean-field approach breaks down.
For our study, we concentrate on that part of the Standard

Model which is relevant for the RG flow of the Higgs
potential using the framework developed in [23]. Here, we
follow that framework by implementing the effects of weak
gauge bosons through a fiducial coupling, and upgrade our
treatment by including a thermal mass generated by the
corresponding fluctuations as their leading contribution
instead of implementing a fully fledged dynamical treat-
ment of that sector, see Appendix A for details. Similarly,
would-be Goldstone modes do not need to be considered
explicitly, such that it suffices to concentrate on a real scalar
field ϕ, which after electroweak symmetry breaking can be
described in terms of the physical Higgs field H as
ϕ ¼ H þ v. At the UV scale k ¼ Λ, the Higgs potential
is parametrized as

Vk¼Λ ¼ μ2

2
ϕ2 þ λ4

4
ϕ4 þ ΔV; ð10Þ

where ΔV contains the contribution of some higher dimen-
sional operator. In principle, higher-order modifications of
the Yukawa sector could also be included; cf. [47–49]. We
investigate three classes of modifications to the SM-Higgs
potential:
(1) additional ϕ6 or ϕ8 terms, which cover the leading-

order terms in an effective-field theory approach and
have been extensively studied in the literature [6–9];

(2) a logarithmic dependence on the Higgs-field, in-
spired by Coleman-Weinberg potentials. It does not
allow for a Taylor expansion around ϕ ¼ 0. Loga-
rithmic modifications are naturally generated by
functional determinants, i.e. by integrating out heavy
scalars or fermions.

(3) a simple example of nonperturbative contributions
of the form expð−1=ϕ2Þ, i.e. an exponential depend-
ence on the inverse field, consequently not admitting
a Taylor expansion in the field around ϕ ¼ 0. This is
inspired by semiclassical contributions to the path
integral with ϕ reminiscent to a moduli parameter of
an underlying model.

We denote these modifications of the potential by

ΔV6 ¼ λ6
ϕ6

Λ2
; ΔV8 ¼ λ6

ϕ6

Λ2
þ λ8

ϕ8

Λ4
;

ΔV ln;2 ¼ −λln;2
ϕ2Λ2

100
ln

ϕ2

2Λ2
;

ΔV ln;4 ¼ λln;4
ϕ4

10
ln

ϕ2

2Λ2
;

ΔVexp;4 ¼ λexp;4ϕ
4 exp

�
−
2Λ2

ϕ2

�
;

ΔVexp;6 ¼ λexp;6
ϕ6

Λ2
exp

�
−
2Λ2

ϕ2

�
: ð11Þ
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In all these potentials Λ describes a new physics scale,
which absorbs the mass dimension of the Higgs field. The
case of ϕ6=Λ2 has been explored in the literature [7–9] and
serves as a test of our method, as discussed in the
Appendix. Neither the logarithmic nor the exponential
potentials can be expanded around ϕ ¼ 0, so they cannot
be treated in an EFT framework. Similar bare potentials
have been suggested in [15] in the context of Higgs mass
bounds and vacuum stability. Instead, all potentials that
can be expanded around ϕ ¼ 0 can be approximated by the
power-ordered, first kind of potentials. As expected by
canonical power counting, terms of higher order in ϕ can
only play a role for very low values of Λ=v, unless their
prefactors are nonperturbatively large. From a more general
viewpoint, the set of power law, logarithmic and exponen-
tial potential functions does not only reflect the physics
structures arising from local vertex expansions, one-loop
determinants or semiclassical approximations. It also
includes the set of functions to be expected on mathemati-
cal grounds if the effective potential permits a potentially
resurgent transseries expansion [50].
To investigate the different classes of modifications, a

variety of tools appears to be at our disposal, a priori
ranging from mean-field techniques to nonperturbative
lattice tools and functional methods. It turns out that the
former are only applicable to a restricted class of potentials,
not allowing us to adequately explore the full range of
possible UV potentials corresponding to diverse underlying
microscopic models. This is displayed in Fig. 2 where the
ϕ6- modification of the Higgs potentials shows the
expected physical behavior as the strength of the first-
order phase transition is decreasing with an increasing
cutoff. The logarithmic modifications on the other hand
show a rather unphysical behavior as the strength of the
first-order phase transition remains constant or even
increases with the UV scale. This indicates that scalar

order parameter fluctuations are important, which are
ignored in simple mean-field theory. Therefore we make
use of powerful functional techniques, which treat bosonic
and fermionic fluctuations on the same footing.
When allowing for modifications of the Higgs potential,

we need to ensure that at T ¼ 0 the IR values for μ, λ4, and
the top-Yukawa-coupling yt are such that the measured
observables do not change. We adjust the corresponding
masses to

v ¼ 246 GeV; mH ¼ 125 GeV; mt ¼ 173 GeV:

ð12Þ

Within our numerical analysis, we require v and mt to be
reproduced to an accuracy of �0.5 GeV. The Higgs mass
is adjusted within a somewhat larger numerical band of
�1.5 GeV. Since it is related to the second derivative
(curvature) of the potential at the minimum, a higher
precision is numerically more expensive; see Appendix B
for details. Moreover, it is expected that the curvature mass
used here shows small deviations from the Higgs pole mass
mH, see [51], and the above band also contains an estimate of
this systematic error. In the symmetry broken regime, the
potential given in Eq. (10) can be expanded in powers of
ðϕ2 − v2Þ. In the decoupling region in the deep IR,we use the
parametrization

Vk≪v ¼
λ4;IR
4

ðϕ2 − v2Þ2 þ λ6;IR
8v2

ðϕ2 − v2Þ3

þ λ8;IR
16v4

ðϕ2 − v2Þ4 þ � � �
¼ λ4;IRv2H2 þ ðλ4;IR þ λ6;IRÞvH3

þ 1

4
ðλ4;IR þ 6λ6;IR þ 4λ8;IRÞH4 þ � � � : ð13Þ

Note that this is the full effective potential in the IR,
differing from the tree-level potential in Eq. (6). In
particular, higher-order terms, encoded in λ6;IR, are gen-
erated by quantum fluctuations even if the tree-level
potential is quartic. At tree level, the Higgs potential is
described by two parameters, i.e. λ6;IR ¼ λ8;IR ¼ � � � ¼ 0.
If we allow higher-order terms, all measurable parameters
are affected, in close analogy to Eq. (7). As described in
Sec. I B the vacuum expectationvalue v and theHiggsmass
m2

H=ð2v2Þ≡ λ4 are known very precisely from collider
measurements and thus we have to keep them fixed. The
physical Higgs self-couplings change from the values
given in Eq. (4) to the more general form

λH3 ¼ δ3

δH3
Vk¼0 ¼ 6vðλ4;IR þ λ6;IRÞ;

λH4 ¼ δ4

δH4
Vk¼0 ¼ 6ðλ4;IR þ 6λ6;IR þ 4λ8;IRÞ: ð14Þ

FIG. 2. Mean-field results for ϕc=Tc as a function of the cutoff
for different modifications of the Higgs potential. Second-order
and weak first-order phase transitions are excluded from the plot.
The results of the ϕ6 modification are reasonable, while the
results for the ϕ2 lnϕ2 and the ϕ4 lnϕ2 modifications are clearly
unphysical, see explanation in the text. More elaborate methods
than mean-field are needed.

PROBING BARYOGENESIS THROUGH THE HIGGS BOSON … PHYS. REV. D 97, 075008 (2018)

075008-5



The first terms are precisely the couplings λH3;0 ¼ 6vλ4;IR
and λH4;0 ¼ 6λ4;IR familiar from the tree-level structure.
With the present setup we can compute the Higgs
self-couplings in the pure Standard Model including
higher-order terms generated by quantum fluctuations
by initializing the flow at some high cutoff scale without
any modifications of the Higgs potential. As long as the
cutoff is not too close to the electroweak scale the results
will be largely independent of the cutoff choice. For our
level of numerical precision, a cutoff Λ ¼ 2 TeV is
sufficient. The Higgs self-couplings are given by

λH3

λH3;0
≈ 0.92;

λH4

λH4;0
≈ 0.68: ð15Þ

These values are equivalent to computations of the Higgs
potential with Coleman-Weinberg corrections. We then go
beyond the pure Standard Model by adjusting a combi-
nation of the coefficients λj and the new physics scale Λ in
Eq. (11). These can now be used to adjust ϕc=Tc such that
we obtain a strong first-order phase transition.

III. PHASE TRANSITION

For the modified Higgs potentials defined in Eq. (11) we
need to explore which values of the UV scale Λ and the
coefficients λj lead to a sufficiently strong first-order
transition. Simultaneously, we monitor whether this leads
to a measurable modification of the Higgs self-couplings in
the IR.

A. First-order phase transition

In Fig. 3 we show the evolution of two example
potentials from Eq. (11) from zero temperature to Tc,
where the latter is defined as the temperature at which the
two competing minima become degenerate. The latter is

not distinctly apparent in Fig. 3, but becomes visible in the
magnification in the right panel of Fig. 4. We also require
the second minimum to be at ϕc ¼ Tc, to guarantee a
sufficiently strong first-order phase transition. This way, the
ϕ dependence of the two cases becomes comparable. A key
feature already visible in this figure is that the potential with
the deeper minimum at small temperature turns into the
steeper potential at Tc. This is achieved by a larger value of
Tc for the potential with the deeper minimum. Note that the
potentials in Fig. 3 and 4 are read off at the RG scale kIR,
which is an infrared scale where the Higgs potential and all
observables are frozen out. Below this scale only convexity
generating processes take place. The freeze out occurs once
fluctuations of fields decouple from the RG flow because
the RG scale k crosses their mass threshold. This decou-
pling is built into the FRG setup. We choose kIR to be
smaller than the masses of the model, such that the exact
choice of kIR does not matter.
In Fig. 4 we illustrate the behavior of all our modified

Higgs potentials in the IR at vanishing temperature (left
panel) and at the critical temperature (right panel), respec-
tively. Note the different scales on the vertical axes. The UV
scale Λ and the respective coefficients λjðΛÞ are chosen
such that they result in a strong first-order phase transition,
ϕc=Tc ¼ 1. The different potentials at zero temperature are
similar to that of the Standard Model, as expected from the
fact that we fix the Higgs vacuum expectation value and
mass to their observed values. In particular, the minima all
appear at v ¼ 246 GeV, and the second derivatives have to
reproduce the measured Higgs mass. Nevertheless, if we fix
Vk¼kIRð0Þ ¼ 0, an imprint of modified UV physics remains
visible.
In the left panel of Fig. 4 we see that up to ϕ ≈ 300 GeV,

all modifications we consider lead to a very similar form of
the zero-temperature IR potential, if their coefficients are
fixed such that ϕc=Tc is the same for all our potentials. At
higher field values the different UV modifications lead to
distinct field dependence of the potential. The sizable
impact of the modified microscopic action on the IR
potential is due to the finite UV scale Λ ¼ 2 TeV. This
is not sufficiently far above the electroweak scale for the
contributions ΔV to be washed out by the RG flow.
At finite temperature, we see in the right panel of Fig. 4

that the potentials show significant deviations and the six
different modifications fall into three distinct forms of the
IR potential at Tc. The Standard Model is not displayed,
since it exhibits a second-order phase transition with
ϕc ¼ 0. The other potentials show different sizes of the
bump that separates the minima at ϕ ¼ 0 and ϕ ¼ ϕc. The
exponential modifications show the smallest bump, while
logarithmic modifications show the largest bump. The third
class is given by the polynomial UV potentials, which fall
in between the two other classes.
It is worth noting that the resulting IR modifications

almost coincide within each class of UV potentials, i.e., the

FIG. 3. Temperature evolution of the potentials of the type
ϕ4 lnϕ2 (solid) and ϕ4 expð−1=ϕ2Þ (dashed) for fixed ϕc=Tc ≈ 1.
We plot the temperatures T ¼ 25 GeV (violet), T ¼ 50 GeV
(red), T ¼ 75 GeV (blue), T ¼ 100 GeV (green) and T ¼ Tc

(orange). Note that T ln;4
c ¼ 116.4 GeV > Texp;4

c ¼ 110.5 GeV
and thus one curve overtakes the other. A magnification of the
curves at T ¼ Tc is displayed in Fig. 4.
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polynomial, logarithmic, and exponential class. Although
there are manifestly different UV modifications within each
class, like for instance ϕ4 expð−1=ϕ2Þ vs ϕ6 expð−1=ϕ2Þ,
the resulting IR behavior appears to be dominated by the
exponential dependence, and accordingly is nearly the
same for the two cases—as stressed before, the two
exponential cases differ from the two logarithmic cases,
which are within a separate class of their own.
Comparing the two panels we observe that zero-

temperature potentials with a steeper increase at larger
field values turn into more shallow potentials for finite
temperature near the broken vacuum. The latter corre-
sponds to a lower barrier between the two minima. The
reason for this link is that the phase transition occurs once
positive thermal corrections to the mass parameter are large
enough to change the extremum at ϕ ¼ 0 from a maximum
to a minimum, which then becomes degenerate with the
minimum at a finite field value. For potentials with a lower
zero-temperature depth—and correspondingly a more sub-
stantial slope at large ϕ—the corresponding critical
temperature Tc is lower. Therefore, the steepest increase
towards large ϕ in the left panel in Fig. 4 corresponds to
the smallest bump in the right panel of Fig. 4. Phrased
differently, for potentials with a flatter inner region, scalar
fluctuations are quantitatively more relevant. At the same
time, the phase transition turns first order as soon as the
scalar fluctuations dominate over the fermionic ones. This
connection will become important when evaluating the
prospects of the different cases with regards to detect-
ability at the LHC.

B. Scale of new physics

Given a particular microscopic model containing addi-
tional degrees of freedom, the UV scale or cutoff Λ is
typically identified with the mass scale of those additional
fields, below which their fluctuations are suppressed. From
an EFT point of view, one correspondingly associates Λ
with the energy scale, above which new physics can appear

as on-shell excitations. In turn, below Λ the effect of new
physics is only visible indirectly. Such an indirect effect
would be a deviation of the Higgs potential from its form
in the renormalizable Standard Model. A key aspect of this
kind of approach is that an EFT description by definition
comes with a region of validity, above which we will be
sensitive to the actual UV completion. Hence, before we
use our modified Higgs potential to link a strong first-order
phase transition to the Higgs self-coupling we need to study
the validity range of our description.
Following Eq. (11) we see that an indirect measurement

using an EFT-like approach is only sensitive to a combi-
nation of the scale Λ and the (Wilson) coefficients λj.
In Fig. 5 we show the correlation between Λ and the
corresponding λj evaluated at the UV scale Λ for a set of
modified Higgs potentials, assuming a strong first-order
phase transition with ϕc=Tc ¼ 1. We can interpret these
results as lines of constant IR physics: the running
coefficient λjðΛÞ then describes a family of effective
models defined at different scales Λ, all yielding the same
IR observables. Without new physics effects, ΔV ¼ 0, this
corresponds to fixing v, mH and mt in the IR and simply
evolving them toward the UV with their known RG
equations. In our extended setup, the additional coefficients
measure the strength of the new physics contribution, that
we initialize at the UV scale Λ. We then use a correspond-
ing parameter λj to fix ϕc=Tc to a value of our choice.
Doing so for different UV scales Λ, the coefficient λj
becomes a function of Λ.
Without running effects for the coefficients λj the

correlation between the coefficient and the UV scale would
be simple. For instance, the dimension-6 Wilson coefficient
would follow a parabola, λ6 ∝ Λ2. However, the condition
on ϕc=Tc for the strong first-order phase transition is
defined at energies around the Higgs VEV, while the shown
values of λj are defined in the UV. The complete correlation
is well described by a quadratic polynomial. In the case of
λ6, this reflects the quadratic running due to the canonical

FIG. 4. Effective potentials at T ¼ 0 (left) and T ¼ Tc (right). We show all modified Higgs potentials from Eq. (11) with Λ ¼ 2 TeV.
The values of the coefficients at the UV scale Λ are fixed by the requirement ϕc ≈ Tc, leading to λ6 ¼ 1.2, λ6 ¼ 1 with λ8 ¼ 1.4,
λln;4 ¼ 0.89, λln;2 ¼ 0.27, λexp;4 ¼ 23.3, and λexp;6 ¼ 27.5.
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dimension. While the normalization of ΔV can be adjusted
at will and the absolute values of the coefficients λj do
not carry any physical significance, the growth of these
coefficients towards the ultraviolet suggests the possible
onset of a strongly coupled regime.
To investigate the onset of this strongly coupled regimewe

fit the correlation between λj and Λ to a broken rational
polynomial. A motivation for the particular choice of fit
function in Fig. 5 is given by an approach to a powerlike
Landau-pole singularity. Indeed, this ansatz fits our numeri-
cal results well for the given range of UV scales. From the
broken polynomial we can estimate the critical scales, where
the respective models might become strongly coupled,

Λcrit
6 ¼ 7.0 TeV; Λcrit

ln;2 ¼ 10 TeV; Λcrit
ln;4 ¼ 6.8 TeV:

ð16Þ
These critical scales should be viewed as conservative
estimates of the validity scale up to which our field-theory
description using purely StandardModel degrees of freedom
is applicable. These estimates are of the same order of
magnitude as maximum values of Λ that lead to a first-order
phase transition in studies based on mean-field arguments,
see e.g. [7].

C. Baryogenesis vs Higgs self-coupling

After showing how a modified Higgs potential can lead
to a strong first-order phase transition in Sec. III A and
confirming that our approach is consistent in Sec. III B, we
can now explore the link between the strong first-order
phase transition and the observable Higgs self-coupling. As
laid out in the Introduction, the crucial question is as to
whether modifications of the Higgs potential that lead to a
sufficiently strong first-order phase transition for electro-
weak baryogenesis can be tested through the Higgs self-
coupling measurement at the LHC.
Following the above discussion, the remaining question

is how a value ϕc=Tc ≈ 1 due to the potentials given in
Eq. (11) is reflected in shifted physical Higgs self-
couplings λH3 and λH4 . All new physics models are adjusted
to reproduce the low-energy measurements in Eq. (12).
First, we can separate the two parameters 1=Tc and ϕc and
show their individual effects on the physical Higgs self-
couplings. In Fig. 6 we first see that the two parameters
contribute roughly similar amounts to an increase in the
Higgs self-couplings, if we push the model towards a
strong first-order phase transition. Second, we see that the
individual potentials in the general class of power series,
logarithmic, and exponential potentials give essentially

FIG. 5. Coefficient λjðΛÞ of the dimension-6 operator ϕ6=Λ2 (left), the modification Λ2ϕ2 lnϕ2=Λ2 (center), and the modification
ϕ4 lnϕ2=Λ2 (right) as a function of the cutoff, requiring ϕc=Tc ¼ 1� 0.05.

FIG. 6. Modification of the self-coupling λH3=λH3;0 as a function of ϕc (left) and 1=Tc (right) for the UV potentials given in Eq. (11).
The asterisk in both plots represents the Standard Model expectation, including Coleman-Weinberg corrections; cf. Eq. (15).
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degenerate results. Finally, the effect on the self-couplings
is the weakest for the logarithmic potential, slightly
stronger for the power-law modification, and the strongest
for the exponential modification.
As already observed in Sec. III A, a steeper zero-temper-

ature potential at large field values can be linked to a
decrease in Tc. On the other hand, a steeper increase at
large field values will be tied directly to larger values of the
cubic and quartic Higgs self-coupling. This dependence is
confirmed by Fig. 6, where potentials with smaller Tc
feature larger λH3. This feature holds both within each class
of potentials where we can decrease Tc by enhancing ΔV,
and between different classes of potentials. This trend
should be generic in that additions ΔV leading to a strong
first-order transition at low Tc will be easier to detect at
the LHC.
Given that we do not see any striking effects from

the individual dependence on 1=Tc and ϕc, we study the
dependence of the different Higgs potentials on the
physically relevant ratio ϕc=Tc. In Fig. 7, we show
the modifications of both Higgs self-couplings as a
function of ϕc=Tc. The free model parameter along the
shown line is an appropriate combination of new-physics
scale Λ and the new-physics coefficient λj. For ϕc=Tc ≳ 1

we find a strong first-order phase transition, suitable for
electroweak baryogenesis. From the location of the
Standard Model point it is clear that there exists a range
of modified self-couplings where the electroweak phase
transition remains second order. Only for

λH3

λH3;0
≳ 1.5 or

λH4

λH4;0
≳ 4; ð17Þ

we have a chance to generate a first-order phase tran-
sition. This number should be compared to the LHC reach
given in Eq. (9). We conclude that the prospects of a
detectable imprint appear to be good for all models that
we have studied. A strong first-order phase transition
corresponding to ϕc=Tc > 1 can in all scenarios be
achieved by further increasing the new physics contri-
butions and thereby increasing the Higgs self-couplings.
In particular, we observe that the nonperturbative mod-
ifications expð−1=ϕ2Þ lead to a significantly higher value
of the Higgs self-couplings at fixed ϕc=Tc and are thus
easier to detect. Given that for example exponential
potentials feature a minimum value of λH3 significantly
larger than the simple ϕ6 extension, the LHC measure-
ment might even allow first clues to the nature of new

FIG. 7. Modification of the self-couplings λH3=λH3;0 (left) and λH4=λH4;0 (right) as a function of ϕc=Tc for the UV potentials given in
Eq. (11). The asterisk in the lower left of both plots represents the Standard Model expectation, including Coleman-Weinberg
corrections; cf. Eq. (15).

FIG. 8. Modification of the self-coupling λH3=λH3;0 as a function of the coefficients λj from the different UV potentials given in
Eq. (11). Blue lines represent first-order phase transitions and red dotted lines second-order phase transitions. The cutoff is Λ ¼ 2 TeV.

PROBING BARYOGENESIS THROUGH THE HIGGS BOSON … PHYS. REV. D 97, 075008 (2018)

075008-9



physics, even if the corresponding scale Λ remains out of
direct reach at the LHC.
Because the curves in Fig. 7 connect an IR observable

with a UV property we can link the two regimes and make
two observations. First, we can start in the IR and fix λH3

for different UV potentials. Here, we find that an increase
in ϕc=Tc or decrease in Tc leads to a decrease in λH4 for
constant λH3 . Alternatively, we can fix ϕc=Tc for different
UV potentials and find that a decrease in λH3 corresponds to
a decrease also in λH4 or an increase in Tc.
Finally, Fig. 8 explicitly shows the connection between

the strength of the observable effect at LHC scales,
measured by λH3=λH3;0 and the size of the new physics
contribution ΔV at the microscopic scale Λ, measured by
the value of the dimensionless coefficients λj. The nature of
the electroweak phase transition is encoded in the coloring
of the lines. The onset of the first-order phase transition is at
values that can also be read off from Fig. 7: for logarithmic
modifications we find the lowest value of λH3=λH3;0 ≈ 1.4,
for the ϕ6 modification λH3=λH3;0 ≈ 1.5, and for exponen-
tial modifications λH3=λH3;0 ≈ 1.9. This size of all mod-
ifications can be probed in the high-luminosity run at the
LHC. Importantly, the Higgs self-couplings grow contin-
uously as a function of λj while ϕc=Tc remains zero till the
onset of the first-order phase transition and only then starts
to grow continuously.

IV. OUTLOOK

Higgs pair production or the measurement of the Higgs
self-coupling is an extraordinarily interesting LHC analy-
sis. We find that it is well motivated by modified Higgs
potentials which allow for a strong first-order electroweak
phase transition and hence an explanation of the observed
matter vs antimatter asymmetry. We have studied a wide
range of such modifications to the Higgs potential, espe-
cially potentials that cannot be expanded as an effective
field theory. We used the functional renormalization group
to describe the dependence on the field value ϕ and on the
temperature T. For all classes of potentials considered here,
there exists an appropriate choice of model parameters, for
which the phase transition is of first order and sufficiently
strong, ϕc=Tc ≳ 1.
Our numerical analysis indicates that the requirement

ϕc=Tc ¼ 1 corresponds to a critical scale of the order of
10 TeV for all our potentials, where the potentials become
strongly coupled. Below this scale we can rely on our
assumed potentials to describe LHC signals. We then found
that a strong first-order phase transition universally predicts
an enhancement of the Higgs self-couplings λH3 ≳ 1.5λH3;0

and λH4 ≳ 4λH4;0. Extending earlier studies, we systemati-
cally established this connection between a first-order
transition and a measurable deviation of the Higgs self-
couplings, employing a method that can describe systems
with multiple physical scales in a controlled manner. While

it might be possible that a new physics model features a
strong first-order transition with all effects on λH3=4 cancel-
ing accidentally [9], none of our examples falls into this
class. We conclude that a measurement of the Higgs self-
couplings at the LHC indeed serves as an indirect probe of a
first-order phase transition and thus of electroweak baryo-
genesis in generic setups.
On the other hand, we observed that it is possible to

obtain large deviations in the Higgs self-interactions for our
class of nonperturbative potentials without the condition
ϕc=Tc ≥ 1 being fulfilled. For example with an exponential
modification of the Higgs potential the physical Higgs
self-coupling reaches λH3 ≈ 1.9λH3;0 already significantly
below ϕc=Tc ¼ 1. On the theoretical side, a quantitative
upgrade of our analysis includes, but is not limited to, a full
treatment of the weak gauge sector as well as improvements
in our treatment of the Yukawa sector, which might result
in quantitative changes of the order of 10%; cf. [49]. An as
precise as possible measurement of the triple-Higgs inter-
action is clearly desirable. For instance a 20%measurement
of a relatively small modification of λH3=λH3;0 could
exclude such exponential potentials as sources of electro-
weak baryogenesis. Such an actual measurement could
therefore provide valuable hints guiding theoretical studies
of interesting extended Higgs models.
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APPENDIX A: FLOW EQUATIONS

The set of couplings in our setup consists of the SUð3Þ
coupling g3, a fiducial coupling gF that simulates the SUð2Þ
and the Uð1Þ sector, the top-Yukawa coupling yt, and the
full Higgs potential VðϕÞ [23]. For the SUð3Þ coupling it
suffices to consider one-loop running, since higher-order or
threshold corrections have little impact on the phase
transition. The one-loop beta function is given by

βg3 ¼ −
g33

ð4πÞ2
�
11 −

2

3
nf

�
; ðA1Þ

with nf ¼ 6. We fix the SUð3Þ coupling through
g3ð1 TeVÞ ¼ 1.06, so the scale-dependent SUð3Þ coupling

M. REICHERT et al. PHYS. REV. D 97, 075008 (2018)

075008-10



is known analytically. We approximate its temperature
dependence by replacing k →

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ πT2

p
,

g3ðk; TÞ ¼
�

7

8π2
ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ πT2

p

1 TeV
þ 1

1.062

�−1=2

: ðA2Þ

The logarithmic running of the Uð1Þ and SUð2Þ couplings
is sufficiently slow to be negligible for our purpose [23].
We model it as a fiducial coupling gF that is a constant as a
function of the RG scale and thus also a constant as a
function of the temperature. At finite temperature, this
simplified treatment must be ameliorated by a thermal mass
generated by fluctuations from the electroweak sector.
According to the high-T expansion of the one-loop thermal
potential it is given by

V thermal massðϕ; TÞ ¼
1

16
ð3g2 þ g02ÞT

2ϕ2

2
; ðA3Þ

where g ¼ 0.65 and g0 ¼ 0.36 are the SUð2Þ and Uð1Þ
gauge couplings, respectively.

To derive beta functions for the Higgs potential and the
top-Yukawa coupling we introduce the renormalized
dimensionless field ρ and the dimensionless potential u

ρ ¼ ϕ2

2k2Zϕ
; uðρÞ ¼ VðϕðρÞÞ

k4
: ðA4Þ

The wave function renormalizations of the fields appear
in the beta functions only via their anomalous dimension

ηϕ ¼ −
d logZϕ

d log k
; ηψ ¼ −

d logZψ

d log k
: ðA5Þ

Written in terms of threshold functions, the beta function
for the top Yukawa coupling agrees with that from
Refs. [13,23]; see, e.g. Eq. (C8) of Ref. [23]. How-
ever, we use a spatial regulator as described below and
temperature-dependent threshold functions. The spatial
regulator changes some prefactors, which is compensated
by the different definition of the threshold functions. The
beta function is given by

dy2t
d log k

¼ y2t ðηϕ þ 2ηψ Þ −
y4t
π2

ð3κu00ðκÞ þ 2κ2uð3ÞðκÞÞlðFBÞ41;2 ðκy2t ; u0ðκÞ þ 2κu00ðκÞ; ηψ ; ηϕ;TÞ

þ y4t
2π2

ðlðFBÞ41;1 ðκy2t ; u0ðκÞ þ 2κu00ðκÞ; ηψ ; ηϕ;TÞ − 2κy2t l
ðFBÞ4
2;1 ðκy2t ; u0ðκÞ þ 2κu00ðκÞ; ηψ ; ηϕ;TÞÞ

þ 3

π2
ðN2

c − 1Þ
2Nc

g23y
2
t ð2κy2t lðFBÞ42;1 ðκy2t ; 0; ηψ ; ηA;TÞ − lðFBÞ41;1 ðκy2t ; 0; ηψ ; ηA;TÞÞ −

cyg2Fy
2
t

16π2ð1þ ð 80
246

Þ2κÞ ; ðA6Þ

where cy ¼ 97=30 and Nc ¼ 3. It depends on the position
of the renormalized dimensionless minimum κ of the
potential, the anomalous dimensions of the fields, as well
as on regulator-dependent threshold functions specified
below. Here, we have employed the same projection
scheme onto the Yukawa flow as in [23] for reasons of
comparison. In principle, there exists an improved scheme
[47] more adequately capturing higher-order contributions
to the Yukawa flow for the present model [49], possibly
improving the fixing of initial conditions on the 5% level.
In either case, working in the symmetric regime with κ ¼ 0
and neglecting the additional η dependence in the threshold
functions reproduces the universal one-loop beta functions,
as it should.
The beta function for the Higgs potential at vanishing

temperature has been computed in Refs. [13,23]; see, e.g.
Eq. (E1) of Ref. [23]. As for the beta function of the
Yukawa coupling, the present finite temperature beta
function for the Higgs potential agrees with the T ¼ 0
one in terms of the threshold functions

duðρÞ
d log k

¼ −4uðρÞ þ ð2þ ηϕÞρu0ðρÞ

þ 1

4π2
ðlðBÞ40 ðu0ðρÞ þ 2ρu00ðρÞ; ηϕ;TÞ

− 4Ncl
ðFÞ4
0 ðy2t ρ; ηψ ;TÞÞ þ

cl

2π2ð1þ g2Fρ
2
Þ
; ðA7Þ

where cl ¼ 9=16 and again Nc ¼ 3.
Finally, we need expressions for the anomalous dimen-

sions of the Higgs field and the top quark: the first two
terms in Eq. (A6) are integral parts of the universal one-
loop contribution. In terms of the threshold functions the
anomalous dimension of the top quark agrees with the
T ¼ 0 one in Eq. (C8) of Ref. [23], and the anomalous
dimension of the scalar field has the same form as in
Eq. (16) of Ref. [13]. With the thermal threshold functions
of the present work this means
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ηϕ ¼ 2

3π2
Ncy2t ðmðFÞ4

4 ðκy2t ; ηψ ;TÞ − κy2t m
ðFÞ4
2 ðκy2t ; ηψ ;TÞÞ þ

1

3π2
κð3u00ðκÞ þ 2κuð3ÞðκÞÞ2mðBÞ4

4 ðu0ðκÞ þ 2κu00ðκÞ; ηϕ;TÞ;

ηψ ¼ 1

6π2
y2t m

ðFBÞ4
1;2 ðκy2t ; u0ðκÞ þ 2κu00ðκÞ; ηϕ;TÞ þ

1

2π2
ðN2

c − 1Þ
2Nc

g23ðmðFBÞ4
1;2 ðκy2t ; 0; ηψ ; 0;TÞ − m̃ðFBÞ4

1;1 ðκy2t ; 0; ηψ ; 0;TÞÞ:

ðA8Þ

The beta functions found above are expressed in terms of
regulator-dependent and temperature-dependent threshold
functions. Here we provide explicit analytic results for
these threshold functions for one specific regulator. The
analyticity of the threshold function is rooted in the use of a
Litim-type regulator [52] that only regularizes the spatial
momenta. The dimensionless bosonic and fermionic propa-
gators are regularized as

Gϕðω2
n; p⃗2; m2

ϕÞ ¼ ðω2
n þ p⃗2=k2ð1þ rBðp⃗2=k2ÞÞ þm2

ϕÞ−1;
Gψðν2n; p⃗2; m2

ψÞ ¼ ðν2n þ p⃗2=k2ð1þ rFðp⃗2=k2ÞÞ þm2
ψ Þ−1;
ðA9Þ

with the bosonic Matsubara frequency ωn ¼ 2πnT=k and
the fermionic Matsubara frequency νn ¼ 2πðnþ 1

2
ÞT=k.

Note that mϕ and mψ are dimensionless masslike

arguments. The bosonic and fermionic regulator shape
functions read [52]

rBðxÞ ¼ ðx−1 − 1ÞΘ ð1 − xÞ;
rFðxÞ ¼ ðx−1=2 − 1ÞΘ ð1 − xÞ; ðA10Þ

where x ¼ p⃗2=k2. In the following, we express the thresh-
old functions in terms of the bosonic and fermionic
distribution functions,

nF;Bðm2
ψ ;ϕ; TÞ ¼

�
exp

�
k
T

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þm2

ψ ;ϕ

q �
∓ 1

�
−1
: ðA11Þ

The set of threshold functions we need in our calculation
includes

lðBÞd0 ðm2
ϕ; ηϕ;TÞ ¼

2

d − 1

�
1 −

ηϕ
dþ 1

�
Bð1Þðm2

ϕ;TÞ;

lðFÞd0 ðm2
ψ ; ηψ ;TÞ ¼

2

d − 1

�
1 −

ηψ
d

�
F ð1Þðm2

ψ ;TÞ;

lðFBÞdn;m ðm2
ψ ; m2

ϕ; ηψ ; ηϕ;TÞ ¼
2

d − 1

�
n

�
1 −

ηψ
d

�
FBðnþ1;mÞðm2

ψ ; m2
ϕ;TÞþm

�
1 −

ηϕ
dþ 1

�
FBðn;mþ1Þðm2

ψ ; m2
ϕ;TÞ

�
;

mðBÞd
4 ðm2

ϕ; ηϕ;TÞ ¼ Bð4Þðm2
ϕ;TÞ;

mðFÞd
2 ðm2

ψ ;TÞ ¼ F ð4Þðm2
ψ ;TÞ;

mðFÞd
4 ðm2

ψ ; ηψ ;TÞ ¼ F ð4Þðm2
ψ ;TÞ þ

1 − ηψ
d − 3

F ð3Þðm2
ψ ;TÞ −

1

2

�
1 − ηψ
d − 3

þ 1

2

�
F ð2Þðm2

ψ ;TÞ;

mðFBÞd
1;2 ðm2

ψ ; m2
ϕ; ηψ ; ηϕ;TÞ ¼

�
1 −

ηϕ
d

�
FBð1;2Þðm2

ψ ; m2
ϕ;TÞ;

m̃ðFBÞd
1;1 ðm2

ψ ; m2
ϕ; ηψ ; ηϕ;TÞ ¼

2

d − 2

��
1 −

ηϕ
d

�
FBð1;2Þðm2

ψ ; m2
ϕ;TÞ þ

�
1 −

ηψ
d − 1

�
FBð2;1Þðm2

ψ ; m2
ϕ;TÞ

−
1

2

�
1 −

ηψ
d − 1

�
FBð1;1Þðm2

ψ ; m2
ϕ;TÞ

�
: ðA12Þ

All threshold functions are expressed in terms of

F ð1Þðm2
ψ ;TÞ ¼

T
k

X
n∈Z

Gψðνn; m2
ψ Þ; Bð1Þðm2

ϕ;TÞ ¼
T
k

X
n∈Z

Gϕðωn; m2
ϕÞ;

FBð1;1Þðm2
ψ ; m2

ϕ;TÞ ¼
T
k

X
n∈Z

Gψðνn; m2
ψ ÞGϕðωn; m2

ϕÞ: ðA13Þ

M. REICHERT et al. PHYS. REV. D 97, 075008 (2018)

075008-12



At finite temperature for the flat regulators in Eq. (A10) they are given by

F ð1Þðm2
ψ ;TÞ¼

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þm2

ψ

q �
1

2
−nFðm2

ψ ;TÞ
�
;

Bð1Þðm2
ϕ;TÞ¼

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þm2

ϕ

q �
1

2
þnBðm2

ϕ;TÞ
�
;

FBð1;1Þðm2
ψ ;m2

ϕ;TÞ¼
"
1
2
þnBðm2

ϕ;TÞ
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þm2

ϕ

q ��
m2

ψ þ1−
�
iπT=kþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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:

ðA14Þ

They obey the relations

∂F ðnÞ
∂m2

ψ
¼ −nF ðnþ1Þ;

∂BðnÞ
∂m2

ϕ

¼ −nBðnþ1Þ;

∂FBðm;nÞ
∂m2

ψ
¼ −mFBðmþ1;nÞ;

∂FBðm;nÞ
∂m2

ϕ

¼ −nFBðm;nþ1Þ: ðA15Þ

The notation and the threshold functions agree with
Ref. [47]. Note, that the T → 0 limit of the threshold
functions does not agree with the ones given in Ref. [13],
since we use a spatial regulator while Ref. [13] uses a
covariant regulator. This concludes the list of threshold
functions and relations necessary in order to numerically
evaluate the previously given beta functions.

APPENDIX B: GRID APPROACH AND
BENCHMARKING

We solve the functional differential equation for the Higgs
potential, Eq. (A7), using a grid code. This means that the
potentialuðρÞ and its derivativeu0ðρÞ are discretized on a grid
in the field invariant ρ. The discretization converts the partial
differential equation for uðρÞ into a large set of coupled
ordinary differential equations. The grid code has to manage
a numerical integration from k ¼ Λ, where we initialize the
flow, down to k ¼ kIR ≈ 100 GeV. At this IR value all
physical relevant quantities are frozen out and only con-
vexity-generating processes take place.
The grid code also has to cover a large range of values in

the scalar field 0 ≤ ϕ ≤ cΛ, where we typically choose
c ¼ Oð1…10Þ. To resolve both, large field values and the

minimum of the potential at small field values, we employ
an exponential distribution of the grid points ρi ¼ ϕ2

i =2
with i ∈ 0;…; N − 1 according to

ρi ¼ ρa þ
expð i

cgrid
Þ − 1

expððN−1Þ
cgrid

Þ
ρb; ðB1Þ

where N is the number of grid points, cgrid a grid parameter
that governs the distributions of the grid points, and ρa
and ρb the smallest and largest included field value,
respectively.
We introduce a grid for the potential uðρiÞ as well as for

the derivative of the potential u0ðρiÞ, and we match the
second and third derivative of the potential in between the
grid points [53]. This is augmented by a differential
equation for the top-Yukawa coupling, while the SUð3Þ
coupling is already integrated out and the fiducial coupling
for SUð2Þ and Uð1Þ remains constant. Consequently, we
obtain a system of 2N þ 1 coupled differential equations
for a grid consisting of N points, which is solved with an
iterative Runge-Kutta-Fehlberg method with an adaptive
step size.
At the IR scale and at vanishing temperature, we match

the output of the grid code with the physically known
observables, see Eq. (12). This is implemented on the level
of the variables of the grid code and in particular we
demand that the errors fulfill Δρmin ≤ 20 GeV2, Δλ4 ≤
0.002 and Δyt ≤ 0.0014. Expressed in the quantities of
Eq. (12) these errors correspond to Δv ≤ 0.08 GeV,
ΔmH ≤ 0.28 GeV, and Δmt ≤ 0.23 GeV. It is important
to determine the vacuum expectation value more precisely
since its error directly influences the error on the Higgs and
the top mass.
To achieve this precision we tune the parameters μ, λ4

and yt at the UV scale, which is done by a secant method
in μ and a two-dimensional bisection method in λ4 and yt.
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The grid code might exhibit other systematic errors and in
particular the measurement of the Higgs mass is challeng-
ing since it is related to the second derivative of the
potential. Hence we conservatively estimate the total
accuracy of the IR values with

Δv ≤ 0.2 GeV; ΔmH ≤ 1.5 GeV;

Δmt ≤ 0.5 GeV: ðB2Þ

The tuning process is performed at vanishing temperature
and the tuned initial values are subsequently used as initial
values for all finite-temperature computations. For each
temperature we initialize the flow in this way and determine
the position of the minimum at the IR scale kIR. The critical
temperature is obtained with a bisection method where we
demand an accuracy of ΔTc ≤ 0.2 MeV. This high accu-
racy is necessary for a precise value of ϕc, which is in turn
given by the position of the minimum at the temperature
just below Tc. From the grid code, it is difficult to get a
clear signature distinguishing between second-order phase

transitions and weak first-order phase transitions. Within
our numerical accuracy, a reliable distinguishing signature
is not available for ϕc ≲ 20 GeV. For finite temperature
computations we slightly increase the number of grid
points, since the exponential functions in the bosonic
and fermionic distribution functions make these computa-
tions technically more challenging.
We test our numerical results by first comparing the

observables for two different numbers of grid points.
The necessary number varies with our choice of cutoff
and the modification of the Higgs potential. For example,
more grid points are necessary for the exponential mod-
ifications of the potential. For polynomial and logarithmic
modifications and a cutoff Λ ¼ 2 TeV, we use typically
N ¼ 90 grid points, while for exponential modifications
with the same cutoff we use N ¼ 150 grid points. In Fig. 9
we display results for polynomial and logarithmic mod-
ifications. In particular we show the correlation between
the strength of first-order phase transition and the Higgs
self-couplings. In Fig. 10 we show the same correlation
but for exponential modifications and for N ¼ 130 and for

FIG. 10. Modification of the self-couplings λH3=λH3;0 (left) and λH4=λH4;0 (right) as a function of ϕc=Tc for exponential modifications
of the UV potentials; cf. Eq. (11). We compare results for N ¼ 130 and N ¼ 150 grid points.

FIG. 9. Modification of the self-couplings λH3=λH3;0 (left) and λH4=λH4;0 (right) as a function of ϕc=Tc for polynomial and logarithmic
modifications of the UV potentials; cf. Eq. (11). We compare results for N ¼ 70 and N ¼ 90 grid points.
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N ¼ 150 grid points. The results for N ¼ 90 and for
N ¼ 150 are identical with those displayed in Fig. 7.
To make our analysis more quantitative we also dis-

play the relative change of the correlation for polynomial
and logarithmic modifications in Fig. 11. The results do
not change significantly when we increase the number of
grid points. In case of polynomial and logarithmic
modifications the amount of wiggles in the region of a
weak first-order phase transition, which originates from
numerical uncertainties, is further reduced. In the region
of a weak first-order phase transition we have a relative
change of less than 2%, while in the region of a strong
first-order phase transition we have a relative change of
less than 0.5%. This is sufficient for our analysis, since
we are only interested in the latter case. In case of the
exponential modifications the change is hardly visible.

The relative change is globally less than 0.02%. These
results illustrate that our findings are indeed numerically
stable.
Finally, we can compare our functional renormalization

group results to other methods, for instance to the mean-
field-like methods of Ref. [7]. To perform a meaningful
comparison, we have to take into account the slightly
different setup: while we modify the microscopic potential,
Ref. [7] implements the modifications directly at the level
of the effective potential. This means that in our setup a ϕ6

modification of the microscopic potential generates finite
higher-order modifications through quantum fluctuations,
which in the weak-coupling regime are similar to the one-
loop determinant. These additional terms do not appear
in Ref. [7].
For our comparison we therefore adjust the parameter

λ6 such that the T ¼ 0 effective potentials of both setups
agree. Due to the impact of quantum fluctuations,
different values of Λ require slightly different initial
conditions for λ6 in our setup. With a cutoff Λ ¼ 1 TeV
it turns out that this is the case for λ6 ≈ 0.21, while for
a cutoff Λ ¼ 0.6 TeV we find λ6 ≈ 0.19. The difference
in values of λ6 is accounted for by the RG flow between
the two choices of cutoff scale. With these values we
can then compare Tc and ϕc=Tc. As expected, we indeed
find good qualitative agreement. For instance, for Λ ¼
0.6 TeV we find ϕc=Tc ¼ 2.7 and Tc ¼ 83 GeV vs
ϕc=Tc ¼ 2.8 and Tc ¼ 75 GeV from Ref. [7]. We
emphasize that a more precise agreement cannot be
expected: the modification of the microscopic and the
effective Higgs potential are necessarily different, as
our setup accounts for quantum fluctuations, in particu-
lar affecting λ6 between the microscopic scale and
the IR.
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